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Objectives: To compare the prevalence of SARS-CoV-2 and other respiratory viruses in saliva and bio-
aerosols between two winters and to model the probability of virus detection in classroom air for
different viruses.
Methods: We analysed saliva, air, and air cleaner filter samples from studies conducted in two Swiss
secondary schools (students aged 14—17 years) over 7 weeks during the winters of 2021/22 and 2022/23.
Two bioaerosol sampling devices and high efficiency particulate air (HEPA) filters from air cleaners were
used to collect airborne virus particles in four classrooms. Daily bioaerosol samples were pooled for each
sampling device before PCR analysis of a panel of 19 respiratory viruses and viral subtypes. The prob-
ability of detection of airborne viruses was modelled using an adjusted Bayesian logistic regression
model.
Results: Three classes (58 students) participated in 2021/22, and two classes (38 students) in 2022/23.
During winter 2021/22, SARS-CoV-2 dominated in saliva (19 of 21 positive samples) and bioaerosols (9 of
10). One year later, there were 50 positive saliva samples, mostly influenza B, rhinovirus, and adenovirus,
and two positive bioaerosol samples, one rhinovirus and one adenovirus. The weekly probability of
airborne detection was 34% (95% credible interval [Crl] 22—47%) for SARS-CoV-2 and 10% (95% Crl 5—16%)
for other respiratory viruses.
Discussion: There was a distinct shift in the distribution of respiratory viruses from SARS-CoV-2 during
the omicron wave to other respiratory viruses one year later. SARS-CoV-2 is more likely to be detected in
the air than other endemic respiratory viruses, possibly reflecting differences in viral characteristics and
the composition of virus-carrying particles that facilitate airborne long-range transmission.
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Introduction

interventions and physical distancing reduced the spread of
SARS-CoV-2 and other seasonal respiratory viruses, but a resur-

The transmission of respiratory viruses, such as SARS-CoV-2 and
influenza, in schools and other indoor environments is difficult to
control [1]. During the COVID-19 pandemic, non-pharmaceutical
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gence of respiratory infections followed the relaxation of these
measures [2—4]. After the epidemic peaks, there is a shift in the
circulation of respiratory viruses [5], which can be identified by
frequent collection of non-invasive saliva samples [6].

Respiratory viruses spread via multiple routes, including respi-
ratory particles such as large droplets and small aerosols. Unlike
larger droplets, which settle quickly, aerosols can remain sus-
pended in the air for extended periods [7]. Airborne infectious
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pathogens are primarily found in smaller particles and the distri-
bution is similar across various pathogens [8]. Thus, pathogen-
carrying aerosols have the potential for long-range transmission,
but the larger concentration of particles near the infectious person
favours short-range transmission [7].

We compared saliva samples, bioaerosol samples, and samples
from the HEPA filters of air cleaners that were collected as part of
two studies conducted in a Swiss school setting in winter 2021/22
(during the SARS-CoV-2 omicron wave) [9] and winter 2022/23 [10].

Methods

Data were collected in two secondary schools (students aged
14—17 years) in the canton of Solothurn, Switzerland, during a
7-week study period from the end of January to the beginning of
March. Three classes (two classrooms) participated in 2021/22 and
two classes (two classrooms) in 2022/23. An air quality device (AQ
Guard, Palas GmbH, Karlsruhe, Germany) continuously measured
indoor CO; levels, temperature, and humidity. A detailed compar-
ison of the study settings can be found in Table S1.

Testing for a panel of respiratory infections was performed
weekly in 2021/22 and bi-weekly in 2022/23 using saliva collection
kits with saline solution. Airborne respiratory viruses were
collected in each classroom using a cyclonic bioaerosol sampling
device (Coriolis Micro Air, Bertin Instruments Montigny-le-
Bretonneux, France) and the BioSpot-VIVAS condensation particle
growth collection device (Aerosol Devices Inc., Ft. Collins, CO, USA)
[11]. The HEPA filters of the portable air cleaner (Xiaomi Mi Air Pro
70 m?, Shenzhen, China) were removed and divided into 20 fields.
For each field, one swab moistened with sterile Phosphate-Buffered
Saline was collected, amounting to a total of 20 swabs per filter.
Saliva and airborne samples were transported to the laboratory on
the same day and stored immediately at —80°C until further pro-
cessing [12]. Before RT-PCR analysis, daily bioaerosol samples were
pooled for each sampling device and enriched using Amicon Ultra-
15 Centrifugal filters as described previously [9]. Saliva samples
were analysed directly without prior filtration/enrichment. The
Allplex RV Master Assay (Seegene, Seoul, South Korea) detects a
panel of 19 major respiratory viruses and viral subtypes, including
SARS-CoV-2, influenza A/B virus, respiratory syncytial virus, met-
apneumovirus, adenovirus, rhinovirus, and parainfluenza virus. The
technical study protocols were identical in both study periods.

We used descriptive statistics to present differences in the type
and number of respiratory viruses detected in saliva and airborne
samples between 2021/22 and 2022/23. A Bayesian logistic regres-
sion model was used to estimate the probability of detecting any
SARS-CoV-2 vs. non-SARS-CoV-2 viruses in the air during a study
week, adjusting for differences in the study settings, whether a
positive saliva sample was found in the same week, the in-
terventions implemented during the studies (compulsory face mask
wearing and portable air cleaners), and the daily maximum CO,
levels (as a proxy for indoor air quality and ventilation). Appendix
Text A provides a detailed model description. All analyses were done
in R version 4.3.2, and Bayesian modelling was performed using the
probabilistic programming language Stan version 2.26.1.

The Ethics Committee of the Canton of Bern, Switzerland,
approved the study (reference no. 2021—02377). For the saliva
samples, we included all students who were willing to participate
and obtained written informed consent from their caregivers.

Results
In 2021/22, 51 of 58 students (84%) participated in weekly saliva

testing. There were 21 positive saliva samples during the study, 19
SARS-CoV-2, one influenza A virus, and one adenovirus (Fig. 1(a),

N. Banholzer et al. / Clinical Microbiology and Infection 30 (2024) 829.e1—829.e4

left). There were 10 positive bioaerosol samples, nine SARS-CoV-2,
and one adenovirus. There were eight positive samples on the
HEPA filters, six SARS-CoV-2, one influenza A virus, and one adeno-
virus. In 2022/23, 37 of 38 students (97%) participated in bi-weekly
saliva testing. There were 50 positive saliva samples, mostly influ-
enza B virus, rhinovirus, and adenovirus (Fig. 1(a), right). There were
two positive bioaerosol samples, one rhinovirus, and one adenovirus.
There were four positive samples on the HEPA filters of the air
cleaners, one influenza B virus, one rhinovirus, one adenovirus, and
one SARS-CoV-2. Overall, we found six positive air—saliva samples of
the same virus in the same classroom in the same week (four SARS-
CoV-2 and two non-SARS-CoV-2 viruses; Fig. 1(b)), suggesting they
were paired samples. In saliva, Ct values were significantly lower for
SARS-CoV-2 than other respiratory viruses (A— 2.45, p 0.02; Fig. S1).

SARS-CoV-2 was more likely detected in bioaerosols than other
respiratory viruses (posterior probability 97%, adjusted odds ratio
4.8, 95% credible interval [Crl] 2.6—9.0). The probability of airborne
molecular detection was 34% (95% Crl 22—47%) for SARS-CoV-2 vs.
10% (95% Crl 5—16%) for non-SARS-CoV-2 viruses (Fig. 1(c)). We
adjusted estimates for differences in maximum daily CO,, which
increased from 1134 ppm (standard deviation [SD] 277 ppm) in
2021/22 to 2224 ppm (SD 321 ppm) in 2022/23. Relative humidity
(38% [SD 6%] in 2021/22 vs. 38% [SD 5%] in 2022/23) and temper-
ature (19°C [SD 2°C] in 2021/22 vs. 22°C [SD 1°C] in 2022/23) were
similar.

Discussion

We compared the molecular detection of respiratory viruses in
saliva, air, and filter samples collected in two studies in Swiss sec-
ondary schools during the winter seasons of 2021/22 and 2022/23.
In winter 2021/22, we predominantly identified SARS-CoV-2 in
saliva, air, and air filter samples. Conversely, during 2022/23, we
primarily detected non-SARS-CoV-2 viruses, such as influenza vi-
ruses and adenoviruses, in saliva samples, but these were rarely
found in air or filter samples.

Overall, the likelihood of molecular airborne detection was
substantially higher for SARS-CoV-2 compared to non-SARS-CoV-2
viruses, even when we adjusted for covariates and differences be-
tween the studies. Although the molecular assay used has not been
formally validated for respiratory viruses other than SARS-CoV-2 in
saliva samples, this sample type is increasingly replacing more
invasive nasopharyngeal swabs in surveillance settings and may
have comparable performance [13]. Besides differences in virus
circulation in the population during the study periods, a plausible
explanation is that SARS-CoV-2 can remain airborne for extended
durations, thus facilitating long-range transmission, matching the
observation of superspreading events during the pandemic. This
contrasts with other respiratory viruses, where airborne detection
was found to be infrequent in our studies. Therefore, prolonged
close contact may be relatively more important for transmission of
respiratory viruses other than SARS-CoV-2, although close contact
also facilitates transmission of SARS-CoV-2 [1,14].

Technical factors are unlikely to account for the differences in
airborne detection. The two studies used identical bioaerosol
samplers and laboratory methods, and no technical problems
occurred. Temperature and relative humidity were also similar.
Ventilation changed, with higher CO; levels in 2022/23 potentially
enhancing airborne survival, but this and other differences were
controlled for in the statistical analysis. Therefore, it is plausible
that the difference in airborne detection may be because of differ-
ences in virus characteristics, particularly between SARS-CoV-2 and
non-SARS-CoV-2 viruses, which may influence the distribution and
survival of virus in airborne particles of different sizes [7]. Non-
SARS-CoV-2 respiratory virus infections may result in smaller
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Fig. 1. Comparison of molecular detection of respiratory viruses between winter 2021—2022 and winter 2022—2023. (a) Distribution of respiratory viruses found in saliva. AdV,
adenovirus; CoV, SARS-CoV-2; HRV, human rhinovirus; IF, influenza A/B virus; MPV, human metapneumovirus; PIV, parainfluenza virus. (b) Positive samples in saliva and bio-
aerosols per study week. (c) Probability of detecting any SARS-CoV-2 and non-SARS-CoV-2 viruses in bioaerosols during a study week (posterior mean as dots, interquartile range as
box, 95% Crl as error bars), with the posterior probability that airborne detection was more frequent for SARS-CoV-2 than non-SARS-CoV-2 shown on top.

amounts of exhaled bioaerosols, falling below the detection limit of
current sampling devices [15]. Interestingly, we found higher Ct
values for non-SARS-CoV-2 saliva samples, suggesting lower viral
loads. However, this finding must be interpreted with caution
because Ct values (or viral loads) can be highly variable because of
sampling techniques and biological differences, and higher viral
loads may not necessarily translate into increased infectiousness
[16]. Finally, other non-SARS-CoV-2 human coronaviruses, such as
HCoV-0C43, and emerging respiratory viruses may exhibit
different behaviours that warrant additional study.

Other unobserved factors could also explain differences in
airborne detection, such as the more frequent presence of highly
infectious students (superspreaders) with SARS-CoV-2 in the
classroom in winter 2021/22, who could have emitted more

bioaerosols. Differences in host immunity may also have played a
role, although SARS-CoV-2 was primarily detected in saliva and air
samples in winter 2021/22 when students were likely to have higher
immunity (recently vaccinated or recently recovered students)
compared with winter 2022/23, which may indicate the less
airborne spread of SARS-CoV-2 and lower susceptibility to SARS-
CoV-2 in winter 2021/22. Prior immunity to other respiratory vi-
ruses has not been measured, but vaccination is typically used less
frequently to prevent non-SARS-CoV-2 respiratory viruses.

In conclusion, we observed a distinct shift in the distribution of
respiratory viruses from SARS-CoV-2 in the winter of 2021/22 to
non-SARS-CoV-2 viruses in 2022/23, reflecting the transition from
epidemic to endemic transmission of SARS-CoV-2. Molecular
detection of airborne SARS-CoV-2 was more frequent than other



829.e4

endemic respiratory viruses. Future studies should investigate the
seasonality of SARS-CoV-2 and non-SARS-CoV-2 respiratory viruses
and the contribution of close contact vs. airborne long-range
transmission to the overall transmission of respiratory infections
in congregate indoor settings.
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