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Abstract
Purpose: To introduce a tool (TensorFit) for ultrafast and robust metabolite
fitting of MRSI data based on Torch’s auto-differentiation and optimization
framework.
Methods: TensorFit was implemented in Python based on Torch’s
auto-differentiation to fit individual metabolites in MRS spectra. The underly-
ing time domain and/or frequency domain fitting model is based on a linear
combination of metabolite spectroscopic response. The computational time
efficiency and accuracy of TensorFit were tested on simulated and in vivo MRS
data and compared against TDFDFit and QUEST.
Results: TensorFit demonstrates a significant improvement in computation
speed, achieving a 165-times acceleration compared with TDFDFit and 115
times against QUEST. TensorFit showed smaller percentual errors on simulated
data compared with TDFDFit and QUEST. When tested on in vivo data, it per-
formed similarly to TDFDFit with a 2% better fit in terms of mean squared error
while obtaining a 169-fold speedup.
Conclusion: TensorFit enables fast and robust metabolite fitting in large MRSI
data sets compared with conventional metabolite fitting methods. This tool
could boost the clinical applicability of large 3D MRSI by enabling the fit-
ting of large MRSI data sets within computation times acceptable in a clinical
environment.

K E Y W O R D S

3D MRSI, deep learning frameworks, GPU optimization, metabolite fitting, torch
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1 INTRODUCTION

Alterations in the chemical concentrations of spe-
cific metabolites in the brain are often associated with
certain pathologies. MRSI enables noninvasive quan-
tification of metabolites and has applications in tumor

classification,1–4 treatment follow-up,5–7 and the study
of metabolic disorders leading to neurological diseases.8
However, low resolution, spectral quality, and difficulties
in interpretation make the clinical application of MRSI
challenging.9
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Substantial research has been undertaken to solve
these factors and augment the efficacy of MRS, pri-
marily through advancements in pulse sequences and
artifact removal methods.10–12 One promising approach
is using a 3D echo-planar spectroscopy imaging (EPSI)
sequence,13–15 which improves spatial resolution and
reduces the acquisition time, obtaining information of
larger volumes by simultaneously acquiring multiple spec-
tra. However, an increase in the amount of acquired spec-
tra results in longer processing times. Whole-brain acqui-
sitions can yield up to 131 072 spectra for a 64× 64× 32
3D-MRSI data set, as is the case of ECCENTRIC,16 result-
ing in metabolite fitting times taking up to hours to com-
pute on dedicated servers.

There are several implementations available for fitting
of MRS data, such as LCModel,17 TARQUIN,18 QUEST,19

and TDFDFit,20 each differing in fitting domain, min-
imization algorithm, and spectral models used. Exist-
ing software implementations of the mentioned meth-
ods lack GPU use, and some lack even CPU paral-
lelization. Although this might not be a major issue for
sequences involving only a small number of spectra, such
as single-voxel spectroscopy or 2D MRSI, it is a big issue
when analyzing data from high-resolution MRS methods,
like EPSI. This is particularly problematic in a clinical
setting where timely results are essential. Therefore, new
time-efficient fitting tools are needed to accommodate the
requirements of large data-acquisition methods.

A prior study explored the use of GPUs for rapid
metabolite fitting.21 However, this implementation was
limited to metabolites with Gaussian lineshapes and
lacked the incorporation of prior knowledge and the use
of simulated metabolite bases. Simultaneously, research
has focused on developing deep learning (DL) techniques
applied to metabolite quantification.22–26 These DL meth-
ods, although fast, have the drawback of being biased by
the data set that is used for training.27 Furthermore, DL
methods have difficulties to generalize across quantifica-
tion models, sequences, and hardware specifications (e.g.,
field strength, scanner manufacturer, TE, TR).

Despite all these challenges, the principles and effi-
cient tools developed for error minimization in the field of
DL can be applied for efficient curve fitting. Here, we pro-
pose using auto-differentiation tools from DL frameworks
(Torch28)—not to train a neural network for generalizing
across multiple spectra, but to perform highly efficient fit-
ting on every individual spectrum. Although similar con-
cepts have been recently applied to curve fitting in other
fields,29–31 to the best of our knowledge, this approach has
not been previously applied for metabolite fitting in MRSI.

In this work, we develop an ultrafast tool based on a
linear combination of baseline metabolites. We assess its
precision and time efficiency compared with other linear

combination methods, such as QUEST and TDFDFit, on
simulated and in vivo data. This work lays the foundation
for faster spectral fitting implementations that will boost
the use of large data-size MRSI recordings in a clinical
setting.

2 METHODS

2.1 Fitting model

The general model to represent the time response of the
spectroscopy signal s(t) can be written as

s(t) = 𝜌(t) + e(t) + 𝜇(t) (1)

where 𝜌(t) is a linear combination of each metabolite
response in time domain (TD); e(t) represents Gaus-
sian noise over the signal; and 𝜇(t) corresponds to the
macro-molecular baseline. The metabolites response 𝜌(t)
is defined as a linear combination of Voigt lineshapes,20

such as:

𝜌(t) =
M∑

m
Am Bm(t)e

(
− t

T2,m
− t2

TG,m
+i(𝜔m t+𝜙m)

)

(2)

where Am, T2,m, TG,m, 𝜔m, and 𝜙m represent the area,
Lorentzian damping, Gaussian damping, frequency shift,
and zero-order phase for each metabolite m, respectively.
The value of Bm(t) is the amplitude-normalized quantum
mechanical simulated time response, including relaxation
and J-modulation effects. The simulation corresponds to
the used acquisition sequence and particular metabolite
characteristics, and the time t is a discrete vector with the
N sampling times.

The Cramér-Rao Lower Bound (CRLB) defines the
lowest theoretical error in an unbiased parameter estima-
tion. It has been proven to minimize the number of free
parameters in the model reduces errors.32,33 This can be
accomplished by incorporating prior knowledge, which
means linking the values of parameters to estimate as
follows20,34,35:

𝜔m = Δ𝜔m + 𝜔c (3a)

T−1
2,m = ΔT−1

2,m + T−1
2,c (3b)

T−1
G,m = T−1

G,c (3c)

𝜙m = Δ𝜙m + 𝜙c (3d)

where 𝜔c, T−1
2,c , T−1

G,c, and 𝜙c are common free parameters,
as Bm(t) handles individual differences in T2, TG, 𝜙, and𝜔.
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On the other hand, Δ𝜔m, ΔT−1
2,m, and Δ𝜙m are values that

define the prior knowledge and remain constant during
the model fitting process. These parameters are neces-
sary for fine-tuning the simulation basis set. Applying the
relations defined in Eq. (3) to Eq. (2), we obtain

s(t) = e−
(

T−1
2,c+T−1

G,c t
)

t+i
(

2𝜋𝜔ct+ 𝜋𝜙c
180

)

×
N∑

m
AmBm(t)e

−ΔT−1
2,m t+i

(
2𝜋 Δ𝜔m t+ 𝜋Δ𝜙m

180

)

(4)

The incorporation of prior knowledge not only reduces
the minimal errors in the parameters to estimate but
also increases the tool’s robustness and computational
speed. In this work, prior knowledge is defined using the
spectrIm-QRMS36 spectra modeling functionality, which
has a graphical user interface for setting the model and
the relationship between metabolites (available at https:
//spectrim.diskstation.me/spectrImWeb). Using the same
graphical interface, the user defines the initial amplitude
for each metabolite. The fitting model and initial values
were defined for an average spectrum on a clinical data
set of 256 spectra obtained with the same sequence type
and acquisition protocol. This approach guarantees a good
estimate of the starting parameter. These starting values
were used in all compared fitting methods tested. Addi-
tional details of both prior knowledge models applied are
presented in Table S1 and S2.

The fitting in TensorFit can be performed in frequency
domain (FD) as well as in time domain (TD) by computing
the fast Fourier transform (FFT) of s(t), as follows:

S(𝜔) = FFT (s(t)) (5)

Application of nonlinear least squares fitting is the
expert consensus37 for metabolite fitting. It involves
searching for parameters that minimize the cost function
L, as follows:

argmin
𝜃

L(S(𝜔), y(𝜔)) (6)

where the vector 𝜃 are the free parameters of the model,
and S(𝜔) and y(𝜔) are the modeled and measured spec-
trum, respectively.

State-of-the-art fitting software uses different opti-
mization options for this problem. FitAid,34 QUEST, and
LCModel use the Levenberg-Marquardt38 algorithm as
their base optimization method. ProFit35 and TARQUIN,
on the other hand, use VARPRO39 as their base algorithm
for fitting. Finally, TDFDFit20 applies conjugate gradi-
ent descent40 to fit the spectra. The implementation pre-
sented in this work will be compared against TDFDFit and
QUEST. We used QUEST because of its performance on
the ISMRM fitting challenge 2016,41 and TDFDFit because

it was available, in-house-developed, and a commonly
used algorithm.

2.2 TensorFit implementation

TensorFit was implemented using the Torch v1.13.1 frame-
work in Python v3.10.9. Equations (4) and (5) were
implemented as a Torch computational graph as shown
in Figure 1, where the free parameters (Am, 𝜔c, 𝜙c,

1
TG,c

, and 1
T2,c

in Eq. [4]) are trainable tensors defined
using “torch.nn.parameters.Parameter.” These tensors are
forward-propagated through the computational graph to
compute the model response. The error between the model
response and the target spectra is backpropagated through
the network to update the parameters. After this iteration,
the updated parameters of the computational graph will be
closer to those that minimize the error. After several itera-
tions, the error between the response and the target spectra
will reach a minimum.

We chose Torch, as this framework allows us to

• Define complex formulas as a nn.Module and take full
advantage of automatic differentiation;

• Study a wide range of minimization algorithms (opti-
mizers), including first-order and second-order mini-
mization and several strategies to avoid ending up in
local minima;

• Redefine or modify the computational graph during the
process of fitting;

• Use efficient and optimized parallel GPU operations,
making it suitable for high-dimensionality problems;
and

• Use complex numbers in all the needed operations,
optimizers, and backpropagation algorithms.

To evaluate the fit quality between the (measured)
spectrum to be fitted y(k, x) and the modeled spectrum
S(k, x), with k representing the index of the spectrum in
the batch, we used a loss function defined as

L
(

S′, y′
)
=

∑
k
∑

x
‖‖‖S′(k, x) − y′(k, x) ∣ |2

NxNk
(7)

where S′(k, x) and y′(k, x) are the spectral amplitude off-
set removed versions of S(k, x) and y(k, x). The values of
Nx and Nk are the number of points in the signal and the
number of spectra, respectively. Here, x represents either
the time t in TD or 𝜔 in FD; both variables are limited to
user-selected ranges, to focus the fitting on a particular
spectral region. In the underlying study, minimization
was performed in FD, and the full spectral range was used.

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.30084 by U

niversitat B
ern, W

iley O
nline L

ibrary on [13/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://spectrim.diskstation.me/spectrImWeb
https://spectrim.diskstation.me/spectrImWeb


4 TURCO et al.

F I G U R E 1 TensorFit implementation diagram. The tensor computational graph calculates the spectral response in frequency domain.
The mean squared loss is calculated between the modeled and the target (simulated or measured) spectra. When the convergence is not
satisfied, the parameters are updated, and the process is repeated until convergence is reached. FFT, fast Fourier transform.

Spectral offset removal was performed by spectrum-wise
subtraction of the average between the first 200 points
in FD.

The fitting consists of two phases. In Phase 1, we iter-
ate fitting a truncated model, where the simulated basis
set Bm(t) is truncated to contain only the first quarter of
the points. This way, the number of complex exponentials
and matrix multiplications is drastically reduced, improv-
ing computation speed. During this phase, the iteration
ends when the loss function L

(
S′, y′

)
improves less than

ΔL(%) = 0.01% over the last N iterations. In Phase 2, we
iterate to fit the full model (i.e., without truncation). The
criteria to terminate this final iteration is the same as
before. In this work, the value of N is 20. Both ΔL(%) =
0.01% and N = 20 were a good compromise between time
and accuracy on the simulated data set.

Once convergence is reached, the CRLB is computed
for 𝜃 = 𝜃min as

CRLBm =

√(
ℜ𝔢(DHD)

𝜎2

)−1

m,m
(8)

where Di,𝑗 =
𝜕S(xi)
𝜕𝜃

𝑗

is the derivative for each frequency
with respect to each free parameter, and 𝜎

2 is the vari-
ance of the Gaussian noise. The derivative is extracted
directly from the computational graph after the last
iteration. During minimization, hard constraints were
implemented as part of the computational graph using

the function “torch. clamp”. This is equivalent to assign-
ing 𝜃 = min

(
max

(
𝜃input lb

)
,ub

)
, where lb and ub are the

lower and upper bound for a certain parameter 𝜃. The
corresponding gradient is set to zero when 𝜃input < lb
or 𝜃input > ub. This allows the free parameters to move
between the limits but never go further.

We used different optimizers provided by the Torch
library for loss minimization. In this work, we evaluated
the performance of Rprop,42 Adam,43 and stochastic gradi-
ent descent (GD) as first-order methods, and AdaHessian44

and limited-memory broyden-fletcher-goldfarb-shanno
(LBFGS)45 as second-order methods.

2.3 Simulated data set

We simulated a spectra data set to evaluate the accuracy
and time efficiency of each studied tool, as this is not
feasible in clinical cases due to the absence of ground
truth. The model consists of nine metabolites: choline
(Cho), glutamate, lactate, glutamine (Gln), creatine (Cr),
aspartate, N-acetylaspartate chemical group 2CH3 (NAA),
myo-inositol, and N-acetylaspartate chemical group 3CH2.
Each basis was simulated using NMRScopeB46 for the
3T scanner with a semiLASER 2D-MRSI sequence,
TE= 135 ms, TR= 1500 ms, and 1024 points. The Gaussian
width ( 1

TG,c
) was set to zero, to assume only Lorentzian lines

and maintain comparability with QUEST, which does not
fit Gaussian lineshapes.
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TURCO et al. 5

To ensure that our simulated data set included the
range of spectral shapes and noise levels typically observed
in clinical data, we randomly sampled from uniform dis-
tributions in the indicated value ranges, as presented in
Table 1. The area range was proportional to its correspond-
ing starting value, whereas the frequency shift range was
relative to its initial value in the model. More details of
both models used in this work (3 T and 7 T) can be found
in Tables S1 and S2, respectively. Additionally, we varied
the SNR for each simulated spectrum to assess the per-
formance of various analysis techniques across a range of
SNR between 5 and 50, levels commonly encountered in
in vivo spectroscopy. The SNR was calculated as the max-
imum spectral amplitude divided by the SD of the noise
in the spectral baseline from the first 200 points in FD as
follows:

SNR = max(S(𝜔))
std(S(𝜔[0,200]))

(9)

We calculated the difference in frequency shift between
the initial model spectrum and the measured or simulated
spectrum to improve the initial seed values and increase
the probability of finding an acceptable minimum. This
was achieved by identifying the 𝜔c value that maximizes
the cross-correlation between the two signals. This step
increases the method’s robustness and lowers the num-
ber of outliers by obtaining a better seed for the initial
frequency shift.

2.4 In vivo data set

For testing on in vivo data, we use a data set obtained
from scans conducted on a 7T scanner (Terra; Siemens
Healthineers, Erlangen, Germany) using a spectral-editing
sequence named SLOW-editing15 with TE = 68 ms, TR =
1500 ms, and FOV = 280 × 100 × 70 mm. One data set typ-
ically consists of a matrix with 65 × 42 × 10 = 27 300 spec-
tra, from which 20 202 were discarded for being outside the
brain region or voxels near the skull due to too strong lipid
contamination. On the remaining 7098 voxels, B1−∕B1+
correction was performed using water reference data (i.e.,

Scorr = S
WaterArea

). For a detailed description of the model
used to fit this data set, see Table S2.

Like the approach used on these described simulated
data, the maximum cross-correlation was determined to
correct the frequency shift between the model and mea-
sured spectrum. Before fitting, the spectral amplitude off-
set was also corrected in FD, determined as the mean on
the downfield part of the spectra (precisely, the leftmost
200 points).

2.5 Performance analysis

2.5.1 Performance of optimizers

To define the best-performing Torch optimizer for the com-
plexity of our problem, we performed metabolite fitting
on identical simulated data for Rpropr, Adam, GD, Ada-
Hessian, and LBFGS. We used a subset of the simulated
data set containing 2048 spectra. For each optimizer, we
first searched the optimal learning rate lr, which resulted
in lr = 10 for GD and lr = 1 for the other four optimizers.
Considering the optimal lr of each optimizer, we com-
puted the percentual error as a function of the number of
iterations as 100(Am−A′

m)
A′

m
, where A′

m is the ground truth for
each of the most abundant metabolites (Cr, Cho, NAA, and
Gln). The number of iterations was considered in the range
of 0 to 50.

2.5.2 TensorFit validation

We evaluated the performance in accuracy and time effi-
ciency of TensorFit in comparison with established fitting
methods such as TDFDFit and QUEST. First, we analyzed
the percentual error for a simulated data set containing
32 768 spectra each, with SNR varying between 5 and 50.
These metabolites were fitted using the same 3T model
used for the simulation. The percentual error was averaged
between all the spectra in the data set. When compared
with QUEST, the function used to fit in TensorFit is Eq. (4)
in FD but removing the free parameter𝜔c and considering

T A B L E 1 Parameter ranges in which values were randomly sampled. The area range is defined respective to the initial area of each
metabolite defined in the model (for more details, see Table S1).

Parameter Minimum Maximum

Area Am (a.u.) 0.1× 2×

Frequency shift 𝜔c (Hz) −20 20

Lorentzian width (Hz) 1.5 6

Phase 𝜙c (◦) −45 45
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6 TURCO et al.

that each metabolite has its own ωm, which varies within
a predefined Δ𝜔m. This adjustment is necessary due to
the specific model definition within QUEST. In addition,
QUEST does not allow Gaussian decay. Therefore, the free
parameter 1

T G,c
is removed from the fitting model. This use

case is included in the TensorFit implementation, but for
clarity, we refer to it as TensorFit + MetShift. The Gaus-
sian decay was also removed from the TDFDFit model. In
this case, both methods had the same constraints, which
are ±20 Hz for each metabolite frequency shift and ±180◦

for the global zero order.
The execution time was measured as the time neces-

sary to fit a certain number of spectra, excluding the load-
ing time of each algorithm. Fitting with QUEST was per-
formed within a jMRUI47 pipeline. Because of the memory
limitation of the 32-bit JVM (Java Virtual Machine), the
maximum number of spectra that we could fit in one batch
using jMRUI was 4096. When using TDFDFit, a paral-
lelized call was implemented using Python. For TensorFit,
the fitting was performed directly in a batch of the needed
amount of spectra. The total time required for each fit-
ting was determined for a data set of varying sizes between
32 and 32 768 for TensorFit and TDFDFit and ranging
from 32 to 4096 for QUEST and TensorFit+MetShift. All
presented CPU results were obtained on an AMD Ryzen
(72 700×, 8-core, 3.7 GHz, 32 GB RAM), whereas the GPU
performance was measured on a Nvidia GeForce GTX 1060
(6 GB, 1280 CUDA-cores).

2.5.3 In vivo application

For the in vivo spectral editing case, the comparison was
performed only between TensorFit and TDFDFit, given
the fact that QUEST can only handle Lorentzian line-
shapes. The whole brain was fitted and directly compared
between both methods, with metabolite maps generated
using SpectrIm-QRMS. For comparison, metabolite maps
for gamma-aminobutyric acid (GABA), glutamate + glu-
tamine, and NAA are shown for both methods. CRLB was
computed and averaged among all the voxels shown. To
numerically evaluate the performance of both methods,
we calculated the ratio between the TensorFit and TDFD-
Fit loss. This is represented as a histogram showing the
distribution across the 7098 spectra.

3 RESULTS

3.1 Optimizer evaluation

To determine the optimal Torch optimizer, we fitted the
3T prior-knowledge model for five different optimizers for

the same 2048 simulated spectra. Figure 2A–D shows the
percentual error for the metabolites NAA, Cr, Cho, and
Gln, respectively, for each optimizer as a function of the
number of iterations. Similar behavior is observed for the
four metabolites. Rprop converges in fewer iterations than
AdaHessian, Adam, and GD, while needing more itera-
tion than LBFGS. Nevertheless, LBFGS evaluates the loss
function several times in each iteration, causing the effec-
tive convergence time to be higher than that of Rprop. The
label in Figure 2A shows each optimizer’s total computa-
tion time to reach iteration number 50. It is noticeable that,
although LBFGS converges in fewer iterations, the conver-
gence time is more than 10 times larger than that of Rprop.
Given the faster convergence speed, Rprop was adopted for
all subsequent analyses with TensorFit.

3.2 Precision and time efficiency

For evaluating the precision of TensorFit, we fitted the
3T model and evaluated the percentual error against
the ground truth used for the corresponding simulation.
Figure 3 shows the percentual error averaged among all
spectra for TensorFit and TDFDFit in blue and light red,
respectively. The solid red bar corresponds to the error for
TDFDFit when removing outliers, defined as those cases
in which the common frequency shift (𝜔c) differs from
the ground truth more than 20 Hz, represented as “Fil-
tered TDFDFit.” Those cases represent 4% of the data set.
The percentual error for TensorFit+MetShift and QUEST
is shown in yellow and green, respectively. As there is
no common frequency shift to consider, the outliers were
identified as those cases in which the most abundant
metabolites (NAA, Cho, and Cr) had errors exceeding
four SDs from the ground truth, represented as “Filtered
QUEST.” This accounted for nearly 5% of the data set. In
the case of TensorFit, no outliers were found. Addition-
ally, we present the average CRLB computed using the
ground-truth parameters. An extra comparison between
TensorFit and TDFDFit, including Gaussian decay, is
shown in Figure S1.

To evaluate whether the method can be used for pro-
cessing large data sets, we fitted the simulated data and
measured the execution time. Figure 4 shows the execu-
tion time for each method as a function of the number
of spectra. Figure 4A presents the execution time when
comparing TensorFit with TDFDFit. The execution time
increases linearly for TDFDFit, whereas TensorFit on the
CPU follows a similar rate with a speed-up of 11×. When
running on the GPU, TensorFit remains strongly domi-
nated by the Torch’s GPU context initialization, starting
to rise when reaching a data-set size of 2048, with a
maximum speed-up of 165× for 32 k spectra. Figure 4B
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TURCO et al. 7

F I G U R E 2 Convergence comparison of TensorFit optimizers. The percentage error (%) is plotted against the iteration number for
AdaHessian, Rprop, Adam, limited-memory broyden-fletcher-goldfarb-shanno (LBFGS), and gradient descent (GD). Results are shown for
N-acetylaspartate chemical group 2CH3 (NAA; A), creatine (B), choline (C), and glutamine (D). The label in (A) states each optimizer’s total
computation time.

F I G U R E 3 Precision analysis for all fitting tools used. The percentual error (%) with respect to the ground truth is displayed for each of
the nine metabolites considered in the 3T prior-knowledge model. For TDFDFit and QUEST, the mean error without outliers is shown with
solid bars (i.e., “Filtered TDFDFit” and “Filtered QUEST”). The black dotted line represents the averaged Cramér-Rao Lower Bound (CRLB)
obtained using the ground truth. The metabolites labels, with no chemical group information, contain all of them. Asp, aspartate; Cho,
choline; Cr, creatine; Gln, glutamine; Glu, glutamate; Lac, lactase; Myo; myo-inositol; NAA, N-acetylaspartate.

illustrates the execution time for QUEST and Tensor-
Fit+MetShift. In this case, we observe the same behavior
as before, but with a smaller speed-up, 7 times faster on the
CPU, and 115 times compared with QUEST.

3.3 In vivo performance

After validating the method with simulated spectra, we
tested its performance on in vivo spectra. Figure 5A–C
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8 TURCO et al.

F I G U R E 4 Comparison of fitting tool time efficiency. The execution time is presented as a function of the number of spectra. (A)
TensorFit (CPU and GPU versions) and TDFDFit. (B) TensorFit + MetShift and QUEST.

F I G U R E 5 Performance comparison of TensorFit and TDFDFit in in vivo data. Metabolites maps for gamma-aminobutyric acid
(GABA; A), glutamate + glutamine (Glx; B), and N-acetylaspartate (NAA; C). (D) The averaged Cramér-Rao Lower Band (CRLB) for the
three metabolites in the shown slice. The error bars represent the SD. The observed occipital/temporal hotspots are pulse sequence–related
and independent of the fitting tool.
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TURCO et al. 9

F I G U R E 6 Histogram distribution of the
ratio between the fit-quality number for both
methods, computed as the loss of TensorFit
divided as the loss of TDFDFit. The vertical line
represents the median value.

shows the metabolites maps for three metabolites of inter-
est, in this case, gamma-aminobutyric acid, glutamate +
glutamine, and NAA. The columns represent both meth-
ods: TDFDFit and TensorFit. Figure 5D shows the CRLB%,
illustrating the performance of both tools.

As no ground truth is available for the in vivo data set,
we computed the error using the loss function value used
for TDFDFit and TensorFit fitting. Figure 6 depicts a his-
togram illustrating the distribution of voxels with a specific
ratio between the loss when using TensorFit and TDFDFit.
A ratio smaller than one indicates a better fit using Ten-
sorFit. The median value, represented by a vertical line,
remains at 0.98, with most (92.4%) cases exhibiting a ratio
smaller than one. For this data set consisting of a total of
7098 spectra, the execution time for TDFDFit was 2294 s
(38:23 min), whereas TensorFit, running on a GPU, com-
pleted the task in 13.5 s, yielding a speed-up factor of 169×.
When using TensorFit on the CPU, the time extends to
2:40 min, corresponding to a speed-up of 14×.

4 DISCUSSION

In this work, we proposed the off-label use of a DL frame-
work for rapid metabolite fitting of MRS data. Specifically,
we used the automatic differentiation capabilities of Torch,
using them as a highly parallelized error-minimization
algorithm. This approach allowed us to use GPU process-
ing or even obtain a strong acceleration when working
solely on the CPU. Focusing on error minimization using
traditional DL techniques, the process involved defining
an appropriate optimizer for error minimization, imple-
menting the TensorFit tool, and comparing performance
with well-established fitting methods.

Many other frameworks, apart from Torch, allow
the automatic differentiation of arbitrary computational
graphs. TensorFlow,48 for example, offers comparable

optimization on GPU and supports complex-valued back-
propagation. However, it lacks the flexibility to modify
the computational graph during runtime and extends the
network initialization time significantly. Other highly
optimized frameworks, like JAX,49 support automatic
differentiation but restrict GPU use to Linux and MacOS
platforms. In contrast, Torch allows its implementation in
all commonly used operative systems.

First, we investigated the different optimizers avail-
able in the Torch library for error minimization. From the
comparison, shown in Figure 2, we found that Rprop is
the fastest optimizer. Consequently, we adopted Rprop as
the optimizer for our TensorFit implementation. Never-
theless, further research should establish whether Rprop
maintains its speed advantage across different models and
data sets.

We tested TensorFit on simulated data and compared
its performance with conventional fitting methods. In
terms of fitting accuracy, TensorFit showed a lower per-
centual error for each fitted metabolite (Figure 3). On
average, across all metabolites, the TensorFit error with
respect to the ground truth was slightly lower than that
of both TDFDFit and QUEST. This can be attributed to
the influence of the outliers. In a small number of cases,
TDFDFit determines a wrong initial value for the fre-
quency shift, leading to convergence at suboptimal local
minima. In contrast, TensorFit, starting from the same
values, converges correctly. In addition, we attribute the
higher precision of TensorFit with respect to QUEST to its
high sensitivity to an initial frequency shift mismatch. For
all (tested) fitting algorithms, the percentual error is, on
average, smaller than the corresponding CRLB for all com-
ponents. This behavior is explained by the fact that CRLB
represents the minimum variance for an unbiased estima-
tor; this means that most estimations should fall within the
range defined by CRLB. Therefore, the average percentage
error should be in the same order of magnitude. Further
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10 TURCO et al.

analysis of the distribution of both metrics is provided in
Supporting Material 4.

Regarding time efficiency, when implemented on the
CPU, TensorFit outperformed TDFDFit and QUEST by
a factor of 7× and 11×, respectively. We attribute the
speed-up with respect to TDFDFit to its use of explicit
numerical differentiation, which involves several model
evaluations. Compared with QUEST, the difference in
performance on the CPU stems from the lack of paral-
lelization, whereas TensorFit uses all the computational
optimizations of Torch. In addition, as expected, the GPU
implementation of TensorFit is up to 165 times faster than
TDFDFit and 115 times faster with respect to QUEST. This
is due to the high number of processors and the Torch’s
strong optimization of matrix multiplications.

The performance of TensorFit on the in vivo data set
yields better results in terms of mean squared error com-
pared with TDFDFit, strongly suggesting more accurate
fitting. We found TensorFit to perform better regarding fit
quality in 92.4% of the cases (Figure 6). Although the spa-
tial distribution of metabolites remains the same, there is
a slight difference in amplitude and clear outliers, primar-
ily in the case of NAA, in which lipid contamination is
significant (Figure 5). A comparison with QUEST was not
feasible, as it does not allow the use of Gaussian lineshapes
in the model as defined by Eq. (4).

Using Torch for spectral fitting offers several advan-
tages. The main one is the speed-up when executing on a
GPU. Additionally, Torch allows high flexibility in defining
and customizing fitting models. Nevertheless, it should be
noted that some inherent disadvantages of TDFDFit and
QUEST, such as high susceptibilities to artifacts, lipid con-
tamination, and problems with overlapping peaks, are also
present in TensorFit. This limitation arises from the fact
that they all depend on the underlying fitting model. Addi-
tionally, the current implementation of TensorFit does not
account for the (macromolecular) baseline (i.e., it only per-
forms correctly for long TEs). This will be included in the
next release.

In summary, we have introduced a novel tool for
metabolite fitting that outperforms existing methods con-
cerning accuracy and time efficiency. The improvement
in time efficiency directly addresses a critical obstacle
in the clinical application of MRSI, namely the long
data-processing times. To illustrate its impact, TensorFit
can process a whole brain data set containing 7098 spectra
in under 14 s, whereas TDFDFit requires 38 min to analyze
the same data set.

5 CONCLUSIONS

We implemented an ultrafast tool for metabolite fit-
ting of large MRS data sets using Torch’s computational

graph auto-differentiation capabilities. We demonstrated
the high performance and accuracy of the method with
proof-of-principle analysis in simulated and in vivo data
sets. We found a superior performance in time efficiency
and accuracy, obtaining a speed-up of 165× and 115×
when compared with TDFDFit and QUEST, respectively.
We believe this work will substantially enhance the use of
EPSI sequences or other high-resolution MRS acquisition
methods, such as ECCENTRIC, by reducing the required
metabolite fitting time.
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FIGURE S1. Precision analysis for all fitting algorithm
tools used (blue and red bars correspond to TensorFit and
TDFDFit, respectively). The percentual error (%) to the
ground truth is displayed for each of the nine metabo-
lites considered in the 3T prior knowledge model. For
TDFDFit, the mean error is presented after filtering out
outliers.
FIGURE S2. Distribution of percentage error between
the fitted parameter and its corresponding ground truth
(blue bars) in comparison with the percentual Cramér-Rao
Lower Bound (CRLB; red bars) for N-acetylaspartate
(NAA). The vertical lines correspond to the mean value of
each metric.
TABLE S1. The essential parameters required to recon-
struct the fitting model for the simulated data set. Both the
initial values for the free parameters and the fixed values
from prior knowledge are included.
TABLE S2. The essential parameters required to recon-
struct the fitting model for the editing data set. Both the
initial values for the free parameters and the fixed values
from prior knowledge are included.
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