INTRODUCTION

On December 26, 1640, Mount Parker in the Philippines started erupting, with a major eruption on January 4, 1641. Volcanic sulfate is detectable in Greenland ice cores from February 1641 on, peaking in March 1642.[1] According to Stoffel et al.[3], the years 1641 and 1643 stand out as the 13th and 17th coldest years of the last 1500 years in the Northern Hemisphere (Fig. 1 and Fig. 2). In Europe, a summer cooling occurs over Fennoscandia and to a lesser degree also over other regions, such as Switzerland. As one of the three main eruptions in the 17th century it is vital to analyze what an impact the eruption of 1641 had.

Fig. 1:

Data for Fig. 1 and 2 are taken from global climate reconstruction Modê-RA. Modê-RA is an updated version of the assimilated data set EKF400v2 (Vallely et al., 2022).[2]

WINE

CHEESE

APERO-PROXIES

MEAT

GRAIN

CONCLUSION

Whereas severe global impacts have been linked to the Parker eruption in 1641, such as the Late Ming Dynasty Megadrought in China,[2] the rebellion of October 1641 in Ireland, or the great hunger period in Fennoscandia,[1] possible impacts in Switzerland are less defined. In a comparative approach these anomalies have to be put into a broader socio-economic and political context. Local authorities tried mitigating a bad grain harvest, when the grain price was already high due to non climatic impacts, such as the Thirty Years’ War. In Fribourg the bad harvests of 1641/1642 were perceived in the accounting books of the Hôpital des Bourgeois de Fribourg even though they didn’t lead to famine or social unrest.

REFERENCES