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Introduction

Decomposition methods are used to analyze distributional
differences in an outcome variable between groups or time points.

In particular, the methods decompose the observed difference into a
component that is due to compositional differences between the
groups, and a component that is due to differential mechanisms.

Example question: How can the difference in average wages between
men and women (the gender wage gap) be explained? Is the
difference due to . . .
▶ . . . group differences in wage determinants (i.e. in characteristics that

are relevant for wages, such as education)? (compositional
differences)

▶ . . . differential compensation for these determinants (e.g. different
returns to education for men an women, or wage discrimination
against women)? (differential mechanisms)
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Introduction

Similar questions can be asked in other contexts (for different
groups, for different outcome variables) or also when analyzing
changes over time.

Example question: How can the increase of earnings inequality (e.g.
measured by the Gini coefficient or the D9/D1 ratio) be explained?
Is the increase due to . . .
▶ . . . changes in the distribution of characteristics that determine

earnings? (changes in composition)
▶ . . . changes in how these characteristics affect earnings? (changes in

mechanisms)

Decomposition methods 1. Introduction and course overview Giesecke/Jann 4



Introduction

Conceptually, decomposition methods are closely related to the
counterfactual model of causality (although results from
decomposition analyses are often not interpreted causally).

Hence, estimation techniques from the causal inference literature
(e.g. matching or inverse probability weighting) can sometimes be
useful for decomposition analyses.

In essence, decomposition methods work by creating counterfactuals
such as “How would the outcome distribution in group A look like if
it had the same distribution of determinants as group B?”
Example questions:
▶ How high would the mortality rate in country A be if it had the

demographic composition of country B?
▶ How do average test scores between different schools compare after

taking into account the socio-economic composition of the schools’
pupils?
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Historic development

Decomposition methods have their origins in the seminal works of
Oaxaca (1973) and Blinder (1973), who analyzed mean wage
differences between groups (males vs. females, whites vs. blacks).
▶ An even earlier reference is Winsborough and Dickenson (1971).
▶ Similar methods have also been developed in other disciplines (for

example, direct and indirect standardization in
demography/epidemiology; see Kitagawa 1955, Das Gupta 1978).

Pronounced increase in US earnings inequality since the end of the
1970s fostered various methodological innovations in labor
economics since the mid 1990s.
These more recent developments focus on topics such as . . .
▶ . . . providing methods for distributional measures other than the mean
▶ . . . taking account of non-linearities and providing methods for

categorical and other types of variables
▶ . . . clarifying the basic assumptions made by these procedures
▶ . . . solving statistical inference
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Example
Blau, Francine D., Lawrence M. Kahn (2017). The Gender Wage Gap: Extent, Trends,
and Explanations. Journal of Economic Literature 55(3):789–865.
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 regressions for individual i (the i and t 
subscripts are suppressed to simplify the 
notation):

(1)   Y  m   =  X  m    B  m   +  u  m   

(2)   Y  f   =  X  f    B  f   +  u  f   

where  Y  is the log of wages,  X  is a vector of 
explanatory variables such as education and 
experience,  B  is a vector of coef!cients, and 
u is an error term.

Let   b  m    and   b  f    be respectively the OLS esti-
mates of   B  m    and   B  f   , and denote mean values 
with a bar over the variable. Then, since OLS 
with a constant term produces residuals with 
a zero mean, we have:

(3)    
_

 Y   m   −    
_

 Y   f   =  b  m     
_

 X   m   −   b  f      
_

 X   f   =  b  m   (  
_

 X   m   −   
_

 X   f  )  

 +    
_

 X   f   ( b  m   −  b  f   ). 

The !rst term on the far right-hand side 
of (3) is the impact of gender differences in 
the explanatory variables evaluated using the 

TABLE 4 
Decomposition of Gender Wage Gap, 1980 and 2010 (PSID)

1980 2010

Effect of gender gap in 
explanatory variables

Effect of gender gap in 
explanatory variables

Variables log points
Percent of gender

gap explained log points
Percent of gender

gap explained

Panel A. Human-capital speci!cation
Education variables 0.0129 2.7 –0.0185 –7.9
Experience variables 0.1141 23.9 0.0370 15.9
Region variables 0.0019 0.4 0.0003 0.1
Race variables 0.0076 1.6 0.0153 6.6
Total explained 0.1365 28.6 0.0342 14.8
Total unexplained gap 0.3405 71.4 0.1972 85.2
Total pay gap 0.4770 100.0 0.2314 100.0

Panel B. Full speci!cation
Education variables 0.0123 2.6 –0.0137 –5.9
Experience variables 0.1005 21.1 0.0325 14.1
Region variables 0.0001 0.0 0.0008 0.3
Race variables 0.0067 1.4 0.0099 4.3
Unionization 0.0298 6.2 –0.0030 –1.3
Industry variables 0.0457 9.6 0.0407 17.6
Occupation variables 0.0509 10.7 0.0762 32.9
Total explained 0.2459 51.5 0.1434 62.0
Total unexplained gap 0.2312 48.5 0.0880 38.0
Total pay gap 0.4770 100.0 0.2314 100.0

Notes: Sample includes full time nonfarm wage and salary workers ages 25–64 with at least twenty-six weeks of 
employment. Entries are the male–female differential in the indicated variables multiplied by the current year male 
log wage coef!cients for the corresponding variables. The total unexplained gap is the mean female residual from 
the male log wage equation.
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This course

This seminar gives a detailed introduction to the basic
Oaxaca-Blinder (OB) decomposition and also covers some of the
newer developments.

We will focus on counterfactual decompositions in the sense
described above. There are also other types of “decompositions”,
such as the factor decomposition of inequality measures, that will
not be covered.
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Course overview

Conceptually, the course is divided into two thematic blocks.

Block I: Oaxaca-Blinder decomposition
▶ Basics; post-estimation, tables and graphs; problems such as the

index problem, arbitrary transformations, and the base category
problem; extensions to non-linear models; difference-in-difference
decompositions

Block II: Beyond the mean
▶ Reweighting, RIF regression approach, Juhn-Murphy-Pierce 1993,

approaches based on quantile regression or distributional regression

Each block contains cycles of theoretical inputs, examples, and
exercises (using Stata).
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Program

Day 1 Introduction
The basic Oaxaca-Blinder decomposition

Day 2 Problems and solutions in the OB decomposition
Decomposition methods for nonlinear models

Day 3 Difference-in-differences decompositions
Decompositions based on reweighting

Day 4 Decompositions based on recentered influence functions
Decompositions based on quantile or distribution regression
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Class materials / readings

A comprehensive (but for applied researchers sometimes not very
accessible) review is provided by:
▶ Fortin, Nicole, Thomas Lemieux, Sergio Firpo (2011). Decomposition

Methods in Economics. Pp. 1–102 in: O. Ashenfelter and D. Card
(eds.). Handbook of Labor Economics. Amsterdam: Elsevier.

For a concise and easy to understand overview of the basic
Oaxaca-Blinder decomposition, see:
▶ Jann, Ben (2008). The Blinder-Oaxaca decomposition for linear

regression models. The Stata Journal 8(4):453–479.

Apart from that: read the specialized literature on the various
decomposition procedures. References will be provided throughout
the slides.

Slides, literature, and solutions to exercises will be provided on Ilias.
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General idea of decomposition methods
There are two groups, g = {0, 1}, e.g. males and females. Variable G
denotes group membership, e.g. G = 0 if male and G = 1 if female.

Of interest is the overall difference between the groups with respect
to some functional ν of Y (e.g. the mean, variance, or Gini
coefficient):

∆ν = ν
(
FY |G=0

)
− ν

(
FY |G=1

)
where FY |G=g is shorthand notation for FY |G (y |g).
Assume that Y is determined by covariates X and an error term ϵ:

Y = mg(X , ϵ)

where mg() is some group-specific structural function. For example,
m() can be a linear function as in linear regression:

m(X , ϵ) = β0 + β1X1 + · · ·+ βKXK + ϵ

However, m() can also be something much more complicated.
Decomposition methods 1. Introduction and course overview Giesecke/Jann 14



General idea of decomposition methods

Furthermore, assume (for now) that there are no distributional
differences in ϵ between the groups. The overall difference ∆ν can
then be due to:
▶ group differences in the distribution of X
▶ group differences in structural function m()

The goal of decomposition methods now is to partition the overall
difference into these components:

∆ν = ∆νX +∆νS

where ∆νX denotes the component due to differences in the
distribution of X and ∆νS denotes the component due to differences
in m().
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General idea of decomposition methods

Potential outcomes (note the close relation to the counterfactual
model of causality):
▶ given are the potential outcomes Y 0 = m0(X , ϵ) and Y 1 = m1(X , ϵ)
▶ for the observed Y we have

Y =

{
Y 0 if G = 0

Y 1 if G = 1

▶ that is, potential outcome Y 0 is observed in group 0 and potential
outcome Y 1 is observed in group 1

▶ for decompositions, however, we are also interested in the
(unobserved) counterfactuals
⋆ How would Y look like in group 0 if it were generated by m1() instead

of m0() (and vice versa)?
⋆ Example: How much would a man with given characteristics earn if he

were paid like a women?
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General idea of decomposition methods

That is, to identify ∆νX and ∆νS , we need a counterfactual
distribution FY g |G ̸=g. We use red color to emphasize counterfactuals.

For example, let FY 0|G=1 be the counterfactual distribution of Y in
group 1 if we assume that Y is determined in group 1 according to
group 0’s structural function m0().

By adding and subtracting ν
(
FY 0|G=1

)
, the decomposition can then

be written as:

∆ν = ν
(
FY |G=0

)
− ν

(
FY |G=1

)
=

{
ν
(
FY |G=0

)
− ν

(
FY 0|G=1

)}
+
{
ν
(
FY 0|G=1

)
− ν

(
FY |G=1

)}
= ∆νX +∆νS
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General idea of decomposition methods

The main goal of different decomposition methods is to find good
ways to determine ν

(
FY 0|G=1

)
or, likewise, ν

(
FY 1|G=0

)
, so that ∆νX

and ∆νS can be estimated.

Depending on context, further distinctions are made, e.g. by allowing
the distribution of ϵ to differ by groups (in which case the
decomposition has a third component ∆νϵ ) or by partitioning m()
into a part related to X and a part related to ϵ (to subdivide ∆νS
into a component related to observables and a component related to
unobservables).
Similarly, detailed decompositions that separate the contributions of
the different X variables are often of interest.
▶ Example: how much of the gender wage gap can be explained by

differences in education, how much by differences in work experience?
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Distributions of random variables

Random variables X , Y , Z ...
The variables can be:
▶ continuous: any value within a given interval is possible
▶ discrete: only a fixed set of values is possible

Discrete variables are often categorical in the sense that distances
between values have no meaning (e.g. group membership).
Distribution function FY (y) (CDF)
▶ displays the probability that Y is smaller than or equal to some given

value y
FY (y) = Pr(Y ≤ y)

Density function fY (y) (PDF)
▶ displays how the probability mass is distributed along the values of Y
▶ for continuous variables, the PDF is defined as

fY (y) = F ′Y (y) such that FY (y) =
∫ y

−∞
fY (z) dz
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Distributions of random variables
▶ the integral of the PDF between two points is equal to the probability

mass between these two points

Pr(a ≤ Y ≤ b) =
∫ b

a
fY (y) dy

▶ for discrete variables with possible values y1, y2, . . . , yJ , fY (y) is a
probability mass function

fY (y) = Pr(Y = y) such that FY (y) =
∑
yj≤y

Pr(Y = yj)

▶ below we will sometimes use integrals of fY (y) even if Y is a discrete
variable; this is an abuse of notation for sake of simplicity; think of
the integral being a sum in these cases

Quantile function QY (p)
▶ is equal to the value of Y for which Pr(Y ≤ y) is equal to p
▶ QY (p) is the inverse of the distribution function: QY (p) = F−1

Y (p)
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Example: the normal distribution
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Example: the normal distribution

f(y)

F(y)

p (1-p)
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Example: the normal distribution

local p = .75
local Q75 = invnormal(`p')
twoway (function normalden(x), range(-3 `Q75') psty(p3) recast(area) lcolor(%0) fcolor(%20)) ///

(function normalden(x), range(`Q75' 3) psty(p4) recast(area) lcolor(%0) fcolor(%20)) ///
(function normalden(x), range(-3 3) psty(p1)) ///
(function normal(x), range(-3 3) psty(p1) lw(*1.5)) ///
(pci `p' -3.1 `p' `Q75' `p' `Q75' -.025 `Q75', lsty(xyline) lp(-)) ///

, xlabel(#10) ylabel(#10) yti("f(y), F(y)") legend(off) plotr(margin(zero)) ///
xti(Y) xscale(range(-3.1 3.1)) yscale(range(-.025 1.025)) ///
ymlabel(`p' "p", add notick nogrid labsize(medsmall)) ///
xmlabel(`Q75' "Q(p)", add notick nogrid labsize(medsmall)) ///
text(.05 2.9 "f(y)" .95 2.9 "F(y)" 0.05 -0.5 "p" 0.05 1.25 "(1-p)")



Example: quantile function of the normal distribution

Q(p)
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Example: quantile function of the normal distribution

Q(p)
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Example: quantile function of the normal distribution

local p = .75
local Q75 = invnormal(`p')
local ll = 1-normal(3.15)
local ul = normal(3.15)
twoway (function invnormal(x), range(`ll' `ul') psty(p1) lw(*1.5)) ///

(pci -3.15 `p' `Q75' `p' `Q75' `p' `Q75' -.015, lsty(xyline) lp(-)) ///
, xlabel(#10) ylabel(#10) yti("") legend(off) plotr(margin(zero)) ///
xti("") yscale(range(-3.15 3.15)) xscale(range(-.015 1.015)) ///
xmlabel(`p' "p", add notick nogrid labsize(medsmall)) ///
ymlabel(`Q75' "Q(p)", add notick nogrid labsize(medsmall))



Expected value

Expected value of Y (“the mean”)
▶ if Y is continuous

E(Y ) =

∫ ∞

−∞
y fY (y) dy

▶ if Y is discrete with possible values y1, . . . , yJ

E(Y ) =

J∑
j=1

Pr(Y = yi )yi

Some useful relations (see, e.g., Mood et al. 1974)
▶ E(a + bY ) = a + b E(Y )
▶ E(X + Y ) = E(X ) + E(Y )
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Program for today

The Oaxaca-Blinder decomposition
▶ Basic mechanics
▶ Estimation
▶ Standard errors
▶ The detailed decomposition
▶ Example analysis

Exercise 1
Post-estimation
▶ Hypothesis tests
▶ Linear and nonlinear combinations
▶ Tables and graphs

Exercise 2
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