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Difference-in-difference decompositions

Up to now we were concerned with a single outcome differential
(e.g. a gender wage gap) at a specific point in time and in a specific
region or population.
Often, however, comparisons over time or between countries or
regions are of interest.
▶ How did the gender wage gap change over time and how much of this

change is due to changes with respect to covariates?
▶ How would the gender wage gap in country A look like if it had the

wage structure of country B?

One way of analyzing changes over time or between populations is to
compare separate decomposition results. Some questions, however,
require a “double” or “difference-in-difference” decomposition.

A very famous application of such methodology, for example, is the
“Swimming upstream” paper by Blau and Kahn (1997).

Decomposition methods 5. Difference-in-difference decompositions Giesecke/Jann 3



1 Smith-Welch decomposition

2 Example analysis

3 Juhn-Murphy-Pierce 1991 decomposition

4 Example analysis

5 Interventionist approach (Kröger/Hartmann)

Decomposition methods 5. Difference-in-difference decompositions Giesecke/Jann 4



Smith-Welch decomposition
(Smith and Welch 1987, also see e.g. Heckman et al. 2000, Kröger and Hartmann 2021)

Given is a linear model

Y gt = X gtβgt + ϵgt , E(egt |X gt) = 0

for two groups, g = m, f (males and females), at two time points,
t = 0, 1.

Using the male coefficients, βmt , as reference, the decomposition of
the group difference in average Y at time t can be written as

∆µt = (X̄mt − X̄ ft)βmt + X̄ ft(βmt − βft) = ∆µtX +∆µtS

We are now interested in decomposing the change in the wage gap
over time.
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Smith-Welch decomposition
Let ∆X̄ t = X̄mt − X̄ ft and ∆βt = βmt − βft . Using the male
coefficients from the first time point, βm0, as reference, this double
decomposition can be written as

d∆µ = ∆µ1 −∆µ0 =
{
(∆X̄ 1 −∆X̄ 0)βm0 +∆X̄ 1(βm1 − βm0)

}
+
{
X̄ f 1(∆β1 −∆β0) + (X̄ f 1 − X̄ f 0)∆β0}

= d∆µX + d∆µS

Interpretation:

(∆X̄ 1 −∆X̄ 0)βm0 main endowments effect: shows how the
wage gap changed because men and women
became more similar or dissimilar in X (neg-
ative, if they became more similar; positive,
if they became more dissimilar)

∆X̄ 1(βm1 − βm0) secondary endowments effect due to change
in reference wage structure over time
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Smith-Welch decomposition
X̄ f 1(∆β1 −∆β0) primary coefficients effect: effect of change

in wage structure difference between men
and women (negative, if coefficients became
more similar; positive, if coefficients became
more dissimilar)

(X̄ f 1 − X̄ f 0)∆β0 secondary coefficients effect due to change
in reference endowments over time

Of course, various other types of decompositions are possible
depending on the choice of the reference group and the reference
year. The index problem of the standard OB decomposition is now a
double index problem, which can make it hard to keep an overview.
See help smithwelch for a systematic discussion. It starts with the
threefold decomposition and then shows how the formulas change if
a reference group and/or a reference year is introduced. Of course,
reference groups/years can also be results from pooled or averaged
models. See Kröger and Hartmann (2021) for further variants of
difference-in-differences decompositions.
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Example analysis (using smithwelch by Jann 2005b)
. use gsoep-extract, clear
(Example data based on the German Socio-Economic Panel)
. keep if inlist(wave,1995,2015)
(23,792 observations deleted)
. keep if inrange(age, 25, 55)
(8,147 observations deleted)
. generate lnwage = ln(wage)
(2,734 missing values generated)
. generate expft2 = expft^2
(56 missing values generated)
. generate byte t = wave==2015 // 0 = 1995, 1 = 2015
. generate byte female = sex==2 // 0 = male, 1 = female
. summarize lnwage yeduc expft expft2 t female

Variable Obs Mean Std. dev. Min Max

lnwage 8,277 2.71872 .483595 1.108563 4.86638
yeduc 10,735 12.04332 2.700811 7 18
expft 10,955 12.21353 9.640926 0 40.5

expft2 10,955 242.1094 305.9972 0 1640.25
t 11,011 .6637908 .4724329 0 1

female 11,011 .5466352 .497843 0 1
. drop if missing(lnwage,yeduc,expft) // remove unused observation
(2,940 observations deleted)
. svyset psu [pw=weight], strata(strata)
Sampling weights: weight

VCE: linearized
Single unit: missing

Strata 1: strata
Sampling unit 1: psu

FPC 1: <zero>
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Example analysis

Outcome by time point and gender
. svy: mean lnwage if !missing(yeduc, expft), over(t female)
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 15 Number of obs = 8,071
Number of PSUs = 2,459 Population size = 23,859,587

Design df = 2,444

Linearized
Mean std. err. [95% conf. interval]

c.lnwage@t#female
0 0 2.84812 .0132636 2.822111 2.874129
0 1 2.627384 .0186491 2.590815 2.663954
1 0 2.862735 .0164148 2.830547 2.894923
1 1 2.657428 .0151483 2.627723 2.687132
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Example analysis

Characteristics by time point and gender
. svy: mean yeduc expft if !missing(lnwage), over(t female)
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 15 Number of obs = 8,071
Number of PSUs = 2,459 Population size = 23,859,587

Design df = 2,444

Linearized
Mean std. err. [95% conf. interval]

c.yeduc@t#female
0 0 12.04901 .0924429 11.86774 12.23029
0 1 11.79327 .091392 11.61406 11.97249
1 0 12.7098 .0980728 12.51749 12.90212
1 1 12.94121 .0904373 12.76387 13.11855

c.expft@t#female
0 0 17.49546 .3094411 16.88867 18.10226
0 1 12.39256 .3700076 11.667 13.11812
1 0 17.17692 .3427645 16.50478 17.84906
1 1 10.79882 .2760263 10.25755 11.34009
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Example analysis

OB decomposition in 1995
. oaxaca lnwage yeduc (experience: expft expft2) ///
> if t==0, by(female) weight(1) nodetail svy
Blinder-Oaxaca decomposition
Number of strata = 4 Number of obs = 2,609
Number of PSUs = 794 Population size = 11,707,370

Design df = 790
Model = linear

Group 1: female = 0 N of obs 1 = 1,486
Group 2: female = 1 N of obs 2 = 1,123

explained: (X1 - X2) * b1
unexplained: X2 * (b1 - b2)

Linearized
lnwage Coefficient std. err. t P>|t| [95% conf. interval]

overall
group_1 2.84812 .013042 218.38 0.000 2.822519 2.873721
group_2 2.627384 .0178997 146.78 0.000 2.592248 2.662521

difference .2207358 .0206432 10.69 0.000 .1802138 .2612579
explained .0758792 .0115696 6.56 0.000 .0531684 .0985899

unexplained .1448567 .0216315 6.70 0.000 .1023946 .1873188
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Example analysis

OB decomposition in 2015
. oaxaca lnwage yeduc (experience: expft expft2) ///
> if t==1, by(female) weight(1) nodetail svy
Blinder-Oaxaca decomposition
Number of strata = 15 Number of obs = 5,462
Number of PSUs = 2,037 Population size = 12,152,217

Design df = 2,022
Model = linear

Group 1: female = 0 N of obs 1 = 2,642
Group 2: female = 1 N of obs 2 = 2,820

explained: (X1 - X2) * b1
unexplained: X2 * (b1 - b2)

Linearized
lnwage Coefficient std. err. t P>|t| [95% conf. interval]

overall
group_1 2.862735 .0162749 175.90 0.000 2.830818 2.894652
group_2 2.657428 .0149503 177.75 0.000 2.628108 2.686747

difference .2053074 .0204701 10.03 0.000 .1651628 .245452
explained .0904872 .0151554 5.97 0.000 .0607654 .120209

unexplained .1148202 .0211416 5.43 0.000 .0733585 .1562819
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Example analysis

Estimate outcome models by time point and gender; these model
will be used as input to the Smith-Welch decomposition.
. svy: regress lnwage yeduc expft expft2 if female==0 & t==0

(output omitted )
. estimates store male_t0
. svy: regress lnwage yeduc expft expft2 if female==1 & t==0

(output omitted )
. estimates store female_t0
. svy: regress lnwage yeduc expft expft2 if female==0 & t==1

(output omitted )
. estimates store male_t1
. svy: regress lnwage yeduc expft expft2 if female==1 & t==1

(output omitted )
. estimates store female_t1
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Example analysis

Overview of models.
. esttab male_t0 female_t0 male_t1 female_t1, nogap mti nonum r2

male_t0 female_t0 male_t1 female_t1

yeduc 0.0567*** 0.0586*** 0.0829*** 0.0789***
(9.51) (9.63) (14.88) (14.91)

expft 0.0318*** 0.0206** 0.0357*** 0.0313***
(5.62) (3.11) (6.04) (6.36)

expft2 -0.000614*** -0.000373 -0.000593*** -0.000541***
(-4.09) (-1.93) (-3.79) (-3.67)

_cons 1.855*** 1.769*** 1.430*** 1.404***
(20.65) (20.61) (14.96) (18.93)

N 1486 1123 2642 2820
R-sq 0.145 0.123 0.280 0.277

t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001
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Example analysis

Smith-Welch decomposition
. smithwelch male_t0 female_t0 male_t1 female_t1, reference(1) benchmark(1)
Decompositions of individual differentials:

D E C

Sample 1 .2207358 .0758792 .1448567
Sample 2 .2053074 .0904872 .1148202

Difference in (components of) differentials:

dD dE dC

-.0154284 .014608 -.0300365

Decomposition of difference in differentials:

D E C

dE .014608 -.0087573 .0233653
dC -.0300365 -.0105462 -.0194903

D = differential / difference in component of differential
E = part of D due to differences in endowments
C = part of D due to differences in coefficients
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Detailed Smith-Welch decomposition
. smithwelch male_t0 female_t0 male_t1 female_t1, reference(1) benchmark(1) ///
> detail(schooling=yeduc, experience=expft*)
Decompositions of individual differentials:

Sample 1 D E C

schooling -.0084441 .0144885 -.0229326
experience .1426075 .0613907 .0812168

_cons .0865725 0 .0865725

Total .2207358 .0758792 .1448567

Sample 2 D E C

schooling .0328791 -.0191954 .0520745
experience .1466832 .1096826 .0370006

_cons .0257451 0 .0257451

Total .2053074 .0904872 .1148202

Difference in (components of) differentials:

dD dE dC

schooling .0413232 -.0336838 .0750071
experience .0040757 .0482919 -.0442162

_cons -.0608274 0 -.0608274
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Total -.0154284 .014608 -.0300365

Decomposition of difference in differentials:

dE D E C

schooling -.0336838 -.0275985 -.0060853
experience .0482919 .0188412 .0294507

_cons 0 0 0

Total .014608 -.0087573 .0233653

dC D E C

schooling .0750071 -.0022322 .0772393
experience -.0442162 -.0083139 -.0359022

_cons -.0608274 0 -.0608274

Total -.0300365 -.0105462 -.0194903

D = differential / difference in component of differential
E = part of D due to differences in endowments
C = part of D due to differences in coefficients
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Juhn-Murphy-Pierce 1991 decomposition
(Juhn et al. 1991)

Juhn et al. (1991) use an alternative setup by considering changes in
the residual variance.

The argument is that the gender wage gap will be large if the
residual variance, that is, the variance of wages once controlling for
observables such as education or work experience, is large.

Conceptually, the residual variance can be viewed as the price of
unobservables. The idea is, that there may be differences between
men and women in such unobservables. If the prices increase, the
gender wage gap will increase as well.

For example, Blau and Kahn (1997) use the method in an analysis in
which they argue that the gender wage gap would have declined
more than it actually did, hadn’t there been a strong increase in
general wage inequality that had nothing to do with gender.
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Juhn-Murphy-Pierce 1991 decomposition
Consider a model

Y gt = X gtβt + ϵgt

for two groups, g = m, f (males and females), at two time points,
t = 0, 1, where βt are some reference regression parameters
(non-discriminatory prices of observables).

The model can also be expressed as

Y gt = X gtβt + rgtσt

where σ is a reference residual standard deviation
(non-discriminatory prices of unobservables) and r = (Y − Xβt)/σt

is a standardized residual.

Thus, the equation now has a two-component error term. The
residuals are expressed as a function of the general residual
inequality at time t and the positions of the residuals in the residual
distribution.
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Juhn-Murphy-Pierce 1991 decomposition
The mean outcome differential between men an women at time t
can then be decomposed as follows:

∆µ,t = Ȳ mt − Ȳ ft = (X̄mt − X̄ ft)βt + (r̄mt − r̄ ft)σt

= ∆µX +∆µS

The first term is the “predicted gap” and the second term is the
“residual gap”. They are equal to the “explained” part and the
“unexplained” part in a standard OB decomposition using βt as
reference coefficients.

Let ∆X̄ t = (X̄mt − X̄ ft) and ∆r̄ t = (r̄mt − r̄ ft). Given two time
points t = 0 and t = 1 the change in the outcome differential can
then be written as

∆µ,1 −∆µ,0 = (∆X̄ 1β1 −∆X̄ 0β0) + (∆r̄1σ1 −∆r̄0σ0)

= d∆µX + d∆µS
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Juhn-Murphy-Pierce 1991 decomposition
The change in the “predicted gap” can be further decomposed as

d∆µX = (∆X̄ 1 −∆X̄ 0)β0 +∆X̄ 0(β1 − β0) + (∆X̄ 1 −∆X̄ 0)(β1 − β0)

where the first term is the main “observed quantities” effect due to a
change in gender differences in X , the second term is a secondary
effect due a change in “prices” for observed quantities, and the third
term is an interaction term.
Likewise, the change in the “residual gap” can be decomposed as

d∆µS = (∆r̄1 −∆r̄0)σ0 +∆r̄0(σ1 − σ0) + (∆r̄1 −∆r̄0)(σ1 − σ0)

where the first term is the so-called “gap effect” due to changes in
the group differences in residual positions (i.e. changes in the group
differences in “unobserved quantities” and changes in discrimination),
the second term is the part due to changes in residual inequality (i.e.
changes in “prices” for unobserved quantities), and the third term is
again an interaction term.
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Juhn-Murphy-Pierce 1991 decomposition

Similar to other decompositions, it is common practice to use the
“prices” of one of the years as the reference prices (or use some
average or pooled results). For example, if we use t = 0 as the
reference, the decomposition simplifies to:

d∆µX = (∆X̄ 1 −∆X̄ 0)β0 +∆X̄ 1(β1 − β0)

d∆µS = (∆r̄1 −∆r̄0)σ0 +∆r̄1(σ1 − σ0)

Furthermore, a detailed decomposition can be obtained for the
components of d∆µX in the usual way (but obviously not for d∆µS).

Note that results for d∆µX are the same as for the Smith-Welch
decomposition (if using the same setup). For d∆µS only the total is
the same; that is, Smith-Welch and Juhn-Murphy-Pierce lead to a
different breakup of d∆µS .
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Juhn-Murphy-Pierce 1991 decomposition: estimation

Estimation of the components of d∆µX is straightforward.

Estimation of the components of d∆µS is more involved and requires
some discussion. Two approaches are used in the literature, a
parametric approach and a nonparametric approach.
Parametric
▶ Since, by definition, ϵt = r tσt , expression ∆r̄ tσt can simply be

estimated as the mean difference in residuals ϵ between men an
women at time t.

▶ But what about expressions such as ∆r̄1σ0?
▶ An obvious solution is to estimate the residual standard deviation at

time t = 0 and then multiply it by the mean difference in standardized
residuals of t = 1.

Nonparametric
▶ The parametric approach is simple, but neglects changes in the

distributional shape (apart from the variance).
▶ The following nonparametric procedure has therefore been proposed.
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Juhn-Murphy-Pierce 1991 decomposition: estimation
▶ Let F t() be the distribution function of the residuals at time t.

Furthermore, let pt represent the relative positions of the residuals in
the residual distribution at time t, that is

pgt = F t(ϵgt) and thus ϵgt = Qt(pgt)

where Q() = F−1() is the quantile function (inverse of F ()).
▶ The solution now is to apply the quantile function of one time point

to the residual ranks of the other time point.
▶ For example, ∆r̄1σ0 is estimated by assigning each individual at t = 1

a percentile number corresponding to its position in the residual
distribution of t = 1 (i.e., compute p1), then using these relative
ranks to derive hypothetical residuals given the t = 0 residual
distribution (i.e. compute Q0(p1)), and finally taking the mean
difference in these hypothetical residuals between men and women.

The JMP 1991 procedure relies on some strong assumptions and is
not free of critique (e.g. Yun 2009).

Decomposition methods 5. Difference-in-difference decompositions Giesecke/Jann 26



1 Smith-Welch decomposition

2 Example analysis

3 Juhn-Murphy-Pierce 1991 decomposition

4 Example analysis

5 Interventionist approach (Kröger/Hartmann)

Decomposition methods 5. Difference-in-difference decompositions Giesecke/Jann 27



Example analysis (using jmpierce2 by Jann 2005b)

Estimate the outcome models to be used in the JMP 1991
decomposition.
▶ jmpierce2 does not fully support models estimated with the svy

prefix; this is why we just apply the weights rather than svy.

. regress lnwage yeduc expft expft2 [pw=weight] if female==0 & t==0
(output omitted )

. estimates store male_t0

. regress lnwage yeduc expft expft2 [pw=weight] if female==1 & t==0
(output omitted )

. estimates store female_t0

. regress lnwage yeduc expft expft2 [pw=weight] if female==0 & t==1
(output omitted )

. estimates store male_t1

. regress lnwage yeduc expft expft2 [pw=weight] if female==1 & t==1
(output omitted )

. estimates store female_t1

Decomposition methods 5. Difference-in-difference decompositions Giesecke/Jann 28



Nonparametric JMP 1991 decomposition
. jmpierce2 male_t0 female_t0 male_t1 female_t1, reference(1) benchmark(1)
Decomposition of individual differentials:

raw dif- quantity residual
ferential effect gap

Sample 1 .2207358 .0758792 .1448567
Sample 2 .2053074 .0904872 .1148202

Difference in (components of) differentials:

D E U

Total -.0154284 .014608 -.0300365

Decomposition of difference in predicted gap:

E Q P

Total .014608 -.0087573 .0233653

Decomposition of diffence in residual gap:

U Q P

Total -.0300365 -.0394444 .0094079

D = difference in differential
E = difference in predicted gap
U = difference in residual gap
Q = quantity effect
P = price effect
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Parametric JMP 1991 decomposition
. jmpierce2 male_t0 female_t0 male_t1 female_t1, reference(1) benchmark(1) parametric
Decomposition of individual differentials:

raw dif- quantity residual
ferential effect gap

Sample 1 .2207358 .0758792 .1448567
Sample 2 .2053074 .0904872 .1148202

Difference in (components of) differentials:

D E U

Total -.0154284 .014608 -.0300365

Decomposition of difference in predicted gap:

E Q P

Total .014608 -.0087573 .0233653

Decomposition of diffence in residual gap:

U Q P

Total -.0300365 -.0385607 .0085242

D = difference in differential
E = difference in predicted gap
U = difference in residual gap
Q = quantity effect
P = price effect
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Detailed JMP 1991 decomposition
. jmpierce2 male_t0 female_t0 male_t1 female_t1, reference(1) benchmark(1) ///
> detail(schooling=yeduc, experience=expft*)
Decomposition of individual differentials:

raw dif- quantity residual
ferential effect gap

Sample 1 .2207358 .0758792 .1448567
Sample 2 .2053074 .0904872 .1148202

Difference in (components of) differentials:

D E U

Total -.0154284 .014608 -.0300365

Decomposition of difference in predicted gap:

E Q P

Total .014608 -.0087573 .0233653

schooling -.0336838 -.0275985 -.0060853
experience .0482919 .0188412 .0294507

Decomposition of diffence in residual gap:

U Q P

Total -.0300365 -.0394444 .0094079

D = difference in differential
E = difference in predicted gap
U = difference in residual gap
Q = quantity effect
P = price effect
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Interventionist approach (Kröger/Hartmann)

Kröger and Hartmann (2021) give an overview of several
difference-in-differences decompositions and propagate an easy to
interpret interventionist approach.

The approach is somewhat different from Smith-Welch and
Juhn-Murphy-Pierce in that it does not try to provide separate
breakups of the change/difference in the explained part and the
change/difference in the unexplained part.

Again, let there be two groups two groups, g ∈ {m, f } (males and
females), and two time points, t ∈ {0, 1}.
The decomposition then asks:

1. How does the group difference change if endowments are adjusted to
the level of time 1, but coefficients are kept at their values of time 0
(endowments effect).

2. How does the group difference change if coefficients are adjusted to
the values of time 1, but endowments are kept at their level of time 0
(coefficients effect)
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Interventionist approach (Kröger/Hartmann)

That is, the decomposition is as follows:

∆E = (X̄m1 − X̄m0)βm0 − (X̄ f 1 − X̄ f 0)βf 0

∆C = X̄m0(βm1 − βm0)− X̄ f 0(βf 1 − βf 0)

∆I = (X̄m1 − X̄m0)(βm1 − βm0)− (X̄ f 1 − X̄ f 0)(βf 1 − βf 0)

The sum of ∆E , ∆C , and ∆I is equal to the overall change in the
group difference between time 0 and time 1.

Primary interest lies in ∆E (endowments effect) and ∆C
(coefficients effect). As usual, the interaction term ∆I is less
straightforward to interpret.
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Exercise 5
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