Decomposition Methods in the Social Sciences GESIS Training Course January 29 – February 1, 2024, Cologne

> Johannes Giesecke (Humboldt University Berlin) Ben Jann (University of Bern)

> > 2. The Oaxaca-Blinder decomposition

## Contents

#### 1 The Oaxaca-Blinder decomposition

- Basic mechanics
- Estimation
- Standard errors
- Detailed decomposition

#### Example analysis

#### Post-estimation

- Hypothesis tests
- Linear and nonlinear combinations
- Tables and graphs

## Introduction

- Studies by Oaxaca (1973) und Blinder (1973) analyzed the wage gap between men and women and between whites and blacks in the USA.
- For example, the gender wage gap (measured as the difference in average wages between males and females) was about 45 percent at that time (data of 1967).
- Question: How large is the part of the gender wage gap that can be attributed to gender differences in characteristics that are relevant for wages (such as education or work experience)? That is, how large is Δ<sup>ν</sup><sub>X</sub>?
- The remaining part of the gap, Δ<sup>ν</sup><sub>S</sub>, is due to differences in the wage structure m(), that is, to differences in how the characteristics are rewarded in the labor market for men and women. In the context of the gender wage gap this part is often interpreted as "discrimination".

- The classic OB decomposition focuses on group differences in  $\mu(F_Y)$ , the mean of Y.
- Presumed is the following structural function:

 $Y_i^g = m^g(X_i, \epsilon_i) = \beta_0^g + \beta_1^g X_{1i} + \dots + \beta_K^g X_{Ki} + \epsilon_i, \quad \text{for } g = 0, 1$ 

- For example, Y<sup>0</sup> are (log) wages according to the wage structure of men, Y<sup>1</sup> are (log) wages according to the wage structure of women.
- Assumptions:
  - Additive linearity:  $m(X, \epsilon) = X\beta + \epsilon$ , that is, effects of observed and unobserved characteristics are additively separable in m()
  - ► Zero conditional mean/conditional (mean) independence:  $E(\epsilon|X, G) = 0$

Remark on notation: in expressions such as  $X\beta$ , X is a data matrix or a single row vector of values for  $X_1, \ldots, X_K$  and  $\beta$  is a corresponding column vector of coefficients. X includes a constant unless noted otherwise, i.e.  $X = [1, X_1, \ldots, X_K]$ .

• In this case,  $\Delta^{\mu}$  can be written as

$$\begin{aligned} \Delta^{\mu} &= \mu(F_{Y|G=0}) - \mu(F_{Y|G=1}) = \mathsf{E}(Y|G=0) - \mathsf{E}(Y|G=1) \\ &= \mathsf{E}(X\beta^{0} + \epsilon|G=0) - \mathsf{E}(X\beta^{1} + \epsilon|G=1) \\ &= (\mathsf{E}(X\beta^{0}|G=0) + \mathsf{E}(\epsilon|G=0)) - (\mathsf{E}(X\beta^{1}|G=1) + \mathsf{E}(\epsilon|G=1)) \\ &= \mathsf{E}(X\beta^{0}|G=0) - \mathsf{E}(X\beta^{1}|G=1) \\ &= \mathsf{E}(X|G=0)\beta^{0} - \mathsf{E}(X|G=1)\beta^{1} \end{aligned}$$

- To perform the decomposition, we now need a suitable counterfactual.
- Proposal: use  $F_{Y^0|G=1}$ , that is, use the counterfactual mean

 $\mu(F_{\mathsf{Y}^0|G=1}) = \mathsf{E}(X\beta^0 + \epsilon|G=1) = \mathsf{E}(X\beta^0|G=1) = \mathsf{E}(X|G=1)\beta^0$ 

• If G = 0 are men and G = 1 are women, this is the average of (log) wages we would expect for women, if they were paid like men.

• Adding and subtracting  $E(X|G = 1)\beta^0$ , we obtain the decomposition

$$\begin{aligned} \Delta^{\mu} &= \mathsf{E}(X|G=0)\beta^{0} - \mathsf{E}(X|G=1)\beta^{1} \\ &= \mathsf{E}(X|G=0)\beta^{0} - \mathsf{E}(X|G=1)\beta^{0} + \mathsf{E}(X|G=1)\beta^{0} - \mathsf{E}(X|G=1)\beta^{1} \\ &= (\mathsf{E}(X|G=0) - \mathsf{E}(X|G=1))\beta^{0} + \mathsf{E}(X|G=1)(\beta^{0} - \beta^{1}) \\ &= \Delta^{\mu}_{X} + \Delta^{\mu}_{S} \end{aligned}$$

where

- $\Delta^{\mu}_{\chi}$  "explained" part, endowment effect, composition effect, quantity effect
- $\Delta_{S}^{\mu}$  "unexplained" part, discrimination, price effect

- Basic mechanics
- Estimation
- Standard errors
- Detailed decomposition

#### 2 Example analysis

#### Post-estimation

- Hypothesis tests
- Linear and nonlinear combinations
- Tables and graphs

## Estimation

- All components of the above decomposition can readily be estimated.
  - ►  $\beta^g$  can be estimated by applying linear regression to the G = g subsample.
  - A suitable estimate of E(X|G = g) is simply the vector of means of X in the G = g subsample.
  - That is, run regressions among men and women, and compute the means of X for men and women.
- Let  $\hat{\beta}^g$  be the estimate of  $\beta^g$  and  $\bar{X}^g = \hat{E}(X|G = g)$  be the estimate of E(X|G = g). The decomposition estimate then is

$$\widehat{\Delta}^{\mu} = \widehat{\Delta}^{\mu}_{X} + \widehat{\Delta}^{\mu}_{S} = (\bar{X}^{0} - \bar{X}^{1})\widehat{\beta}^{0} + \bar{X}^{1}(\widehat{\beta}^{0} - \widehat{\beta}^{1})$$

- Basic mechanics
- Estimation
- Standard errors
- Detailed decomposition

#### 2 Example analysis

#### Post-estimation

- Hypothesis tests
- Linear and nonlinear combinations
- Tables and graphs

## Standard errors

- For a long time, results from OB decompositions were reported without information on statistical inference (standard errors, confidence intervals).
- Meaningful interpretation of results, however, is difficult without information on estimation precision.
- A first suggestion on how to compute standard errors for decomposition results has been made by Oaxaca und Ransom (1998; also see Greene 2003:53–54).
- These authors, however, assume "fixed" covariates (like factors in an experimental design) and hence ignore an important source of statistical uncertainty.
- That the stochastic nature of covariates has no consequences for the estimation of (conditional) coefficients in regression models is an important insight of econometrics. However, this does not hold for (unconditional) OB decompositions.

#### Standard errors

- - If the covariates are fixed, then  $\bar{X}$  has no sampling variance. Hence:

$$V(\bar{X}\widehat{eta}) = \bar{X}V(\widehat{eta})\bar{X}'$$

However, if covariates are stochastic, the sampling variance is

$$V(\bar{X}\widehat{\beta}) = \bar{X}V(\widehat{\beta})\bar{X}' + \widehat{\beta}'V(\bar{X})\widehat{\beta} + \text{trace}\Big\{V(\bar{X})V(\widehat{\beta})\Big\}$$

(see the proof in Jann 2005).

- The last term, trace{}, is asymptotically vanishing and can be ignored.

## Standard errors

- Using this result, equations for the sampling variances of the components of an OB decomposition can easily be derived.
- For example, assuming that the two groups are independent, we get:

$$\begin{split} V(\widehat{\Delta}_{X}^{\mu}) &= V(\bar{X}^{0} - \bar{X}^{1})\widehat{\beta}^{0}) \approx (\bar{X}^{0} - \bar{X}^{1})V(\widehat{\beta}^{0})(\bar{X}^{0} - \bar{X}^{1})' \\ &\quad + \widehat{\beta}^{0'} [V(\bar{X}^{0}) + V(\bar{X}^{1})]\widehat{\beta}^{0} \\ V(\widehat{\Delta}_{S}^{\mu}) &= V(\bar{X}^{1}(\widehat{\beta}^{0} - \widehat{\beta}^{1})) \approx \bar{X}^{1} \Big[V(\widehat{\beta}^{0}) + V(\widehat{\beta}^{1})\Big]\bar{X}^{1'} \\ &\quad + (\widehat{\beta}^{0} - \widehat{\beta}^{1})'V(\bar{X}^{1})(\widehat{\beta}^{0} - \widehat{\beta}^{1}) \end{split}$$

- Equations for other variants of the decomposition, for elements of the detailed decomposition (see below), and for the covariances among components can be derived similarly. Incorporation of complex survey designs (in which, e.g., the two groups are not independent) is also possible.
- An alternative is to use replication techniques such as the bootstrap or jackknife.

- Basic mechanics
- Estimation
- Standard errors
- Detailed decomposition

#### 2 Example analysis

#### Post-estimation

- Hypothesis tests
- Linear and nonlinear combinations
- Tables and graphs

## Detailed decomposition

- Often one is not only interested in the aggregate decomposition into an "explained" and an "unexplained" part, but one wants to further decompose the components into contributions of single covariates.
- Given the assumption of additive linearity, such detailed decompositions are easy to compute.
- For the "explained" part we have

$$\hat{\Delta}_{X}^{\mu} = (\bar{X}^{0} - \bar{X}^{1})\hat{\beta}^{0} = \sum_{k=1}^{K} \hat{\beta}_{k}^{0}(\bar{X}_{k}^{0} - \bar{X}_{k}^{1}) \\ = \hat{\beta}_{1}^{0}(\bar{X}_{1}^{0} - \bar{X}_{1}^{1}) + \dots + \hat{\beta}_{K}^{0}(\bar{X}_{K}^{0} - \bar{X}_{K}^{1})$$

• For the "unexplained" part we have

$$\begin{split} \widehat{\Delta}_{S}^{\mu} &= \bar{X}^{1}(\widehat{\beta}^{0} - \widehat{\beta}^{1}) = (\widehat{\beta}_{0}^{0} - \widehat{\beta}_{0}^{1}) + \sum_{k=1}^{K} (\widehat{\beta}_{k}^{0} - \widehat{\beta}_{k}^{1}) \bar{X}_{k}^{1} \\ &= (\widehat{\beta}_{0}^{0} - \widehat{\beta}_{0}^{1}) + (\widehat{\beta}_{1}^{0} - \widehat{\beta}_{1}^{1}) \bar{X}_{1}^{1} + \dots + (\widehat{\beta}_{K}^{0} - \widehat{\beta}_{K}^{1}) \bar{X}_{K}^{1} \end{split}$$

## Detailed decomposition

• Furthermore, it is easy to subsume the detailed decomposition by sets of covariates:

$$\widehat{\Delta}_{X}^{\mu} = \sum_{k=1}^{a} \widehat{\beta}_{k}^{0} (\bar{X}_{k}^{0} - \bar{X}_{k}^{1}) + \sum_{k=a+1}^{b} \widehat{\beta}_{k}^{0} (\bar{X}_{k}^{0} - \bar{X}_{k}^{1}) + \dots$$
$$\widehat{\Delta}_{S}^{\mu} = (\widehat{\beta}_{0}^{0} - \widehat{\beta}_{0}^{1}) + \sum_{k=1}^{a} (\widehat{\beta}_{k}^{0} - \widehat{\beta}_{k}^{1}) \bar{X}_{k}^{1} + \sum_{k=a+1}^{b} (\widehat{\beta}_{k}^{0} - \widehat{\beta}_{k}^{1}) \bar{X}_{k}^{1} + \dots$$

- Basic mechanics
- Estimation
- Standard errors
- Detailed decomposition

#### 2 Example analysis

#### Post-estimation

- Hypothesis tests
- Linear and nonlinear combinations
- Tables and graphs

## Example analysis

- Data: gsoep-extract.dta; extract from German Socio-Economic Panel (GSOEP), waves 1995, 2005, 2015, 2020
- Outcome variable (Y): logarithm of gross hourly wages
- Groups (G): males vs. females
- Predictors (X): years of schooling, years of full-time work experience
- Sample selection: respondents between 25 and 55 years old
- The example requires the oaxaca package (Jann 2008). To install the package and view the help file, type:
  - . ssc install oaxaca, replace
  - . help oaxaca

#### Data preparation

| Variable | Obs   | Mean     | Std. dev. | Min      | Max      |
|----------|-------|----------|-----------|----------|----------|
| wage     | 5,600 | 17.57278 | 9.858855  | 3.03     | 121.42   |
| lnwage   | 5,600 | 2.736721 | .5062968  | 1.108563 | 4.799255 |
| yeduc    | 7,121 | 12.28823 | 2.783974  | 7        | 18       |
| expft    | 7,274 | 11.63359 | 9.556508  | 0        | 39.5     |
| expft2   | 7,274 | 226.6548 | 293.3739  | 0        | 1560.25  |
| -        |       |          |           |          |          |

#### Summarize wages by gender

. bysort sex: summarize wage if wage>0 & yeduc<. & expft<., detail

| -> sex = male |                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|               | gross hourly                                                                                          | wage                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Percentiles   | Smallest                                                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 5.04          | 3.05                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 7.77          | 3.05                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 9.23          | 3.08                                                                                                  | Obs                                                                                                                                                                                       | 2,642                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 12.46         | 3.45                                                                                                  | Sum of wgt.                                                                                                                                                                               | 2,642                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 17.33         |                                                                                                       | Mean                                                                                                                                                                                      | 19.81089                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|               | Largest                                                                                               | Std. dev.                                                                                                                                                                                 | 10.89243                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 24.58         | 101.33                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 33.24         | 103.02                                                                                                | Variance                                                                                                                                                                                  | 118.6451                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 38.84         | 105.62                                                                                                | Skewness                                                                                                                                                                                  | 2.237586                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 53.79         | 121.42                                                                                                | Kurtosis                                                                                                                                                                                  | 13.73294                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|               | x = male<br>Percentiles<br>5.04<br>7.77<br>9.23<br>12.46<br>17.33<br>24.58<br>33.24<br>38.84<br>55.79 | x = male<br>gross hourly<br>Percentiles Smallest<br>5.04 3.05<br>7.77 3.05<br>9.23 3.08<br>12.46 3.45<br>17.33<br>Largest<br>24.58 101.33<br>33.24 103.02<br>38.84 105.62<br>53.79 121.42 | x = male<br>gross hourly wage<br>Percentiles Smallest<br>5.04 3.05<br>7.77 3.05<br>9.23 3.08 Obs<br>12.46 3.45 Sum of wgt.<br>17.33 Mean<br>Largest Std. dev.<br>24.58 101.33<br>33.24 103.02 Variance<br>38.84 105.62 Skewness<br>53.79 121.42 Kurtosis | x = male<br>gross hourly wage<br>Percentiles Smallest<br>5.04 3.05<br>7.77 3.05<br>9.23 3.08 Obs 2.642<br>12.46 3.45 Sum of wgt. 2.642<br>17.33 Mean 19.81089<br>Largest Std. dev. 10.89243<br>24.58 101.33<br>33.24 103.02 Variance 118.6451<br>38.84 105.62 Skewness 2.237586<br>53.79 121.42 Kurtosis 13.73294 |  |  |  |  |

-> sex = female

gross hourly wage

| -   |             |          |             |          |
|-----|-------------|----------|-------------|----------|
|     | Percentiles | Smallest |             |          |
| 1%  | 4.25        | 3.03     |             |          |
| 5%  | 6.38        | 3.05     |             |          |
| 10% | 7.685       | 3.1      | Obs         | 2,820    |
| 25% | 9.895       | 3.26     | Sum of wgt. | 2,820    |
| 50% | 14.015      |          | Mean        | 15.53262 |
|     |             | Largest  | Std. dev.   | 8.307052 |
| 75% | 19.035      | 69.56    |             |          |
| 90% | 25.28       | 72.16    | Variance    | 69.00712 |
| 95% | 30.03       | 117.53   | Skewness    | 2.827928 |
| 99% | 41.72       | 119.3    | Kurtosis    | 23.94746 |
|     |             |          |             |          |

#### The gender wage gap

. mean wage if wage>0 & yeduc<. & expft<., over(sex) Mean estimation Number of obs = 5,462

|                              | Mean                 | Std. err.            | [95% conf.           | interval]            |
|------------------------------|----------------------|----------------------|----------------------|----------------------|
| c.wage@sex<br>male<br>female | 19.81089<br>15.53262 | .2119134<br>.1564308 | 19.39545<br>15.22595 | 20.22632<br>15.83928 |

. lincom c.wage@1.sex-c.wage@2.sex

(1) c.wage@1bn.sex - c.wage@2.sex = 0

| Mean | Coefficient | Std. err. | t     | P> t  | [95% conf. | interval] |
|------|-------------|-----------|-------|-------|------------|-----------|
| (1)  | 4.278272    | .2633969  | 16.24 | 0.000 | 3.76191    | 4.794635  |

. nlcom \_b[c.wage@1.sex]/\_b[c.wage@2.sex]

\_nl\_1: \_b[c.wage@1.sex]/\_b[c.wage@2.sex]

| Mean  | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|-------|-------------|-----------|-------|-------|------------|-----------|
| _nl_1 | 1.275438    | .0187385  | 68.07 | 0.000 | 1.238711   | 1.312165  |

. nlcom (\_b[c.wage@1.sex]/\_b[c.wage@2.sex]-1)\*100

\_nl\_1: (\_b[c.wage@1.sex]/\_b[c.wage@2.sex]-1)\*100

| Mean  | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|-------|-------------|-----------|-------|-------|------------|-----------|
| _nl_1 | 27.5438     | 1.873849  | 14.70 | 0.000 | 23.87112   | 31.21647  |

## The gender wage gap

• Typically, the *logarithm* of wages is analyzed, because

• wages can only be positive;  $Y \in (0, \infty)$ 

- wages have a (left) skewed distribution; taking the logarithm makes the distribution look more like a normal distribution (see next slide)
- economic theory (Mincer 1974, Willis 1986) suggests that effects on wages are relative, not absolute; differences in logs correspond to ratios on the original scale:

 $\ln(x/y) = \ln(x) - \ln(y) \quad \text{hence: } \exp(\ln(x) - \ln(y)) = x/y$ 

- The mean difference in log wages can approximately be interpreted as the percentage difference in average wages.
  - More precisely: the mean difference in log wages corresponds to the ratio of geometric means of wages

$$\exp\left(\overline{\ln x} - \overline{\ln y}\right) = \frac{\tilde{x}}{\tilde{y}}$$

where  $\tilde{x} = \sqrt[n]{x_1 x_2 \cdots x_n}$  is the geometric mean of x.





#### The gender wage gap

. mean lnwage if yeduc<. & expft<., over(sex) Mean estimation Number of obs = 5,462

. lincom c.lnwage@1.sex-c.lnwage@2.sex

(1) c.lnwage@1bn.sex - c.lnwage@2.sex = 0

| Mean | Coefficient | Std. err. | t     | P> t  | [95% conf. | interval] |
|------|-------------|-----------|-------|-------|------------|-----------|
| (1)  | .2317274    | .0133389  | 17.37 | 0.000 | . 2055777  | .257877   |

. nlcom exp(\_b[c.lnwage@1.sex])/exp(\_b[c.lnwage@2.sex])

\_nl\_1: exp(\_b[c.lnwage@1.sex])/exp(\_b[c.lnwage@2.sex])

| Mean  | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|-------|-------------|-----------|-------|-------|------------|-----------|
| _nl_1 | 1.260776    | .0168174  | 74.97 | 0.000 | 1.227814   | 1.293737  |

. nlcom (exp(\_b[c.lnwage@1.sex]-\_b[c.lnwage@2.sex])-1)\*100

\_nl\_1: (exp(\_b[c.lnwage@1.sex]-\_b[c.lnwage@2.sex])-1)\*100

| Mean  | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|-------|-------------|-----------|-------|-------|------------|-----------|
| _nl_1 | 26.07759    | 1.681741  | 15.51 | 0.000 | 22.78144   | 29.37375  |

#### Separate wage regressions by gender

. bysort sex: regress lnwage yeduc expft expft2

-> sex = male

| Source         | SS          | df        | MS         | Numb   | er of obs | =   | 2,642     |
|----------------|-------------|-----------|------------|--------|-----------|-----|-----------|
|                |             |           |            | - F(3, | 2638)     | =   | 428.35    |
| Model          | 220.878193  | 3         | 73.6260643 | 8 Prob | > F       | =   | 0.0000    |
| Residual       | 453.426469  | 2,638     | .171882664 | R-sq   | uared     | =   | 0.3276    |
|                |             |           |            | - Adj  | R-squared | =   | 0.3268    |
| Total          | 674.304662  | 2,641     | .25532172  | 2 Root | MSE       | =   | .41459    |
|                |             |           |            |        |           |     |           |
| lnwage         | Coefficient | Std. err. | t          | P> t   | [95% cor  | nf. | interval] |
| yeduc          | .0909759    | .002884   | 31.54      | 0.000  | .0853207  | 7   | .0966311  |
| expft          | .0436904    | .0033515  | 13.04      | 0.000  | .0371187  | 7   | .0502622  |
| expft2         | 0007859     | .0000935  | -8.41      | 0.000  | 0009692   | 2   | 0006026   |
| _cons          | 1.270429    | .0456615  | 27.82      | 0.000  | 1.180893  | 3   | 1.359965  |
|                |             |           |            |        |           |     |           |
| -> sex = femal | Le          |           |            |        |           |     |           |
| Source         | SS          | df        | MS         | Numb   | er of obs | =   | 2,820     |

|   | Source   | SS          | dİ        | MS         | Numb   | er of ob | s =   | 2,820     |
|---|----------|-------------|-----------|------------|--------|----------|-------|-----------|
| - |          |             |           |            | - F(3, | 2816)    | =     | 346.11    |
|   | Model    | 174.081563  | 3         | 58.0271878 | Prob   | > F      | =     | 0.0000    |
|   | Residual | 472.121431  | 2,816     | .167656758 | R-sq   | uared    | =     | 0.2694    |
| - |          |             |           |            | - Adj  | R-square | d =   | 0.2686    |
|   | Total    | 646.202995  | 2,819     | .229231286 | Root   | MSE      | =     | .40946    |
| - |          |             |           |            |        |          |       |           |
|   | lnwage   | Coefficient | Std. err. | t          | P> t   | [95%     | conf. | interval] |
| - |          |             |           |            |        |          |       |           |
|   | yeduc    | .0818828    | .0028763  | 28.47      | 0.000  | .076     | 243   | .0875226  |
|   | expft    | .0306978    | .0028001  | 10.96      | 0.000  | .0252    | 075   | .0361882  |
|   | expft2   | 0006035     | .0000964  | -6.26      | 0.000  | 0007     | 927   | 0004144   |
|   | _cons    | 1.38513     | .0400425  | 34.59      | 0.000  | 1.306    | 614   | 1.463646  |
|   |          |             |           |            |        |          |       |           |

## Predictive margins across experience (with 95% CI)



Predictive margins across experience (with 95% CI)

```
regress lnwage yeduc c.expft##c.expft if sex==1
margins, at(yeduc=13 expft=(0(5)40)) post
estimates store male
regress lnwage yeduc c.expft##c.expft if sex==2
margins, at(yeduc=13 expft=(0(5)40)) post
estimates store female
coefplot male female, at recast(connect) ciopts(recast(rcap)) ///
xtitle(expft) yti(ln(wage))
```



## Means of the X variables by gender

. mean yeduc expft expft2 if lnwage<., over(sex) Mean estimation

Number of obs = 5,462

|              | Mean     | Std. err. | [95% conf. interval |
|--------------|----------|-----------|---------------------|
| c.yeduc@sex  |          |           |                     |
| male         | 12.4788  | .05532    | 12.37035 12.5872    |
| female       | 12.73936 | .0506089  | 12.64015 12.8385    |
| c.expft@sex  |          |           |                     |
| male         | 17.31501 | .1812995  | 16.95959 17.6704    |
| female       | 9.616578 | . 1552872 | 9.312153 9.92100    |
| c.expft2@sex |          |           |                     |
| male         | 386.6178 | 6.509539  | 373.8565 399.379    |
| female       | 160.4562 | 4.509838  | 151.6151 169.297    |

## Aggregate Oaxaca-Blinder decomposition: by hand

#### • Explained part

. display %9.0g ( 12.4788 - 12.73936) \* .0909759 /// > + ( 17.31501 - 9.616578) \* .0436904 /// > + ( 386.6178 - 160.4562) \* -.0007859 .1349025

#### Unexplained part

. display %9.0g ( 1.270429 - 1.38513) /// > + 12.73936 \* ( .0909759 - .0818828) /// > + 9.616578 \* ( .0436904 - .0306978) /// > + 160.4562 \* (-.0007859 - .0006035) .0968164

## Aggregate Oaxaca-Blinder decomposition: oaxaca

| . oaxaca lnwage yeduc expft expft2, by(sex)              | weight(1) nodetail |   |        |
|----------------------------------------------------------|--------------------|---|--------|
| Blinder-Oaxaca decomposition                             | Number of obs      | = | 5,462  |
|                                                          | Model              | = | linear |
| Group 1: sex = 1                                         | N of obs 1         | = | 2,642  |
| Group 2: sex = 2                                         | N of obs 2         | = | 2,820  |
| explained: (X1 - X2) * b1<br>unexplained: X2 * (b1 - b2) |                    |   |        |
|                                                          |                    |   |        |

| lnwage      | Coefficient | Std. err. | z      | P> z  | [95% conf. | interval] |
|-------------|-------------|-----------|--------|-------|------------|-----------|
| overall     |             |           |        |       |            |           |
| group_1     | 2.858357    | .0098343  | 290.65 | 0.000 | 2.839082   | 2.877632  |
| group_2     | 2.62663     | .0090195  | 291.22 | 0.000 | 2.608952   | 2.644308  |
| difference  | .2317274    | .0133441  | 17.37  | 0.000 | .2055734   | .2578813  |
| explained   | .1349029    | .0111087  | 12.14  | 0.000 | .1131302   | .1566756  |
| unexplained | .0968245    | .0136114  | 7.11   | 0.000 | .0701467   | .1235023  |

Option weight(1) requests using a counterfactual as defined above; option nodetail suppresses the detailed decomposition.

### Detailed Oaxaca-Blinder decomposition

. oaxaca lnwage yeduc expft expft2, by(sex) weight(1) Blinder-Oaxaca decomposition Number o

Group 1: sex = 1
Group 2: sex = 2
 explained: (X1 - X2) \* b1
 unexplained: X2 \* (b1 - b2)

| -             |   |        |
|---------------|---|--------|
| Number of obs | = | 5,462  |
| Model         | = | linear |
| N of obs 1    | = | 2,642  |
| N of obs 2    | = | 2,820  |
|               |   |        |
|               |   |        |

| lnwage      | Coefficient | Std. err. | z      | P> z  | [95% conf. | interval] |
|-------------|-------------|-----------|--------|-------|------------|-----------|
| overall     |             |           |        |       |            |           |
| group_1     | 2.858357    | .0098343  | 290.65 | 0.000 | 2.839082   | 2.877632  |
| group_2     | 2.62663     | .0090195  | 291.22 | 0.000 | 2.608952   | 2.644308  |
| difference  | .2317274    | .0133441  | 17.37  | 0.000 | .2055734   | .2578813  |
| explained   | .1349029    | .0111087  | 12.14  | 0.000 | .1131302   | .1566756  |
| unexplained | .0968245    | .0136114  | 7.11   | 0.000 | .0701467   | .1235023  |
| explained   |             |           |        |       |            |           |
| yeduc       | 0237045     | .0068624  | -3.45  | 0.001 | 0371545    | 0102545   |
| expft       | .3363478    | .0278291  | 12.09  | 0.000 | .2818037   | .3908919  |
| expft2      | 1777404     | .0220436  | -8.06  | 0.000 | 2209452    | 1345357   |
| unexplained |             |           |        |       |            |           |
| yeduc       | .1158413    | .0518914  | 2.23   | 0.026 | .014136    | .2175466  |
| expft       | .1249445    | .0420461  | 2.97   | 0.003 | .0425357   | .2073533  |
| expft2      | 02926       | .02157    | -1.36  | 0.175 | 0715366    | .0130165  |
| _cons       | 1147013     | .060732   | -1.89  | 0.059 | 2337338    | .0043313  |
|             |             |           |        |       |            |           |

#### FAQ:

#### Huh, the contribution of schooling to the explained part is negative. How can that be? What's going wrong?

Answer:

Negative contributions are perfectly fine. This simply means that the overall difference would even be larger if average schooling of men and women would be the same. In the example, the explanation is that schooling has a positive effect on wages and that women have, on average, slightly more schooling than men. If we eliminate this schooling advantage of women, they would be even worse off and, hence, the wage gap would increase.

## Subsuming the contribution of experience

| . oaxaca lnwag           | ge yeduc <mark>(expe</mark>     | rience: exp | oft expft | <mark>2)</mark> , by(se | x) weigh | t(1)  |           |
|--------------------------|---------------------------------|-------------|-----------|-------------------------|----------|-------|-----------|
| Blinder-Oaxaca           | a decompositio                  | n           |           | Number                  | of obs   | =     | 5,462     |
|                          |                                 |             |           | Model                   |          | =     | linear    |
| Group 1: sex :           | = 1                             |             |           | N of ob                 | s 1      | =     | 2,642     |
| Group 2: sex :           | = 2                             |             |           | N of ob                 | s 2      | =     | 2,820     |
| explained<br>unexplained | : (X1 - X2) *<br>: X2 * (b1 - b | b1<br>2)    |           |                         |          |       |           |
| lnwage                   | Coefficient                     | Std. err.   | z         | P> z                    | [95%     | conf. | interval] |
| overall                  |                                 |             |           |                         |          |       |           |
| group_1                  | 2.858357                        | .0098343    | 290.65    | 0.000                   | 2.839    | 082   | 2.877632  |
| group_2                  | 2.62663                         | .0090195    | 291.22    | 0.000                   | 2.608    | 952   | 2.644308  |
| difference               | .2317274                        | .0133441    | 17.37     | 0.000                   | . 2055   | 734   | .2578813  |
| explained                | .1349029                        | .0111087    | 12.14     | 0.000                   | . 1131   | 302   | .1566756  |
| unexplained              | .0968245                        | .0136114    | 7.11      | 0.000                   | .0701    | 467   | .1235023  |
| explained                |                                 |             |           |                         |          |       |           |
| yeduc                    | 0237045                         | .0068624    | -3.45     | 0.001                   | 0371     | 545   | 0102545   |
| experience               | .1586074                        | .0091482    | 17.34     | 0.000                   | . 1406   | 772   | .1765375  |
| unexplained              |                                 |             |           |                         |          |       |           |
| yeduc                    | .1158413                        | .0518914    | 2.23      | 0.026                   | .014     | 136   | .2175466  |
| experience               | .0956845                        | .0226133    | 4.23      | 0.000                   | .0513    | 632   | .1400057  |
| _cons                    | 1147013                         | .060732     | -1.89     | 0.059                   | 2337     | 338   | .0043313  |

experience: expft expft2

. estimates store unconditional

#### Bootstrap standard errors

. oaxaca lnwage yeduc (experience: expft expft2), by(sex) weight(1) vce(bootstrap, reps(100)) (running oaxaca on estimation sample)

Bootstrap replications (100): ......10......20.......30.......40.......50.......6 > 0.......70.......80.......90.......100 done

| Blinder-Oaxaca decomposition | Number of obs | = | 5,462  |
|------------------------------|---------------|---|--------|
| -                            | Replications  | = | 100    |
|                              | Model         | = | linear |
| Group 1: sex = 1             | N of obs 1    | = | 2,642  |
| Group 2: sex = 2             | N of obs 2    | = | 2,820  |
| ormlained: (V1 V2) * h1      |               |   |        |

explained: (X1 - X2) \* b1 unexplained: X2 \* (b1 - b2)

| lnwage      | Observed<br>coefficient | Bootstrap<br>std. err. | z      | P> z  | Normal<br>[95% conf. | -based<br>interval] |
|-------------|-------------------------|------------------------|--------|-------|----------------------|---------------------|
| overall     |                         |                        |        |       |                      |                     |
| group_1     | 2.858357                | .0101971               | 280.31 | 0.000 | 2.838371             | 2.878343            |
| group_2     | 2.62663                 | .0080962               | 324.43 | 0.000 | 2.610761             | 2.642498            |
| difference  | .2317274                | .0130774               | 17.72  | 0.000 | .2060961             | .2573586            |
| explained   | .1349029                | .0116026               | 11.63  | 0.000 | .1121621             | .1576436            |
| unexplained | .0968245                | .0150469               | 6.43   | 0.000 | .067333              | .1263159            |
| explained   |                         |                        |        |       |                      |                     |
| veduc       | 0237045                 | .0066624               | -3.56  | 0.000 | 0367625              | 0106464             |
| experience  | . 1586074               | .0104849               | 15.13  | 0.000 | .1380573             | .1791574            |
| unexplained |                         |                        |        |       |                      |                     |
| veduc       | .1158413                | .0461041               | 2.51   | 0.012 | .0254789             | .2062037            |
| experience  | .0956845                | .0226534               | 4.22   | 0.000 | .0512847             | .1400843            |
| _cons       | 1147013                 | .0567826               | -2.02  | 0.043 | 2259931              | 0034095             |

experience: expft expft2

. estimates store bootstrap

## Analytic vs. bootstrap standard errors

- . oaxaca lnwage yeduc (experience: expft expft2), by(sex) weight(1) fixed (output omitted)
- . estimates store conditional
- . esttab conditional unconditional bootstrap, nogap wide se mtitle nostar nonumber

|             | conditional |            | unconditio~l |           | bootstrap |           |
|-------------|-------------|------------|--------------|-----------|-----------|-----------|
| overall     |             |            |              |           |           |           |
| group_1     | 2.858       | (0.00807)  | 2.858        | (0.00983) | 2.858     | (0.0102)  |
| group_2     | 2.627       | (0.00771)  | 2.627        | (0.00902) | 2.627     | (0.00810) |
| difference  | 0.232       | (0.0112)   | 0.232        | (0.0133)  | 0.232     | (0.0131)  |
| explained   | 0.135       | (0.00768)  | 0.135        | (0.0111)  | 0.135     | (0.0116)  |
| unexplained | 0.0968      | (0.0135)   | 0.0968       | (0.0136)  | 0.0968    | (0.0150)  |
| explained   |             |            |              |           |           |           |
| yeduc       | -0.0237     | (0.000751) | -0.0237      | (0.00686) | -0.0237   | (0.00666) |
| experience  | 0.159       | (0.00773)  | 0.159        | (0.00915) | 0.159     | (0.0105)  |
| unexplained |             |            |              |           |           |           |
| yeduc       | 0.116       | (0.0519)   | 0.116        | (0.0519)  | 0.116     | (0.0461)  |
| experience  | 0.0957      | (0.0226)   | 0.0957       | (0.0226)  | 0.0957    | (0.0227)  |
| _cons       | -0.115      | (0.0607)   | -0.115       | (0.0607)  | -0.115    | (0.0568)  |
| N           | 5462        |            | 5462         |           | 5462      |           |

Standard errors in parentheses

#### Exercise 1

- Basic mechanics
- Estimation
- Standard errors
- Detailed decomposition

#### 2 Example analysis

#### Post-estimation

- Hypothesis tests
- Linear and nonlinear combinations
- Tables and graphs

## Post-estimation commands

- Similar to other estimation commands in Stata, oaxaca leaves results behind in e(b) and e(V) so that they can be processed by post-estimation commands.
- Examples are:
  - Command test and testnl to perform hypothesis tests.
  - Commands lincom and nlcom to compute linear and non-linear combinations (and the corresponding standard errors).
  - Commands such as esttab (Jann 2007) and coefplot (Jann 2014) to make tables and graphs from results.
- For many of these commands it is important to know how the elements in e(b) are named. Type

. ereturn display, coeflegend

after running oaxaca to display the names.

- Basic mechanics
- Estimation
- Standard errors
- Detailed decomposition

#### 2 Example analysis

#### Post-estimation

- Hypothesis tests
- Linear and nonlinear combinations
- Tables and graphs

## Hypothesis tests

- In its standard output, oaxaca displays tests of the individual components against zero.
- Depending on context, tests against other values might be required and you might also want to perform joint tests of multiple hypotheses.
- A general command to perform so-called Wald tests of simple and composite linear hypotheses, is test. A command for nonlinear hypotheses is testnl.

## Hypothesis tests

- . oaxaca lnwage yeduc expft expft2, by(sex) weight(1)
   (output omitted)
- . ereturn display, coeflegend

| lnwage                                                   | Coefficient                                 | Legend                                                                                            |
|----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------|
| overall<br>group_1<br>group_2<br>difference<br>explained | 2.858357<br>2.62663<br>.2317274<br>.1349029 | _b[overall:group_1]<br>_b[overall:group_2]<br>_b[overall:difference]<br>_b[overall:explained]     |
| explained<br>yeduc<br>expft<br>expft2                    | 0237045<br>.3363478<br>1777404              | _b[explained:yeduc]<br>_b[explained:expft]<br>_b[explained:expft2]                                |
| unexplained<br>yeduc<br>expft<br>expft2<br>_cons         | .1158413<br>.1249445<br>02926<br>1147013    | _b[unexplained:yeduc]<br>_b[unexplained:expft]<br>_b[unexplained:expft2]<br>_b[unexplained:_cons] |

#### Examples

#### • Test that the explained part is different from the unexplained part:

 Joint test of the contributions of expft and expft2 to the explained part against zero:

```
. test _b[explained:expft] = 0
  (output omitted)
. test _b[explained:expft2] = 0, accum
  ( 1) [explained]expft = 0
   ( 2) [explained]expft2 = 0
        chi2( 2) = 301.33
        Prob > chi2 = 0.0000
```

• This is a different test than testing their joint contribution:

- Basic mechanics
- Estimation
- Standard errors
- Detailed decomposition

#### 2 Example analysis

#### Post-estimation

- Hypothesis tests
- Linear and nonlinear combinations
- Tables and graphs

## Linear and nonlinear combinations

- Close cousins of test and testnl are commands lincom and nlcom.
- Command nlcom is extremely useful because it can generate arbitrary combinations and transformations of results. Standard errors (and covariances between multiple results) are computed by the so-called "delta method" (linearization; first order Taylor series approximation; see, e.g., Feiveson 1999, Oehlert 1992).
- lincom is similar, but can only be used for linear combinations (and only computes one result at the time).

# • Express the explained part and the unexplained part as percentage of the overall gap.

. nlcom (Percent\_explained: \_b[overall:explained] /\_b[overall:difference]\*100) ///
> (Percent\_unexplained: \_b[overall:unexplained]/\_b[overall:difference]\*100)
Percent\_ex-d: \_b[overall:explained] /\_b[overall:difference]\*100
Percent\_un-d: \_b[overall:unexplained]/\_b[overall:difference]\*100

| lnwage              | Coefficient | Std. err. | Z     | P> z  | [95% conf. | interval] |
|---------------------|-------------|-----------|-------|-------|------------|-----------|
| Percent_explained   | 58.2162     | 4.649956  | 12.52 | 0.000 | 49.10246   | 67.32995  |
| Percent_unexplained | 41.7838     | 4.649956  | 8.99  |       | 32.67005   | 50.89754  |

• Compute the percentage of the overall gap that is explained by schooling (years of education), and the percentage that is explained by work experience.

```
. nlcom (schooling: _b[explained:yeduc] / _b[overall:difference]*100) ///
> (experience: (_b[explained:expft] + _b[explained:expft2]) / /*
```

```
> */_b[overall:difference]*100)
```

schooling: \_b[explained:yeduc] / \_b[overall:difference]\*100
experience: (\_b[explained:expft] + \_b[explained:expft2]) / \_b[overall:difference]\*100

| lnwage     | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|------------|-------------|-----------|-------|-------|------------|-----------|
| schooling  | -10.22947   | 3.272162  | -3.13 | 0.002 | -16.64279  | -3.816153 |
| experience | 68.44568    | 5.191238  | 13.18 |       | 58.27104   | 78.62032  |

- Basic mechanics
- Estimation
- Standard errors
- Detailed decomposition

#### 2 Example analysis

#### Post-estimation

- Hypothesis tests
- Linear and nonlinear combinations
- Tables and graphs

## Tables and graphs

- To tabulate results from oaxaca (and export the table to LATEX or Word etc.) you can use, for example, command esttab (Jann 2007). There are also various other user commands that could be employed.
  - Since Stata 17, there is also official collect (and etable, which is based on collect).
- For graphs, try coefplot (Jann 2014).
- The commands support combining results from multiple calls to oaxaca or nlcom that have been stored using estimates store.
- For nlcom, you need to specify the post option before tabulation and graphing is possible.

## Example: graph

. oaxaca lnwage yeduc (experience: expft expft2), by(sex) weight(1)
 (output omitted)

- . coefplot, drop(overall:group\*) xline(0) ///
- > recast(bar) barwidth(.7) base(0) citop ciopts(recast(rcap))



• Note that oaxaca returns the coefficients and means that are used for the decomposition in e(b0) and e(V0). Use option xb to display these auxiliary statistics.

| . oaxaca, xb                                             |               |   |        |
|----------------------------------------------------------|---------------|---|--------|
| Blinder-Oaxaca decomposition                             | Number of obs | = | 5,462  |
|                                                          | Model         | = | linear |
| Group 1: sex = 1                                         | N of obs 1    | = | 2,642  |
| Group 2: sex = 2                                         | N of obs 2    | = | 2,820  |
| explained: (X1 - X2) * b1<br>unexplained: X2 * (b1 - b2) |               |   |        |

| lnwage      | Coefficient | Std. err. | Z      | P> z  | [95% conf. | interval] |
|-------------|-------------|-----------|--------|-------|------------|-----------|
| overall     |             |           |        |       |            |           |
| group_1     | 2.858357    | .0098343  | 290.65 | 0.000 | 2.839082   | 2.877632  |
| group_2     | 2.62663     | .0090195  | 291.22 | 0.000 | 2.608952   | 2.644308  |
| difference  | .2317274    | .0133441  | 17.37  | 0.000 | .2055734   | .2578813  |
| explained   | . 1349029   | .0111087  | 12.14  | 0.000 | .1131302   | .1566756  |
| unexplained | .0968245    | .0136114  | 7.11   | 0.000 | .0701467   | . 1235023 |
| explained   |             |           |        |       |            |           |
| yeduc       | 0237045     | .0068624  | -3.45  | 0.001 | 0371545    | 0102545   |
| experience  | . 1586074   | .0091482  | 17.34  | 0.000 | .1406772   | .1765375  |

| unexplained |          |          |       |       |          |          |
|-------------|----------|----------|-------|-------|----------|----------|
| yeduc       | .1158413 | .0518914 | 2.23  | 0.026 | .014136  | .2175466 |
| experience  | .0956845 | .0226133 | 4.23  | 0.000 | .0513632 | .1400057 |
| _cons       | 1147013  | .060732  | -1.89 | 0.059 | 2337338  | .0043313 |

experience: expft expft2

Coefficients (b) and means (x)

|       |        | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|-------|--------|-------------|-----------|-------|-------|------------|-----------|
| b1    |        |             |           |       |       |            |           |
|       | yeduc  | .0909759    | .002884   | 31.54 | 0.000 | .0853233   | .0966285  |
|       | expft  | .0436904    | .0033515  | 13.04 | 0.000 | .0371217   | .0502592  |
|       | expft2 | 0007859     | .0000935  | -8.41 | 0.000 | 0009692    | 0006026   |
|       | _cons  | 1.270429    | .0456615  | 27.82 | 0.000 | 1.180934   | 1.359924  |
| b2    |        |             |           |       |       |            |           |
|       | yeduc  | .0818828    | .0028763  | 28.47 | 0.000 | .0762454   | .0875201  |
|       | expft  | .0306978    | .0028001  | 10.96 | 0.000 | .0252098   | .0361858  |
|       | expft2 | 0006035     | .0000964  | -6.26 | 0.000 | 0007926    | 0004145   |
|       | _cons  | 1.38513     | .0400425  | 34.59 | 0.000 | 1.306648   | 1.463612  |
| b_ref |        |             |           |       |       |            |           |
| -     | yeduc  | .0909759    | .002884   | 31.54 | 0.000 | .0853233   | .0966285  |
|       | expft  | .0436904    | .0033515  | 13.04 | 0.000 | .0371217   | .0502592  |
|       | expft2 | 0007859     | .0000935  | -8.41 | 0.000 | 0009692    | 0006026   |

|    | _cons  | 1.270429 | .0456615 | 27.82  | 0.000 | 1.180934 | 1.359924 |
|----|--------|----------|----------|--------|-------|----------|----------|
| x1 |        |          |          |        |       |          |          |
|    | yeduc  | 12.4788  | .05532   | 225.57 | 0.000 | 12.37038 | 12.58723 |
|    | expft  | 17.31501 | .1812995 | 95.51  | 0.000 | 16.95967 | 17.67035 |
|    | expft2 | 386.6178 | 6.509539 | 59.39  | 0.000 | 373.8594 | 399.3763 |
|    | _cons  | 1        |          | •      |       |          |          |
| x2 |        |          |          |        |       |          |          |
|    | yeduc  | 12.73936 | .0506089 | 251.72 | 0.000 | 12.64017 | 12.83855 |
|    | expft  | 9.616578 | .1552872 | 61.93  | 0.000 | 9.312221 | 9.920935 |
|    | expft2 | 160.4562 | 4.509838 | 35.58  | 0.000 | 151.6171 | 169.2953 |
|    | _cons  | 1        |          | •      | •     | •        |          |

• You can use coefplot to draw a graph:





## Example: graphing results from nlcom

- Use the post option in nlcom to move the results to e() so that they can be tabulated (but be aware that this will delete original results unless they have been saved using estimates store).
- In the following example the detailed decomposition results are displayed as percentages of the overall gap.

```
. nlcom (e_schooling:
                       _b[explained:yeduc]
                                                   /_b[overall:difference]*100) ///
        (e_experience: _b[explained:experience]
                                                   /_b[overall:difference]*100) ///
>
        (u schooling:
                       b[unexplained:veduc]
                                                  / b[overall:difference]*100) ///
>
>
        (u_experience: _b[unexplained:experience] /_b[overall:difference]*100) ///
                       _b[unexplained:_cons]
                                                   /_b[overall:difference]*100) ///
>
        (u__cons:
>
        , post
 (output omitted)
 coefplot (., keep(e_*) asequation(explained)
                                                  rename(e_* = "") ///
          \ ... keep(u *) asequation(unexplained) rename(u * = "")) ///
>
      , xline(0) recast(bar) barwidth(.7) base(0) citop ciopts(recast(rcap)) ///
>
       xtitle("Percent of total wage gap")
>
```

## Example: graphing results from nlcom



## Example: graphing results from multiple decompositions

- Use estimates store to hold on to results from a decomposition for later processing.
- Example: wage gap in private sector vs. in public sector.
  - . oaxaca lnwage yeduc (experience: expft expft2) if public==0, by(sex) weight(1)
     (output omitted)
  - . estimate store private
  - . oaxaca lnwage yeduc (experience: expft expft2) if public==1 , by(sex) weight(1)
     (output omitted)
  - . estimate store public
  - . coefplot private public, drop(overall:group\*) xline(0) ///
  - > recast(bar) barwidth(.3) base(0) citop ciopts(recast(rcap))

## Example: graphing results from multiple decompositions



## Example: table

```
. oaxaca lnwage yeduc expft expft2, by(sex) weight(1) nodetail
(output omitted)
. estimates store raw
. nlcom (explained: _b[overall:explained] /_b[overall:difference]*100) ///
> (unexplained: _b[overall:unexplained]/_b[overall:difference]*100), post
(output omitted)
. estimates store pct
. esttab raw pct using mytable.tex, replace ///
> keep(difference explained unexplained) nostar ci wide ///
> noobs nonumber mtitle("Decomposition" "In percent") eqlab(none)
(output written to mytable.tex)
```

#### • The table looks like this:

|             | Dec    | composition    | Ir    | n percent     |
|-------------|--------|----------------|-------|---------------|
| difference  | 0.232  | [0.206,0.258]  |       |               |
| explained   | 0.135  | [0.113,0.157]  | 58.22 | [49.10,67.33] |
| unexplained | 0.0968 | [0.0701,0.124] | 41.78 | [32.67,50.90] |

95% confidence intervals in brackets

#### Exercise 2

## Program for tomorrow

- The index problem and the transformation problem
- Exercise 3
- Decomposition methods for nonlinear models
- Exercise 4

#### References

- Blinder, Alan S. (1973). Wage Discrimination: Reduced Form and Structural Estimates. The Journal of Human Resources 8(4):436–455.
- Feiveson, Alan H. (1999). FAQ: What is the delta method and how is it used to estimate the standard error of a transformed parameter? http://www.stata.com/support/faqs/stat/deltam.html
- Greene, William H. (2003). Econometric Analysis. 5. Upper Saddle River, NJ: Pearson Education.
- Jann, Ben (2005). Standard errors for the Blinder-Oaxaca decomposition. 2005 German Stata Users Group meeting.

https://ideas.repec.org/p/boc/dsug05/03.html.

- Jann, Ben (2007). Making regression tables simplified. The Stata Journal 7(2):227–244.
- Jann, Ben (2008). The Blinder-Oaxaca decomposition for linear regression models. The Stata Journal 8(4):453–479.
- Jann, Ben (2014). Plotting regression coefficients and other estimates. The Stata Journal 14(4):708–737.
- Mincer, Jacob (1974). Schooling, Experience and Earnings. New York and London: Columbia University Press.

#### References

- Oaxaca, Ronald (1973). Male-Female Wage Differentials in Urban Labor Markets. International Economic Review 14(3):693–709.
- Oaxaca, Ronald L., Michael Ransom (1998). Calculation of approximate variances for wage decomposition differentials. Journal of Economic and Social Measurement 24:55–61.
- Oehlert, Gary W. (1992). A Note on the Delta Method. The American Statistician 46(1):27–29.
- Willis, Robert J. (1986). Wage Determinants: A Survey and Reinterpretation of Human Capital Earnings Functions. In Orley Ashenfelter and Richard Layard (Eds.), Handbook of Labor Economics (pp. 525-602). Amsterdam: North-Holland.