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Beyond the mean
The discussed Oaxaca-Blinder procedures and their extensions to
non-linear models focus on the decomposition of differences in the
expected value (mean) of an outcome variable.

In many cases, however, one is interested in other distributional
statistics, say the Gini coefficient or the D9/D1 quantile ratio, or
even in whole distributions (density curves, Lorenz curves).

The basic setup is the same; an estimate of FY g |G ̸=g is needed to be
able to compute a decomposition such as

∆ν = ν
(
FY |G=0

)
− ν

(
FY |G=1

)
=

{
ν
(
FY |G=0

)
− ν

(
FY 0|G=1

)}
+
{
ν
(
FY 0|G=1

)
− ν

(
FY |G=1

)}
= ∆νX +∆νS

where

FY g |G ̸=g(y) =
∫

FY |X ,G=g(y |x)fX |G ̸=g(x) dx
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Beyond the mean

Several approaches have been proposed in the literature:
▶ Estimating FY g |G ̸=g by reweighting (DiNardo et al. 1996).
▶ Estimating ν(FY g |G ̸=g) via recentered influence function regression

(Firpo et al. 2007, 2009)
▶ Imputing values for Y g in group G ̸= g

⋆ based on regression residuals (Juhn et al. 1993)
⋆ based on quantile regression (Machado and Mata 2005, Melly 2005,

2006)
▶ Estimating FY g |G ̸=g by distribution regression (Chernozhukov et al.

2013)

We will now look at reweighting.
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General procedure
DiNardo, Fortin, and Lemieux (DFL) (1996) proposed a simple
reweighting procedure to obtain an estimate of FY g |G ̸=g or any
functional ν() of FY g |G ̸=g.

Let FY |X g stand for FY |X ,G=g and FX g for FX |G=1. Multiplying

FY 0|G=1(y) =
∫

FY |X 0(y |x) dFX 1(x)

by dFX 0/ dFX 0 leads to

FY 0|G=1(y) =
∫

FY |X 0(y |x)
dFX 1(x)
dFX 0(x)

dFX 0(x)

=

∫
FY |X 0(y |x)Ψ(x) dFX 0(x)

where

Ψ(x) =
dFX 1(x)
dFX 0(x)

=
Pr(x |G = 1)
Pr(x |G = 0)
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General procedure
Based on Bayes’ rule Pr(A|B) = Pr(B|A) Pr(A)/Pr(B) we can
rewrite Pr(X |G = g) as

Pr(X |G = g) =
Pr(G = g|X ) Pr(X )

Pr(G = g)

such that

Ψ(X ) =
Pr(X |G = 1)
Pr(X |G = 0)

=
Pr(G = 1|X ) Pr(x)/Pr(G = 1)
Pr(G = 0|X ) Pr(X )/Pr(G = 0)

=
Pr(G = 1|X )/Pr(G = 1)
Pr(G = 0|X )/Pr(G = 0)

=
Pr(G = 1|X )

Pr(G = 0|X )
×

Pr(G = 0)
Pr(G = 1)

Ψ(X ) is easy to estimate.

An estimate for Pr(G = 1) = 1− Pr(G = 0) is simply the proportion
of group 1 in the sample.

Pr(G = 1|X ) = 1− Pr(G = 0|X ), the “propensity score”, can be
estimated by regressing G on X using logit or similar.
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General procedure

As soon as we have Ψ̂(X ), the counterfactual distribution FY 0|G=1,
or any functional of the distribution, can be estimated from the
G = 0 sample by weighting the observations by Ψ̂(X ).
In this way we can easily get
▶ a counterfactual kernel density estimate
▶ an estimate of the counterfactual mean
▶ an estimate of the counterfactual variance
▶ estimates of counterfactual quantiles
▶ an estimate of the counterfactual D9/D1 ratio
▶ an estimate of the counterfactual Gini
▶ . . .

A commands called dfl exists for Stata, but is limited to comparing
kernel density estimates.

In practice, therefore, one has to compute Ψ̂(X ) and the resulting
decomposition manually (which is fairly easy to do).
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How to estimate the weights

As said, the propensity score Pr(G = 1|X ) can be estimated by
regressing G on X using logit or probit or similar.

The model specification should be flexible enough to capture
possible non-linearities and interaction effects. If data permits, you
can also try nonparametric estimators such as npregress (official
Stata) or krls (Hainmueller and Hazlett 2014).

Furthermore, note that Pr(G=0)
Pr(G=1) in Ψ(X ) does not depend on X . It is

the same for all observations and can be omitted from the weights.

This also clarifies that weighting by Ψ(X ) is equivalent to inverse
probability weighting (IPW) known in the causal inference literature.

That is, you can also obtain the weights by other causal inference
procedures such as matching (e.g. kmatch by Jann 2017) or entropy
balancing (ebalance by Hainmueller 2012, ebalfit by Jann 2021).
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Limitations
If the sample is small, flexible estimation of the propensity score will
not be possible and the performance of the reweighting procedure
may be poor.

A related problem is that in small samples common support
problems are likely (observations for which the estimated propensity
score is close to zero or one); this can make the estimates unreliably
(large variance in the weights).

The effect of the weights is that they balance X between the
groups, i.e. the distribution of X in one group is adjusted to the
distribution of X in the other group. If the groups are very different
with respect to X , this is hard to achieve. One consequence is again
that the weights will have a large variance (making estimates
imprecise). Furthermore, the desired balancing of X may be very
poor in such cases.

It is thus always a good idea to check the balancing, like you would
do in a matching analysis.
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Data preparation
. use gsoep-extract, clear
(Example data based on the German Socio-Economic Panel)
. keep if wave==2015
(29,970 observations deleted)
. keep if inrange(age, 25, 55)
(5,671 observations deleted)
. generate lnwage = ln(wage)
(1,709 missing values generated)
. generate expft2 = expft^2
(35 missing values generated)
. svyset psu [pw=weight], strata(strata)
Sampling weights: weight

VCE: linearized
Single unit: missing

Strata 1: strata
Sampling unit 1: psu

FPC 1: <zero>
. summarize wage lnwage yeduc expft expft2 public

Variable Obs Mean Std. dev. Min Max

wage 5,600 17.57278 9.858855 3.03 121.42
lnwage 5,600 2.736721 .5062968 1.108563 4.799255
yeduc 7,121 12.28823 2.783974 7 18
expft 7,274 11.63359 9.556508 0 39.5

expft2 7,274 226.6548 293.3739 0 1560.25

public 5,770 .2353553 .4242574 0 1
. drop if missing(lnwage, yeduc, expft, public) // remove unused observation
(1,851 observations deleted)
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Observed statistics in private sector

. sum lnwage if public==0 [aw=weight], detail
lnwage

Percentiles Smallest
1% 1.510722 1.108563
5% 1.950187 1.115142
10% 2.136531 1.115142 Obs 4,184
25% 2.388763 1.12493 Sum of wgt. 9,231,939
50% 2.72589 Mean 2.732109

Largest Std. dev. .5008582
75% 3.065258 4.659848
90% 3.378952 4.766694 Variance .2508589
95% 3.570096 4.781641 Skewness .0484253
99% 3.874321 4.799255 Kurtosis 3.258202
. local prAVG = r(mean)
. local prD9D1 = r(p90)-r(p10)
. local prD9D5 = r(p90)-r(p50)
. local prD5D1 = r(p50)-r(p10)
. local prVar = r(Var)
. display "prD9D1 =" %7.0g `prD9D1' " (ratio =" %7.0g exp(`prD9D1') ")" _n ///
> "prD9D5 =" %7.0g `prD9D5' " (ratio =" %7.0g exp(`prD9D5') ")" _n ///
> "prD5D1 =" %7.0g `prD5D1' " (ratio =" %7.0g exp(`prD5D1') ")"
prD9D1 = 1.2424 (ratio = 3.464)
prD9D5 = .65306 (ratio = 1.9214)
prD5D1 = .58936 (ratio = 1.8028)
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Observed statistics in public sector

. sum lnwage if public==1 [aw=weight], detail
lnwage

Percentiles Smallest
1% 1.413423 1.115142
5% 2.032088 1.181727
10% 2.302585 1.18479 Obs 1,274
25% 2.65956 1.217876 Sum of wgt. 2,914,832
50% 2.901422 Mean 2.866068

Largest Std. dev. .4438737
75% 3.145875 4.163404
90% 3.363496 4.239455 Variance .1970238
95% 3.526066 4.24219 Skewness -.8049336
99% 3.697839 4.356068 Kurtosis 4.64433
. local puAVG = r(mean)
. local puD9D1 = r(p90)-r(p10)
. local puD9D5 = r(p90)-r(p50)
. local puD5D1 = r(p50)-r(p10)
. local puVar = r(Var)
. display "puD9D1 =" %7.0g `puD9D1' " (ratio =" %7.0g exp(`puD9D1') ")" _n ///
> "puD9D5 =" %7.0g `puD9D5' " (ratio =" %7.0g exp(`puD9D5') ")" _n ///
> "puD5D1 =" %7.0g `puD5D1' " (ratio =" %7.0g exp(`puD5D1') ")"
puD9D1 = 1.0609 (ratio = 2.889)
puD9D5 = .46207 (ratio = 1.5874)
puD5D1 = .59884 (ratio = 1.82)
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Private–public differences in observed statistics

. display `prAVG' - `puAVG'
-.13395921
. display `prD9D1' - `puD9D1'
.18151069
. display `prD9D5' - `puD9D5'
.19098759
. display `prD5D1' - `puD5D1'
-.0094769
. display `prVar' - `puVar'
.0538351
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Propensity-score model

. svy: logit public c.yeduc##c.expft##c.expft, vsquish
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 15 Number of obs = 5,458
Number of PSUs = 2,036 Population size = 12,146,771

Design df = 2,021
F(5, 2017) = 20.67
Prob > F = 0.0000

Linearized
public Coefficient std. err. t P>|t| [95% conf. interval]

yeduc .1950069 .043749 4.46 0.000 .109209 .2808047
expft -.0366746 .0925297 -0.40 0.692 -.2181382 .1447891

c.yeduc#c.expft .0014953 .0070145 0.21 0.831 -.0122612 .0152517
c.expft#c.expft .0009309 .0029449 0.32 0.752 -.0048445 .0067064

c.yeduc#c.expft#c.expft -.0000218 .0002303 -0.09 0.925 -.0004734 .0004298
_cons -3.679054 .5935616 -6.20 0.000 -4.84311 -2.514997

. predict PS if e(sample), pr
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Distribution of propensity-score by sector
. quietly two (kdens PS if public==0 [pw=weight]) (kdens PS if public==1 [pw=weight]), ///
> xti("propensity score") legend(order(1 "private" 2 "public"))
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Generate the weights from the propensity score
. summarize public [aw=weight]

Variable Obs Weight Mean Std. dev. Min Max

public 5,458 12146770.6 .2399677 .4271026 0 1
. local P_public = r(mean)
. generate PSI = (PS / `P_public') / ((1-PS) / (1 - `P_public')) if public==0
(1,274 missing values generated)
. replace PSI = 1 if public==1
(1,274 real changes made)
. summarize PSI [aw=weight] if public==0

Variable Obs Weight Mean Std. dev. Min Max

PSI 4,184 9231938.6 1.003234 .6637265 .2511509 3.463624
. kdens PSI [pw=weight] if public==0
(bandwidth = .22094267)
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Decomposition methods 6. Reweighting Giesecke/Jann 18



Balancing: Raw mean differences in covariates

. tabstat PS yeduc expft expft2 [aw=weight], by(public) nototal ///
> stat(mean var p10 p50 p90) columns(statistics)
Summary for variables: PS yeduc expft expft2
Group variable: public (public service)
public Mean Variance p10 p50 p90

no .2246685 .0101674 .1339219 .1865309 .4469216
12.42709 6.958165 10 11.5 18
14.32145 101.5838 2.25 12.5 29.25
306.6634 116024.7 5.0625 156.25 855.5625

yes .2884234 .0140197 .1597596 .259925 .4545366
14.07113 8.474033 10.5 13.5 18
13.46011 98.61003 1.5 11.5 28.5
279.7071 105614.7 2.25 132.25 812.25
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Balancing: Mean differences in reweighted sample

. tabstat PS yeduc expft expft2 [aw=PSI*weight], by(public) ///
> nototal stat(mean var p10 p50 p90) columns(statistics)
Summary for variables: PS yeduc expft expft2
Group variable: public (public service)
public Mean Variance p10 p50 p90

no .2907174 .01476 .1520262 .2803326 .4550497
14.09968 8.976983 10.5 14 18
13.49386 98.65649 2 11.5 28.5
280.7173 107385.7 4 132.25 812.25

yes .2884234 .0140197 .1597596 .259925 .4545366
14.07113 8.474033 10.5 13.5 18
13.46011 98.61003 1.5 11.5 28.5
279.7071 105614.7 2.25 132.25 812.25
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Counterfactual statistics in reweighted private sector

. sum lnwage [aw=PSI*weight] if public==0, detail
lnwage

Percentiles Smallest
1% 1.581038 1.108563
5% 2.036012 1.115142
10% 2.204972 1.115142 Obs 4,184
25% 2.481568 1.12493 Sum of wgt. 9,261,797
50% 2.852439 Mean 2.85921

Largest Std. dev. .5175626
75% 3.236323 4.659848
90% 3.530763 4.766694 Variance .2678711
95% 3.688379 4.781641 Skewness -.0480414
99% 3.985088 4.799255 Kurtosis 2.992935
. local cAVG = r(mean)
. local cD9D1 = r(p90)-r(p10)
. local cD9D5 = r(p90)-r(p50)
. local cD5D1 = r(p50)-r(p10)
. local cVar = r(Var)
. display "cD9D1 =" %7.0g `cD9D1' " (ratio =" %7.0g exp(`cD9D1') ")" _n ///
> "cD9D5 =" %7.0g `cD9D5' " (ratio =" %7.0g exp(`cD9D5') ")" _n ///
> "cD5D1 =" %7.0g `cD5D1' " (ratio =" %7.0g exp(`cD5D1') ")"
cD9D1 = 1.3258 (ratio = 3.7652)
cD9D5 = .67832 (ratio = 1.9706)
cD5D1 = .64747 (ratio = 1.9107)
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Results of decomposition

. foreach s in AVG D9D1 D9D5 D5D1 Var {
2. display %6s "`s': " ///

> "total difference = " %9.0g `pr`s'' - `pu`s'' ///
> " explained = " %9.0g `pr`s'' - `c`s''

3. }
AVG: total difference = -.1339592 explained = -.1271007
D9D1: total difference = .1815107 explained = -.0833693
D9D5: total difference = .1909876 explained = -.0252619
D5D1: total difference = -.0094769 explained = -.0581074
Var: total difference = .0538351 explained = -.0170121
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For comparison: results from oaxaca for the mean

. oaxaca lnwage yeduc expft expft2, by(public) weight(1) nodetail svy
Blinder-Oaxaca decomposition
Number of strata = 15 Number of obs = 5,458
Number of PSUs = 2,036 Population size = 12,146,771

Design df = 2,021
Model = linear

Group 1: public = 0 N of obs 1 = 4,184
Group 2: public = 1 N of obs 2 = 1,274

explained: (X1 - X2) * b1
unexplained: X2 * (b1 - b2)

Linearized
lnwage Coefficient std. err. t P>|t| [95% conf. interval]

overall
group_1 2.732109 .0137664 198.46 0.000 2.705111 2.759107
group_2 2.866068 .0213224 134.42 0.000 2.824252 2.907885

difference -.1339592 .0249495 -5.37 0.000 -.1828886 -.0850298
explained -.1262644 .0170609 -7.40 0.000 -.1597232 -.0928056

unexplained -.0076948 .022508 -0.34 0.732 -.0518361 .0364464
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How the reweighting affects the wage distribution in the private sector:
. gen PSI_weight = PSI*weight // [pw=PSI*weight] does not work with every command
. quietly two (kdens lnwage [pw=weight] if public==0) ///
> (kdens lnwage [pw=PSI_weight] if public==0) ///
> (kdens lnwage [pw=weight] if public==1) ///
> , legend(order(1 "private" 2 "adjusted private" 3 "public")) xti(lnwage)
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Matching and entropy balancing

As mentioned above, alternative approaches can be used to compute
the weights for the reweighting decomposition.

The default approach using predictions from a logit or probit model
is equivalent to IPW in the causal inference literature.

In general, all matching estimators can be expressed as weighting
estimators. Hence, we can use any matching technique to obtain
Ψ(X ).

We now repeat the above analysis using (1) entropy balancing and
(2) nearest-neighbor Mahalanobis distance matching (as
implemented in command kmatch).
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Example analysis: entropy balancing
. kmatch eb public yeduc expft [pw=weight], att wgen(PSIeb) ///
> targets(2) covariances
(fitting balancing weights ... done)
Entropy balancing Number of obs = 5,458

Balance tolerance = .00001
Treatment : public = 1
Targets : 2 + covariances
Covariates : yeduc expft
Matching statistics

Matched Controls Balance
Yes No Total Used Unused Total loss

Treated 1274 0 1274 4184 0 4184 1.48e-15

Stored variables
Variable Storage Display Value

name type format label Variable label

PSIeb double %10.0g Matching weights for ATT
. kmatch summarize yeduc expft expft2, meanonly
(refitting the model using the generate() option)

Raw Matched(ATT)
Means Treated Untreated StdDif Treated Untreated StdDif

yeduc 14.07113 12.42709 .5918535 14.07113 14.07113 1.92e-15
expft 13.46011 14.32145 -.0860921 13.46011 13.46011 7.10e-16

expft2 279.7071 306.6634 -.080975 279.7071 279.7071 6.83e-16
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Example analysis: entropy balancing
. sum lnwage [aw=PSIeb] if public==0, detail

lnwage

Percentiles Smallest
1% 1.581038 1.108563
5% 2.03862 1.115142
10% 2.217027 1.115142 Obs 4,184
25% 2.483238 1.12493 Sum of wgt. 2,914,832
50% 2.847232 Mean 2.856837

Largest Std. dev. .51236
75% 3.218076 4.659848
90% 3.518388 4.766694 Variance .2625128
95% 3.658163 4.781641 Skewness -.0501883
99% 3.975936 4.799255 Kurtosis 3.014726
. local ebAVG = r(mean)
. local ebD9D1 = r(p90)-r(p10)
. local ebD9D5 = r(p90)-r(p50)
. local ebD5D1 = r(p50)-r(p10)
. local ebVar = r(Var)
. foreach s in AVG D9D1 D9D5 D5D1 Var {

2. display %6s "`s': " "total difference = " %9.0g `pr`s'' - `pu`s'' ///
> " explained = " %9.0g `pr`s'' - `eb`s''

3. }
AVG: total difference = -.1339592 explained = -.1247281
D9D1: total difference = .1815107 explained = -.0589392
D9D5: total difference = .1909876 explained = -.0180936
D5D1: total difference = -.0094769 explained = -.0408456
Var: total difference = .0538351 explained = -.0116538
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Example analysis: nearest-neighbor matching
. kmatch md public yeduc expft [pw=weight], att nn(5) wgen(PSInn)
Multivariate-distance nearest-neighbor matching

Number of obs = 5,458
Neighbors: min = 5

Treatment : public = 1 max = 50
Metric : mahalanobis
Covariates : yeduc expft
Matching statistics

Matched Controls
Yes No Total Used Unused Total

Treated 1274 0 1274 3446 738 4184

Stored variables
Variable Storage Display Value

name type format label Variable label

PSInn double %10.0g Matching weights for ATT
. kmatch summarize yeduc expft expft2, meanonly
(refitting the model using the generate() option)

Raw Matched(ATT)
Means Treated Untreated StdDif Treated Untreated StdDif

yeduc 14.07113 12.42709 .5918535 14.07113 14.07365 -.000908
expft 13.46011 14.32145 -.0860921 13.46011 13.45335 .0006755

expft2 279.7071 306.6634 -.080975 279.7071 278.9917 .002149
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Example analysis: nearest-neighbor matching
. sum lnwage [aw=PSInn] if public==0, detail

lnwage

Percentiles Smallest
1% 1.578979 1.108563
5% 2.022871 1.115142
10% 2.198335 1.115142 Obs 3,446
25% 2.490723 1.12493 Sum of wgt. 2,914,832
50% 2.841415 Mean 2.853928

Largest Std. dev. .5195719
75% 3.217274 4.659848
90% 3.554776 4.766694 Variance .269955
95% 3.679082 4.781641 Skewness -.0563432
99% 3.977249 4.799255 Kurtosis 2.94303
. local nnAVG = r(mean)
. local nnD9D1 = r(p90)-r(p10)
. local nnD9D5 = r(p90)-r(p50)
. local nnD5D1 = r(p50)-r(p10)
. local nnVar = r(Var)
. foreach s in AVG D9D1 D9D5 D5D1 Var {

2. display %6s "`s': " "total difference = " %9.0g `pr`s'' - `pu`s'' ///
> " explained = " %9.0g `pr`s'' - `nn`s''

3. }
AVG: total difference = -.1339592 explained = -.1218186
D9D1: total difference = .1815107 explained = -.1140201
D9D5: total difference = .1909876 explained = -.0602999
D5D1: total difference = -.0094769 explained = -.0537202
Var: total difference = .0538351 explained = -.019096
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Example analysis: IPW

By the way: you can also use kmatch ipw to compute the default
reweighting Ψ(X ); only the scaling will be different because factor
Pr(G=0)
Pr(G=1) is ignored

. kmatch ipw public c.yeduc##c.expft##c.expft [pw=weight], ///
> att wgen(PSIipw)

(output omitted )
. summarize PSI_weight PSIipw if public==0

Variable Obs Mean Std. dev. Min Max

PSI_weight 4,184 2213.623 4121.928 1.932269 64862.96
PSIipw 4,184 696.6616 1297.235 .6081152 20413.38

. corr PSI_weight PSIipw if public==0
(obs=4,184)

PSI_we~t PSIipw

PSI_weight 1.0000
PSIipw 1.0000 1.0000
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Automatic reweighting using command dstat
Command dstat (Jann 2020) has built-in options for IPW and
entropy balancing and supports a variety of distributional statistics.
It does not directly provide decompositions, but it can be used to
compute the counterfactuals using IPW or entropy balancing; see
option balance().
. dstat (Var) lnwage, over(public) vce(svy) ///
> balance(ipw:c.yeduc##c.expft##c.expft, reference(1))
(running dstat_svyr on estimation sample)
Survey: Var
Number of strata = 15 Number of obs = 5,458
Number of PSUs = 2,036 Population size = 12,146,771

Design df = 2,021
Balancing:

method = ipw
reference = 1.public
controls = e(balance)

Linearized
lnwage Coefficient std. err. [95% conf. interval]

public
no .2678711 .011242 .245824 .2899181
yes .1970238 .0179054 .1619089 .2321387
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Automatic reweighting using command dstat

Decomposition using generated RIFs:
. dstat (Var) lnwage, over(public) vce(svy) rif(RIF0c) ///
> balance(ipw:c.yeduc##c.expft##c.expft, reference(1))

(output omitted )
. dstat (Var) lnwage if e(sample), over(public) vce(svy) rif(RIF0 RIF1)

(output omitted )
. generate difference = RIF0 - RIF1
. generate explained = RIF0 - RIF0c
. generate unexplained = RIF0c - RIF1
. svy: mean difference explained unexplained
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 15 Number of obs = 5,458
Number of PSUs = 2,036 Population size = 12,146,771

Design df = 2,021

Linearized
Mean std. err. [95% conf. interval]

difference .0538351 .0203621 .0139021 .0937681
explained -.0170121 .007549 -.0318167 -.0022076

unexplained .0708472 .0199062 .0318083 .1098861
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Detailed decomposition
For binary covariates, a detailed decomposition of the contribution
to the explained part can be obtained as follows.
Let X1 be a binary and X2 be the vector of all other covariates. A
counterfactual distribution of Y in group 0, where the conditional
distribution of X1 given the other covariates is changed to the
conditional distribution of X1 in group 1, can be written as

FY 0|X 1
1
(y) =

∫ ∫
FY |X 0(y |X1,X2) dFX 1(X1|X2) dFX 0(X2)

=

∫ ∫
FY |X 0(y |X1,X2)Ψ1(X1,X2) dFX 0(X1|X2) dFX 0(X2)

=

∫ ∫
FY |X 0(y |X1,X2)Ψ1(X1,X2) dFX 0(X1,X2)

where

Ψ1(X1,X2) =
dFX 1(X1|X2)

dFX 0(X1|X2)
= X1

Pr1(X1 = 1|X2)

Pr0(X1 = 1|X2)
+(1−X1)

Pr1(X1 = 0|X2)

Pr0(X1 = 0|X2)
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Detailed decomposition

To compute Ψ1(X1,X2), regress X1 on X2 separately in group 0 and
in group 1 using logistic regression or similar. Then replace
Pr0(X1 = 1|X2), Pr0(X1 = 0|X2), Pr1(X1 = 1|X2) and
Pr1(X1 = 0|X2) by predictions from these models.

A similar approach can also be used to determine the contribution of
a binary covariate to the structure component (see Fortin et al.
2011).

For continuous covariates, things are less clear. One approach
followed in the literature is to compute a series of reweighting
decompositions where the covariates are introduced one after the
other. The problem with this approach is that results will be path
dependent.

A better approach is, for each covariate, to compute the contribution
of the covariate while controlling for all other covariates.
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Detailed decomposition
Let Xk̄ be all covariates except Xk . Based on a similar derivation as
above, Fortin et al. (2001) suggest using reweighting factor

ΨXk |Xk̄
(Xk̄) = Ψ(X )/Ψ(Xk̄)

where Ψ(Xk̄) is computed in the same way as the overall reweighting
factor Ψ(X ), only that variable Xk is omitted from the logit model.
Using this reweighting factor we can get the counterfactual
distribution of Y in group 0, if the conditional distribution of Xk
given the other covariates is changed to the conditional distribution
of Xk in group 1.
That procedure is as follows:

1. Compute Ψ(X ) using all covariates.
2. For each k , compute Ψ(Xk̄).
3. For each k , compute the counterfactual statistic using weights

Ψ(X )/Ψ(Xk̄) and compare the result to the unweighted statistic. The
difference is the contribution of Xk to the composition effect.

Note that the single contributions do not add up to the total
composition effect.
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Detailed decomposition: Contribution of education

. drop PS

. quietly logit public c.expft##c.expft [pw=weight], vsquish

. predict PS if e(sample), pr

. generate PSI_yeduc = (PS / `P_public') / ((1-PS) / (1 - `P_public')) if public==0
(1,274 missing values generated)
. quietly sum lnwage [aw=(PSI/PSI_yeduc)*weight] if public==0, detail
. local cAVGx = r(mean)
. local cD9D1x = r(p90)-r(p10)
. local cD9D5x = r(p90)-r(p50)
. local cD5D1x = r(p50)-r(p10)
. local cVarx = r(Var)
. foreach s in AVG D9D1 D9D5 D5D1 Var {

2. display %6s "`s': " "explained by education = " %9.0g `pr`s'' - `c`s'x'
3. }

AVG: explained by education = -.1376105
D9D1: explained by education = -.0826552
D9D5: explained by education = -.0311887
D5D1: explained by education = -.0514665
Var: explained by education = -.0150466
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Detailed decomposition: Contribution of experience

. drop PS

. quietly logit public yeduc [pw=weight], vsquish

. predict PS if e(sample), pr

. generate PSI_experience = (PS / `P_public') / ((1-PS) / (1 - `P_public')) if public==0
(1,274 missing values generated)
. quietly sum lnwage [aw=(PSI_weight/PSI_experience)*weight] if public==0, detail
. local cAVGx = r(mean)
. local cD9D1x = r(p90)-r(p10)
. local cD9D5x = r(p90)-r(p50)
. local cD5D1x = r(p50)-r(p10)
. local cVarx = r(Var)
. foreach s in AVG D9D1 D9D5 D5D1 Var {

2. display %6s "`s': " "explained by experience = " %9.0g `pr`s'' - `c`s'x'
3. }

AVG: explained by experience = -.0401236
D9D1: explained by experience = .0269032
D9D5: explained by experience = .022445
D5D1: explained by experience = .0044582
Var: explained by experience = .0038217
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For comparison: Results from oaxaca for the mean
. oaxaca lnwage yeduc (experience: expft expft2), by(public) weight(1) svy
Blinder-Oaxaca decomposition
Number of strata = 15 Number of obs = 5,458
Number of PSUs = 2,036 Population size = 12,146,771

Design df = 2,021
Model = linear

Group 1: public = 0 N of obs 1 = 4,184
Group 2: public = 1 N of obs 2 = 1,274

explained: (X1 - X2) * b1
unexplained: X2 * (b1 - b2)

Linearized
lnwage Coefficient std. err. t P>|t| [95% conf. interval]

overall
group_1 2.732109 .0137664 198.46 0.000 2.705111 2.759107
group_2 2.866068 .0213224 134.42 0.000 2.824252 2.907885

difference -.1339592 .0249495 -5.37 0.000 -.1828886 -.0850298
explained -.1262644 .0170609 -7.40 0.000 -.1597232 -.0928056

unexplained -.0076948 .022508 -0.34 0.732 -.0518361 .0364464

explained
yeduc -.1413666 .0166136 -8.51 0.000 -.1739481 -.108785

experience .0151022 .0099863 1.51 0.131 -.0044824 .0346867

unexplained
yeduc .2833853 .1068306 2.65 0.008 .0738756 .492895

experience -.0650598 .0501303 -1.30 0.194 -.1633722 .0332526
_cons -.2260203 .116197 -1.95 0.052 -.4538987 .0018581

experience: expft expft2
Decomposition methods 6. Reweighting Giesecke/Jann 40



1 General procedure

2 How to estimate the weights

3 Example analysis

4 Alternative methods to compute the weights

5 Detailed decomposition

6 Observations outside the common support

7 Reweighted OB decomposition

Decomposition methods 6. Reweighting Giesecke/Jann 41



The Ñopo decomposition
As mentioned above, the variance of the weights used in the
reweighting decomposition can get large if the compared groups are
very different in terms of the distributions of the X variables.

More fundamentally, there might be a common support problem in
the sense that some of the observations cannot be “matched”. In this
case, the groups cannot be made comparable based on matching or
reweighting.

Ñopo (2008) proposed a decomposition in which the usual
decomposition into an explained and an unexplained part is
performed only within the “common support”. In addition, for each
group, a term is computed that captures the difference between
observations inside and outside the common support.

We illustrate the procedure for the mean using exact matching.
However, the procedure can also be used with other matching
algorithms and it can, in principle, be generalized to other summary
measures.
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Run the matching and store helper variables

. kmatch em public yeduc expft [pw=weight], att generate
Exact matching Number of obs = 5,458

Neighbors: min = 1
Treatment : public = 1 max = 50
Covariates : yeduc expft
Matching statistics

Matched Controls
Yes No Total Used Unused Total

Treated 1114 160 1274 2476 1708 4184

Stored variables
Variable Storage Display Value

name type format label Variable label

_KM_treat byte %8.0g Treatment indicator
_KM_nc byte %10.0g Number of matched controls
_KM_nm byte %10.0g Number of times used as a match
_KM_mw double %10.0g Matching weight
_KM_strata int %8.0g Matching stratum
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Computation of results required for the decomposition

private sector: overall
. summarize lnwage [aw=weight] if public==0

Variable Obs Weight Mean Std. dev. Min Max

lnwage 4,184 9231938.6 2.732109 .5008582 1.108563 4.799255
. local priv = r(mean)

private sector: out of support (just for information)
. summarize lnwage [aw=weight] if public==0 & _KM_nm==0

Variable Obs Weight Mean Std. dev. Min Max

lnwage 1,708 3848941.8 2.714669 .498534 1.217876 4.799255

private sector: within of support
. summarize lnwage [aw=weight] if public==0 & _KM_nm!=0

Variable Obs Weight Mean Std. dev. Min Max

lnwage 2,476 5382996.8 2.744579 .5022448 1.108563 4.781641
. local priv_in = r(mean)
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Computation of results required for the decomposition

private sector: within support; reweighted
. summarize lnwage [aw = _KM_mw] if public==0

Variable Obs Weight Mean Std. dev. Min Max

lnwage 2,476 2469852.8 2.845155 .5299685 1.108563 4.781641
. local priv_adj = r(mean)

public sector: within support
. summarize lnwage [aw=weight] if public==1 & _KM_nc!=0

Variable Obs Weight Mean Std. dev. Min Max

lnwage 1,114 2469852.8 2.856464 .4379313 1.115142 4.356068
. local pub_in = r(mean)

public sector: out of support (just for information)
. summarize lnwage [aw=weight] if public==1 & _KM_nc==0

Variable Obs Weight Mean Std. dev. Min Max

lnwage 160 444979.202 2.919378 .4733894 1.18479 4.239455
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Computation of results required for the decomposition

public sector: overall
. summarize lnwage [aw=weight] if public==1

Variable Obs Weight Mean Std. dev. Min Max

lnwage 1,274 2914832 2.866068 .4438737 1.115142 4.356068
. local pub = r(mean)
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Compute the terms of the decomposition

. local A = `priv_in' - `priv'

. local B = `priv_adj' - `priv_in'

. local C = `pub_in' - `priv_adj'

. local D = `pub' - `pub_in'

. di as txt "Overall difference = " as res `pub'-`priv' ///
> _n as txt "A: private out of support = " as res `A' ///
> _n as txt "B: explained within support = " as res `B' ///
> _n as txt "C: unexplained within support = " as res `C' ///
> _n as txt "D: public out of support = " as res `D' ///
> _n as txt "Total (A+B+C+D) = " as res `A' + `B' + `C' + `D'
Overall difference = .13395921
A: private out of support = .01247014
B: explained within support = .10057561
C: unexplained within support = .01130901
D: public out of support = .00960445
Total (A+B+C+D) = .13395921
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Reweighted OB decomposition

Focusing on the mean, yet another decomposition is proposed by
Fortin et al. (2011).

The argument is that the coefficients in the linear regressions used
by the standard OB decompositions might be biased if there are
nonlinear effects.

By combining reweighting with OB, the decomposition can be made
more robust against such specification errors.
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Reweighted OB decomposition
Recall the standard OB decomposition

∆̂µ = ∆̂µX + ∆̂µS = (X̄ 0 − X̄ 1)β̂0 + X̄ 1(β̂0 − β̂1)

= (X̄ 0β̂0 − X̄ 1β̂0) + (X̄ 1β̂0 − X̄ 1β̂1)

where, in the current example, group 0 is private sector and group 1
is public sector.

The suggestion now is to replace X̄ 1β̂0 by X̄ 0
C β̂

0
C where X̄ 0

C is the
average of X in reweighted group 0 and β̂0

C are coefficient estimates
from reweighted group 0.

Note that X̄ 0
C will approximate X̄ 1 if the reweighting is successful.

Hence, a deviation between X̄ 0
C and X̄ 1 points to a “reweighting

error”.

Furthermore, if there is no specification error, β̂0
C will be the same as

β̂0 (i.e. reweighting has no effect on the coefficients if the model is
correctly specified).
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Reweighted OB decomposition

Inserting X̄ 0
C β̂

0
C , we get the following decomposition:

∆̂µ = ∆̂µX + ∆̂µS = (X̄ 0β̂0 − X̄ 0
C β̂

0
C ) + (X̄ 0

C β̂
0
C − X̄ 1β̂1)

The two components can be rewritten as

∆̂µX = (X̄ 0 − X̄ 0
C )β̂

0︸ ︷︷ ︸
explained

+ X̄ 0
C (β̂

0 − β̂0
C )︸ ︷︷ ︸

specification error

∆̂µS = X̄ 1(β̂0
C − β̂1)︸ ︷︷ ︸

unexplained

+(X̄ 0
C − X̄ 1)β̂0

C︸ ︷︷ ︸
reweighting error
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Reweighted OB decomposition

obtain coefficients and means in private sector
svy: regress lnwage yeduc expft expft2 if public==0
mat b_priv = e(b)
mean yeduc expft expft2 [pw=weight] if public==0
mat X_priv = (e(b),1)

compute weights and obtain counterfactual coefficients and means
in private sector
kmatch ipw public yeduc c.yeduc##c.expft##c.expft ///

[pw=weight], att wgen(IPW)
regress lnwage yeduc expft expft2 [pw=IPW] if public==0
mat b_priv_C = e(b)
mean yeduc expft expft2 [pw=IPW] if public==0
mat X_priv_C = (e(b),1)

obtain coefficients and means in public sector
svy: regress lnwage yeduc expft expft2 if public==1
mat b_pub = e(b)
svy: mean yeduc expft expft2 if public==1
mat X_pub = (e(b),1)
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Compute the terms of the decomposition

. mat D = (X_priv * b_priv' - X_pub * b_pub') ///
> \ (X_priv - X_priv_C) * b_priv' ///
> \ X_priv_C * (b_priv - b_priv_C)' ///
> \ X_pub * (b_priv_C - b_pub)' ///
> \ (X_priv_C - X_pub) * b_priv_C'
. mat rown D = "Overall difference" "Explained" "Specification error" ///
> "Unexplained" "Reweighting error"
. matlist D, twidth(20)

y1

Overall difference -.1339592
Explained -.1293328

Specification error .0022321
Unexplained -.0098497

Reweighting error .0029912
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Using entropy balancing
The “reweighting error” will be zero if we use weights that perfectly
balance the data:
. kmatch eb public c.yeduc##c.expft##c.expft [pw=weight], ///
> att wgen(EB)

(output omitted )
. regress lnwage yeduc expft expft2 [pw=EB] if public==0

(output omitted )
. mat b_priv_C = e(b)
. mean yeduc expft expft2 [pw=EB] if public==0

(output omitted )
. mat X_priv_C = (e(b),1)
. mat D[1,1] = (X_priv * b_priv' - X_pub * b_pub') ///
> \ (X_priv - X_priv_C) * b_priv' ///
> \ X_priv_C * (b_priv - b_priv_C)' ///
> \ X_pub * (b_priv_C - b_pub)' ///
> \ (X_priv_C - X_pub) * b_priv_C'
. matlist D, twidth(20)

y1

Overall difference -.1339592
Explained -.1262644

Specification error .0019249
Unexplained -.0096197

Reweighting error 4.94e-16
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Exercise 6
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