Decomposition Methods in the Social Sciences GESIS Training Course January 29 – February 1, 2024, Cologne

> Johannes Giesecke (Humboldt University Berlin) Ben Jann (University of Bern)

> > 6. Reweighting

Beyond the mean

- The discussed Oaxaca-Blinder procedures and their extensions to non-linear models focus on the decomposition of differences in the expected value (mean) of an outcome variable.
- In many cases, however, one is interested in other distributional statistics, say the Gini coefficient or the D9/D1 quantile ratio, or even in whole distributions (density curves, Lorenz curves).
- The basic setup is the same; an estimate of F_{Y^g|G≠g} is needed to be able to compute a decomposition such as

$$\begin{aligned} \Delta^{\nu} &= \nu (F_{Y|G=0}) - \nu (F_{Y|G=1}) \\ &= \left\{ \nu (F_{Y|G=0}) - \nu (F_{Y^0|G=1}) \right\} + \left\{ \nu (F_{Y^0|G=1}) - \nu (F_{Y|G=1}) \right\} \\ &= \Delta^{\nu}_X + \Delta^{\nu}_S \end{aligned}$$

where

$$F_{Y^g|G\neq g}(y) = \int F_{Y|X,G=g}(y|x) f_{X|G\neq g}(x) \, dx$$

Beyond the mean

• Several approaches have been proposed in the literature:

- Estimating $F_{Y^g|G\neq g}$ by reweighting (DiNardo et al. 1996).
- Estimating $\nu(F_{Y^g|G\neq g})$ via recentered influence function regression (Firpo et al. 2007, 2009)
- Imputing values for Y^g in group $G \neq g$
 - ★ based on regression residuals (Juhn et al. 1993)
 - ★ based on quantile regression (Machado and Mata 2005, Melly 2005, 2006)
- ► Estimating $F_{Y^g|G\neq g}$ by distribution regression (Chernozhukov et al. 2013)
- We will now look at reweighting.

Contents

General procedure

- 2 How to estimate the weights
 - 3 Example analysis
- 4 Alternative methods to compute the weights
- 5 Detailed decomposition
- Observations outside the common support
- 7 Reweighted OB decomposition

- DiNardo, Fortin, and Lemieux (DFL) (1996) proposed a simple reweighting procedure to obtain an estimate of F_{Y^g|G≠g} or any functional ν() of F_{Y^g|G≠g}.
- Let $F_{Y|X^g}$ stand for $F_{Y|X,G=g}$ and F_{X^g} for $F_{X|G=1}$. Multiplying

$$F_{Y^0|G=1}(y) = \int F_{Y|X^0}(y|x) \, dF_{X^1}(x)$$

by dF_{X^0}/dF_{X^0} leads to

$$\begin{aligned} F_{Y^{0}|G=1}(y) &= \int F_{Y|X^{0}}(y|x) \frac{dF_{X^{1}}(x)}{dF_{X^{0}}(x)} dF_{X^{0}}(x) \\ &= \int F_{Y|X^{0}}(y|x) \Psi(x) dF_{X^{0}}(x) \end{aligned}$$

where

$$\Psi(x) = \frac{dF_{X^1}(x)}{dF_{X^0}(x)} = \frac{\Pr(x|G=1)}{\Pr(x|G=0)}$$

 Based on Bayes' rule Pr(A|B) = Pr(B|A) Pr(A) / Pr(B) we can rewrite Pr(X|G = g) as

$$\Pr(X|G = g) = \frac{\Pr(G = g|X)\Pr(X)}{\Pr(G = g)}$$

such that

$$\Psi(X) = \frac{\Pr(X|G=1)}{\Pr(X|G=0)} = \frac{\Pr(G=1|X)\Pr(X)/\Pr(G=1)}{\Pr(G=0|X)\Pr(X)/\Pr(G=0)}$$
$$= \frac{\Pr(G=1|X)/\Pr(G=1)}{\Pr(G=0|X)/\Pr(G=0)} = \frac{\Pr(G=1|X)}{\Pr(G=0|X)} \times \frac{\Pr(G=0)}{\Pr(G=1)}$$

- $\Psi(X)$ is easy to estimate.
- An estimate for Pr(G = 1) = 1 Pr(G = 0) is simply the proportion of group 1 in the sample.
- Pr(G = 1|X) = 1 Pr(G = 0|X), the "propensity score", can be estimated by regressing G on X using logit or similar.

Decomposition methods

- As soon as we have Ψ(X), the counterfactual distribution F_{Y⁰|G=1}, or any functional of the distribution, can be estimated from the G = 0 sample by weighting the observations by Ψ(X).
- In this way we can easily get
 - a counterfactual kernel density estimate
 - an estimate of the counterfactual mean
 - an estimate of the counterfactual variance
 - estimates of counterfactual quantiles
 - an estimate of the counterfactual D9/D1 ratio
 - an estimate of the counterfactual Gini
 - ▶ ...
- A commands called dfl exists for Stata, but is limited to comparing kernel density estimates.
- In practice, therefore, one has to compute $\widehat{\Psi}(X)$ and the resulting decomposition manually (which is fairly easy to do).

- 2 How to estimate the weights
- 3 Example analysis
- 4 Alternative methods to compute the weights
- 5 Detailed decomposition
- Observations outside the common support
- 7 Reweighted OB decomposition

How to estimate the weights

- As said, the propensity score Pr(G = 1|X) can be estimated by regressing G on X using logit or probit or similar.
- The model specification should be flexible enough to capture possible non-linearities and interaction effects. If data permits, you can also try nonparametric estimators such as npregress (official Stata) or krls (Hainmueller and Hazlett 2014).
- Furthermore, note that $\frac{\Pr(G=0)}{\Pr(G=1)}$ in $\Psi(X)$ does not depend on X. It is the same for all observations and can be omitted from the weights.
- This also clarifies that weighting by $\Psi(X)$ is equivalent to inverse probability weighting (IPW) known in the causal inference literature.
- That is, you can also obtain the weights by other causal inference procedures such as matching (e.g. kmatch by Jann 2017) or entropy balancing (ebalance by Hainmueller 2012, ebalfit by Jann 2021).

Limitations

- If the sample is small, flexible estimation of the propensity score will not be possible and the performance of the reweighting procedure may be poor.
- A related problem is that in small samples common support problems are likely (observations for which the estimated propensity score is close to zero or one); this can make the estimates unreliably (large variance in the weights).
- The effect of the weights is that they balance X between the groups, i.e. the distribution of X in one group is adjusted to the distribution of X in the other group. If the groups are very different with respect to X, this is hard to achieve. One consequence is again that the weights will have a large variance (making estimates imprecise). Furthermore, the desired balancing of X may be very poor in such cases.
- It is thus always a good idea to check the balancing, like you would do in a matching analysis.

- How to estimate the weights
- 3 Example analysis
- 4 Alternative methods to compute the weights
- 5 Detailed decomposition
- Observations outside the common support
- 7 Reweighted OB decomposition

Data preparation

```
. use gsoep-extract, clear
(Example data based on the German Socio-Economic Panel)
. keep if wave==2015
(29,970 observations deleted)
. keep if inrange(age, 25, 55)
(5.671 observations deleted)
. generate lnwage = ln(wage)
(1,709 missing values generated)
. generate expft2 = expft^2
(35 missing values generated)
. svyset psu [pw=weight], strata(strata)
Sampling weights: weight
             VCE: linearized
     Single unit: missing
        Strata 1: strata
Sampling unit 1: psu
           FPC 1 · <zero>
```

. summarize wage lnwage yeduc expft expft2 public

Variable	Obs	Mean	Std. dev.	Min	Max
wage	5,600	17.57278	9.858855	3.03	121.42
lnwage	5,600	2.736721	.5062968	1.108563	4.799255
yeduc	7,121	12.28823	2.783974	0	18
expft	7,274	11.63359	9.556508		39.5
expft2	7,274	226.6548	293.3739		1560.25
public	5,770	.2353553	.4242574	0	1

. drop if missing(lnwage, yeduc, expft, public) // remove unused observation (1,851 observations deleted)

Decomposition methods

Observed statistics in private sector

. sum lnwage if public==0 [aw=weight], detail

		lnwage			
	Percentiles	Smallest			
1%	1.510722	1.108563			
5%	1.950187	1.115142			
10%	2.136531	1.115142	Obs	4,184	
25%	2.388763	1.12493	Sum of wgt.	9,231,939	
50%	2.72589		Mean	2.732109	
		Largest	Std. dev.	.5008582	
75%	3.065258	4.659848			
90%	3.378952	4.766694	Variance	.2508589	
95%	3.570096	4.781641	Skewness	.0484253	
99%	3.874321	4.799255	Kurtosis	3.258202	
. loc	al prAVG = r(mean)			
. loc	al prD9D1 = r(p90)-r(p10)			
. loc	al prD9D5 = r(p90)-r(p50)			
. loc	al prD5D1 = r(pr)	p50)-r(p10)			
. loc	al prVar = r(Var)			
. dis	splay "prD9D1 =	" %7.0g `prD9D1'	" (ratio =" %7	.0g exp(`prD9D1	') ")" _n ///
>	"prD9D5 =	" %7.0g `prD9D5'	" (ratio =" %7	.0g exp(`prD9D5	') ")" _n ///
>	"prD5D1 =	" %7.0g `prD5D1'	" (ratio =" %7	.0g exp(`prD5D1	')")"
prD9D	01 = 1.2424 (ra	tio = 3.464)			
prD9D	05 = .65306 (ra	tio = 1.9214)			
prD5D)1 = .58936 (ra	tio = 1.8028)			

Observed statistics in public sector

. sum lnwage if public==1 [aw=weight], detail

		lnwage								
	Percentiles	Smallest								
1%	1.413423	1.115142								
5%	2.032088	1.181727								
10%	2.302585	1.18479		Obs		1,274				
25%	2.65956	1.217876		Sum of wgt	t. 2	2,914,832				
50%	2.901422			Mean		2.866068				
		Largest		Std. dev.		.4438737				
75%	3.145875	4.163404								
90%	3.363496	4.239455		Variance		.1970238				
95%	3.526066	4.24219		Skewness		8049336				
99%	3.697839	4.356068		Kurtosis		4.64433				
. loc	al puAVG = r	(mean)								
. loc	al puD9D1 = r(p90)-r(p10)								
. loc	al puD9D5 = r((p90)-r(p50)								
. loc	al puD5D1 = r(p50)-r(p10)								
. loc	al puVar = r	(Var)								
. 100	nlau "nuDQD1 -	-" %7 Og `puDQD1'		(ratio ="	97 0		11)	")"	n	,,,
> 412	- D9D5 - = D9D5 -	" %7 0g `puD9D5'	п	(ratio = "	%7 0	z exp(`puD9D	5')	")"	_11 n	111
>	"puD5D1 =	" %7.0g `puD5D1'	п	(ratio ="	%7.0	y exp(`puD5D	1')	")"		,,,,
puD9D	1 = 1.0609 (ra	tio = 2.889			/06	5	- /			
puD9D	05 = .46207 (ra	tio = 1.5874)								
puD5D)1 = .59884 (ra	tio = 1.82)								

Private-public differences in observed statistics

```
. display `prAVG' - `puAVG'

-.13395921

. display `prD9D1' - `puD9D1'

.18151069

. display `prD9D5' - `puD9D5'

.19098759

. display `prD5D1' - `puD5D1'

-.0094769

. display `prVar' - `puVar'

.0538351
```

Propensity-score model

. svy: logit public c.yeduc##c.expft##c.expft, vsquish
(running logit on estimation sample)

Survey: Logistic regression Number of strata = 15

Number of PSUs = 2,036

Number of obs	=	5,458
Population size	=	12,146,771
Design df	=	2,021
F(5, 2017)	=	20.67
Prob > F	=	0.0000

public	Coefficient	Linearized std. err.	t	P> t	[95% conf.	interval]
yeduc	. 1950069	.043749	4.46	0.000	.109209	. 2808047
expft	0366746	.0925297	-0.40	0.692	2181382	. 1447891
c.yeduc#c.expft	.0014953	.0070145	0.21	0.831	0122612	.0152517
c.expft#c.expft	.0009309	.0029449	0.32	0.752	0048445	.0067064
c.yeduc#c.expft#c.expft	0000218	.0002303	-0.09	0.925	0004734	.0004298
_cons	-3.679054	.5935616	-6.20	0.000	-4.84311	-2.514997

. predict PS if e(sample), pr

Distribution of propensity-score by sector

. quietly two (kdens PS if public==0 [pw=weight]) (kdens PS if public==1 [pw=weight]), /// > xti("propensity score") legend(order(1 "private" 2 "public"))

Generate the weights from the propensity score

. summarize pu	ublic [aw=	weight]				
Variable	Obs	Weight	Mean	Std. dev.	Min	Max
public	5,458	12146770.6	.2399677	.4271026	0	1
. generate PSI (1,274 missing . replace PSI	IIC = F(Me I = (PS / g values g = 1 if pu	an) `P_public') / enerated) blic==1	((1-PS) /	(1 - `P_pub]	lic')) if pu	iblic==0
(1,274 real cl	nanges mad	e)				
. summarize P	SI Law=wei;	ght] if publi	.c==0			
Variable	Übs	Weight	Mean	Std. dev.	Min	Max
PSI . kdens PSI [] (bandwidth =	4,184 pw=weight] .22094267)	9231938.6 if public==0	1.003234	.6637265	.2511509	3.463624
		2- 1.5- .5-		~	~	

0.

ż

PSI

ż

à

Balancing: Raw mean differences in covariates

. tabstat PS yeduc expft expft2 [aw=weight], by(public) nototal ///
> stat(mean var p10 p50 p90) columns(statistics)
Summary for variables: PS yeduc expft expft2
Group variable: public (public service)

p90	p50	p10	Variance	Mean	public
.4469216	.1865309	.1339219	.0101674	.2246685	no
18	11.5	10	6.958165	12.42709	
29.25	12.5	2.25	101.5838	14.32145	
855.5625	156.25	5.0625	116024.7	306.6634	
.4545366	. 259925	.1597596	.0140197	.2884234	yes
18	13.5	10.5	8.474033	14.07113	
28.5	11.5	1.5	98.61003	13.46011	
812.25	132.25	2.25	105614.7	279.7071	

Balancing: Mean differences in reweighted sample

. tabstat PS yeduc expft expft2 [aw=PSI*weight], by(public) ///
> nototal stat(mean var p10 p50 p90) columns(statistics)
Summary for variables: PS yeduc expft expft2
Group variable: public (public service)

public	Mean	Variance	p10	p50	p90
no	.2907174	.01476	.1520262	.2803326	.4550497
	14.09968	8.976983	10.5	14	18
	13.49386	98.65649	2	11.5	28.5
	280.7173	107385.7	4	132.25	812.25
yes	.2884234	.0140197	.1597596	. 259925	.4545366
	14.07113	8.474033	10.5	13.5	18
	13.46011	98.61003	1.5	11.5	28.5
	279.7071	105614.7	2.25	132.25	812.25

Counterfactual statistics in reweighted private sector

. sum lnwage [aw=PSI*weight] if public==0, detail

		lnwage			
	Percentiles	Smallest			
1%	1.581038	1.108563			
5%	2.036012	1.115142			
10%	2.204972	1.115142	Obs	4,184	
25%	2.481568	1.12493	Sum of wgt.	9,261,797	
50%	2.852439		Mean	2.85921	
		Largest	Std. dev.	.5175626	
75%	3.236323	4.659848			
90%	3.530763	4.766694	Variance	.2678711	
95%	3.688379	4.781641	Skewness	0480414	
99%	3.985088	4.799255	Kurtosis	2.992935	
. loca	al cAVG = r(mea	an)			
. loca	al cD9D1 = r(p90))-r(p10)			
. loca	al cD9D5 = r(p90	0)-r(p50)			
. loca	al cD5D1 = r(p50	0)-r(p10)			
. loca	al cVar = r(Var	r)			
. dis	play "cD9D1 =" %	%7.0g `cD9D1' "	(ratio =" %7.0	g exp(`cD9D1')	")" _n ///
>	"cD9D5 =" %	%7.0g `cD9D5' "	(ratio =" %7.0	g exp(`cD9D5')	")" _n ///
>	"cD5D1 =" %	%7.0g `cD5D1' "	(ratio =" %7.0	g exp(`cD5D1')	")"
cD9D1	= 1.3258 (ratio	o = 3.7652)			
cD9D5	= .67832 (ratio	o = 1.9706)			
cD5D1	= .64747 (ratio	o = 1.9107)			

Results of decomposition

```
. foreach s in AVG D9D1 D9D5 D5D1 Var {
 2.
        display %6s "`s': " ///
>
          "total difference = " %9.0g `pr`s'' - `pu`s'' ///
             н
                  explained = " %9.0g `pr`s'' - `c`s''
>
 3. }
 AVG: total difference = -.1339592
                                      explained = -.1271007
D9D1: total difference = 1815107
                                      explained = -.0833693
                                      explained = -.0252619
D9D5: total difference = .1909876
D5D1: total difference = -.0094769
                                    explained = -.0581074
Var: total difference = .0538351
                                     explained = -.0170121
```

For comparison: results from oaxaca for the mean

```
. oaxaca lnwage yeduc expft expft2, by(public) weight(1) nodetail svy
Blinder-Oaxaca decomposition
Number of strata = 15
                                          Number of obs = 5.458
Number of PSUs = 2,036
                                          Population size
                                                         = 12, 146, 771
                                          Design df
                                                               2,021
                                                         =
                                          Model
                                                        = linear
Group 1: public = 0
                                          N of obs 1 = 4,184
Group 2: public = 1
                                          N of obs 2 = 1,274
   explained: (X1 - X2) * b1
 unexplained: X2 * (b1 - b2)
```

lnwage	Coefficient	Linearized std. err.	t	P> t	[95% conf.	interval]
overall						
group_1	2.732109	.0137664	198.46	0.000	2.705111	2.759107
group_2	2.866068	.0213224	134.42	0.000	2.824252	2.907885
difference	1339592	.0249495	-5.37	0.000	1828886	0850298
explained	1262644	.0170609	-7.40	0.000	1597232	0928056
unexplained	0076948	.022508	-0.34	0.732	0518361	.0364464

How the reweighting affects the wage distribution in the private sector:

- How to estimate the weights
- 3 Example analysis
- 4 Alternative methods to compute the weights
- 5 Detailed decomposition
- Observations outside the common support
- 7 Reweighted OB decomposition

Matching and entropy balancing

- As mentioned above, alternative approaches can be used to compute the weights for the reweighting decomposition.
- The default approach using predictions from a logit or probit model is equivalent to IPW in the causal inference literature.
- In general, all matching estimators can be expressed as weighting estimators. Hence, we can use any matching technique to obtain $\Psi(X)$.
- We now repeat the above analysis using (1) entropy balancing and (2) nearest-neighbor Mahalanobis distance matching (as implemented in command kmatch).

Example analysis: entropy balancing

. kmatch eb public yeduc expft [pw=weight], att wgen(PSIeb) ///
> targets(2) covariances
(fitting balancing weights ... done)
Entropy balancing Number of obs = 5,458
Balance tolerance = .00001

Treatment : public = 1 Targets : 2 + covariances Covariates : yeduc expft

Matching statistics

	Yes	Matched No	Total	Used	Controls Unused	Total	Balance loss
Treated	1274	0	1274	4184	0	4184	1.48e-15
Stored vari; Variable name	ables Storage type	Display format	Value label	Variable lab	el		
PSIeb . kmatch su	double mmarize yedu	%10.0g c expft exp	ft2, meanon	Matching wei lv	ghts for ATT		

(refitting the model using the generate() option)

Means	Treated	Raw Untreated	StdDif	M Treated	latched(ATT) Untreated	StdDif
yeduc	14.07113	12.42709	.5918535	14.07113	14.07113	1.92e-15
expft	13.46011	14.32145	0860921	13.46011	13.46011	7.10e-16
expft2	279.7071	306.6634	080975	279.7071	279.7071	6.83e-16

Example analysis: entropy balancing

. sum lnwage [aw=PSIeb] if public==0, detail

		lnwage			
	Percentiles	Smallest			
1%	1.581038	1.108563			
5%	2.03862	1.115142			
10%	2.217027	1.115142	Obs	4,184	
25%	2.483238	1.12493	Sum of wgt.	2,914,832	
50%	2.847232		Mean	2.856837	
		Largest	Std. dev.	.51236	
75%	3.218076	4.659848			
90%	3.518388	4.766694	Variance	.2625128	
95%	3.658163	4.781641	Skewness	0501883	
99%	3.975936	4.799255	Kurtosis	3.014726	
. loc	al ebAVG = r(m	ean)			
. loc	al ebD9D1 = r(p	90)-r(p10)			
. loc	al ebD9D5 = r(p	90)-r(p50)			
. loc	al ebD5D1 = r(p	50)-r(p10)			
. loc	al ebVar = r(V	ar)			
. for	each s in AVG D	9D1 D9D5 D5D1 Va	ar {		
2.	display %6s	"`s': " "total	difference = "	%9.0g `pr`s''	- `pu`s'' ///
>	" expla	ined = " %9.0g `	pr`s'' - `eb`s		
З.	}				
AVG:	total differen	ce =1339592	explained =	1247281	
D9D1:	total differen	ce = .1815107	explained =	0589392	
D9D5:	total differen	ce = .1909876	explained =	0180936	
D5D1:	total differen	ce =0094769	explained =	0408456	
Var:	total differen	ce = .0538351	explained =	0116538	

Decomposition methods

Example analysis: nearest-neighbor matching

. kmatch md public yeduc expft [pw=weight], att nn(5) wgen(PSInn) Multivariate-distance nearest-neighbor matching

		Numb	per of obs :	= 5,458
		Neighbors:	min =	5
Treatment	: public = 1		max =	50
letric	: mahalanobis			
lovariates	: veduc expft			

Matching statistics

	Yes	Matched No	Total	Used	Controls Unused	Total
Treated	1274	0	1274	3446	738	4184
Stored varia	bles					
Variable	Storage	Display	Value			
name	type	format	label	Variable labe	el	
PSInn	double	%10.0g		Matching weig	ghts for ATT	
. kmatch sum	marize yedu	c expft exp	oft2, meanon	ly		
(refitting t	he model us	ing the gen	erate() opt	ion)		

Means	Treated	Raw Untreated	StdDif	M Treated	latched(ATT) Untreated	StdDif
yeduc	14.07113	12.42709	.5918535	14.07113	14.07365	000908
expft	13.46011	14.32145	0860921	13.46011	13.45335	.0006755
expft2	279.7071	306.6634	080975	279.7071	278.9917	.002149

Example analysis: nearest-neighbor matching

. sum lnwage [aw=PSInn] if public==0, detail

		lnwage			
	Percentiles	Smallest			
1%	1.578979	1.108563			
5%	2.022871	1.115142			
10%	2.198335	1.115142	Obs	3,446	
25%	2.490723	1.12493	Sum of wgt.	2,914,832	
50%	2.841415		Mean	2.853928	
		Largest	Std. dev.	.5195719	
75%	3.217274	4.659848			
90%	3.554776	4.766694	Variance	.269955	
95%	3.679082	4.781641	Skewness	0563432	
99%	3.977249	4.799255	Kurtosis	2.94303	
. loc	al nnAVG = r(me	ean)			
. loc	al nnD9D1 = r(p	90)-r(p10)			
. loc	al nnD9D5 = r(p	90)-r(p50)			
. loc	al nnD5D1 = r(p	50)-r(p10)			
. loc	al nnVar = r(Va	ar)			
. for	each s in AVG DS	9D1 D9D5 D5D1 Va	ar {		
2.	display %6s	"`s': " "total	difference = "	%9.0g `pr`s'	' - `pu`s'' ///
>	" expla:	ined = " %9.0g `	pr`s'' - `nn`s		-
З.	}				
AVG:	total differend	ce =1339592	explained =	1218186	
D9D1:	total differend	ce = .1815107	explained =	1140201	
D9D5:	total differend	ce = .1909876	explained =	0602999	
D5D1:	total differend	ce =0094769	explained =	0537202	
Var:	total differend	ce = .0538351	explained =	019096	

Decomposition methods

Example analysis: IPW

- By the way: you can also use kmatch ipw to compute the default reweighting $\Psi(X)$; only the scaling will be different because factor $\frac{\Pr(G=0)}{\Pr(G=1)}$ is ignored
 - . kmatch ipw public c.yeduc##c.expft##c.expft [pw=weight], ///
 - > att wgen(PSIipw)

(output omitted)

```
. summarize PSI_weight PSIipw if public==0
```

Variable	Obs	Mean	Std. dev.	Min	Max
PSI_weight PSIipw	4,184 4,184	2213.623 696.6616	4121.928 1297.235	1.932269 .6081152	64862.96 20413.38

. corr PSI_weight PSIipw if public==0

(obs=4,184)

	PSI_we~t	PSIipw
PSI_weight PSIipw	1.0000 1.0000	1.0000

Automatic reweighting using command dstat

- Command dstat (Jann 2020) has built-in options for IPW and entropy balancing and supports a variety of distributional statistics.
- It does not directly provide decompositions, but it can be used to compute the counterfactuals using IPW or entropy balancing; see option balance().

```
. dstat (Var) lnwage, over(public) vce(svy) ///
     balance(ipw:c.yeduc##c.expft##c.expft, reference(1))
(running dstat svvr on estimation sample)
Survey: Var
Number of strata = 15
                                 Number of obs =
                                                        5.458
Number of PSUs = 2,036
                                 Population size = 12,146,771
                                 Design df
                                                        2.021
                                 Balancing:
                                          method =
                                                          ipw
                                       reference =
                                                     1.public
                                        controls = e(balance)
```

lnwage	Coefficient	Linearized std. err.	[95% conf.	interval]
public no yes	.2678711 .1970238	.011242 .0179054	.245824 .1619089	.2899181 .2321387

Automatic reweighting using command dstat

• Decomposition using generated RIFs:

```
. dstat (Var) lnwage, over(public) vce(svy) rif(RIFOc) ///
>
     balance(ipw:c.veduc##c.expft##c.expft, reference(1))
  (output omitted)
. dstat (Var) lnwage if e(sample), over(public) vce(svy) rif(RIF0 RIF1)
  (output omitted)
. generate difference = RIF0 - RIF1
. generate explained = RIFO - RIFOc
. generate unexplained = RIF0c - RIF1
. svv: mean difference explained unexplained
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 15
                                 Number of obs =
                                                        5.458
                                 Population size = 12,146,771
Number of PSUs = 2,036
                                 Design df
                                                        2,021
                                                 =
```

	Mean	Linearized std. err.	[95% conf.	interval]
difference	.0538351	.0203621	.0139021	.0937681
explained	0170121	.007549	0318167	0022076
unexplained	.0708472	.0199062	.0318083	.1098861

- 2 How to estimate the weights
- 3 Example analysis
- 4 Alternative methods to compute the weights
- 5 Detailed decomposition
- Observations outside the common support
- 7 Reweighted OB decomposition

Detailed decomposition

- For binary covariates, a detailed decomposition of the contribution to the explained part can be obtained as follows.
- Let X_1 be a binary and X_2 be the vector of all other covariates. A counterfactual distribution of Y in group 0, where the conditional distribution of X_1 given the other covariates is changed to the conditional distribution of X_1 in group 1, can be written as

$$\begin{aligned} F_{Y^{0}|X_{1}^{1}}(y) &= \int \int F_{Y|X^{0}}(y|X_{1},X_{2}) \, dF_{X^{1}}(X_{1}|X_{2}) \, dF_{X^{0}}(X_{2}) \\ &= \int \int F_{Y|X^{0}}(y|X_{1},X_{2}) \Psi_{1}(X_{1},X_{2}) \, dF_{X^{0}}(X_{1}|X_{2}) \, dF_{X^{0}}(X_{2}) \\ &= \int \int F_{Y|X^{0}}(y|X_{1},X_{2}) \Psi_{1}(X_{1},X_{2}) \, dF_{X^{0}}(X_{1},X_{2}) \end{aligned}$$

where

$$\Psi_1(X_1, X_2) = \frac{dF_{X^1}(X_1|X_2)}{dF_{X^0}(X_1|X_2)} = X_1 \frac{\Pr^1(X_1 = 1|X_2)}{\Pr^0(X_1 = 1|X_2)} + (1 - X_1) \frac{\Pr^1(X_1 = 0|X_2)}{\Pr^0(X_1 = 0|X_2)}$$

Detailed decomposition

- To compute Ψ₁(X₁, X₂), regress X₁ on X₂ separately in group 0 and in group 1 using logistic regression or similar. Then replace Pr⁰(X₁ = 1|X₂), Pr⁰(X₁ = 0|X₂), Pr¹(X₁ = 1|X₂) and Pr¹(X₁ = 0|X₂) by predictions from these models.
- A similar approach can also be used to determine the contribution of a binary covariate to the structure component (see Fortin et al. 2011).
- For continuous covariates, things are less clear. One approach followed in the literature is to compute a series of reweighting decompositions where the covariates are introduced one after the other. The problem with this approach is that results will be path dependent.
- A better approach is, for each covariate, to compute the contribution of the covariate while controlling for all other covariates.

Detailed decomposition

• Let $X_{\bar{k}}$ be all covariates except X_k . Based on a similar derivation as above, Fortin et al. (2001) suggest using reweighting factor

 $\Psi_{X_k|X_{\overline{k}}}(X_{\overline{k}}) = \Psi(X)/\Psi(X_{\overline{k}})$

where $\Psi(X_{\bar{k}})$ is computed in the same way as the overall reweighting factor $\Psi(X)$, only that variable X_k is omitted from the logit model.

- Using this reweighting factor we can get the counterfactual distribution of Y in group 0, if the conditional distribution of X_k given the other covariates is changed to the conditional distribution of X_k in group 1.
- That procedure is as follows:
 - 1. Compute $\Psi(X)$ using all covariates.
 - 2. For each k, compute $\Psi(X_{\bar{k}})$.
 - 3. For each k, compute the counterfactual statistic using weights $\Psi(X)/\Psi(X_{\bar{k}})$ and compare the result to the unweighted statistic. The difference is the contribution of X_k to the composition effect.

• Note that the single contributions do not add up to the total composition effect.

Decomposition methods

Detailed decomposition: Contribution of education

```
. drop PS
. quietly logit public c.expft##c.expft [pw=weight], vsquish
. predict PS if e(sample), pr
. generate PSI_veduc = (PS / `P_public') / ((1-PS) / (1 - `P_public')) if public==0
(1.274 missing values generated)
. quietly sum lnwage [aw=(PSI/PSI_yeduc)*weight] if public==0, detail
, local cAVGx = r(mean)
. local cD9D1x = r(p90) - r(p10)
. local cD9D5x = r(p90) - r(p50)
. local cD5D1x = r(p50) - r(p10)
. local cVarx = r(Var)
. foreach s in AVG D9D1 D9D5 D5D1 Var {
         display %6s "`s': " "explained by education = " %9.0g `pr`s'' - `c`s'x'
 2.
 3. }
 AVG: explained by education = -.1376105
D9D1: explained by education = -.0826552
D9D5: explained by education = -.0311887
D5D1: explained by education = -.0514665
 Var: explained by education = -.0150466
```

Detailed decomposition: Contribution of experience

```
. drop PS
. quietly logit public yeduc [pw=weight], vsquish
. predict PS if e(sample), pr
. generate PSI_experience = (PS / `P_public') / ((1-PS) / (1 - `P_public')) if public==0
(1.274 missing values generated)
. quietly sum lnwage [aw=(PSI weight/PSI experience)*weight] if public==0. detail
, local cAVGx = r(mean)
. local cD9D1x = r(p90) - r(p10)
. local cD9D5x = r(p90) - r(p50)
. local cD5D1x = r(p50) - r(p10)
. local cVarx = r(Var)
. foreach s in AVG D9D1 D9D5 D5D1 Var {
        display %6s "`s': " "explained by experience = " %9.0g `pr`s'' - `c`s'x'
 2.
 3. }
 AVG: explained by experience = -.0401236
D9D1: explained by experience = .0269032
D9D5: explained by experience = .022445
D5D1: explained by experience = .0044582
 Var: explained by experience = .0038217
```

For comparison: Results from oaxaca for the mean

. oaxaca lnwage yeduc (experience: expft expft2), by(public) weight(1) svy Blinder-Oaxaca decomposition

Number of strata = 15	Number of obs	=	5,458
Number of PSUs = 2,036	Population size	=	12,146,771
	Design df	=	2,021
	Model	=	linear
Group 1: public = 0	N of obs 1	=	4,184
Group 2: public = 1	N of obs 2	=	1,274
explained: (X1 - X2) * b1 unexplained: X2 * (b1 - b2)			

lnwage	Coefficient	Linearized std. err.	t	P> t	[95% conf.	interval]
overall						
group_1	2.732109	.0137664	198.46	0.000	2.705111	2.759107
group_2	2.866068	.0213224	134.42	0.000	2.824252	2.907885
difference	1339592	.0249495	-5.37	0.000	1828886	0850298
explained	1262644	.0170609	-7.40	0.000	1597232	0928056
unexplained	0076948	.022508	-0.34	0.732	0518361	.0364464
explained						
veduc	1413666	.0166136	-8.51	0.000	1739481	108785
experience	.0151022	.0099863	1.51	0.131	0044824	.0346867
unexplained						
yeduc	.2833853	.1068306	2.65	0.008	.0738756	.492895
experience	0650598	.0501303	-1.30	0.194	1633722	.0332526
_cons	2260203	.116197	-1.95	0.052	4538987	.0018581

Decomposition methods

6. Reweighting

- 2 How to estimate the weights
- 3 Example analysis
- 4 Alternative methods to compute the weights
- 5 Detailed decomposition
- Observations outside the common support
- Reweighted OB decomposition

The Ñopo decomposition

- As mentioned above, the variance of the weights used in the reweighting decomposition can get large if the compared groups are very different in terms of the distributions of the X variables.
- More fundamentally, there might be a common support problem in the sense that some of the observations cannot be "matched". In this case, the groups cannot be made comparable based on matching or reweighting.
- Ñopo (2008) proposed a decomposition in which the usual decomposition into an explained and an unexplained part is performed only within the "common support". In addition, for each group, a term is computed that captures the difference between observations inside and outside the common support.
- We illustrate the procedure for the mean using exact matching. However, the procedure can also be used with other matching algorithms and it can, in principle, be generalized to other summary measures.

Run the matching and store helper variables

. kmatch em public yeduc expft [pw=weight], att generate Exact matching Number of obs = 5,458 Neighbors: min = 1

Treatment : public = 1 Covariates : yeduc expft Matching statistics hbors: min = 1 max = 50

	Yes	Matched No	Total	(Used	Controls Unused	Total
Treated	1114	160	1274	2476	1708	4184
Stored varia Variable name	ables Storage type	Display format	Value label	Variable labe	əl	
_KM_treat _KM_nc _KM_nm _KM_mw _KM_strata	byte byte byte double int	%8.0g %10.0g %10.0g %10.0g %8.0g		Treatment ind Number of mat Number of tim Matching weig Matching stra	licator sched contro nes used as ght atum	ls a match

Computation of results required for the decomposition

private sector: overall

	summarize	lnwage	[aw=weight]	if	public==0
--	-----------	--------	-------------	----	-----------

Variable	Obs	Weight	Mean	Std. dev.	Min	Max
lnwage	4,184	9231938.6	2.732109	. 5008582	1.108563	4.799255
. local priv =	= r(mean)					

• private sector: out of support (just for information)

summarize lnwage [aw=weight] if public==0 & _KM_nm==0						
Variable	Obs	Weight	Mean	Std. dev.	Min	Max
lnwage	1,708	3848941.8	2.714669	.498534	1.217876	4.799255

• private sector: within of support

summarize lu	nwage [aw=	weight] if p	ublic==0 & _	KM_nm!=0			
Variable	Obs	Weight	Mean	Std. dev.	Min	Max	
lnwage	2,476	5382996.8	2.744579	. 5022448	1.108563	4.781641	
local priv_in = r(mean)							

Computation of results required for the decomposition

• private sector: within support; reweighted

	summarize	lnwage	[aw	=	_KM_mw]	if	public==0
--	-----------	--------	-----	---	---------	----	-----------

Variable	Obs	Weight	Mean	Std. dev.	Min	Max
lnwage	2,476	2469852.8	2.845155	. 5299685	1.108563	4.781641
. local priv	_adj = r(me	an)				

public sector: within support

. summarize lnwage [aw=weight] if public==1 & _KM_nc!=0 Variable Obs Weight Mean Std. dev. Min Max lnwage 1.114 2469852.8 2.856464 .4379313 1 115142 4 356068 . local pub_in = r(mean)

• public sector: out of support (just for information)

. summarize lnwage [aw=weight] if public==1 & _KM_nc==0

Variable	Obs	Weight	Mean	Std. dev.	Min	Max
lnwage	160	444979.202	2.919378	. 4733894	1.18479	4.239455

Computation of results required for the decomposition

• public sector: overall

	summarize	lnwage	[aw=weight]	if	public==1
--	-----------	--------	-------------	----	-----------

Variable	Obs	Weight	Mean	Std. dev.	Min	Max
lnwage	1,274	2914832	2.866068	. 4438737	1.115142	4.356068
local pub =	r(mean)					

Compute the terms of the decomposition

```
. local A = `priv_in' - `priv'
. local B = `priv_adj' - `priv_in'
. local C = `pub_in' - `priv_adj'
. local D = `pub' - `pub_in'
. di as txt "Overall difference
                                          = " as res `pub'-`priv' ///
> _n as txt "A: private out of support
                                          = " as res `A' ///
> _n as txt "B: explained within support
                                          = " as res `B' ///
> _n as txt "C: unexplained within support
                                          = " as res `C' ///
> _n as txt "D: public out of support
                                          = " as res `D' ///
> n as txt "Total (A+B+C+D)
                                          = " as res A' + B' + C' + D'
Overall difference
                           = .13395921
A: private out of support = .01247014
B: explained within support = .10057561
C: unexplained within support = .01130901
D: public out of support = .00960445
Total (A+B+C+D)
                            = .13395921
```

- 2 How to estimate the weights
- 3 Example analysis
- 4 Alternative methods to compute the weights
- 5 Detailed decomposition
- Observations outside the common support
- Reweighted OB decomposition

- Focusing on the mean, yet another decomposition is proposed by Fortin et al. (2011).
- The argument is that the coefficients in the linear regressions used by the standard OB decompositions might be biased if there are nonlinear effects.
- By combining reweighting with OB, the decomposition can be made more robust against such specification errors.

• Recall the standard OB decomposition

$$\begin{split} \widehat{\Delta}^{\mu} &= \widehat{\Delta}^{\mu}_{X} + \widehat{\Delta}^{\mu}_{S} = (\bar{X}^{0} - \bar{X}^{1})\widehat{\beta}^{0} + \bar{X}^{1}(\widehat{\beta}^{0} - \widehat{\beta}^{1}) \\ &= (\bar{X}^{0}\widehat{\beta}^{0} - \bar{X}^{1}\widehat{\beta}^{0}) + (\bar{X}^{1}\widehat{\beta}^{0} - \bar{X}^{1}\widehat{\beta}^{1}) \end{split}$$

where, in the current example, group 0 is private sector and group 1 is public sector.

- The suggestion now is to replace $\bar{X}^1 \hat{\beta}^0$ by $\bar{X}^0_C \hat{\beta}^0_C$ where \bar{X}^0_C is the average of X in reweighted group 0 and $\hat{\beta}^0_C$ are coefficient estimates from reweighted group 0.
- Note that \bar{X}_{C}^{0} will approximate \bar{X}^{1} if the reweighting is successful. Hence, a deviation between \bar{X}_{C}^{0} and \bar{X}^{1} points to a "reweighting error".
- Furthermore, if there is no specification error, $\hat{\beta}_{C}^{0}$ will be the same as $\hat{\beta}^{0}$ (i.e. reweighting has no effect on the coefficients if the model is correctly specified).

• Inserting $\bar{X}^0_C \hat{\beta}^0_C$, we get the following decomposition:

$$\widehat{\Delta}^{\mu} = \widehat{\Delta}^{\mu}_{X} + \widehat{\Delta}^{\mu}_{S} = (\bar{X}^0 \widehat{\beta}^0 - \bar{X}^0_C \widehat{\beta}^0_C) + (\bar{X}^0_C \widehat{\beta}^0_C - \bar{X}^1 \widehat{\beta}^1)$$

• The two components can be rewritten as

obtain coefficients and means in private sector

```
svy: regress lnwage yeduc expft expft2 if public==0
mat b_priv = e(b)
mean yeduc expft expft2 [pw=weight] if public==0
mat X_priv = (e(b),1)
```

 compute weights and obtain counterfactual coefficients and means in private sector

```
kmatch ipw public yeduc c.yeduc##c.expft##c.expft ///
    [pw=weight], att wgen(IPW)
regress lnwage yeduc expft expft2 [pw=IPW] if public==0
mat b_priv_C = e(b)
mean yeduc expft expft2 [pw=IPW] if public==0
mat X_priv_C = (e(b), 1)
```

obtain coefficients and means in public sector

```
svy: regress lnwage yeduc expft expft2 if public==1
mat b_pub = e(b)
svy: mean yeduc expft expft2 if public==1
mat X_pub = (e(b),1)
```

Compute the terms of the decomposition

	y1
Overall difference	1339592
Explained	1293328
Specification error	.0022321
Unexplained	0098497
Reweighting error	.0029912

Using entropy balancing

 The "reweighting error" will be zero if we use weights that perfectly balance the data:

```
. kmatch eb public c.yeduc##c.expft##c.expft [pw=weight], ///
>
     att wgen(EB)
 (output omitted)
. regress lnwage yeduc expft expft2 [pw=EB] if public==0
 (output omitted)
. mat b_{priv_C} = e(b)
. mean veduc expft expft2 [pw=EB] if public==0
 (output omitted)
. mat X_{priv}C = (e(b), 1)
. mat D[1,1] = (X_priv * b_priv' - X_pub * b_pub') ///
            \ (X_priv - X_priv_C) * b_priv'
                                                   111
>
             \ X_priv_C * (b_priv - b_priv_C)'
                                                    111
>
             \ X_pub * (b_priv_C - b_pub)'
                                                    111
>
             (X_priv_C - X_pub) * b_priv_C'
>
. matlist D. twidth(20)
                              y1
 Overall difference
                       -.1339592
                       - 1262644
          Explained
Specification error
                       .0019249
```

-.0096197

4 94e-16

```
Decomposition methods
```

Unexplained

Reweighting error

Exercise 6

References

- Chernozhukov, Victor, Iván Fernández-Val, Blaise Melly (2013). Inference on Counterfactual Distributions. Econometrica 81(6):2205–2268.
- DiNardo, John E., Nicole Fortin, Thomas Lemieux (1996). Labour Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach. Econometrica 64(5):1001–1046.
- Firpo, Sergio, Nicole Fortin, Thomas Lemieux (2007). Decomposing Wage Distributions using Recentered Influence Function Regressions. Working paper.
- Firpo, Sergio, Nicole M. Fortin, Thomas Lemieux (2009). Unconditional Quantile Regressions. Econometrica 77:953–973.
- Fortin, Nicole, Thomas Lemieux, Sergio Firpo (2011). Decomposition Methods in Economics. Pp. 1–102 in: O. Ashenfelter and D. Card (eds.). Handbook of Labor Economics. Amsterdam: Elsevier.
- Hainmueller, Jens (2012). Entropy Balancing: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies. Political Analysis 20(1):25–46.
- Hainmueller, Jens, Chad Hazlett (2014). Kernel Regularized Least Squares: Reducing Misspecification Bias with a Flexible and Interpretable Machine Learning Approach. Political Analysis 22(2):143–168.

References

- Jann, Ben (2017). kmatch: Stata module for multivariate-distance and propensity-score matching. Available from http://ideas.repec.org/c/boc/bocode/s458346.html.
- Jann, Ben (2020). dstat: Stata module to compute summary statistics and distribution functions including standard errors and optional covariate balancing. Available from http://ideas.repec.org/c/boc/bocode/s458874.html.
- Jann, Ben (2021). Entropy balancing as an estimation command. University of Bern Social Sciences Working Paper No. 39. DOI: 10.7892/boris.157883.
- Juhn, Chinhui, Kevin M. Murphy, Brooks Pierce (1993). Wage Inequality and the Rise in Returns to Skill. Journal of Political Economy 101(3):410–442.
- Machado, José A. F., José Mata (2005). Counterfactual decomposition of changes in wage distributions using quantile regression. Journal of Applied Econometrics 20(4):445–465.
- Melly, Blaise (2005). Decomposition of differences in distribution using quantile regression. Labour Economics 12(4):577–590.
- Melly, Blaise, 2006. Estimation of counterfactual distributions using quantile regression. University of St. Gallen, Discussion Paper.
- Ñopo, Hugo (2008). Matching as a Tool to Decompose Wage Gaps. The Review of Economics and Statistics 90:290–299.