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Some issues with the Oaxaca-Blinder decomposition

The OB decomposition seems useful and easy to understand, but
there are several complications we need to discuss.
▶ The index problem
▶ The transformation problem / base category problem
▶ Functional form
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Nonlinear effects and interactions

The OB decomposition is based on linearity and additive separability.

If important nonlinearities and interaction effects are ignored, the
results may be misleading.

Hence, care should be exercised when specifying the regression
equation on which the decomposition is based.
Detailed decomposition:
▶ The detailed decomposition rests on the assumption of additive

separability of the variable for which detailed results are to be
obtained.

▶ Thus, for example, if modeling polynomials, it does not make much
sense to report results for the single terms. The sum of the
contributions across all terms, however, has a clear interpretation.

▶ Likewise, in case of interactions, it is not really clear how to separate
the contributions of the individual variables.

Reweighting (see later) may be a method to detect misspecification.
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Extension to nonlinear models

The dependent variable is not always continuous and unbounded.
In many applications we are interested in other types of variables.
▶ dichotomous variables (logit/probit)
▶ polytomous variables (unordered: mlogit, ordered: ologit)
▶ count data (poisson regression, nbreg, zero-inflated models)
▶ censored data (tobit)
▶ truncated data (truncreg)

How can group differences in expected values (proportions in case of
categorical variables) be decomposed for these types of variables?

(There is also some literature on decompositions for survival
analysis; see Powers and Yun 2009.)
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Aggregate decomposition for nonlinear models
The general setup is still the same, that is we are interested in a
decomposition such as

∆µ = µ
(
FY |G=0

)
− µ

(
FY |G=1

)
=

{
µ
(
FY |G=0

)
− µ

(
FY 0|G=1

)}
+
{
µ
(
FY 0|G=1

)
− µ

(
FY |G=1

)}
=

{
E(Y |G = 0)− E(Y 0|G = 1)

}
+
{
E(Y 0|G = 1)− E(Y |G = 1)

}
= ∆µX +∆µS

where E(Y ) is the expected value or Y (the mean or a proportion).
In linear regression we have Y = m(X , ϵ) = Xβ + ϵ with E(ϵ|X ) = 0
such that

E(Y ) = E(Xβ + ϵ) = E(X )β

and thus

∆µ =
{
E(Y |G = 0)− E(Y 0|G = 1)

}
+
{
E(Y 0|G = 1)− E(Y |G = 1)

}
= (E(X |G = 0)− E(X |G = 1))β0 + E(X |G = 1)(β0 − β1)

= ∆µX +∆µS
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Aggregate decomposition for nonlinear models

In general, we can write E(Y |X ) = h(X ;β).

In linear regression we have h(X ;β) = Xβ (linear function).

In nonlinear models, however, where h() is a nonlinear function.

For example, if Y is a binary outcome and we use logistic regression,
we have

E(Y |X ) = h(X ;β) =
1

1 + e−Xβ

If h() is nonlinear, then

E(Y ) = E(E(Y |X )) = E(h(X ;β)) ̸= h(E(X );β)

That is, we cannot just plug in E(X ) into h() to obtain E(Y ), as is
done in the linear OB decomposition.
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Aggregate decomposition for nonlinear models

Estimating expressions such as E(Y |G = g) is no problem because
Y is observed; instead of computing h(X̄ g; β̂g) as in the linear OB
decomposition we can simply compute the mean of Y in the G = g
subsample.

How can we estimate a counterfactual such as E(Y 0|G = 1)?

Using h(X̄ 1; β̂0) as in the linear OB decomposition does not work
because in the nonlinear case

E(h(X ;β0)|G = 1) ̸= h(E(X |G = 1);β0)

Instead we have to estimate E(h(X ;β0)|G = 1) directly.

The general solution is to make out-of-sample predictions from the
estimated models, and then average over these predictions, that is,
compute Ŷ 0

i = h(Xi ; β̂
0) and then take the average 1

N1

∑
Gi=1 Ŷ 0

i
where N1 is the number of observations in group 1.
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Aggregate decomposition for nonlinear models

The decomposition estimate then is

∆̂µ =
{
Ê(Y |G = 0)− Ê(Ŷ 0|G = 1)

}
+
{
Ê(Ŷ 0|G = 1)− Ê(Y |G = 1)

}
= ∆̂µX + ∆̂µS

In practice, all we need to know is how to generate
Ŷ = Ê (Y |X ) = h(X ; β̂), that is, we need to know function h().

This illustrates that an aggregate decomposition is possible for just
about any model and variable type.
Bauer and Sinning (2008) provide an overview for various models
and also provide a command called nldecompose that computes the
aggregate decomposition (Sinning et al. 2008).
▶ Supported models are regress, logit, probit, ologit, oprobit,
tobit, intreg, truncreg, poisson, nbreg, zip, zinb, ztp, and
ztnb.
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Detailed decomposition for nonlinear models

Decompositions for nonlinear models have the same general
complications as the linear OB decomposition (index problem,
transformation problem, base category problem for categorical
predictors, correct model specification).
In addition, obtaining a detailed decomposition is not as
straightforward as in the linear decomposition.
▶ Due to the nonlinearity ∆µX and ∆µS cannot be easily subdivided into

additive components; the contribution of a particular X depends on
the values of all other covariates.

▶ There is no “best” way for dealing with this problem.

Some solutions:
▶ Use average marginal effects.
▶ Use a series of counterfactuals switching covariates sequentially.
▶ Linearization around E(X )β.
▶ For binary outcomes: apply the standard OB decomposition to a

linear probability model (LPM).
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Using marginal effects

The idea is to use the standard formulas of the OB decomposition,
but replace the coefficients by average marginal effects.

That is, use

∆̂µ = ∆̂µX + ∆̂µS = (X̄ 0 − X̄ 1)δ̂0 + X̄ 1(δ̂0 − δ̂1)

where δ̂ are average marginal effects of the covariates on E(Y |X ).

The contributions of a single covariate Xk then are

∆̂µX ,Xk
= δ̂0k(X̄

0
k − X̄ 1

k ) and ∆̂µS,Xk
= (δ̂0k − δ̂1k)X̄ 1

k

One problem is that the individual contributions do not add up to
the total.

See Bartus (2006), who provides command gdecomp.
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Using sequential counterfactuals

For computing the contributions to ∆µX , Fairlie (2005) proposes to
sequentially adjust the X variables from one group to the other
(similar approach: Gomulka and Stern 1990).

Let
∆̂µX =

1
N0

∑
Gi=0

h(Xi β̂
0)−

1
N1

∑
Gi=1

h(Xi β̂
0)

Let the two groups be of equal size: N = N0 = N1.

We can then rearrange the data such that the variables of the two
groups are placed side by side (one-to-one matching of observations
between groups); let X 0 and X 1 denote the variables of group 0 and
group 1, respectively.
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Using sequential counterfactuals
The decomposition term can then be written as

∆̂µX = 1
N

∑N
i=1

{
h(X 0

i β̂
0)− h(X 1

i β̂
0)
}

= 1
N

∑N
i=1

{
h(β̂0

0 + β̂0
1X 0

1i + β̂
0
2X 0

2i + · · ·+ β̂0
KX 0

Ki )

− h(β̂0
0 + β̂0

1X 1
1i + β̂

0
2X 1

2i + · · ·+ β̂0
KX 1

Ki )
}

This idea now is to start with X 0
k in both terms and then

sequentially replace X 0
k by X 1

k moving from left to right:

∆̂µX ,X1
= 1

N
∑

i

{
h(β̂0

0 + β̂0
1X 0

1i + β̂
0
2X 0

2i + · · ·+ β̂
0
KX 0

Ki )− h(β̂0
0 + β̂0

1X 1
1i + β̂

0
2X 0

2i + · · ·+ β̂
0
KX 0

Ki )
}

∆̂µX ,X2
= 1

N
∑

i

{
h(β̂0

0 + β̂0
1X 1

1i + β̂
0
2X 0

2i + · · ·+ β̂
0
KX 0

Ki )− h(β̂0
0 + β̂0

1X 1
1i + β̂

0
2X 1

2i + · · ·+ β̂
0
KX 0

Ki )
}

...

∆̂µX ,XK
= 1

N
∑

i

{
h(β̂0

0 + β̂0
1X 1

1i + β̂
0
2X 1

2i + · · ·+ β̂
0
KX 0

Ki )− h(β̂0
0 + β̂0

1X 1
1i + β̂

0
2X 1

2i + · · ·+ β̂
0
KX 1

Ki )
}
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Using sequential counterfactuals

If the sample sizes differ, the suggestion is to use a random sample
of observations from the larger group (and repeat the decomposition
R times and report the average).
▶ In case of sampling weights, the one-to-one matching is problematic.

A solution here is to draw samples form both groups with sampling
probabilities proportional to the weights (and average over R
repetitions).

The sequential approach leads to results that are path dependent.
The suggestion is to randomize the order of the covariates (and
average over R repetitions).

A question also is how to match the observations. In practice the
observations are matched by their ranks in the (group-specific)
distribution of predicted outcomes. (Fairlie (2005) claims, that the
exact procedure should not have a large effect on the results.)
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Using linearization

Yun (2004) suggest determining the individual contributions of the
covariates to ∆µX and ∆µS in relation to their relative contributions in
a decomposition at the level of the linear predictor.

Let Ê(X |G = g) = X̄ g and Ê(h(Xβ)|G = g) = h(Xβ)
g
. The

aggregate decomposition can then be written as

∆̂µ =

{
h(X β̂0)

0
− h(X β̂0)

1
}
+

{
h(X β̂0)

1
− h(X β̂1)

1
}

= ∆̂µX + ∆̂µS

The proposal now is to determine the individual contributions as

∆̂µX ,Xk
=

(X̄ 0
k − X̄ 1

k )β̂
0
k

(X̄ 0 − X̄ 1)β̂0
∆̂µX and ∆̂µS,βk

=
X̄ 1

k (β̂
0
k − β̂1

k )

X̄ 1(β̂0 − β̂1)
∆̂µS

such that
∑K

i=1 ∆̂
µ
X ,Xk

= ∆̂µX and
∑K

i=1 ∆̂
µ
S,Xk

= ∆̂µS .
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Using linearization
Yun (2004) derives this solution by approximating ∆̂µ by evaluating
the functions at the means of the covariates, that is,

∆̂µ ≈ [h(X̄ 0β̂0)− h(X̄ 1β̂0)] + [h(X̄ 1β̂0)− h(X̄ 1β̂1)]

and then further linearizing the differences around X̄ 0β̂0 and X̄ 1β̂1

using a first order Taylor expansion:

∆̂µ ≈ ((X̄ 0 − X̄ 1)β̂0) · d0 + (X̄ 1(β̂0 − β̂1)) · d1

where dg denotes the derivative of h(X̄ gβ̂g).
The relative contributions to this approximate decomposition are

((X̄ 0
k − X̄ 1

k )β̂
0
k )d

0

((X̄ 0 − X̄ 1)β̂0)d0
=

(X̄ 0
k − X̄ 1

k )β̂
0
k

(X̄ 0 − X̄ 1)β̂0
and

(X̄ 1
k (β̂

0
k − β̂1

k ))d
1

(X̄ 1(β̂0 − β̂1))d1
=

X̄ 1
k (β̂

0
k − β̂1

k )

X̄ 1(β̂0 − β̂1)

which are then multiplied by ∆̂µX and ∆̂µS to ensure that the
individual contributions sum up to the correct total.
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Using linearization

A problem of this approach is that it is not clear how good the
approximation is.

If the bulk of the data is in highly nonlinear regions of h(), if
differences in coefficients are large, or differences in the means of
the covariates are large, the approximation may be poor.
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Using LPM

Finally, for binary outcomes, why not simply apply a standard OB
decomposition using a linear probability model (LPM)? (i.e. just
apply oaxaca with default options)

After all, the LPM also models conditional probabilities (albeit
making crudely simplifying functional form assumptions).

It is not apriori clear why an approximate approach such as the Yun
decomposition should be better than an approximate approach such
as the LPM decomposition.

Both approaches will run into similar problems if linearization
approximation is poor.
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Stata implementations
nldecompose aggregate decomposition for various nonlinear mod-

els; no detailed decomposition (Bauer and Sinning
2008)

gdecomp detailed decomposition based on marginal effects for
several nonlinear models (requires margeff) (Bartus
2006)

fairlie Fairlie decomposition for logit and probit (Jann
2006)

mvdcmp Yun decomposition for several nonlinear models
(Powers et al. 2011)

oaxaca LPM decomposition; Yun decomposition for logit
and probit (requires the version of oaxaca from the
SSC Archive; the version archived at the Stata Jour-
nal site is an outdated version that does not support
the Yun decomposition)
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Example: Leadership position and gender
. use gsoep-extract, clear
(Example data based on the German Socio-Economic Panel)
. keep if wave==2015
(29,970 observations deleted)
. keep if inrange(age, 25, 55)
(5,671 observations deleted)
. // Y: supervising others/leadership position
. fre supvis
supvis supervision

Freq. Percent Valid Cum.

Valid 0 no 4174 57.11 72.50 72.50
1 yes 1583 21.66 27.50 100.00
Total 5757 78.77 100.00

Missing . 1552 21.23
Total 7309 100.00

. // covariates

. generate byte male = sex==1

. generate byte female = 1 - male

. summarize yeduc expft exppt male
Variable Obs Mean Std. dev. Min Max

yeduc 7,121 12.28823 2.783974 7 18
expft 7,274 11.63359 9.556508 0 39.5
exppt 7,274 3.271481 5.052598 0 35.25
male 7,309 .4338487 .4956386 0 1
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Gender gap in supervision

. svyset psu [pw=weight], strata(strata)
Sampling weights: weight

VCE: linearized
Single unit: missing

Strata 1: strata
Sampling unit 1: psu

FPC 1: <zero>
. svy: mean supvis if !missing(yeduc, expft, exppt), over(male)
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 15 Number of obs = 5,604
Number of PSUs = 2,064 Population size = 12,551,189

Design df = 2,049

Linearized
Mean std. err. [95% conf. interval]

c.supvis@male
0 .2208335 .0131402 .1950639 .2466031
1 .3676081 .015579 .3370558 .3981604
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Gender differences in characteristics

. svy: mean yeduc expft exppt if !missing(supvis), over(male)
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 15 Number of obs = 5,604
Number of PSUs = 2,064 Population size = 12,551,189

Design df = 2,049

Linearized
Mean std. err. [95% conf. interval]

c.yeduc@male
0 12.89307 .0919486 12.71275 13.07339
1 12.68223 .0976222 12.49078 12.87368

c.expft@male
0 10.69754 .2706955 10.16668 11.22841
1 17.02503 .3402843 16.35769 17.69237

c.exppt@male
0 5.46444 .1884403 5.094886 5.833995
1 1.255 .0998899 1.059104 1.450896
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Outcome model by gender
. bysort male: logit supvis yeduc expft exppt [pw=weight], cluster(psu) nolog

-> male = 0
Logistic regression Number of obs = 2,910

Wald chi2(3) = 25.29
Prob > chi2 = 0.0000

Log pseudolikelihood = -3119723.2 Pseudo R2 = 0.0246
(Std. err. adjusted for 1,697 clusters in psu)

Robust
supvis Coefficient std. err. z P>|z| [95% conf. interval]

yeduc .1233739 .0277228 4.45 0.000 .0690382 .1777095
expft .0234178 .0086989 2.69 0.007 .0063683 .0404673
exppt -.0045416 .0143519 -0.32 0.752 -.0326708 .0235877
_cons -3.119188 .429148 -7.27 0.000 -3.960302 -2.278073

-> male = 1
Logistic regression Number of obs = 2,694

Wald chi2(3) = 30.38
Prob > chi2 = 0.0000

Log pseudolikelihood = -4156367.2 Pseudo R2 = 0.0267
(Std. err. adjusted for 1,560 clusters in psu)

Robust
supvis Coefficient std. err. z P>|z| [95% conf. interval]

yeduc .1359181 .025392 5.35 0.000 .0861508 .1856855
expft .0135046 .0073652 1.83 0.067 -.000931 .0279402
exppt -.0455562 .0275738 -1.65 0.099 -.0995998 .0084875
_cons -2.459027 .3795256 -6.48 0.000 -3.202883 -1.71517
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Aggregate decomposition using nldecompose

. nldecompose, by(male): svy: logit supvis yeduc expft exppt
Number of obs (A) = 2694
Number of obs (B) = 2910

Results Coef. Percentage

Omega = 1
Char .0494556 33.69495%
Coef .097319 66.30505%

Omega = 0
Char .0240527 16.38752%
Coef .1227219 83.61248%

Raw .1467746 100%
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Fairlie decomposition of explained part
. /* pweights are allowed in fairlie, but clustering is not possible (does not
> really matter much because the standard errors are unreliable anyhow).*/
. fairlie supvis yeduc expft exppt [pw=weight], by(female)
(sum of wgt is 6,493,402.3937788)
Iteration 0: Log pseudolikelihood = -1771.764
Iteration 1: Log pseudolikelihood = -1724.64
Iteration 2: Log pseudolikelihood = -1724.4048
Iteration 3: Log pseudolikelihood = -1724.4047
Logistic regression Number of obs = 2694

Wald chi2(3) = 31.01
Prob > chi2 = 0.0000

Log pseudolikelihood = -1724.4047 Pseudo R2 = 0.0267

Robust
supvis Coefficient std. err. z P>|z| [95% conf. interval]

yeduc .1359182 .0252053 5.39 0.000 .0865168 .1853196
expft .0135046 .0073175 1.85 0.065 -.0008374 .0278466
exppt -.0455563 .0279737 -1.63 0.103 -.1003836 .0092711
_cons -2.459027 .3759087 -6.54 0.000 -3.195794 -1.722259

Decomposition replications (100)
1 2 3 4 5

.................................................. 50

.................................................. 100
Non-linear decomposition by female (G) Number of obs = 5,604

N of obs G=0 = 2694
N of obs G=1 = 2910
Pr(Y!=0|G=0) = .3676081
Pr(Y!=0|G=1) = .22083351
Difference = .14677458
Total explained = .04945562

supvis Coefficient Std. err. z P>|z| [95% conf. interval]

yeduc -.0079051 .0016821 -4.70 0.000 -.0112018 -.0046083
expft .0198582 .010628 1.87 0.062 -.0009722 .0406887
exppt .0378633 .0207113 1.83 0.068 -.0027302 .0784568

Decomposition methods 4. Functional form Giesecke/Jann 29



Fairlie results depend on the order of the variables!
. fairlie supvis yeduc expft exppt [pw=weight], by(female) noest
Decomposition replications (100)

1 2 3 4 5
.................................................. 50
.................................................. 100
Non-linear decomposition by female (G) Number of obs = 5,604

N of obs G=0 = 2694
N of obs G=1 = 2910
Pr(Y!=0|G=0) = .3676081
Pr(Y!=0|G=1) = .22083351
Difference = .14677458
Total explained = .04945562

supvis Coefficient Std. err. z P>|z| [95% conf. interval]

yeduc -.0079359 .0016799 -4.72 0.000 -.0112284 -.0046433
expft .0198785 .0106373 1.87 0.062 -.0009703 .0407273
exppt .0375057 .0205228 1.83 0.068 -.0027183 .0777296

. fairlie supvis exppt expft yeduc [pw=weight], by(female) noest
Decomposition replications (100)

1 2 3 4 5
.................................................. 50
.................................................. 100
Non-linear decomposition by female (G) Number of obs = 5,604

N of obs G=0 = 2694
N of obs G=1 = 2910
Pr(Y!=0|G=0) = .3676081
Pr(Y!=0|G=1) = .22083351
Difference = .14677458
Total explained = .04945562

supvis Coefficient Std. err. z P>|z| [95% conf. interval]

exppt .0346824 .0185298 1.87 0.061 -.0016353 .071
expft .0168858 .0091316 1.85 0.064 -.0010118 .0347834
yeduc -.002137 .0021662 -0.99 0.324 -.0063826 .0021086
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Use option “ro” to average over randomized order
. fairlie supvis yeduc expft exppt [pw=weight], ///
> by(female) ro noest nodots reps(1000)
Non-linear decomposition by female (G) Number of obs = 5,604

N of obs G=0 = 2694
N of obs G=1 = 2910
Pr(Y!=0|G=0) = .3676081
Pr(Y!=0|G=1) = .22083351
Difference = .14677458
Total explained = .04945562

supvis Coefficient Std. err. z P>|z| [95% conf. interval]

yeduc -.0050829 .0019619 -2.59 0.010 -.0089281 -.0012377
expft .0184994 .0099459 1.86 0.063 -.0009943 .0379931
exppt .0360213 .019539 1.84 0.065 -.0022744 .074317

. fairlie supvis exppt expft yeduc [pw=weight], ///
> by(female) ro noest nodots reps(1000)
Non-linear decomposition by female (G) Number of obs = 5,604

N of obs G=0 = 2694
N of obs G=1 = 2910
Pr(Y!=0|G=0) = .3676081
Pr(Y!=0|G=1) = .22083351
Difference = .14677458
Total explained = .04945562

supvis Coefficient Std. err. z P>|z| [95% conf. interval]

exppt .0362014 .0196477 1.84 0.065 -.0023073 .0747102
expft .0184674 .0099307 1.86 0.063 -.0009963 .0379312
yeduc -.005155 .0019414 -2.66 0.008 -.00896 -.00135
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Detailed decomposition using mvdcmp
. /* missings are an issue with mvdcmp: we must make sure to exclude these
> observations from the computations; however, mvdcmp does not support the
> if qualifier, so we have to remove the observations from the data; we can
> do this temporarily using -preserve- and -restore- */
. preserve
. keep if !missing(supvis, yeduc, expft, exppt)
(1,705 observations deleted)
. mvdcmp male: logit supvis yeduc expft exppt [pw=weight], cluster(psu)
Decomposition Results Number of obs = 5,604
>

Reference group (A):male==1 Mean = 0.3676
Comparison group (B):male==0 Mean = 0.2208

supvis Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

E 0.04946 0.02023 2.44 0.015 0.00980 0.08911 33.69
C 0.09732 0.02877 3.38 0.001 0.04093 0.15371 66.31

R 0.14677 0.02017 7.28 0.000 0.10725 0.18630
Due to Difference in Characteristics (E)

supvis Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

yeduc -0.00570 0.00104 -5.51 0.000 -0.00773 -0.00367 -3.88
expft 0.01700 0.00942 1.80 0.071 -0.00147 0.03547 11.58
exppt 0.03816 0.02038 1.87 0.061 -0.00178 0.07809 26.00

Due to Difference in Coefficients (C)

supvis Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

yeduc 0.03201 0.09713 0.33 0.742 -0.15837 0.22239 21.81
expft -0.02099 0.02381 -0.88 0.378 -0.06765 0.02567 -14.30
exppt -0.04436 0.03539 -1.25 0.210 -0.11373 0.02501 -30.22
_cons 0.13065 0.10885 1.20 0.230 -0.08269 0.34399 89.02

. restore
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Replication of results from mvdcmp using oaxaca
. oaxaca supvis yeduc expft exppt, by(female) svy weight(1) logit fixed
Blinder-Oaxaca decomposition
Number of strata = 15 Number of obs = 5,604
Number of PSUs = 2,064 Population size = 12,551,189

Design df = 2,049
Model = logit

Group 1: female = 0 N of obs 1 = 2,694
Group 2: female = 1 N of obs 2 = 2,910

explained: (X1 - X2) * b1
unexplained: X2 * (b1 - b2)

Linearized
supvis Coefficient std. err. t P>|t| [95% conf. interval]

overall
group_1 .3676081 .0153498 23.95 0.000 .3375052 .3977109
group_2 .2208335 .0130637 16.90 0.000 .1952141 .2464529

difference .1467746 .0202957 7.23 0.000 .1069723 .1865769
explained .0494556 .020231 2.44 0.015 .0097801 .0891312

unexplained .097319 .0286585 3.40 0.001 .0411161 .1535219

explained
yeduc -.0057019 .0010292 -5.54 0.000 -.0077202 -.0036836
expft .0170019 .0094286 1.80 0.071 -.0014887 .0354926
exppt .0381555 .0203491 1.88 0.061 -.0017515 .0780626

unexplained
yeduc .0320093 .0979024 0.33 0.744 -.1599893 .2240079
expft -.020988 .0240864 -0.87 0.384 -.0682244 .0262483
exppt -.0443567 .0355656 -1.25 0.212 -.1141052 .0253918
_cons .1306544 .1094276 1.19 0.233 -.0839464 .3452552
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. . . with consistent standard errors
. oaxaca supvis yeduc expft exppt, by(female) svy weight(1) logit
Blinder-Oaxaca decomposition
Number of strata = 15 Number of obs = 5,604
Number of PSUs = 2,064 Population size = 12,551,189

Design df = 2,049
Model = logit

Group 1: female = 0 N of obs 1 = 2,694
Group 2: female = 1 N of obs 2 = 2,910

explained: (X1 - X2) * b1
unexplained: X2 * (b1 - b2)

Linearized
supvis Coefficient std. err. t P>|t| [95% conf. interval]

overall
group_1 .3676081 .0156415 23.50 0.000 .3369332 .398283
group_2 .2208335 .0132286 16.69 0.000 .1948906 .2467764

difference .1467746 .0205677 7.14 0.000 .1064388 .1871104
explained .0494556 .0206577 2.39 0.017 .0089434 .0899678

unexplained .097319 .0287181 3.39 0.001 .0409992 .1536387

explained
yeduc -.0057019 .0032543 -1.75 0.080 -.0120839 .0006801
expft .0170019 .0094945 1.79 0.073 -.0016179 .0356218
exppt .0381555 .0204462 1.87 0.062 -.0019419 .078253

unexplained
yeduc .0320093 .0979031 0.33 0.744 -.1599907 .2240093
expft -.020988 .0240933 -0.87 0.384 -.0682379 .0262619
exppt -.0443567 .0355949 -1.25 0.213 -.1141627 .0254493
_cons .1306544 .1094296 1.19 0.233 -.0839504 .3452592
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Detailed decomposition based on LPM
. oaxaca supvis yeduc expft exppt, by(female) svy weight(1)
Blinder-Oaxaca decomposition
Number of strata = 15 Number of obs = 5,604
Number of PSUs = 2,064 Population size = 12,551,189

Design df = 2,049
Model = linear

Group 1: female = 0 N of obs 1 = 2,694
Group 2: female = 1 N of obs 2 = 2,910

explained: (X1 - X2) * b1
unexplained: X2 * (b1 - b2)

Linearized
supvis Coefficient std. err. t P>|t| [95% conf. interval]

overall
group_1 .3676081 .0156271 23.52 0.000 .3369614 .3982548
group_2 .2208335 .0132361 16.68 0.000 .1948759 .2467912

difference .1467746 .0205591 7.14 0.000 .1064557 .1870934
explained .0503704 .021876 2.30 0.021 .0074689 .093272

unexplained .0964042 .0296137 3.26 0.001 .0383281 .1544802

explained
yeduc -.0065329 .0037626 -1.74 0.083 -.0139119 .000846
expft .0189387 .0103364 1.83 0.067 -.0013322 .0392096
exppt .0379646 .020897 1.82 0.069 -.0030169 .0789461

unexplained
yeduc .1269097 .0971622 1.31 0.192 -.0636372 .3174566
expft -.0095913 .0238722 -0.40 0.688 -.0564076 .0372249
exppt -.0447754 .0297591 -1.50 0.133 -.1031367 .0135858
_cons .0238612 .1051331 0.23 0.820 -.1823177 .2300402
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Note on separation of direct and indirect effects

The Fairlie decomposition is sometimes used in social mobility
research to separate direct and indirect effects of parental status.

Example: dependent variable is college graduation, predictors are
ability (e.g., measured by standardized tests at end of secondary
school) and parental socio-economic status (SES).

If parental SES has only two values (high, low) one could use the
Fairlie decomposition to evaluate how much of the difference in
graduation rates between the low SES class and the high SES class
is explained by ability (this is the indirect effect; the unexplained part
is the direct effect).

However, different methods are usually employed in this research
field (see, e.g., Karlson et al. 2012 and Breen et al. 2013).
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Exercise 4
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