Decomposition Methods in the Social Sciences GESIS Training Course January 29 – February 1, 2024, Cologne

> Johannes Giesecke (Humboldt University Berlin) Ben Jann (University of Bern)

> > 7. RIF decomposition

Beyond the mean: recap

- The discussed Oaxaca-Blinder procedures and their extensions to non-linear models focus on the decomposition of differences in the expected value (mean) of an outcome variable.
- In many cases, however, one is interested in other distributional statistics, say the Gini coefficient or the D9/D1 quantile ratio, or even in whole distributions (density curves, Lorenz curves).
- The basic setup is the same; an estimate of F_{Y^g|G≠g} is needed to be able to compute a decomposition such as

$$\begin{aligned} \Delta^{\nu} &= \nu (F_{Y|G=0}) - \nu (F_{Y|G=1}) \\ &= \left\{ \nu (F_{Y|G=0}) - \nu (F_{Y^0|G=1}) \right\} + \left\{ \nu (F_{Y^0|G=1}) - \nu (F_{Y|G=1}) \right\} \\ &= \Delta^{\nu}_X + \Delta^{\nu}_S \end{aligned}$$

where

$$F_{Y^g|G\neq g}(y) = \int F_{Y|X,G=g}(y|x) f_{X|G\neq g}(x) \, dx$$

Beyond the mean

• Several approaches have been proposed in the literature:

- Estimating $F_{Y^g|G\neq g}$ by reweighting (DiNardo et al. 1996).
- Estimating $\nu(F_{Y^g|G\neq g})$ via recentered influence function regression (Firpo et al. 2007, 2009)
- Imputing values for Y^g in group $G \neq g$
 - ★ based on regression residuals (Juhn et al. 1993)
 - based on quantile regression (Machado and Mata 2005, Melly 2005, 2006)
- Estimating $F_{Y^g|G\neq g}$ by distribution regression (Chernozhukov et al. 2013)
- We have already looked at reweighting. Now, we will look at recentered influence function (RIF) regression.

Approach based on RIF regression

- A simple approach that was porposed by Firpo et al. (2007, 2009) is based on so-called RIF regression (RIF = recentered influence function). RIF regression allows approximate Oaxaca-Blinder type decompositions for almost any distributional statistic of interest.
- Decompositions based on RIF regression has several advantages:
 - It is computationally quite easy.
 - It offers an easy way to obtain detailed decomposition of composition effect.
 - It offers an easy way to obtain consistent standard errors.

Influence functions

- An influence function is a function that quantifies how a target statistic changes in response to small changes in the data. That is, for each value y, the influence function IF $(y; v, F_Y)$ provides an approximation of how the functional $\nu(F_Y)$ changes if a small probability mass is added at point y.
- Influence functions are used in robust statistics to describe the robustness properties of various statistic (a robust statistic has a bounded influence function).
- There is also a close connection to the sampling variance of a statistic. The asymptotic sampling variance of a statistic is equal to the sampling variance of the mean of the influence function. Therefore, influence functions provide an easy way to estimate standard errors for many statistics (e.g. inequality measures).

RIF regression

• For example, the influence function of quantile Q_p is

$$\mathsf{IF}(y; Q_p, F_Y) = \frac{p - l(y \le Q_p)}{f_Y(Q_p)}$$

• Influence functions are centered around zero (that is, have an expected value of zero). To center an influence function around the statistic of interest, we can simply add the statistic to the influence function. This is called a recentered influence function

$$\mathsf{RIF}(y;\nu,F_Y) = \nu(F_Y) + \mathsf{IF}(y;\nu,F_Y)$$

 The idea now is to model the conditional expectation of RIF(y; ν, F_Y) using regression models, e.g. using a linear model

$$\mathsf{E}(\mathsf{RIF}(Y;\nu,F_Y)|X) = X\gamma$$

 Coefficient γ thus provides an approximation of how ν(F_Y) reacts to changes in X.

RIF regression decomposition

- In practice, taking the example of a quantile, we would first compute the sample quantile \hat{Q}_p and then use kernel density estimation to get $\hat{f}(\hat{Q}_p)$, the density of Y at point \hat{Q}_p .
- RIF(*Y_i*; *Q_p*, *F_Y*) is then computed for each observation by plugging these estimates in to the above formula.
- Finally, we regress $RIF(Y_i; Q_p, F_Y)$ on X to get an estimate of γ .
- Using the coefficients from RIF regression in two groups, we can perform an Oaxaca-Blinder type decomposition for Q_p . For example:

$$\widehat{\Delta}^{Q_p} = \widehat{\Delta}^{Q_p}_X + \widehat{\Delta}^{Q_p}_S = (ar{X}^0 - ar{X}^1) \widehat{\gamma}^0 + ar{X}^1 (\widehat{\gamma}^0 - \widehat{\gamma}^1)$$

• A similar procedure can be followed for any other statistic $\nu(F_Y)$. All you have to know is the influence function, which is usually easy to find in the statistical literature.

Stata implementation

• Command rifreg provides RIF regression for quantiles, the Gini coefficient, and the variance. It can be obtained from https://sites.google.com/view/nicole-m-fortin/data-and-programs.

The RIF variables stored by rifreg can then be used in oaxaca.

- There is also a relatively new package called rif (Rios-Avila 2020) that streamlines the computation of the RIF and subsequent application if oaxaca.
 - Type: ssc install rif
 - egen function to generate RIFs: help rifvar
 - streamlined RIF-OB decomposition: help oaxaca_rif
- Highly accurate influence functions for a very large number of statistics can also be computed by command dstat (Jann 2020; type ssc install dstat).
 - The procedure is to call dstat with option rif() to save the RIF, then apply oaxaca to the RIF.

Example analysis: private-public gap in wage inequality

```
. use gsoep-extract, clear
(Example data based on the German Socio-Economic Panel)
. keep if wave==2015
(29,970 observations deleted)
. keep if inrange(age, 25, 55)
(5.671 observations deleted)
. generate lnwage = ln(wage)
(1.709 missing values generated)
. generate expft2 = expft^2
(35 missing values generated)
. svyset psu [pw=weight], strata(strata)
Sampling weights: weight
             VCE: linearized
     Single unit: missing
        Strata 1: strata
Sampling unit 1: psu
           FPC 1 · <zero>
```

. summarize wage lnwage yeduc expft expft2 public

Variable	Obs	Mean	Std. dev.	Min	Max
wage	5,600	17.57278	9.858855	3.03	121.42
Inwage yeduc	5,600	2.736721 12.28823	.5062968 2.783974	1.108563 7	4.799255 18
expft expft2	7,274 7,274	11.63359 226.6548	9.556508 293.3739	0	39.5 1560.25
public	5,770	.2353553	.4242574	0	1

. drop if missing(lnwage, yeduc, expft, public) // remove unused observation (1,851 observations deleted)

We look at the variance of log wages

rifreg computes the RIF and then applies regress

```
. rifreg lnwage yeduc expft expft2 ///
```

```
> [aw=weight] /// rifreg does not allow pweights
```

```
> if public==0, variance retain(RIF)
```

(1,274 missing values generated)

Source	SS	df	MS		Number of obs	= 4184
					F(3, 4180)	= 20.18
Model	8.4861949	32	.82873163		Prob > F	= 0.0000
Residual	585.814051	4180 .	140146902		R-squared	= 0.0143
					Adj R-squared	= 0.0136
Total	594.300246	4183 .	142075125		Root MSE	= .37436
RIF	Coefficient	Std. er:	r. t	P> t	[95% conf.	interval]
RIF	Coefficient	Std. er:	r. t 1 4.96	P> t	[95% conf.	interval] .0154361
	Coefficient .0110638 0079049	Std. er: .002230	r. t 1 4.96 7 -3.74	P> t 0.000 0.000	[95% conf. .0066916 0120449	interval] .0154361 0037648
RIF yeduc expft expft2	Coefficient .0110638 0079049 .0001593	Std. er: .002230 .002111 .000062	r. t 1 4.96 7 -3.74 6 2.54	P> t 0.000 0.000 0.011	[95% conf. .0066916 0120449 .0000365	.0154361 0037648 .000282

. regress RIF yeduc expft expft2 [pw=weight], noheader (sum of wgt is 9,231,938.5954959)

RIF	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
yeduc	.0110638	.0048886	2.26	0.024	.0014797	.020648
expft	0079049	.0042057	-1.88	0.060	0161503	.0003406
expft2	.0001593	.0001063	1.50	0.134	0000492	.0003677
_cons	.1776732	.0838222	2.12	0.034	.013337	.3420093

How does the RIF of the variance look like?

RIF decomposition (using rifreg and oaxaca)

. quietly rifreg lnwage [aw=weight] if public==0, variance retain(RIFprivate)

. quietly rifreg lnwage [aw=weight] if public==1, variance retain(RIFpublic)

. generate double RIF = cond(public==1, RIFpublic, RIFprivate)

```
. oaxaca RIF yeduc (experience: expft expft2), by(public) weight(1) svy
```

Blinder-Daxaca decomposition

Number of strata = 15	Number of obs	=	5,458
Number of PSUs = 2,036	Population size	=	12,146,771
	Design df	=	2,021
	Model	=	linear
Group 1: public = 0	N of obs 1	=	4,184
Group 2: public = 1	N of obs 2	=	1,274
explained: (X1 - X2) * b1			

unexplained: X2 * (b1 - b2)

RIF	Coefficient	Linearized std. err.	t	P> t	[95% conf.	interval]
overall						
group_1	. 250799	.0098871	25.37	0.000	.2314091	.2701889
group_2	.1968692	.0178071	11.06	0.000	.1619471	.2317913
difference	.0539298	.0203778	2.65	0.008	.0139661	.0938935
explained	0207047	.0079636	-2.60	0.009	0363224	005087
unexplained	.0746345	.0205978	3.62	0.000	.0342395	.1150296
explained						
veduc	0181894	.0082889	-2.19	0.028	0344451	0019337
experience	0025153	.0020614	-1.22	0.223	006558	.0015273
unexplained						
veduc	.1189914	.1087014	1.09	0.274	0941871	.3321699
experience	.0791311	.0569362	1.39	0.165	0325288	. 1907909
_cons	1234879	.1439615	-0.86	0.391	4058165	.1588406

experience: expft expft2

. drop RIF*

RIF decomposition (using rifvar and oaxaca)

. egen double RIF = rifvar(lnwage), var by(public) weight(weight) . oaxaca RIF yeduc (experience: expft expft2), by(public) weight(1) svy Blinder-Oaxaca decomposition

Number of strata = 15	Number of obs	=	5,45
Number of PSUs = 2,036	Population size	= :	12,146,77
	Design df	=	2,02
	Model	=	linea
Group 1: public = 0	N of obs 1	=	4,18
Group 2: public = 1	N of obs 2	=	1,27
explained: (X1 - X2) * b1 unexplained: X2 * (b1 - b2)			

RIF	Coefficient	Linearized std. err.	t	P> t	[95% conf.	interval]
overall						
group_1	.250799	.0098871	25.37	0.000	.2314091	.2701889
group_2	.1968692	.0178071	11.06	0.000	.1619471	.2317913
difference	.0539298	.0203778	2.65	0.008	.0139661	.0938935
explained	0207047	.0079636	-2.60	0.009	0363224	005087
unexplained	.0746345	.0205978	3.62	0.000	.0342395	.1150296
explained						
veduc	0181894	.0082889	-2.19	0.028	0344451	0019337
experience	0025153	.0020614	-1.22	0.223	006558	.0015273
unexplained						
veduc	.1189914	.1087014	1.09	0.274	0941871	.3321699
experience	.0791311	.0569362	1.39	0.165	0325288	.1907909
_cons	1234879	.1439615	-0.86	0.391	4058164	.1588406

experience: expft expft2

. drop RIF

RIF decomposition (using oaxaca_rif)

. oaxaca_rif lnwage yeduc (experience: expft ex	cpft2) ///	
> [pw=weight], by(public) wgt(1) rif(var) c	cluster(psu)	
No Reweighted Strategy Choosen		
Estimating Standard RIF-OAXACA using RIF:var		
Model : Blinder-Oaxaca RIF-decomposition		
Type : Standard		
RIF : var		
Scale : 1		
Group 1: public = 0 x1*b1	N of obs 1	= 4184
Group c: x2*b1	N of obs C	=
Group 2: public = 1 x2*b2	N of obs 2	= 1274

(Std. err. adjusted for 2,036 clusters in psu)

lnwage	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
overall						
group_1	. 250799	.0098877	25.36	0.000	.2314195	.2701784
group_2	. 1968692	.0177784	11.07	0.000	.1620242	.2317142
difference	.0539298	.0203614	2.65	0.008	.0140222	.0938374
explained	0207047	.0079782	-2.60	0.009	0363417	0050677
unexplained	.0746345	.0206196	3.62	0.000	.0342209	.1150482
explained						
veduc	0181894	.0083108	-2.19	0.029	0344784	0019005
experience	0025153	.0020632	-1.22	0.223	0065592	.0015285
unexplained						
yeduc	.1189914	.1088647	1.09	0.274	0943795	.3323624
experience	.0791311	.0568256	1.39	0.164	032245	.1905071
_cons	1234879	.1439222	-0.86	0.391	4055703	. 1585944

experience: expft expft2

RIF decomposition (using dstat and oaxaca)

. quietly dstat (variance(0)) lnwage [pw=weight], over(public) rif(RIF, compact) . oaxaca RIF yeduc (experience: expft expft2), by(public) weight(1) svy Blinder-Oaxaca decomposition

Number of strata = 15	Number of obs	=	5,458
Number of PSUs = 2,036	Population size	=	12,146,771
	Design df	=	2,021
	Model	=	linear
Group 1: public = 0	N of obs 1	=	4,184
Group 2: public = 1	N of obs 2	=	1,274
explained: (X1 - X2) * b1 unexplained: X2 * (b1 - b2)			

RIF	Coefficient	Linearized std. err.	t	P> t	[95% conf.	interval]
overall						
group_1	.250799	.0098871	25.37	0.000	.2314091	.2701889
group_2	. 1968692	.0178071	11.06	0.000	.1619471	.2317913
difference	.0539298	.0203778	2.65	0.008	.0139661	.0938935
explained	0207047	.0079636	-2.60	0.009	0363224	005087
unexplained	.0746345	.0205978	3.62	0.000	.0342395	.1150296
explained						
veduc	0181894	.0082889	-2.19	0.028	0344451	0019337
experience	0025153	.0020614	-1.22	0.223	006558	.0015273
unexplained						
veduc	.1189914	.1087014	1.09	0.274	0941871	.3321699
experience	.0791311	.0569362	1.39	0.165	0325288	.1907909
_cons	1234879	.1439615	-0.86	0.391	4058164	.1588406

experience: expft expft2

. drop RIF*

Reweighted RIF decomposition

- RIF regression provides linear approximations of effects of *small* changes in the data on the statistic of interest. However, effects on statistics such as inequality measures are likely to be highly nonlinear and interaction effects are also likely.
- It might therefore be important to use a flexible specification of the RIF regression.
- Since in the decomposition we evaluate potentially *large* changes, Firpo et al. (2018) suggest to combine the RIF decomposition with reweighting (analogous to the reweighted OB decomposition). This will quantify the specification error.
- oaxaca_rif has a built-in option to perform such reweighted RIF decompositions (although standard errors may not be reliable). In the exercises we will try to construct the reweighted RIF decomposition manually.

Reweighted RIF decomposition (using oaxaca_rif)

. oaxa	.ca_	rif lnwage yeduc (experience: expft expf	ft2	2) /	'//			
>	[pw	<pre>r=weight], by(public) cluster(psu) wgt(1)</pre>) 1	rif((var)	///		
>	rwl	.ogit(c.yeduc##c.expft##c.expft)						
Estima	tir	ng Reweighted RIF-OAXACA using RIF:var						
Model	:	Blinder-Oaxaca RIF-decomposition						
Туре	:	Reweighted						
RIF	:	var						
Scale	:	1						
Group	1:	public = 0 x1*b1	Ν	of	obs	1	=	4184
Group	с:	X1~>rw~>X2 or x2*b1	Ν	of	obs	С	=	4184
Group	2:	public = 1 x2*b2	N	of	obs	2	=	1274

(Std. err. adjusted for 2,036 clusters in psu)

lnwage	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
Overall						
group_1	.250799	.0098048	25.58	0.000	.231582	.270016
group_c	.2678071	.0052595	50.92	0.000	.2574986	.2781155
group_2	. 1968692	.0182572	10.78	0.000	.1610858	.2326526
tdifference	.0539298	.0207419	2.60	0.009	.0132764	.0945832
t_explained	0170081	.0110085	-1.54	0.122	0385843	.0045681
t_unexplained	.0709379	.0377126	1.88	0.060	0029776	.1448533
explained						
total	0170081	.0110085	-1.54	0.122	0385843	.0045681
p_explained	0209147	.0116102	-1.80	0.072	0436702	.0018408
specif_err	.0039066	.0132571	0.29	0.768	0220768	.0298901

Reweighted RIF decomposition (using oaxaca_rif)

p_explained yeduc experience	0185053 0024094	.012529 .0016408	-1.48 -1.47	0.140 0.142	0430617 0056253	.006051 .0008065
specif_err veduc	. 1059227	.080579	1.31	0.189	0520092	.2638546
experience _cons	0274095 0746065	.0339557 .0992839	-0.81 -0.75	0.420 0.452	0939614 2691994	.0391424 .1199864
unexplained						
total	.0709379	.0377126	1.88	0.060	0029776	.1448533
rwg_error	.0000329	.0015476	0.02	0.983	0030004	.0030662
p_unexplained	.070905	.0376173	1.88	0.059	0028235	. 1446335
p_unexplained						
yeduc	.0132832	.1802001	0.07	0.941	3399024	.3664689
experience	. 1065032	.1037578	1.03	0.305	0968585	. 3098648
_cons	0488814	.2429951	-0.20	0.841	5251432	.4273803
rwg_error						
- yeduc	.0001014	.0006713	0.15	0.880	0012143	.0014171
experience	0000685	.0011994	-0.06	0.954	0024193	.0022823

experience:

expft

expft2

i.

Exercise 7

References

- Chernozhukov, Victor, Iván Fernández-Val, Blaise Melly (2013). Inference on Counterfactual Distributions. Econometrica 81(6):2205–2268.
- DiNardo, John E., Nicole Fortin, Thomas Lemieux (1996). Labour Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach. Econometrica 64(5):1001–1046.
- Firpo, Sergio, Nicole Fortin, Thomas Lemieux (2007). Decomposing Wage Distributions using Recentered Influence Function Regressions. Working paper.
- Firpo, Sergio, Nicole M. Fortin, Thomas Lemieux (2009). Unconditional Quantile Regressions. Econometrica 77:953–973.
- Firpo, Sergio, Nicole M. Fortin, Thomas Lemieux (2018). Decomposing Wage Distributions Using Recentered Influence Function Regressions. Econometrics 6(2): 28.
- Jann, Ben (2020). dstat: Stata module to compute summary statistics and distribution functions including standard errors and optional covariate balancing. Available from http://ideas.repec.org/c/boc/bocode/s458874.html.
- Juhn, Chinhui, Kevin M. Murphy, Brooks Pierce (1993). Wage Inequality and the Rise in Returns to Skill. Journal of Political Economy 101(3):410–442.

References

- Machado, José A. F., José Mata (2005). Counterfactual decomposition of changes in wage distributions using quantile regression. Journal of Applied Econometrics 20(4):445–465.
- Melly, Blaise (2005). Decomposition of differences in distribution using quantile regression. Labour Economics 12(4):577–590.
- Melly, Blaise (2006). Estimation of counterfactual distributions using quantile regression. University of St. Gallen, Discussion Paper.
- Rios-Avila, Fernando (2020). Recentered influence functions (RIFs) in Stata: RIF regression and RIF decomposition. The Stata Journal 20(1):51–94