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ABSTRACT 
An objective measure of brain maturation is highly insightful for monitoring both typical and 

atypical development. Slow wave activity, recorded in the sleep electroencephalogram (EEG), 

reliably indexes changes in brain plasticity with age, as well as deficits related to developmental 

disorders such as attention-deficit hyperactivity disorder (ADHD). Unfortunately, measuring 

sleep EEG is resource-intensive and burdensome for participants. We therefore aimed to de-

termine whether wake EEG could likewise index developmental changes in brain plasticity. We 

analyzed high-density wake EEG collected from 163 participants 3-25 years old, before and after 

a night of sleep. We compared two measures of oscillatory EEG activity, amplitudes and density, 

as well as two measures of aperiodic activity, intercepts and slopes. Furthermore, we compared 

these measures in patients with ADHD (8-17 y.o., N=58) to neurotypical controls. We found that 

wake oscillation amplitudes behaved the same as sleep slow wave activity: amplitudes de-

creased with age, decreased after sleep, and this overnight decrease decreased with age. Oscil-

lation densities were also substantially age-dependent, decreasing overnight in children and 

increasing overnight in adolescents and adults. While both aperiodic intercepts and slopes de-

creased linearly with age, intercepts decreased overnight, and slopes increased overnight. 

Overall, our results indicate that wake oscillation amplitudes track both development and sleep 

need, and overnight changes in oscillation density reflect some yet-unknown shift in neural 

activity around puberty. No wake measure showed significant effects of ADHD, thus indicating 

that wake EEG measures, while easier to record, are not as sensitive as those during sleep. 

INTRODUCTION 
The EEG is one of few tools available to study the human developing brain already from birth 

(Korotchikova et al., 2009). It is non-invasive, relatively cheap, and provides a real-time readout 

of neuronal activity. It is an incredibly rich signal, with the potential as a prognostic and diag-

nostic tool for both typical development and disease. Sleep EEG, and in particular slow wave 

activity (SWA, 0.5-4 Hz) during NREM sleep, has proven especially sensitive to brain maturation 

(Campbell & Feinberg, 2009) and developmental disorders such as ADHD (Furrer et al., 2019). 

This is because SWA reflects the overall synchronicity of the brain, which decreases with age 

following decreasing synaptic density across adolescence (Campbell & Feinberg, 2009; Hut-

tenlocher, 1979; Jenni & Carskadon, 2004), and may be lower in ADHD due to reduced cortical 

thickness (Shaw et al., 2006). Furthermore, SWA is greater in occipital regions in younger chil-

dren, and greater in frontal regions in adolescents and adults (Kurth et al., 2010), possibly re-

flecting the slower maturation of higher order association areas (Shaw et al., 2008).  
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In addition to these developmental phenomena, SWA reflects the buildup and dissipation of 

sleep need, increasing following wake and decreasing during sleep (Borbély, 1982). These hour-

ly changes in SWA are hypothesized to reflect synaptic plasticity: synaptic strength increases 

with wake and daytime learning and decreases during sleep (Tononi & Cirelli, 2003, 2014). Gen-

erally, plasticity decreases with brain maturation across childhood and adolescence and this is 

reflected in decreases in the daytime and overnight changes in SWA with age (Jaramillo et al., 

2020). Thus, both absolute SWA and changes in SWA are markers of brain development, reflect-

ing synaptic density and synaptic plasticity respectively. 

Sleep data is highly informative but can be burdensome to collect, involving either a sleep la-

boratory or at-home measurements, somewhat uncomfortable sleeping conditions which can 

affect sleep quality, and several hours of recordings to process. Wake EEG is much more acces-

sible, typically measured in the span of minutes to a couple hours. Traditionally, EEG during 

both sleep and wake is quantified as spectral power, which summarizes a time signal by indicat-

ing how much of any given frequency is present in that signal (Cohen, 2014). However, greater 

insights into neuronal activity can be derived from more specific analyses (Donoghue et al., 

2020). 

The EEG is made up of both periodic activity and aperiodic activity (Figure 1A). Periodic activity 

refers to oscillations, which appear as quasi-gaussian bumps in the power spectrum at their 

corresponding frequency. Instead, aperiodic activity is a form of background “noise,” producing 

the characteristic 1/f curve in the EEG power spectrum. Aperiodic activity is defined by its inter-

cept (reflecting the overall aperiodic power) and slope (the steepness of the curve), both of 

which can change across development, conscious states, and pathology (Bódizs et al., 2021; 

Cellier et al., 2021; Colombo et al., 2019, 2023; Favaro et al., 2023; Hill et al., 2022; Horváth et al., 

2022; Ostlund et al., 2021; Robertson et al., 2019; Schneider et al., 2022; Tröndle et al., 2022). 

Changes in slope in particular are hypothesized to reflect alterations in excitatory/inhibitory 

balance of neuronal activity (Gao et al., 2017). 

Aperiodic activity is quantified with spectral power. Periodic activity can likewise be quantified 

with power, by simply subtracting the aperiodic activity from overall power (giving periodic 

power, Figure 1A), however this misses two important independent changes that can happen to 

oscillations: they can change in amplitude, and they can change in density (Figure 1B). The ampli-

tudes of oscillations reflect the synchronicity of the oscillating neuronal population, and that 

synchronicity is determined both by the number of neurons in phase with each other and the 

strength of their synaptic connections. Whether an oscillation occurs at all (i.e., density) will in-
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stead depend on the activity of “pacemaker” interneurons which entrain a population of neu-

rons to the same rhythm (Le Bon-Jego & Yuste, 2007; Perkel et al., 1964), and this activity will be 

in service of some underlying function that will come and go as needed. In short, amplitude 

reflects synchronicity and density reflects activity. 

Since oscillation amplitudes reflect synchronicity, this means they should reflect the same in-

formation as SWA measured during sleep. Supporting this, in an extended wake study in young 

adults, we found that wake oscillation amplitudes increased along a saturating exponential with 

time awake, and decreased following sleep (Snipes et al., 2023), thus following the same trajec-

tories as SWA (Borbély, 1982; Dijk et al., 1987). Instead, theta oscillation densities (4-8 Hz) in-

creased linearly with wake, and alpha oscillation densities (8-12 Hz) decreased, supporting the 

specificity of the effect to amplitudes, and masking the relationship to sleep need when only 

evaluating spectral power. 

Given these results, we hypothesized that wake oscillation amplitudes should behave like sleep 

slow waves also across development: absolute amplitudes should decrease with age, and over-

night changes in amplitude should decrease with age. Likewise, changes in amplitudes should 

also manifest an anterior-posterior gradient with age: larger amplitudes in occipital regions in 

children and larger in frontal regions in adults. Finally, given that children with ADHD have low-

er sleep SWA than age-matched controls, they should likewise have lower wake amplitudes. In 

short, if both wake amplitudes and sleep slow waves are supposed to reflect brain-wide syn-

chronicity, then wake amplitudes should also reflect sleep need, brain development, and the 

pathophysiology of ADHD. We further hypothesized that all these effects would be specific to 

amplitudes, with other wake EEG parameters changing independently with sleep and age.  

To answer these questions, we analyzed data collected from previous studies at the University 

Children's Hospital of Zurich, with high-density wake EEG recordings measured the evening 

before and morning after a night of sleep. The final dataset included 105 neurotypical partici-

pants from the ages of 3.5 to 25, and 58 participants with ADHD (details in Table 1 and Table 2).  
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Figure 1: EEG outcome measures. A: Measures based on spectral power. Given the nature of power, it is 
traditionally analyzed log-transformed to have more normally distributed values. These are then aggre-
gated into bands. Here, we focus on classical wake EEG bands: theta (4-7 Hz, yellow), alpha (8-11 Hz, or-
ange) and low beta (12-16 Hz, red), with gaps between bands to avoid overlapping information. The exam-
ple comes from a 15-year-old male participant, used for the entire figure. The EEG signal is composed of 
aperiodic “background activity” (gray parts in B) and oscillatory activity (colored parts in B). When plotting 
the power spectrum on a log-log scale, a line can be fitted to the aperiodic component of the signal, which 
can be subtracted from the whole spectrum, leaving behind only periodic power. The aperiodic line can 
then be quantified by its intercept (where it intersects 0 on the log-log scale, i.e. the log power at 1 Hz), 
and its slope (how tilted it is). Thus, the power spectrum provides four main outcome measures: log-
transformed power, periodic power, slope and intercept of the aperiodic signal. B: Cycle-by-cycle analysis 
is used to detect bursts of oscillations (see methods) by identifying sections of the EEG signal that show 
periodic activity (colored), relative to the aperiodic background activity (gray sections). Once bursts are 
detected, there are two main parameters to quantify them: density (how much of the signal in time con-
tains an oscillation) and amplitude (average peak-to-peak voltage of each oscillation). Densities are ex-
pressed in percentage, and when pooling bursts detected in all channels, they can easily exceed 100%, as 
the same burst will appear in multiple channels. Amplitudes are in microvolts. The EEG trace was stitched 
together for illustrative purposes. N.B. beta periodic power is lower than alpha periodic power (in panel A), 
but their densities (in B) are roughly the same; this is because periodic power is also influenced by the 
lower amplitudes of low beta compared to alpha. 

RESULTS 

Wake oscillation amplitudes decrease with both sleep and age 

To determine whether any wake EEG measure was related to development, sleep or ADHD, we 

conducted linear mixed effects models for each measure (amplitude, density, slope, intercept), 

pooling data across channels and frequencies (4-16 Hz; the range of most oscillatory activity). 

The same models were conducted for power and periodic power to evaluate the extent to which 

these summary measures followed similar trajectories. We had as fixed factors Task (oddball vs. 

go/no-go, alertness & fixation), Sleep (evening before sleep vs. morning after), Age, Sleep by Age 

interaction, Group (controls vs. ADHD), and Sex (female vs. male), and nested mixed factors Ses-
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sion and Participant. The full outputs of the models are provided in Suppl. Data 1. β estimates of 

continuous variables (e.g., age) indicate by how much the EEG “outcome” measure changes for 

each unit of the continuous variable (e.g., 1 year) when all other variables are 0. Similarly, the 

estimates of categorical variables (e.g. group) indicate how much the EEG measure changes 

from that category (e.g., ADHD) to the baseline category (e.g., controls), for all other factors set 

to 0. T-values allow a comparison of the magnitude of the effect of each factor. To visualize the 

main effects of age, Figure 2 provides the correlation between participants and each EEG meas-

ure of the oddball task (the most common task in the widest age range) in the evening and 

morning, as well as the overnight change. Rho values are provided in each plot as effect sizes. 

As predicted, oscillation amplitudes significantly decreased with age, decreasing by 0.79 μV per 

year older (beta = -0.783, t = -11.33, p < .001, df = 1234). Amplitudes decreased significantly fol-

lowing sleep (beta = -3.977, t = -15.90, p < .001, df = 1234), with a significant positive interaction 

(beta = 0.143, t = 7.74, p < .001, df = 1234), such that amplitudes decreased less overnight with 

increasing age (Figure 2, bottom row). Amplitudes were lower in males than females (beta = -

1.476, t = -2.38, p = .017, df = 1234), and were not significantly different in participants with 

ADHD (beta = -0.574, t = -0.89, p = .373, df = 1234). As can be seen in Figure 2, the relationship 

between age and amplitudes was quite robust, both as absolute values (ρeve = -.66, ρmor = -.63) 

and overnight changes (ρ = .56). Overall, amplitudes matched our predictions, except for ADHD: 

they were larger in young children, and the overnight change was larger in young children. 

Oscillation density significantly decreased with age (beta = -3.540, t = -2.11, p = .035, df = 1234), 

and with sleep (beta = -77.506, t = -10.39, p < .001, df = 1234), with a significant positive interac-

tion between age and sleep (beta = 4.878, t = 8.85, p < .001, df = 1234). Unlike amplitudes, the 

correlation between age and density was weak (ρeve = -.28, ρmor = .01). Instead, the correlation 

between age and overnight change in density was quite strong (ρ = .57), such that oscillation 

densities decreased overnight in children under 15 and increased in adults (Figure 2). There was 

no effect of ADHD (eta = -0.154, t = -0.01, p = .992, df = 1234) or sex (beta = -16.446, t = -1.10, p = 

.271, df = 1234). Overall, oscillation density behaved independently from amplitudes, especially 

in the direction of overnight changes in adolescents and adults. 

Aperiodic slopes became significantly shallower with age (beta = -0.027, t = -9.23, p < .001, df = 

1234) but significantly steeper overnight (beta = 0.099, t = 5.51, p < .001, df = 1234), with a 

trending negative interaction between sleep and age (beta = -0.003, t = -1.91, p = .056, df = 

1234). The correlations between slopes and age were as robust as for oscillation amplitudes 

(ρeve = -.60, ρmor = -.66), but the correlation with overnight change was weak (ρ = -.15). There was 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.24.581878doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.24.581878
http://creativecommons.org/licenses/by/4.0/


 Results  

Page 6 of 37 
 

no significant effect of ADHD (beta = 0.028, t = 1.07, p = .284, df = 1234) or sex (beta = 0.041, t = 

1.63, p = .102, df = 1234). This means that, unlike for amplitudes, the overnight change goes in 

the opposite direction as the change with age. 

Aperiodic intercepts also significantly decreased with age (beta = -0.067, t = -16.59, p < .001, df = 

1234), but with no significant effect of sleep (beta = 0.029, t = 1.65, p = .100, df = 1234), and a 

significant negative interaction (beta = -0.004, t = -3.11, p = .002, df = 1234), such that intercepts 

decreased more overnight with age. The correlations between age and intercepts were the 

strongest of all outcome measures (ρeve = -.81, ρmor = -.83), however, the correlation between age 

and overnight change in intercept was negligible (ρ = -.05). Again, there was no effect of ADHD 

(beta = 0.021, t = 0.55, p = .579, df = 1234) or sex (beta = -0.003, t = -0.07, p = .944, df = 1234). 

Overall, average intercepts correlated with age in the same direction as amplitudes, changed 

overnight in the same direction, but the relationship between overnight change and age tended 

to be larger in adults than children. 

 

Figure 2: Wake EEG measures correlated with age. Only auditory oddball recordings are included, pool-
ing both neurotypical and ADHD participants. Each dot represents the outcome value for a single partici-
pant. For participants with multiple sessions, values across sessions were first averaged. Pearson’s correla-
tions were done for each figure, with rho values provided in the corner. If the p-value was less than .05, a 
correlation line was drawn (without correcting for multiple comparisons). Amplitudes and densities of 
oscillations were obtained from burst clusters, pooling all frequencies (4-16 Hz). Slope values are inverted, 
such that larger values indicate steeper slopes. Power spectra were calculated for each channel, then av-
eraged across all channels, excluding the outermost ring of channels. Power and periodic power were 
then calculated by averaging values from 4 to 16 Hz. 
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In summary, of the four EEG measures, only amplitudes followed the same trajectories as SWA 

in sleep. The absolute values of all four measures had a negative correlation with age, and dif-

fered primarily in the overnight response and the relationship between age and overnight re-

sponse. Oscillation densities in particular showed a strong effect of age on overnight changes, 

reversing direction between childhood and adolescence. No measure showed any relationship 

with ADHD, and only amplitudes were affected by sex. Therefore, in later analyses we did not 

include these factors, and pooled patients and controls for greater statistical power. 

To determine the extent to which spectral power was influenced by any of the four main 

measures, and to quantify their interdependency, we compared each measure to the other and 

to average power and periodic power. We did this first by directly correlating all measures with 

each other, pooling all recordings (Suppl. Figure 1-1). Then, we ran linear mixed effects models 

to determine the t-values (as a proxy for effect size) of the fixed effect of one measure when 

predicting the other, controlling for the fixed effects of Task, Sleep, Age, Sleep interacting with 

Age, and the mixed effects Participant and Session (Suppl. Table 1-1). With both analyses, we 

found that power was most correlated with oscillation amplitudes (correlation ρ =.9; mixed 

model t = 44.4), whereas periodic power was most correlated with oscillation densities (ρ = .85; t 

= 50.4). Intercepts and slopes were most highly correlated with each other (ρ = .87; t = 63.9), and 

slopes were the least correlated with the other EEG measures.  

Each outcome measure showed unique regional effects, changing across 
age and sleep 

Figure 3 provides the average topographical maps of each measure for five age bins, averaging 

(or pooling for densities) all frequencies from 4-16 Hz, from the oddball task. Amplitudes, densi-

ties, slopes, and intercepts all showed unique topographies from each other. Across ages, for 

each measure there were primarily changes in magnitude more so than major regional differ-

ences. However, oscillation amplitudes in the youngest cohort began as a single midline occipi-

tal spot, which spreads bilaterally in the 7–10-year-olds. Prominent central bilateral peaks also 

appeared in the 7–10-year-olds. Oscillation densities similarly started as a single midline occipi-

tal spot, but these became more lateral-parietal in the 14–18-year-olds. Like amplitudes, two 

small bilateral central peaks emerge in the 7–10-year-olds, which merged with the primary oc-

cipital-parietal cluster in the 14–18-year-olds. Furthermore, a frontal peak gradually emerged 

with age. Slopes were steepest in midline channels, whereas intercepts showed both a frontal 

midline and occipital peak. As with the correlations between measures, power topographies 

most resemble amplitudes, and periodic power resembles densities.  
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Figure 3: Topography averages of wake EEG measures. Each plot is a schematic of the EEG viewed from 
above, with the nose on top. Lighter colors indicate greater magnitude over a given location for that out-
come measure (rows). Only neurotypical participants and oddball recordings were included, and partici-
pants were grouped into age bins (columns). Multiple oddball recordings from different sessions and 
times of day were first averaged for each participant. The number of participants included is indicated in 
the top right corner of each plot. Acronyms: y.o, years-old. 

To determine the topography of overnight changes in EEG measures, we performed linear 

mixed effects models for each channel, dividing participants into 4 age bins (the youngest 3-7 

were excluded as they were too few, with too few recordings). Fixed effects were Sleep and 
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Task, mixed effects were Participant and Session. Figure 4 plots the β estimates for the effect of 

Sleep. 

Amplitudes showed widespread overnight decreases across all age groups, however the de-

crease was largest in occipital channels for the youngest group, and slightly more fronto-

temporal in young adults. Based on the relative β estimates, the decrease in all channels in chil-

dren was larger than for adults. 

The overnight density topographies resembled the average density topographies from Figure 3, 

in terms of regional effects. The youngest group showed the largest overnight decrease in the 

same midline-occipital spot where there were the most oscillations (Figure 3), and adults 

showed the largest increase in the same bilateral occipital-parietal areas where they had the 

largest densities. 

The overnight increase in the steepness of slopes peaked in an occipital spot in all age groups, 

with additional bilateral frontal spots in <14-year-olds. These topographies do not correspond 

to the average topography of slopes from Figure 3. Intercepts revealed widespread decreases, 

with localized increases in the same occipital locations for which slopes increased the most. This 

suggests that aperiodic intercepts generally decrease, although the increase in slope steepness 

contrasts this effect. 

Power and periodic power again showed similarities to amplitudes and densities respectively, 

however the increase in densities in the 14–18-year-olds was not visible in periodic power. Like-

wise, the overnight increase in periodic power for adults was more occipital and lateral than the 

increase in densities and the larger decrease in amplitudes in occipital regions was less evident 

in power than for amplitudes. 

Overall, the topographical overnight changes extend the results from Figure 2: amplitudes de-

crease less with age, densities switch from decreasing to increasing before adolescence, slopes 

generally increase with sleep, and intercepts decrease. The posterior-anterior gradient of peak 

overnight decreases in amplitude further supports the similarity between wake amplitudes and 

sleep SWA. The regional differences between overnight decreases in density in children and 

increases in adults suggest that these oscillations not only originate from different areas but 

are functionally distinct. 
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Figure 4: Topographies of overnight changes of EEG measures. A linear mixed effects model was run 
for each measure and each age group: Measure ~ Sleep + Task + (1|Participant) + (1|Participant:Session). 
Color reflects β estimates for the fixed effect Sleep, such that red indicates an overnight increase in that 
outcome measure. The factor Task was not included for the 18-25 y.o. group, as these participants only 
performed oddballs. White dots indicate channels for which the β estimate was statistically significant, 
corrected for multiple comparisons with FDR (false discovery rate). Black dots indicate remaining channels. 
Data includes both patients and neurotypical controls. Degrees of freedom (DF) are provided for each plot.  
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Overnight changes in density depend on the frequency of oscillations 

In the previous analyses, we had pooled all frequencies between 4 and 16 Hz. Here, we ex-

plored how each EEG measure changed for each frequency, this time averaging channels (or 

pooling, for densities). Average evening values for each age and frequency are plotted in Figure 

5A, and the overnight differences are plotted in Figure 5B. 

Amplitude and power showed gradual gradients, with highest amplitudes in the youngest par-

ticipants and lowest frequencies, and lowest values in the oldest participants and highest fre-

quencies. Density and periodic power instead had distinct peak values between 8 and 11 Hz, 

with the peak shifting upwards with age, a well-known property of alpha oscillations during 

development (Freschl et al., 2022; Smith, 1938; Tröndle et al., 2022). 

Like average amplitudes, overnight changes in amplitude (and power) showed largely gradual 

decreases with age and frequency. Instead, like average densities, overnight densities (and pe-

riodic power) showed decreases in higher frequencies (>11 Hz, i.e. low beta) and increases in 

alpha (8-12 Hz). These increases only began between 8-10 years of age, they were strongest in 

adults, and the range shifted to higher frequencies with age. 

 

Figure 5: Average spectrograms of outcome measures. From the oddball task, pooling controls and 
ADHD participants. A: Average values, such that lighter colors indicate greater magnitude for a given fre-
quency and age. For spectra extending to older ages and sleep stages, see Sun et al. (2023). B: Difference 
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values between morning and evening recordings, such that red indicate a greater magnitude in the morn-
ing. The measurement unit of each figure is the same as that of A.  

Given the dissociation between alpha and beta for density, we explored the topographic chang-

es in density, split by both age and frequency in Figure 6. Due to the drift in peak alpha fre-

quency, and “bleeding” between bands, we chose to use non-adjacent frequency ranges to en-

sure independence: theta was from 4 to 7 Hz, alpha from 8 to 11 Hz, and low beta from 12 to 16 

Hz.  

Theta oscillations were the overall rarest. They were most prevalent in the youngest children at 

about 5% of the recording in central channels. With age, the peak in theta density gradually 

shifted upward and decreased in magnitude. Alpha density instead started as a midline occipital 

cluster in the 3–7-year-olds. Alpha densities in the occipital spot decreased in the 7-10 cohort, 

with bilateral central spots instead becoming more pronounced. With age, these three peaks 

morphed into a continuous occipital-parietal cluster, while in the remaining channels overall 

density of alpha increased. Lastly, low beta oscillations showed yet another topography. They 

were almost completely absent in the youngest group, and started to appear in the 7–10-year-

olds as lateral occipital peaks and a frontal midline spot. Gradually, the lateral peaks converge 

towards the midline, and in adults became partially overlapping with alpha, on average right-

lateralized. 

 

Figure 6: Average topographies of oscillation densities, split by frequency band. Recordings were 
from the oddball task, pooling controls and ADHD patients and evening and morning recordings. Theta is 
4-7 Hz, alpha is 8-11 Hz, and low beta is 12-16 Hz. 
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The overnight changes in density split by frequency are in Figure 7. Like in Figure 4, these re-

flect the β estimates for the fixed effect of Sleep, controlling for the fixed effect of Task, and 

mixed effects of Participant and Session. 

The overnight changes in theta density were small (around 1%), however quite variable by re-

gion and age. In the 7–10-year-olds, theta density generally increased overnight except in a 

central spot, exactly where the largest theta densities were seen in Figure 6, which instead de-

creased. This continued for the 10–14-year-olds. In the 14–18-year-olds, there were no signifi-

cant effects, however the frontal theta spot, now more frontal, showed a decrease. In adults, 

only some scattered theta increases were observed. 

For alpha, the main occipital spot in the 7–10-year-olds decreased overnight. Already in the 10–

14-year-olds a bilateral central alpha rhythm started to increase overnight, with still some slight 

decreases in the occipital spot. The overnight increases spread to the entire scalp in adolescents 

and adults, peaking in occipital parietal areas, especially right lateralized. For low beta, across 

all ages there are decreases, with the peak shifting across age bins.  

 

Figure 7: Topographies of overnight density changes, split by frequency band. Color indicates the β 
estimate for the linear mixed effects model, such that red indicates an overnight increase in density. The 
model was Density ~ Sleep + Task + (1|Participant) + (1|Participant:Session). 

No EEG measure showed significant differences between ADHD and con-
trols in any channel 

In our initial mixed effects models pooling channels and frequencies, we found no significant 

effects for ADHD, which is why in subsequent analyses and figures we no longer included a 
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Group effect. However, we nevertheless conducted mixed effects models to determine the ef-

fect of ADHD for each channel, with fixed factors Group, Task, Sleep, Age, and Sleep by Age in-

teraction, and nested mixed effects Participant and Session (Figure 8). We found no significant 

effects when correcting for multiple comparisons. However, amplitudes were on average lower 

in participants with ADHD and slopes were steeper compared to controls. 

 

Figure 8: Effects of ADHD on EEG measures. Red indicates larger values in patients compared to controls. 
The scale for each topography is the same as for Figure 4. The model was Measure ~ Sleep*Age + Task + 
Group + (1|Participant) + (1|Participant:Session). White dots would have indicated statistically significant 
channels, following FDR correction for multiple comparisons. 

DISCUSSION 
In this study, we compared four measures of wake EEG data and their relationship to brain 

maturation, sleep, and ADHD: oscillation amplitudes and densities, and aperiodic slopes and 

intercepts. We hypothesized that oscillation amplitudes specifically would behave like sleep 

SWA. Our predictions were met on all accounts except for the sensitivity of amplitudes to ADHD. 

Of the four measures, only amplitudes decreased overnight in all ages and the overnight de-

crease was largest in younger children (Figure 2, Figure 4). Together with our previous results 

showing amplitudes increasing with time spent awake (Snipes, Meier, Meissner, et al., 2023), 

this indicates that wake amplitudes reflect the same information as sleep SWA: neuronal syn-

chronization due to synaptic density and plasticity. 

While amplitudes were the only measure that followed the same patterns on all accounts as 

SWA, all EEG measures reflected brain development. Average amplitudes, slopes, and intercepts 

were all strongly anticorrelated with age, with intercepts showing the largest values (Figure 2). 

Average densities were not especially correlated with age, but we found distinct regional pat-

terns with increasing age (Figure 6), indexing local differences across brain maturational stages. 

Overnight changes in both oscillation amplitudes and density were robustly correlated with age 

(Figure 2, Figure 7), whereas overnight changes in slopes and intercepts were not as affected by 
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age, as evidenced by the low correlations in Figure 2. Finally, no measure showed significant 

effects of ADHD. These results are summarized in Figure 9. 

 

Figure 9: Summary of which outcome measure reflects which property. Sleep need was determined by 
whether an outcome measure decreased overnight and whether the decrease was larger in younger chil-
dren. Development was determined by whether there were strong effects of age. Overnight intercepts had 
“mixed” results across analyses. Acronyms: n.a., not applicable; n.s., not significant. 

The majority of EEG research relies on spectral power, with only a fraction dissociating periodic 

and aperiodic activity, and almost no research exists on wake oscillation bursts. Therefore, for 

comparability, we conducted the same analyses also on average power and periodic power. 

Furthermore, we correlated each outcome measure to power and periodic power (Suppl. Figure 

1-1, Suppl. Table 1-1). Like this, we found repeatedly that average power from 4-16 Hz was most 

correlated with oscillation amplitudes, and average periodic power was mostly correlated with 

oscillation density, with comparable average and overnight topographies. This suggests that 

effects on power are more likely attributed to differences in oscillation amplitudes, while effects 

on periodic power are more likely due to differences in oscillation density. However, even with 

our own data this is not always the case; for example, the increase in central oscillation densi-

ties in adolescents corresponded to a decrease in periodic power (Figure 4), likely reflecting the 

relatively greater impact of the decrease in amplitudes. Furthermore, all outcome measures 

were significantly related to power even when controlling for participant and age (Suppl. Table 

1-1). Whenever possible, these four EEG measures should be analyzed separately.  
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Oscillation amplitudes 

Matching our predictions, amplitudes decreased overnight, decreased with age, and the over-

night decrease decreased with age. Like for SWA, the decrease in amplitudes with age can be 

explained by the decrease in synchronization due to reduced synaptic density in the cortex 

(Huttenlocher, 1979). Likewise, the overnight decrease in amplitudes could be because sleep 

reduces synchronization through net “synaptic down-selection” (Cirelli & Tononi, 2022; Tononi & 

Cirelli, 2014), and such plastic changes are more pronounced in children than adults (Jaramillo 

et al., 2020). Regarding regional effects, like for SWA in sleep (Kurth et al., 2010), we observed a 

posterior-anterior regional gradient in the overnight decrease in amplitudes, such that the de-

crease was more pronounced in occipital regions in children compared to adults (Figure 4). 

Across development, primary sensory and motor areas obtain peak cortical thickness earlier in 

children, followed by adjacent secondary areas and finally frontal association areas (Shaw et al., 

2008), resulting in an overall posterior-anterior maturation trajectory. Therefore, younger chil-

dren show larger overnight decreases in amplitudes in occipital areas because these areas un-

dergo higher plastic changes at that maturational stage. Finally, even the significant sex differ-

ence was comparable to SWA (Mourtazaev et al., 1995), with wake oscillation amplitudes higher 

in females than males (although this was not an a-priori hypothesis of this study). This may re-

flect smaller heads and reduced skull thickness in females (Dijk et al., 1989). 

Nevertheless, the effects we observe for wake amplitudes are not as large as those for sleep 

slow waves. SWA is substantially more pronounced in frontal areas in adults (Finelli et al., 2001), 

whereas overnight changes in wake amplitudes were more uniformly distributed across the 

scalp in adults (Figure 4). While we did observe on average lower amplitudes in patients with 

ADHD (Figure 8), this was not statistically significant. Furthermore, in adults the overnight de-

crease in amplitudes is near 0 μV (Figure 2), which is not the case for changes in SWA during 

sleep (Borbély, 1982). One possible explanation for this last point, based on our previous study 

(Snipes et al., 2023), is that the evening wake recordings fell within the wake maintenance zone. 

This is a circadian time window that begins 2-4 hours before bedtime, ends just before bedtime, 

and is characterized by increased alertness (Shekleton et al., 2013; Strogatz et al., 1987). We had 

found that oscillation amplitudes are significantly reduced in this window, counteracting the 

otherwise monotonic buildup in amplitudes that occurred throughout the day (Snipes et al., 

2023). Therefore, the overnight change in amplitudes may be reduced by this window, and in 

adults the contrasting effect of the wake maintenance zone may be sufficient to equalize even-

ing and morning amplitudes. In theory, all the outcome measures may have reduced (or en-
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hanced) effects due to the wake maintenance zone, and therefore it will be important to collect 

more resting wake data at other timepoints throughout the day to dissociate these effects. Un-

fortunately, very little is known about the wake maintenance zone, and currently to our 

knowledge no study has investigated the wake maintenance zone in children, but there may be 

additional interactions between such circadian rhythms and age. 

Overall, oscillation amplitudes reflect the same information as SWA. However, wake amplitudes 

appear less sensitive than sleep slow waves to factors such as ADHD, and possibly more affect-

ed by circadian or other factors. Therefore, amplitudes can be used to quantify sleep need, but 

sleep SWA is preferable when possible.  

Oscillation densities 

As could be expected, the density of oscillations was the most complex outcome measure, with 

effects differing depending on age, sleep, topography, and oscillation frequency. While we ini-

tially aggregated measures across frequencies (Figure 3, Figure 4), it was readily apparent that 

important differences emerge when splitting densities by frequency band (Figure 5-Figure 7). 

Most notably, theta oscillation densities (4-7 Hz) increase or decrease overnight depending on 

the location, alpha oscillation densities (8-11 Hz) increase or decrease depending on age, and 

low beta densities (12-16 Hz) decrease overnight in all ages in all channels. 

First, as seen in the absolute topographies of Figure 6, we found a subtle spatial dissociation 

between theta and alpha in young children (3-7 years old) to our knowledge not previously re-

ported. This dissociation has been observed in spectral frequency, usually by contrasting condi-

tions, but with minimal spatial resolution (Meyer et al., 2019; Orekhova et al., 2006), or without 

providing topographies for these age groups (Cellier et al., 2021). Theta power changes found 

during tasks in infants was localized more frontally than what we observe here (Meyer et al., 

2019). We find the peak origin of theta to be just below Cz, and the peak source of alpha to be at 

Pz. However, given that alpha even off-peak is substantially more prevalent than theta, these 

theta oscillations can easily be missed. 

Nevertheless, theta oscillations are most prevalent in early childhood, and decrease progres-

sively with age, supporting previous results measuring relative theta power (Somsen et al., 

1997). We further found that the peak in theta densities steadily drifts more frontally across 

childhood and adolescence. This frontal theta in adults is known to originate from the midline 

prefrontal cortex, and to be anti-correlated to the default mode network (Ishii et al., 2014; Mi-
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chels et al., 2010; Scheeringa et al., 2008). Therefore, this drift in theta may reflect the steady 

maturation of both frontal cortices and the default mode network (Fan et al., 2021). 

There is still unresolved contradictory evidence on the role of theta in adults (Snipes et al., 

2022), without including the question of theta during development. On the one hand, theta is 

often associated with cognitive effort (Buzsáki, 2005; Cavanagh & Frank, 2014; Meyer et al., 

2019; Mitchell et al., 2008), on the other, it is also associated with sleepiness (Finelli et al., 2000; 

Smith, 1938; Snipes et al., 2022) and fatigue (Arnau et al., 2021; Tran et al., 2020; Wascher et al., 

2014). A possible resolution to this paradox is that there are distinct oscillations that originate 

from different circuits with different functions and just happen to occur at the same frequency. 

Our results in Figure 7 would support this, as the peak source of theta shows overnight decreas-

es, whereas theta from the rest of the cortex instead shows overnight increases, even as the 

theta peak drifts more frontally. Alternatively, theta could reflect a general form of “idling 

rhythm” (Snipes et al., 2022; Snipes, Meier, Accascina, et al., 2023), originating from disengaged 

cortical areas, and what changes from evening to morning is which circuits tend to idle. This is 

supported by simultaneous EEG-fMRI studies that find theta activity anti-correlating with brain 

metabolism (Scheeringa et al., 2008). This would make theta functionally comparable to alpha 

(Laufs et al., 2003), differing only by source and frequency. 

Like theta, alpha begins in young childhood as a midline spot (Figure 6). Two lateral central 

peaks become more defined at 7-10 years of age. These likely reflect sensorimotor mu rhythms 

which appear when motor activity is absent or even suppressed (Pfurtscheller et al., 2006; 

Pineda, 2005), and is already present in infants (Berchicci et al., 2011). We find that with age, 

they become topographically indistinguishable from occipital alpha, at least when recorded 

during an oddball task. These lateral central peaks are the first to show overnight increases in 

10-14 year-olds, while the overnight decrease in the occipital midline spot becomes less promi-

nent. The overnight increases then spread over bilateral parietal and occipital areas across ado-

lescence and adulthood. This dissociation between overnight decreases in childhood and in-

creases in adulthood, as well as the slight differences in topography, could suggest that occipi-

tal alpha is in fact qualitatively distinct in children and adults. However, these rhythms were 

previously considered functionally equivalent because also in infants alpha power increases 

with eyes closed compared to eyes open (Stroganova et al., 1999). More research is needed on 

the sources of these oscillations.  

It is also possible that this dissociation in overnight changes is driven by some other difference 

with age, such as a longer window of sleep inertia in young children, longer sleep duration, or a 
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shifted circadian rhythm compared to adults. Melatonin in the morning is elevated in children 

under 10, whereas older children and adolescents have morning melatonin levels comparable 

with the rest of the day (Attanasio et al., 1985). In adults, alpha power fluctuates with circadian 

rhythm and is therefore synchronized to melatonin levels (Cajochen et al., 2002). Therefore, it is 

possible that the dissociation of decreasing/increasing alpha originates from children and 

adults being at different phases of their alpha circadian rhythm in the morning. More research 

is needed into the circadian effects on the EEG during development. 

Aperiodic intercepts and slopes 

Our results on intercepts and slopes replicate previous findings: they decrease linearly with  age 

(Cellier et al., 2021; Hill et al., 2022; Tröndle et al., 2022) and originate from broad, primarily mid-

line sources (Favaro et al., 2023). Most recently however, McSweeney et al. (2023) found a quad-

ratic relationship between age and intercepts/slopes, such that they peaked at 5-7 years old 

(from a large population between 4 and 11 years old). Unfortunately, we do not have many par-

ticipants in this age range, so it is possible the linear trends we observe do not continue for 

younger children. We did not replicate the finding of higher intercepts in females than males 

(Bódizs et al., 2021), but this could be due to the different age ranges of our study populations 

(3-25 vs. 17-60). 

New to the literature is our finding of overnight changes. We find that slopes and intercepts go 

in opposite directions, with slopes becoming steeper and intercepts decreasing after a night of 

sleep. Curiously, when measuring aperiodic activity during sleep, slopes become progressively 

shallower across the night (Horváth et al., 2022). Otherwise, slopes and intercepts follow similar 

maturational changes in sleep as in wake, decreasing with age (Bódizs et al., 2021; Favaro et al., 

2023). We find that the peak overnight change in slope is occipital (Figure 4), with the topogra-

phy relatively stable across ages, and the effect decreasing slightly with age. Likewise, the de-

crease in intercepts after sleep was not especially strong and not especially dependent on age. 

Therefore, aperiodic activity during wake is not as sensitive to the interactions between 

sleep/wake history and development as oscillatory activity.  

Intercepts, as expected, were highly correlated to slopes (Suppl. Figure 1-1). Any change in 

slope occurs at a pivot point, and when this point is not the intercept itself, it produces also a 

change in intercept. Likely the occipital overnight increases in intercepts observed in Figure 4 

were driven rather by the increase in slopes, contrasting the general trend of a decrease in in-

tercept. This interdependence between slopes and intercepts should be mitigated in future 
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analyses. This can be done by identifying the pivot point where the slope changes. Bodizs et al. 

(2021) for example correlated slopes and intercepts calculated at every frequency, then took as 

“intercept” the power of the aperiodic signal where the correlation to slope was the lowest. Giv-

en that intercepts are strongly associated with age and with sleep/wake history, it would be 

advisable to dissociate them from slopes more systematically in order to tease apart their re-

spective effects during development. 

ADHD 

Despite a relatively substantial sample size (N=58), we did not observe any significant effects of 

ADHD on our EEG measures. We did find slopes to be steeper on average in patients, support-

ing the results of Robertson et al. (2019), and contrasting those of Ostlund et al. (2021). One 

explanation could be that our participants were performing tasks for most recordings, and the 

differences between patients and controls may mostly emerge in resting EEG; patients may 

have developed compensation mechanisms masking potential differences during the tasks. It’s 

also possible our analysis did not reach significance because our participants were a combina-

tion of both medicated and unmedicated patients, and it is known that medication will reduce 

the effects of ADHD on the EEG (Furrer et al., 2019; Karalunas et al., 2022). Additionally, our par-

ticipants were screened for good sleep quality (to have a chance of falling asleep in the labora-

tory with an EEG net, and to have similar levels of sleep pressure as controls). However, around 

40-55% of children with ADHD report sleep deficits (Becker et al., 2019; Corkum et al., 1998; 

Holmberg & Hjern, 2006; Konofal et al., 2010), so it is possible that poor sleep quality in patients 

contributes to differences in the wake EEG observed in prior studies (Clarke et al., 2020). Finally, 

it’s possible that only subtypes of patients with ADHD have a specific relationship to any of the 

measured EEG markers; ADHD is highly heterogeneous with varying symptoms among individ-

uals. 

Regardless of the reason, given that we do not see any systematic differences between patients 

and controls, none of the wake EEG outcome measures we tested make for a reliable intrinsic 

marker of ADHD which could potentially be used to aid diagnosis. Instead, research investigat-

ing such markers in these and other patient populations should take special care to control for 

sleep/wake history and sleep quality, as these may have a greater impact on the EEG. Instead, 

within the same study population we observed significant differences between controls and 

children with ADHD during sleep (Furrer et al., 2019), suggesting SWA during sleep is a more 

sensitive measure of developmental deficits. 
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Limitations 

The primary limitation of this study is the scarcity of datasets under 8. It is known that in young 

children there is a switch from primarily synaptic growth to primarily synaptic pruning, peaking 

in different cell populations and regions at different ages (Cao et al., 2020; Petanjek et al., 2011; 

Shaw et al., 2008), which is also reflected in SWA peaking in this period (Feinberg & Campbell, 

2013). This would suggest more complex relationships between age and EEG outcome 

measures than the linear trends observed here. 

Regarding interpretability, overnight changes do not dissociate between homeostatic (related 

to sleep need) and circadian (related to clock time) effects. To do so would require substantially 

more intensive protocols, involving sleep deprivation, restriction, or shifting sleep windows over 

several days. However, collecting more wake recordings throughout the day would already pro-

vide an indication as to when an effect is circadian or homeostatic. 

Finally, our data is limited to EEG. Future studies and analyses would greatly benefit by compar-

ing these outcome measures to structural and functional brain changes observable with MRI, as 

well as cognitive and behavioral outcome measures related to development. This would bridge 

the gap between a purely basic research finding to practical applications. 

Conclusions 

We have found that overnight changes in oscillatory activity provide unique markers of brain 

maturation. Both absolute amplitudes and overnight changes in amplitudes decrease linearly 

with age, the effect more occipital in younger children. This makes wake amplitudes markers of 

brain plasticity and sleep need, just like sleep slow wave activity. Wake amplitudes are not as 

sensitive as sleep slow waves, but measuring sleep EEG is not always possible, therefore wake 

oscillation amplitudes are a useful alternative. Overnight changes in oscillation density, espe-

cially of alpha oscillations, dissociate children from adolescents and adults by switching from an 

overnight decrease to an increase in density. Understanding the reason behind this effect 

would likely provide important information on brain development around puberty and adoles-

cence. More generally, we have shown that there are a multitude of changes in the EEG with 

development that go beyond simple spectral power, each with their own functional significance. 

Moving forward, researchers should analyze these measures individually, as they offer inde-

pendent insights into neuronal activity. 
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METHODS 

Datasets 

The data for this manuscript was assembled from previous sleep studies conducted between 

2008 and 2021, the primary focus of which had been the sleep EEG. The participant de-

mographics of each dataset are in Table 1. In total, we included 163 participants between the 

ages 3.5 and 24.7, 38% female, 7% left-handed. Of these, 36% were diagnosed with ADHD at the 

department for Child and Adolescent Psychiatry at the University of Zurich, the outpatient clinic 

of the Child Development Center, and at private children’s clinics in Zurich Oerlikon. Patients 

were not excluded based on medication status, and therefore were a mixture of medicated, 

previously medicated, and unmedicated (see Table 2, and (Furrer et al., 2019; Ringli et al., 

2013)). Otherwise, all participants were screened by telephone such that they all were complete-

ly healthy, took no (other) medication, had no (other) comorbidities, and were good sleepers. All 

participants were recruited from canton Zurich, Switzerland, and recorded at the University 

Children's Hospital of Zurich, except for the children from 3.5 to 8 (Dataset2009), who were re-

cruited in Providence, RI, USA, and recorded at home. All participants were recorded with high-

density EEG. Sleep time was determined by their individual preferred sleep and wakeup time, 

which they had to maintain the week prior to each measurement. Wake measurements were 

done just before going to sleep, and ~30 minutes after waking up. 115 participants had 2 ses-

sions, spaced at least 1 week apart, both included in these analyses. Depending on the dataset, 

different paradigms were used involving different wake tasks (described below). Therefore, 

there could be 1-4 recordings at each time point (morning/evening) in each session. In total, 

1243 recordings were included in these analyses.  

Informed consent was obtained from all adult participants, and from the legal guardians of all 

children below 14, as well as from adolescent participants 14-18. All studies were approved by 

the local ethics committees and performed according to the declaration of Helsinki. 

 N 

# 

Female 

% 

Lefties 

% 

ADHD 

% 

Age range 

(years) 

Mean age 

(years) 

Paradigm 

   

Sessions 

# 

Dataset2008 38 32 0 0 8.7-23.4 14.1 (3.8) Adaptation 2 

Dataset2009 11 73 0 0 3.5-8.0 5.6 (1.5) Oddball 1 

Dataset2010 28 21 14 100 9.7-16.3 12.7 (1.9) Adaptation 1 

Dataset2016 18 44 0 0 18.4-24.7 21.6 (2.1) Oddball 2 

Dataset2017 42 43 17 36 8.1-17.6 12.2 (2.7) Attention 2 

Dataset2019 26 38 0 58 8.8-16.8 11.4 (2.0) Attention 2 

All 163 38 7 36 3.5-24.7 13.2 (4.4)   
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Table 1: Demographics, split by dataset. The year for each dataset indicates the beginning of data collec-
tion. N indicates the number of participants. Paradigm indicates which set of wake tasks were recorded. 
Sessions indicates the number of sessions expected for each dataset, although in practice due to drop-
outs, some participants only completed 1. 

Table 2: ADHD demographics, split by patient status. *For 3 patients, medication status was missing, 
the true total is therefore 58. The percentage of participants performing the oddball task includes both 
Adaptation and Oddball paradigms from Table 1. 

Oddball & motor adaptation paradigms 

95 participants (Dataset2008, Dataset2009, Dataset2010, Dataset2016) performed an auditory 

oddball task during their wake EEG. The task lasted 4 minutes and was performed in the even-

ing just before going to bed and in the morning ~30 minutes after waking up. The task involved 

300 tones at ~80 dB, with an interstimulus interval of 0.8 s. A random 10% of stimuli were tar-

gets to which the participant had to push a button in response. For the Dataset2009 young chil-

dren, the 4-minute task was split into 2 segments. 

66 of these participants (Dataset2008, Dataset2010) also performed a half-hour visuomotor 

adaptation task (Ghilardi et al., 2000) followed by a second oddball. One dataset (Dataset2008) 

also included a second session with a control visuomotor task (no adaptation), counterbalanced 

with the motor adaptation task. The motor tasks were not included in this analysis, because 

they further differed from evening to morning. For more details on the adaptation task see Wil-

helm et al. (2014). The youngest (Dataset2009) and oldest (Dataset2016) participants only con-

ducted one oddball and no motor task, although the oldest also had two sessions. 

The sleep data from these participants has been previously published (Buchmann et al., 2011; 

Furrer et al., 2019, 2020; Jaramillo et al., 2020; Kurth et al., 2010; Ringli et al., 2013; Volk et al., 

2018; Wilhelm et al., 2014), as has a subset of the wake EEG data (Fattinger et al., 2017). 

Attention paradigm 

68 participants (Dataset2017, Dataset2019) performed three tasks with a focus on attention. 

These were studies investigating the relationship between slow waves, behavior, and MR spec-

troscopy (Jaramillo et al., 2020; Volk et al., 2019). This included two sessions to compare the ef-

 N 

# 

Female 

% 

Lefties 

% 

Age range 

(years) 

Mean age 

(years) 

Oddball 

% 

Medicated in the past (1) 6 17 0 9.7-14.8 12.5 (2.2) 33 

Unmedicated (2) 14 21 14 9.5-15.3 11.3 (1.6) 64 

Medication the day before (3) 22 23 14 8.7-16.3 12.3 (2.2) 45 

Medication the day of (4) 13 15 0 9.0-16.1 12.3 (2.0) 54 

All patients 55* 20 9 8.7-16.3 12.1 (2.0) 51 

Controls 105 47 6 3.5-24.7 13.8 (5.2) 58 
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fects of phase targeted auditory stimulation on slow waves in sleep (sham and stimulation; data 

currently unpublished). The wake tasks were part of the Test Battery for Attentional Perfor-

mance (TAP) (Zimmermann & Fimm, 2012), which included 2 minutes of a Go/No-Go task (re-

spond to 1 stimulus, withhold response to another), 4.5 minutes of the Alertness task, and then 

2 1.5-minute fixation recordings. For one dataset (Dataset2019), only 1 fixation recording was 

measured. 

EEG recordings and preprocessing 

All datasets were measured using 128 channel EGI Geodesic Sensor nets and EGI amplifiers 

(Electrical Geodesics Inc., EGI, Eugene, OR, USA). Recordings were done with Cz reference, 1000 

Hz sampling rate, and impedances kept below 50 kOhm. All analyses were performed in 

MATLAB 2023b, with the EEGLAB toolbox v2023.1 (Delorme & Makeig, 2004) and custom scripts. 

EEG data was first mean-centered, then lowpass filtered at 40 Hz and notch-filtered at either 50 

or 60 Hz (Dataset2009) along with subsequent harmonics. The data was downsampled to 250 

Hz, then highpass-filtered over 0.5 Hz (Kaiser filter, stopband=0.25 Hz, stopband attenua-

tion=60, passband ripple=0.05). 

Artifacts were removed with a fully automated procedure. Movement and other large artifacts 

were detected in data filtered between 1 and 40 Hz, in 3 s segments. A segment was labeled a 

“major artifact” if it exceeded 500 μV, or a “minor artifact” if the correlation with neighboring 

channels was below .3. Major artifacts were always removed, either by removing all data in all 

channels during those 3 s, or removing the entire channel with such an artifact, depending on 

which (channel or segment) removed the least amount of clean data. Minor artifacts were re-

moved in a similar way, removing iteratively either the channel with the most artifactual seg-

ments, or the segments with the most artifactual channels, until all channels and all segments 

had at most 30% of the data containing a minor artifact. Flat channels were removed using EE-

GLAB’s clean_artifacts function. Physiological artifacts (blinks, eye movements, muscle tone, 

heartbeat) were removed with independent component analysis (ICA), with components calcu-

lated separately as described in the next section. After these were removed, a second pass was 

conducted using EEGLAB’s clean_windows() function (MaxBadChannels=.3, PowerTolerances=[-

inf, 12]), then bad segments/channels still containing amplitudes over 140 μV were removed, 

and finally EEGLAB’s clean_channels_nolocs() was applied (MinCorrelation=.5, IgnoredQuantile=.1, 

MaxBrokenTime=.5). Recordings for which more than 25 channels were removed, or which had 

less than 1 minute of data, were excluded from analysis. In a last step, EEG channels were inter-
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polated, for a total of 123 channels, excluding the external electrodes (49 56, 107, 113) and the 

face electrodes (126, 127). 

Automatic detection and removal of physiological artefacts using ICA 

For ICA, EEG data was first preprocessed as previously described, however the filtering was be-

tween 2.5 and 100 Hz, and the sampling rate was downsampled to 500 Hz. Automatically de-

tected bad channels and bad time windows were removed, an empty Cz channel added, and 

then the data was re-referenced to the average of all channels. EEGLAB’s runica function was 

run with principal component analysis (PCA) rank reduction. Then, components were automati-

cally classified with EEGLAB’s iclabel, as either brain, muscle, eye, heart, line, channel noise, or 

other. This function provides a probability score for each label from 0 to 1, so the label with the 

largest score for each component was taken. Components classified as muscle, eye or heart 

were removed. Of the remaining noise classifications (line, channel, other), due to poor classifi-

cation accuracy, an additional step was implemented. Spectral power was calculated for each 

component, smoothed over 5 Hz. FOOOF (fitting oscillations one over f; (Donoghue et al., 2020)) 

was applied to the spectrum between 8 and 30 Hz. Unlike for the analysis (Figure 2), these val-

ues were not inverted; negative slopes indicate a decrease in power with increasing frequency. 

Components for which the spectral slope was shallower than -0.5 (so almost flat or even tilted 

positive), were considered noise and therefore excluded. Using the manually labeled compo-

nents in an independent adult dataset (Snipes et al., 2022), we confirmed that this procedure 

was sufficiently comparable to human detection of artifactual components. We further con-

firmed that the outcome matched human component classification in a small subset of the chil-

dren’s data as well. However, considering the trend towards -0.5 slopes observed in Figure 2, for 

future datasets with older participants we would recommend a higher threshold.  

For the Dataset2009 cohort of <8-year-olds, given how little data there was and how many more 

movement artifacts, we chose to apply to same manual artifact rejection as in Snipes et al. 

(2022) to preserve as much data as possible. 

Burst detection 

Oscillatory activity was quantified using cycle-by-cycle analysis to detect bursts of oscillations. 

Bursts were detected with the same procedure outlined in Snipes et al. (2023) and the same 

thresholds as in (Snipes, Meier, Accascina, et al., 2023). Briefly, EEG was narrow-band-pass fil-

tered in overlapping ranges (2-6 Hz, 4-8 Hz…), from which zero-crossings were detected. Then, 

in the broadband filtered data (0.5-40 Hz), peaks were identified between the zero-crossings, 
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and a cycle was considered an oscillation from positive to positive peak. A minimum number of 

consecutive cycles must meet a set of criteria (monotonicity, period consistency, amplitude con-

sistency, shape consistency, etc.) for this to be considered a burst. Importantly, amplitude itself 

is never used as a threshold, as this would create a greater dependency between amplitude and 

density (such that a decrease in an amplitude threshold would result in an automatic increase in 

density). 

Three sets of criteria were used. The first aimed to detect bursts relying on many low-threshold 

criteria (frequency in range of narrowband filter; PeriodConsistency=.5; AmplitudeConsisten-

cy=.4; FlankConsistency=.5; ShapeConsistency=.2; MonotonictyInTime=.4; MonotonicityInAmpli-

tude=.4; ReversalRatio=.6; MinCycles=4). The second had fewer criteria with intermediate 

thresholds but a higher minimum number of cycles (PeriodConsistency=.6; AmplitudeCon-

sistency=.6; MonotonicityInAmplitde=.6; FlankConsistency=.6; MinCycles=5). The third set had 

fewer criteria but stricter monotonicity thresholds (frequency in range of narrowband filter; 

PeriodConsistency=.7; FlankConsistency=.3; MontonocityInAmplitude=.9; MinCycles=3). These 

criteria were chosen a-priori based on manual tuning of the burst detection on an independent 

dataset of wake EEG in adults during sleep deprivation. 

After bursts were detected in each channel separately, they were grouped into clusters to iden-

tify bursts that occurred simultaneously in multiple channels with roughly the same frequency. 

The frequency of bursts was calculated as the inverse of the average distance between negative 

peaks (1/period). Bursts for which the shorter one overlapped at least 50%, and were within 1 

Hz of each other, were considered part of the same burst cluster. Bursts identified separately in 

each channel were used for all the topographies, otherwise burst clusters were used to reduce 

the effect of burst globality (spread across the scalp) on measures of density.  

Oscillatory outcome measures 

Oscillation amplitudes were calculated as the average negative to positive peak voltage differ-

ence for all cycles involved in all bursts, with units in microvolts (μV). Oscillation densities were 

calculated as the percentage of the recording occupied by bursts (sum of all the bursts’ dura-

tions divided by the duration of the recording). When calculating across multiple channels (e.g. 

Figure 2), oscillation density could easily exceed 100%, as burst clusters in different frequency 

ranges often co-occur. When combining densities across multiple frequency bands, bursts were 

pooled rather than averaged. In our previous publication (Snipes, Meier, Meissner, et al., 2023), 

we referred to oscillation densities as “quantities”, however this term did not properly account 

for the normalization in time. 
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The choice of frequency bands 

Only bursts between 2 and 16 Hz were detected. Below 4 Hz very few bursts could be identified, 

therefore only bursts above 4 Hz were included in the analysis. Bursts over 16 Hz could be de-

tected, but with higher false-positive rates, as determined by visual inspection. The choice of 

cutoff at 16 Hz was done arbitrarily a-priori to capture alpha (8-12 Hz) with generous padding. 

The division of bands for Figure 6 and Figure 7 was done using conventional bands with 1 Hz 

gaps to reduce overlapping information due to the drift in peak frequencies across individuals 

and ages. The inclusion of low beta (12-16 Hz) was done based on results observed in Figure 5. 

The frequency range 12-16 Hz is traditionally called “sigma” in sleep research, but this is often 

used interchangeably with sleep spindles, therefore we opted for “low beta” to avoid ambiguity. 

Many researchers advocate for the use of an individual alpha frequency (IAF) to define frequen-

cy ranges (Bazanova & Vernon, 2014; Klimesch, 1999; Tröndle et al., 2022). The shift in IAF with 

age makes a strong case for such an approach. However, the first problem with using IAF is the 

assumption that all frequencies will be adjusted together, so slower alpha means slower theta; 

essentially assuming individuals have intrinsically slower or faster brains. The second problem is 

that it assumes the peak oscillation will be functionally the same for all participants. We did not 

find compelling evidence yet that these assumptions were safe to have, and therefore we pre-

ferred to use fixed bands with gaps. 

Spectral power analysis 

Spectral power was calculated using MATLAB’s pwelch function, with 4 s Hanning windows and 

50% overlap. To dissociate periodic and aperiodic spectral power, we used the MATLAB exten-

sion of FOOOF. Spectra were smoothed over 2 Hz, and the aperiodic signal was fitted between 2 

and 35 Hz, otherwise the default settings were used. 

Outcome measures 

Power was calculated by averaging the log-transformed power values between 4 and 16 Hz. 

Intercepts were provided by FOOOF as the power value at 1 Hz of the aperiodic signal, and slopes 

as the exponents that describe the angle of the aperiodic signal. The values are inverted, such 

that positive slopes refer to a downward descending aperiodic signal, and the larger the value 

the steeper the descent. Periodic power was calculated as the log-transformed power, subtract-

ing the aperiodic signal. 
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Statistics 

Statistics were performed using the MATLAB Statistics and Machine Learning Toolbox. For all 

analyses, statistical significance was determined for p-values < .05. Given the heterogeneous 

datasets pooled together for this analysis, we chose to conduct linear mixed effects models to 

model the relationship between age, sleep, ADHD and EEG measures. This was done with the 

function fitlme().  

In a first instance, we ran the following model on the EEG measures derived from the average 

of all channels and frequencies: Measure ~ Task +  Sleep ∗ Age +  Group +  Sex +  (1|Participant)  +

 (1|Participant: Session). Task included the levels Oddball vs. go/no-go, alertness, and fixation. Sleep 

determined the main effect of evening vs. morning, and the interaction of age was one of the 

main hypotheses being tested. Group compared typically developing participants vs. those with 

ADHD. Sex compared females vs. males. Given that there were only minor effects, significant 

only for amplitude, this factor was not included in later models. We then included the random 

effect of session nested in the random effect of participant. While more elaborate models with a 

better fit could have been used, this model reflected our a-priori hypotheses that we aimed to 

test. As a simpler quantification of these effects, and sanity check, we conducted Pearson’s cor-

relations between age and each measure, including only auditory oddball recordings, averaging 

sessions (Figure 2). 

To determine the relationship of EEG measures to each other (Suppl. Figure 1-1, Suppl. Table 1-

1), we conducted Pearson’s correlations across all recordings. Then, to control for the effects of 

sleep, age, session and task, we conducted linear mixed effects models with the following for-

mula: Measure1 ~ Measure2 +  Sleep ∗ Age +  Task +  (1|Participant)  + (1|Participant: Session).  

To determine the topographical distribution of the overnight effects (Figure 4, Figure 7), we ran 

simple linear mixed effects models on participants binned by age: Measure ~ Sleep +  Task +

 (1|Participant)  +  (1|Participant: Session). For the age bin of 18-25 year olds, without multiple 

tasks, the fixed effect of Task was excluded. We then plotted the β estimates for the effect of 

Sleep and their associated statistical significance, which was corrected for multiple comparisons 

across channels using false discovery rates (FDR; (Benjamini & Yekutieli, 2001)). 

To determine the effect of ADHD across channels, we used the model Measure ~ Task +  Sleep ∗

Age +  Group + (1|Participant) +  (1|Participant: Session) for each channel and plotted in Figure 8 

the β estimates for the effect of Group. 
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CODE AND DATA AVAILABILITY 
The burst detection can be conducted either with the original python toolbox bycycle 

(https://github.com/bycycle-tools/bycycle), or with our MATLAB implementation 

(https://github.com/HuberSleepLab/Matcycle). The preprocessing and analysis code is likewise 

open source (https://github.com/snipeso/children-wake/). The data is available upon reasonable 

request. 
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SUPPLEMENTARY MATERIAL 

 

Supplementary Figure 1-1: Correlations between outcome measures, corrected for age. 

Each plot correlates one measure to the other (plots are mirrored along the diagonal). Each dot 

represents the data of a recording, with multiple recordings (morning/evening, ses-

sion1/session2, etc) for each participant. Pearson’s rho values are provided for correlations 

which were significant (p-value < .05). N.B. these correlations violate the assumption of inde-

pendence between data points, and are merely an indication of how each measure relates to 

the other. 
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b=10.00 
t=13.2 
p<.001 

df=1235 

b=-0.00 
t=-0.5 
p=.618 

df=1235 

b=0.02 
t=8.7 

p<.001 
df=1235 

b=0.07 
t=39.3 
p<.001 

df=1235 

b=0.02 
t=20.6 
p<.001 

df=1235 

DENSITY 

b=0.01 
t=12.0 
p<.001 

df=1235 

 
b=0.00 
t=14.7 
p<.001 

df=1235 

b=0.00 
t=14.5 
p<.001 

df=1235 

b=0.00 
t=28.2 
p<.001 

df=1235 

b=0.00 
t=46.9 
p<.001 

df=1235 

SLOPE 

b=-0.76 
t=-1.9 
p=.063 

df=1235 

b=167.38 
t=14.9 
p<.001 

df=1235 

 
b=0.88 
t=61.9 
p<.001 

df=1235 

b=0.18 
t=4.7 

p<.001 
df=1235 

b=0.17 
t=12.5 
p<.001 

df=1235 

INTERCEPT 

b=3.05 
 t=7.6 

p<.001 
df=1235 

b=160.06 
t=14.5 
p<.001 

df=1235 

b=0.84 
t=61.0 
p<.001 

df=1235 

 
b=0.63 
t=17.5 
p<.001 

df=1235 

b=0.12 
t=8.4 

p<.001 
df=1235 

POWER 

b=7.54 
t=40.5 
p<.001 

df=1235 

b=181.32 
t=29.9 
p<.001 

df=1235 

b=0.10 
t=5.8 

p<.001 
df=1235 

b=0.32 
t=19.4 
p<.001 

df=1235 

 
b=0.22 
t=30.2 
p<.001 

df=1235 

PERIODIC POWER 

b=13.77 
t=19.3 
p<.001 

df=1235 

b=666.33 
t=46.7 
p<.001 

df=1235 

b=0.61 
t=12.1 
p<.001 

df=1235 

b=0.46 
t=8.5 

p<.001 
df=1235 

b=1.73 
t=27.9 
p<.001 

df=1235 

 

Supplementary table 1-1: mixed effects models between EEG measures. The model was 

Measurecolumn ~ Measurerow + Task + Sleep*Age + (1|Participant) + (1|Participant:Session). β es-

timates indicate how much each unit of the row measure changes each unit of the column 

measure (for a hypothetical evening oddball recording at age 0). Degrees of freedom (df) reflect 

the overall number of datapoints included in the model, minus the number of factors included 

in the model. 
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