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Abstract

Some patients benefit from a treatment while others may do so less or do not

benefit at all. We have previously developed a two-stage network meta-

regression prediction model that synthesized randomized trials and evaluates

how treatment effects vary across patient characteristics. In this article, we

extended this model to combine different sources of types in different formats:

aggregate data (AD) and individual participant data (IPD) from randomized

and non-randomized evidence. In the first stage, a prognostic model is devel-

oped to predict the baseline risk of the outcome using a large cohort study. In

the second stage, we recalibrated this prognostic model to improve our predic-

tions for patients enrolled in randomized trials. In the third stage, we used the

baseline risk as effect modifier in a network meta-regression model combining

AD, IPD randomized clinical trial to estimate heterogeneous treatment effects.
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We illustrated the approach in the re-analysis of a network of studies compar-

ing three drugs for relapsing–remitting multiple sclerosis. Several patient char-

acteristics influence the baseline risk of relapse, which in turn modifies the

effect of the drugs. The proposed model makes personalized predictions for

health outcomes under several treatment options and encompasses all relevant

randomized and non-randomized evidence.

KEYWORD S

combination of data sources, network meta-analysis, prediction model

Highlights

What is already known?
• Recently, a two-stage model which allows for individualized treatment

effects predictions between several competing treatments was developed,
using individual participant data from a network of randomized clinical
trials.

What is new?
• We extend this model by combining several data sources, such as observa-

tional studies on the top of randomized clinical trials and we show how to
incorporate aggregate data in the analysis.

Potential impact for Research Synthesis Methods readers outside
authors’ field
• Readers will be able to reproduce the suggested model, in any clinical area,

to make individualized predictions of several competing treatments based
on network meta-analysis results, while combining several data sources; the
methods are described in detail and the codes used for the illustrative exam-
ple are publicly available.

1 | INTRODUCTION

Applications of network meta-analysis to health care
questions typically report population-average results
about the effects of competing treatments.1,2 The applica-
bility of such results is limited for decision-making pur-
poses, as some patients might benefit greatly from a
treatment while others may do so less or do not benefit at
all. Network meta-regression models of studies with indi-
vidual participant data (IPD) can be used to estimate
such heterogeneous treatments effects, should preferably
account for all relevant individual's baseline characteris-
tics simultaneously, and indicate the preferable treatment
for each patient.3–5 The most commonly used methods
for individualized predictions are the effect modification
and the risk modeling approaches.3,6–10

The effect modification approach is a regression model
with multiple variables and interaction terms between
them and the treatment.11 The effect modification

approach is a flexible method for predicting individual-
ized treatment effects but presents some practical difficul-
ties.8,11 First, it is prone to overfitting because often a
large number of model parameters must be estimated
from a small or insufficient sample size.12–14 Although
penalization approaches could potentially alleviate the
risk of overfitting, research on penalization in (network)
meta-regression models is still at an experimental phase.9

Risk modeling approaches have been developed as a solu-
tion to these shortcomings.

The risk modeling approach is a two-stage method to
estimate heterogeneous treatment effects within a trial.
The approach assumes that the risk of the outcome esti-
mated at baseline (often a proxy for the severity of the
condition, the presence of comorbidities, etc.) could mod-
erate the treatment effects.3–5,8,11,15 In the first stage, the
outcome risk for each patient is predicted according to
their characteristics at baseline. In the second stage, the
interaction between the baseline risk and the treatment
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effect is estimated.3,8,16–20 The same trial data (internal
risk modeling) or different datasets (external risk model-
ing) can be used at each stage.3–5,11 The risk modeling
approach can be thought of as a parameter reduction
method, which reduces the risk of overfitting which is
one of the most important problems when dealing with a
large number of treatment–covariate interactions. Risk
modeling outperforms the effect modification method in
terms of dimensionality, power, and when there is lim-
ited prior knowledge about the role of covariates, while
taking advantage of well-established penalization and
variable selection methods in multivariable prognostic
models.8 Analysis of randomized clinical trials (RCTs)
using risk modeling has been successfully applied in vari-
ous clinical areas to estimate heterogeneous treatment
effects.8,9,11,18 The internal risk modeling approach was
recently extended into a network meta-regression model
of RCTs with IPD.21

This work is supported and funded by the HTx. The
HTx is a Horizon 2020 project supported by the European
Union lasting for 5 years from January 2019. The main
aim of HTx is to create a framework for the Next Genera-
tion Health Technology Assessment to support patient-
centered, societally oriented, real-time decision-making on
access to and reimbursement for health technologies
throughout Europe. To this end, the aim of this paper is to
extend the previously developed two-stage risk modeling
approach, using a fusion of evidence synthesis and predic-
tion methodology.21 Observational rather than random-
ized studies are arguably more suitable to develop a
prognostic model,22 while RCTs are more suitable to esti-
mate unbiased treatment effects. Consequently, we extend
the approach so that different sources of data are
employed in the different stages of the risk modeling
approach. The differences in populations in observational
studies and RCTs need to be accounted for and we suggest
re-calibration techniques for this purpose. To increase
power and precision of the estimated treatment effects, we
also suggest that studies that report only aggregated data
(AD) could be included in the approach.23 We implemen-
ted the network meta-regression model in a Bayesian
framework, and we used it to predict the probability of
experiencing at least one relapse within the next 2 years
for three drugs and placebo in patients with relapsing–
remitting multiple sclerosis (RRMS).

2 | MOTIVATING EXAMPLE
AND DATA

Multiple sclerosis is an immune-mediated disease of the
central nervous system with various subtypes. Its most
common subtype is RRMS.24 Patients with RRMS present

with acute or subacute symptoms (relapses) followed by
periods of complete or incomplete recovery (remis-
sions).25 Reduction in relapse rates has been commonly
used as the primary efficacy endpoint in phase III RCTs
leading to market approval of drugs.24 Some of the drugs,
like natalizumab, are associated with rare but serious side
effects, while others, like dimethyl fumarate, are consid-
ered to be safer options.26,27

We illustrate the methods in datasets including
patients with confirmed RRMS. Table 1 presents the out-
come and the patients' baseline characteristics for the
included datasets. The outcome of interest is at least on
relapse within 2 years from baseline (yes or no).

2.1 | Observational evidence

We included 935 patients enrolled in the Swiss Multiple
Sclerosis Cohort (SMSC).28 Each patient contributed one,
two, or three cycles of 2 years of follow-up. The begin-
ning of each 2-year follow-up cycle is assumed as time
zero, which corresponds to the moment when a decision
needs to be made regarding the initiation or revision of
treatment, after “baseline” demographic (such as age,
gender) and disease activity (e.g., Expanded Disability
Status Scale [EDSS]) data are collected. We included 1752
patient cycles in total.

2.2 | Randomized evidence

We had access to IPD from three phase-III RCTs with
3590 patients assigned to placebo, natalizumab, dimethyl
fumarate, or glatiramer acetate.29–31 We included a subset
of 2150 patients with complete covariate and outcome
information, assuming that any missingness does not
depend on the risk of relapsing.

3 | METHODS

We proposed a three-stage model. In the first stage, we
built a prognostic model using the SMSC. In the second
stage, we recalibrated the model to estimate the baseline
risk in patients enrolled in RCTs. In the third stage, we
estimated heterogeneous treatment effects from a net-
work meta-regression model that synthesizes AD with
IPD from RCTs and includes the baseline risk as a prog-
nostic factor and effect modifier.

All our analyses were done in R32 version 3.6.2 and in
JAGS33 (called through R). The code can be found in the
GitHub repository: https://github.com/esm-ispm-unibe-
ch/ThreeStageModel_RRMS.

CHALKOU ET AL. 3
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3.1 | Notation

Consider a set of treatments H each denoted by
h¼ 1,2,…,T. Let yijh denote the dichotomous outcome for
individual i=1,2,…, n under treatment h in the j-th trial,
and a total of ns trials. An individual can experience the
outcome ðyijh ¼ 1Þ or not ðyijh ¼ 0Þ. PFijk is the k-th prog-
nostic factor, k¼ 1,2,…np. The np prognostic factors are

used to estimate the baseline risk Ri (independent of
treatment), for each participant. The probability of the
outcome to occur for individual i in study j under treat-
ment h is denoted by pijh and depends on treatment,
baseline risk Ri and the interaction between the baseline
risk and the treatment. We use asterisk (*), to
differentiate between the estimations before and after re-
calibration: Ri

� indicates the baseline risk before the

TABLE 1 Treatment, sample size, outcome, baseline characteristics, and baseline risk (stage 2) of patients in the included datasets.

Study (type
of data) Treatment

Number
of
patients

Number of patients
experiencing relapse at
2 years (%)

Mean
age (sd)

Number
of
females
(%)

Mean
baseline
EDSS
score (sd)

Mean
baseline risk
(95% CrI)

SMSC18

(real-world
study with
IPD)

Total 935 191 (20.4) 40.8 (11.2) 631 (67.5) 2.3 (1.4) 20.1 (2.8,
37.5)

AFFIRM19

(RCT with
IPD)

Total 939 359 (38.2) 36.0 (8.3) 657 (70.0) 2.3 (1.2) 36.5 (18.8,
54.1)

Natalizumab 627 183 (29.2) 35.6 (8.5) 449 (71.6) 2.3 (1.16) 36.9 (19.5,
54.3)

Placebo 312 176 (56.4) 36.7 (7.8) 208 (66.7) 2.3 (1.19) 35.6 (17.6,
53.7)

CONFIRM20

(RCT with
IPD)

Total 1417 451 (31.8) 37.3 (9.3) 993 (70.1) 2.6 (1.2) 37.2 (18.6,
55.7)

Dimethyl
fumarate

703 185 (26.3) 37.8 (9.4) 495 (70.4) 2.5 (1.2) 36.8 (18.2,
55.3)

Glatiramer
acetate

351 117 (33.3) 36.7 (9.1) 247 (70.3) 2.6 (1.2) 37.4 (17.6,
57.3)

Placebo 363 149 (41.0) 36.9 (9.2) 251 (69.1) 2.6 (1.2) 37.7 (20.5,
54.9)

DEFINE21

(RCT with
IPD)

Total 1234 394 (31.9) 38.5 (9.0) 908 (73.6) 2.4 (1.2) 36.9 (17.7,
56.0)

Dimethyl
fumarate

826 212 (25.7) 38.5 (9.0) 602 (72.9) 2.4 (1.2) 36.2 (17.2,
55.1)

Placebo 408 182 (44.6) 38.5 (9.1) 306 (75) 2.5 (1.2) 38.2 (19.0,
57,5)

Bornstein23

(RCT with
AD)

Total 50 30 (60.0) 30.5 (NA) 29 (58.0) 3.1 (NA) 35.6 (19.9,
51.3)

Glatiramer
acetate

25 11 (44.0) 30.0 (NA) 14 (0.6) 2.9 (NA) NA

Placebo 25 19 (76.0) 31.1 (NA) 15 (0.6) 3.2 (NA) NA

Johnson24

(RCT with
AD)

Total 251 186 (74.1) 34.5 (6.4) 184 (73.3) 2.6 (1.3) 30.8 (3.4,
58.1)

Glatiramer
acetate

125 89 (71.2) 34.6 (6.0) 88 (70.4) 2.8 (1.2) NA

Placebo 126 97 (77.0) 34.3 (6.5) 96 (76.2) 2.4 (1.3) NA

Abbreviations: AD, aggregate data; CrI, credible interval; EDSS, Expanded Disability Status Scale; IPD, individual participant data; NA, not available; RCT,
randomized clinical trial; sd, standard deviation; SMSC, Swiss Multiple Sclerosis Cohort.
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re-calibration, estimated using the SMSC, while Ri indi-
cates the baseline risk after re-calibration, for the RCTs
population.

3.2 | Stage 1: Development and internal
validation of the baseline risk
prognostic model

There is plenty of guidance about how to develop and
validate a prognostic model.22,34–36 Good practice
involves the use of appropriate model selection methods
(or pre-specifying the model), shrinkage in the coeffi-
cients to avoid extreme predictions, accounting for miss-
ing data and correcting for optimism when the model
performance is evaluated internally.

In our approach, we developed the prognostic model
using a non-randomized study for the baseline risk, Ri

�,
for each individual i. We used a logistic mixed-effects
model, which accounts for information about the same
patient from different cycles. (c, where c¼ 1,2,…,nc), in a
Bayesian framework as

logit Ri
�ð Þ¼ β0

� þu0i
� þ

Xnp
k¼1

βk
� þuki

�ð Þ�PFik: ð1Þ

β0
� and βk

� are the fixed effect intercept and fixed
effect slopes respectively, and u0i� and uki� are the
individual-level random effects intercept and
individual-level random effects slopes, which account for
information about the same patient from different cycles.
A detailed description of the model development and
internal validation is available elsewhere.37

3.3 | Stage 2: Re-calibration of the
baseline risk prognostic model for
populations included in RCTs

While observational data in stage 1 might lead to better
estimation of the prognostic effect of baseline covariates
under real-world conditions,38–41 the predictions for dif-
ferent populations, like this of RCTs, might be less accu-
rate. Το estimate parameters that relate to treatment
effects and their modification, it is best to use RCT data.
The model is described in Stage 3 and uses the baseline
risk as a covariate; this baseline risk is best to be as accu-
rate as possible for the RCT population. In this
stage 2, we will re-calibrate the baseline risk model Ri of
stage 1.22,42 We will start with the model as of
Equation (1) as estimated using the SMSC data and then
use the RCT data to (1) recalibrate the model intercept,

(2) recalibrate the intercept and the overall calibration
slope, and (3) recalibrate the intercept, the overall slope,
and re-estimate some of the regression coefficients.22,42

Recalibrating only the intercept ensures that the aver-
age predicted baseline risk is equal to average observed
baseline risk in RCTs.42 The recalibrated baseline risk Ri

can be estimated by plugging-in the estimated slopes βk
�

from stage 1 (Equation 1) and then re-estimate the inter-
cept β0, by fitting

logit Rið Þ¼ β0jþ logit R�
i

� � ð2Þ

to the RCTs data. The intercept β0j could be assumed

exchangeable β0j �N b0,σ2b0

� �� �
, or common β0j ¼ b0

� �
across studies.

Another option is to recalibrate the intercept and the
overall calibration slope, βoverall.

42

This will also update the overall effect of the prognos-
tic factors for the RCTs setting. We first estimate the
uncalibrated predictions R�

i for the RCT population, and
then we estimate the following model

logit Rið Þ¼ β0jþβoverallj� logit R�
i

� �
, ð3Þ

where the intercept and the overall regression coefficient
of logit R�

i

� �
could be assumed exchangeable

β0j �N b0,σ2b0

� �
,βoverallj �N boverall,σ2boverall

� �� �
, or com-

mon β0j ¼ b0,βoverallj ¼ boverall
� �

across studies. The recali-

brated predicted risk score Ri is obtained from
Equation (3) after estimating b0 and boverall via the RCTs
with IPD.

A more comprehensive option is to re-calibrate the
intercept, the overall slope (as above) and in addition re-
estimate some of the regression coefficients as needed.42

The re-estimated baseline risk for RCT patients, Ri, will
be finally estimated as:

logit Rið Þ¼ β0jþ
Xnp
k¼1

βkj�PFik, ð4Þ

where β0j and βkj are the recalibrated intercept and

regression coefficients, and as before can be assumed

exchangeable β0j �N b0,σ2b0

� �
,βkj �N bk,σ2bk

� �� �
, or

common β0j ¼ b0,βkj ¼ bk
� �

across studies.42

The common-effects assumption for β0j,βoverallj,and βkj,
ignores trial differences, and could be used only in cases

CHALKOU ET AL. 5
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where RCTs were designed using the same or similar pro-
tocols and inclusion criteria. A viable option that might
be relevant in most cases is to assume random effects
across studies. The parameters could be also estimated
independently (e.g., each β0j,βoverallj,and βkj are given a
prior distributions); however, this would lead to different
baseline risks per study, which would pose challenges in
the baseline risk estimation for a new patient with a vari-
ables' profile not included in one of the available studies.

It is important to note that the development of the
baseline risk and its recalibration (steps 1 and 2) do not
aim to predict the outcome risk accurately. Instead, they
aim to reduce dimensionality by synthesizing baseline
information into a single variable. We followed the rec-
ommendation outlined in the predictive approaches to
treatment effect heterogeneity (PATH) statement.11 and
developed the baseline risk model (steps 1 and 2) using
the entire trial population blinded to treatment assign-
ments. In this context, the variable Ri represents the base-
line risk while being unaware of the treatment
allocation.3,11,17,43

In the application, we use the re-calibration method
associated with the best model's calibration (i.e., the
agreement between the observed outcome's proportions
and the predicted probabilities) and discrimination abil-
ity (i.e., area under the curve [AUC]).

3.4 | Stage 3: Network meta-regression
with individual and aggregate data using
the baseline risk as prognostic factor and
effect modifier

In the third stage, we used the calibrated logit Rið Þ from
stage 2 as covariate in a network meta-regression
model.23 We extended the meta-regression model sug-
gested by Saramago et al. to combine IPD and AD in a
network of trials comparing multiple treatments.23 In the
first part, we modeled studies with IPD

yijt �Bernoulli pijh
� �

,

where logit Rð Þj is the mean logit baseline risk from all
patients in study j, and each study j has a reference treat-
ment href,j �H.

The parameters of interest are the relative treatment
effects djhref,jh: We estimated independently the nuisance

parameters uj for each study (i.e., the log odds of
experiencing the outcome under the study's reference
treatment). The coefficients g0j measure the prognostic

impact of baseline risk and can be assumed independent,

exchangeable g0j �N γ0,σ2γ0
� �� �

, or common g0j ¼ γ0
� �

across studies. The regression coefficients gWjhref,jh
measure how the baseline risk of a patient modifies the
treatment effect within each study; they can be
combined across studies assuming random

gWjhr e f,jh �N GW
hr e f,jh

,σ2
GW

� �� �
or common gWjhr e f,jh ¼GW

hr e f,jh

� �
effects, where GW

href,jh
¼ γWh �γWhref,j with γWref ¼ 0 for an over-

all reference treatment. Similarly, the between-studies
effect modification parameters gBhref,jh measure how the

mean baseline risk of each study modifies the relative
treatment effect.

In the second part, we synthesize information from
studies that report only AD. The likelihood of the
observed data in AD studies is

rjt �Binomial pjh,njh

� �
,

where rjh, njh, pjh denote the number of patients
experiencing the outcome of interest, the total number
of randomized individuals and the probability of
experiencing the outcome, in study j in treatment arm
h, respectively.

Then, we model the relative treatments effects using
the average study-specific baseline risk logit Rð Þj

logit pjh
� �

¼
uj, if h¼ href,j

ujþdjhref,jhþ gBhref,jh� logit Rð Þj, if h≠ href,j

(
:

ð6Þ

logit pijh
� �

¼
ujþg0j� logit Rið Þð Þ if h¼ href,j

ujþdjhref,jhþ g0jþgWjhref,jh
� �

� logit Rið Þð Þþ gBhref,jh�gWjhref,jh
� �

� logit Rð Þj, if h≠ href ,j
,

8<
: ð5Þ

6 CHALKOU ET AL.
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To estimate the average baseline risk logit Rð Þj we sim-
ulated pseudo-IPD using a multivariate normal distribu-
tion with means equal to the reported mean covariate
values (PFkj), and variance–covariance matrix calculated
using the reported standard deviations and correlations
between covariates estimated from the RCTs with IPDs.
In this way, we might attenuate potential ecological bias
in the estimation of logit Rð Þj.

The mean values of some of the prognostic factors
might not be reported in the original studies. In that case,
we used imputations to allow studies with partial infor-
mation on covariates to be included in the meta-
regression model, as previously described by Hemming
et al. (described in Appendix, Supporting information).44

In the third part, the relative treatment effects,
djhref,jh, can be combined across studies in a random-
effect (djhref,jh �N Dhref,jh,σ

2
D

� �
) or common-effect

(djhref,jh ¼Dhref,jh) across studies assuming consistency
Dhref,jh ¼ δh�δhref,j where δref ¼ 0. Finally, the consistency
equations for the within and between studies effect modi-
fication parameters gBhref,jh areG

B
href,jh

¼ γBh� γBhref,j
and γBref ¼ 0:

The difference between gWjhref,jh and gBjhref,jh represents
an estimate of ecological bias (i.e., the difference between
across-study associations and within-study associations,
due to study-level confounding).45 To ensure we do not
introduce bias, the within-study effect modification

gWjhref,jh

� �
is estimated through the IPD studies alone

(Equation 5), whereas both IPD and AD studies are used
for the between-study effect modification estima-

tion gBjhref,jh
� �

.23,45

The aim of Stage 3 is to estimate accurately the treat-
ment effects δhð Þ, adjusted for the baseline risk Rið Þ, and
the interactions between the treatments and the baseline
risk within γWh

� �
and between γBh

� �
studies.

3.5 | Making treatment-specific outcome
predictions

To predict the probability pinewh of the outcome in a new
patient inew under treatment h, we follow a series of
steps.

3.5.1 | Step 1—Estimation of baseline risk
for a new patient

We estimate the logit Rinewð Þ, which represents the log-
odds of the baseline risk for the new patient, using the

coefficients b0, bk obtained from stage 2, if we aim to
make predictions for RCTs populations or using the coef-
ficients β0

�,βk
� obtained from stage 1, if we aim to make

predictions for real-world population.

3.5.2 | Step 2—Estimation of reference
treatment parameters

We need to estimate from a population similar to those
that we want to make predictions:

a. the logit-probability of the outcome under the refer-
ence treatment (placebo, in our example)—denoted
as a.

b. the regression coefficient of logit Rinewð Þ under the refer-
ence treatment—denoted as γ, and can be interpreted
as the average change in the logit-probability of
relapse within 2 years for a one unit increase in the
logit-transformed baseline risk, specifically for
patients receiving the reference treatment.

If our aim is to make predictions for RCT popula-
tions, then placebo arms from RCTs can be used to esti-
mate a, and γ using a meta-regression model, which
(under common treatment effects assumption across
studies) would be:

logit pI,placebo
� �

¼ aþ γ� logit RIð Þ: ð7Þ

If we aim to make predictions in a real-world popula-
tion, then untreated patients from a registry or a cohort
study can be used to estimate a, and γ as in Equation (7).

3.5.3 | Step 3—Estimation of the mean logit
baseline risk across all individuals

If our aim is to make predictions for RCT populations,
then all patients from several RCTs can be used to esti-
mate the mean of logit baseline risk across all individuals
(i.e., mean of logit Rið Þ), denoted as logit Rð Þ. If we aim to
make predictions in a real-world population, then all
patients from a registry or a cohort study can be used for
the logit Rð Þ estimation.

3.5.4 | Step 4—Final prediction

Assuming common treatment effects, we use the follow-
ing equation

CHALKOU ET AL. 7
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logit pinewh
� �¼ aþδhþ γþ γWh

� �� logit Rinewð Þþ γBh � γWh
� �

� logit Rð Þ
� �

ð8Þ

The values for δh,γWh , and γBh , are those estimated in
the third stage of the network meta-regression prognostic
model (Equation 5). a and γ are the reference treatment

parameters as estimated in Equation (7), and logit Rð Þ
� �

is the mean logit baseline risk estimated from a popula-
tion similar to the one we aim to make predictions.
Under the random effects assumption, logit pinewh

� �
would

be normally distributed with mean as in Equation (8),
and a variance–covariance matrix determined by the
variance–covariance matrix of δh, and γWh .

Figure 1 presents a schematic presentation of the aim,
data, and parameters of each stage of the approach. Infor-
mation about the studies used in the example is also
presented.

4 | APPLICATION:
HETEROGENEOUS EFFECTS OF
TREATMENTS FOR RRMS

We developed the prognostic model using the SMSC
data.28 The development of the prognostic model in stage
one has been previously published and is implemented as
Shiny app in https://cinema.ispm.unibe.ch/shinies/
rrms/.37

We first selected the prognostic factors via a review
of the literature.46–51 We included all prognostic factors
that were included in at least two previously published
prognostic models. The model includes eight prognostic
factors: age, sex, EDSS, prior or current treatment (yes
or no), months since last relapse, disease duration, num-
ber of relapses in the previous 2 years, number of gado-
linium enhanced lesions. We then fitted a logistic
mixed-effects regression model in a Bayesian framework
accounting for correlations induced by individuals con-
tributing data to more than one cycle. The SMSC
includes 1752 observations from 2-years cycles of
935 patients, and 302 of those patients experienced at
least one relapse. The full model had 22 degrees of free-
dom (for 10 predictors with random intercept and slope)
and the number of events per variable was 13.7. To
shrink the coefficients of the regression and avoid
extreme predictions, we used Laplace prior distribu-
tions.52 We used multiple imputation to account for
missing covariate data.53,54 After internal validation, the
bootstrap optimism-corrected AUC was 0.65 and
the bootstrap optimism-corrected calibration slope 0.91.
The calibration plot and the evaluation of the model's
clinical usefulness are presented elsewhere.37 The
model's accuracy and clinical performance are overall
suggesting a useful prediction model.

We then re-calibrated the prognostic model for the
RCT setting (stage 2). All three RCTs used for the re-
calibration of the baseline risk model in stage 2 had simi-
lar protocols developed by the same company, and had
participants with similar baseline characteristics as

FIGURE 1 Schematic presentation of each stage's aim, suggested data design ant type, and estimated parameters. RCTs, randomized

clinical trials.
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presented in Table 1. Therefore, we assumed common-
effects across the three RCTs for estimating the intercept
(in Equations 2–4), the overall regression coefficient
(in Equation 3), as well as the regression coefficients of
each prognostic factor (Equation 4). Alternatively, when
studies share different designs, protocols, and inclusion
criteria, random effects across studies should be assumed
in stage 2. We assessed the predictions of the developed
re-calibrated models in a calibration plot with loess
smoother (Appendix Figure 1, Supporting information).
The re-calibration method resulting in the highest
optimism-corrected AUC (AUC = 0.61) and the best
optimism-corrected calibration (c-slope = 1.002 and c-
intercept = 0.004) was “the re-calibration and selective
re-estimation” approach (Equation 4); the other two
methods resulted in optimism-corrected AUC = 0.58.
The “re-calibration of intercept” method resulted to an
optimist-corrected c-slope = 0.85 and c-inter-
cept = �0.08, and the “re-calibration of intercept and
overall slope” method resulted to an optimist-corrected
c-slope = 0.994 and c-intercept = 0.005. Based on the
existing literature, risk models with a low predictive
ability (0.6–0.65) are often adequate to detect risk-based
heterogeneous treatment effects.4,18 Therefore, we
selected the baseline risk from “the re-calibration and
selective re-estimation” method to use in the next stage
of the risk modeling approach. Appendix Table 1,
Supporting information presents the re-calibrated regres-
sion coefficients for each prognostic factor.

In Figure 2, we show the distributions of the pre-
dicted baseline risk by relapsing status in the populations
included in the three RCTs. The overall mean predicted
baseline risk was 36.8% (95% credible interval [CrI]
36.4%–37.2%). The overlap in the distributions was large,

as reflected by the low AUC. For patients who experi-
enced a relapse, the mean predicted risk was 39.2% (95%
CrI 38.5%–39.8%) whereas for patients who did not, it
was 35.4% (95% CrI 34.9%–35.9%).

The predicted baseline risk in the RCT populations
was then used in the network-meta-regression model
(Equations 5 and 6, Stage 3). Because only two AD stud-
ies were available, we assumed that gWjhref,jh=gBjhref,jh to

enable model convergence. We also assumed that
study-specific relative treatment effects do not have any
residual heterogeneity beyond what is already captured
by differences in baseline risk. As the heterogeneity vari-
ance was not well estimated with five studies, we
assumed common relative treatment effects
djhref,jh ¼Dhrefjh
� �

and common-effect modification across

studies gWjhref,jh ¼GW
href,jh

� �
. We also assumed common coef-

ficients for the prognostic effect of the baseline risk

g0j ¼ γ0

� �
, as all three studies with IPD data were very

similar in terms of design and patient characteristics.

None of the two AD studies provided information
about the number of patients with prior treatment, gado-
linium enhanced lesions, and months since last relapse;
we performed imputations as described in the
Appendix A, Supporting information. Then, we created
two pseudo-IPDs (one for each AD study) and estimated
the baseline risk for each patient in the pseudo-IPD data-
sets (presented in Appendix A, Supporting information).
The estimated mean baseline risk for each study is pre-
sented in Table 1.

Table 2 shows the estimated parameters from the net-
work meta-regression model (Stage 3). In addition, we
performed a sensitivity analysis excluding the AD studies.

FIGURE 2 The distribution of

predicted baseline risk of any

relapse within the next 2 years for

individuals by relapse status in the

randomized clinical trials dataset

(stage 2). The dashed lines indicate

the mean of predicted baseline risk

for individuals who did experience

a relapse (purple) and for those

who did not (yellow).

CHALKOU ET AL. 9
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Appendix Table 2, Supporting information shows the
results of the network meta-regression model (Stage 3),
when including and excluding the AD studies; the results
are similar in both cases. The estimated values of γ0 indi-
cate that baseline risk is an important prognostic factor
for relapse. We first make predictions for the RCT popu-
lations and hence we estimate a, and γ by synthesizing
data from placebo individuals across the three RCTs with
IPD and logit Rð Þ as the mean of logit Rið Þ across all indi-
viduals in RCTs with IPD. The treatment effects as a
function of the baseline risk are shown in Figure 3.
Appendix Figure 2, Supporting information presents the
final predictions with their 95% CrIs. Natalizumab gives
the lowest probability of relapsing over almost the entire
baseline risk range. However, its advantage over dimethyl
fumarate for patients with low baseline risk (below 30%,
on average) is very small. We also assessed the apparent
prediction model's accuracy using the calibration plot
with loess smoother (Appendix Figure 3, Supporting
information). The results indicate that the model accu-
rately predicts the probability of relapse within the next
2 years. While optimism-corrected internal validation is
considered optimal for assessing model performance, it
is essential to clarify that the primary focus of this work
is to illustrate and demonstrate the methodology we have
presented.

Additionally, we performed a sensitivity analysis com-
paring the final predictions from Stage 3 under all three
recalibration methods (Appendix Table 3 and Figure 4,
Supporting information). All three recalibration methods
lead to similar final predictions. On average, natalizumab

minimizes the predicted probability of relapsing within
the next 2 years (about 7%–12% mean absolute difference
compared to dimethyl fumarate). For low-risk patients
(baseline risk ≤30%), the probability to relapse is similar
under dimethyl fumarate and natalizumab. For high-risk
patients (baseline risk ≥50%), natalizumab is the drug
that minimizes the predicted probability of relapsing
within the next 2 years (about 13%–19% mean absolute
difference compared to dimethyl fumarate).

To make predictions for the Swiss real-world popula-
tion, we estimate a as the logit-probability of relapse in
untreated patients in the SMSC and logit Rð Þ as the mean
of logit Rið Þ across all individuals in the SMSC; γ was also
estimated using SMSC. The results for the SMSC popula-
tion are presented in Appendix Figure 5, Supporting
information. Often the patients' baseline disease condi-
tion is more severe in RCTs than in observational studies,
and hence as expected, the distribution of baseline risk is
different between the SMSC and the RCTs. However, the
relative ranking of therapies for a given baseline risk does
not deviate from this of RCTs (presented in Figure 3). As
in the RCTs population, the advantage of natalizumab
over dimethyl fumarate for patients with low baseline
risk is non-existing (Appendix Figure 5, Supporting infor-
mation). An interactive version of Figure 3 and Appendix
Figure 5, Supporting information has been implemented
in https://cinema.ispm.unibe.ch/shinies/srrms/.

Table 3 summarizes the information in Figure 3 for
patients at baseline risk below 30% (low risk) or more
than 50% (high risk). These cut-offs were chosen arbi-
trarily for illustrative purposes. For high-risk patients
(8.5% of patients in RCTs), the risk difference for relapse
between natalizumab and dimethyl fumarate is 19%
favoring natalizumab. For low-risk patients (25% of
patients in RCTs), the risk difference between natalizu-
mab and dimethyl fumarate is 1.4%.

5 | DISCUSSION

We developed a three-stage network meta-analysis
approach, where data from different sources and study
designs can be synthesized to make predictions for het-
erogeneous treatment effects. We exemplified our
method by predicting the probability of relapse under
three active treatments and placebo in patients with
RRMS, we made the code available (https://github.com/
esm-ispm-unibe-ch/ThreeStageModel_RRMS), and we
created an online tool to show the predictions in an
interactive way (https://cinema.ispm.unibe.ch/shinies/
srrms/).

Central to our work is the risk modeling approach.
The main advantage of the risk modeling method is that
it reduces dimensionality by summarizing all relevant

TABLE 2 Estimated parameters from network meta-regression

model including the logit-risk as covariate (Stage 3).

Estimated parameters from network
meta-regression model

Mean
(95% CrI)

OR of relapsing for one unit increase in
logit-risk eγ0ð Þ

2.72 (2.02, 3.70)

OR of relapsing under DF versus
placebo eδDFð Þ

0.39 (0.25, 0.59)

OR of relapsing under GA versus
placebo eδGAð Þ

0.41 (0.22, 0.77)

OR of relapsing under N versus
placebo eδNð Þ

0.21 (0.12, 0.34)

OR of relapsing under DF versus placebo for
one unit increase in logit-risk eγ

W
DF

� � 0.84 (0.44, 1.62)

OR of relapsing under GA versus placebo for
one unit increase in logit-risk eγ

W
GA

� � 0.64 (0.27, 1.53)

OR of relapsing under N versus placebo for
one unit increase in logit-risk eγ

W
N

� � 0.60 (0.30, 1.21)

Abbreviations: CrI, credible interval; DF, dimethyl fumarate; GA, glatiramer
acetate; N, natalizumab, OR, odds ratio.
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baseline variables in one “baseline risk” variable. The
risk of overfitting in the final prediction model is then
low and model selection methods and shrinkage are
needed when developing the baseline risk model, but not
when making the final predictions. Risk modeling
approach has been originally introduced as a method to
analyze a single randomized trial,3,8,16–20 then extended
to meta-analysis3,8,55 and more recently to network meta-
analysis21 of randomized trials. However, none of these
approaches examined combining and making the best
use of all available data sources. Observational studies
reflect better the real-world populations and

conditions38–41 and this is why we used a cohort in the
first stage of our approach to develop a model that pre-
dicts the baseline risk. In addition, we combined AD and
IPD to increase the power and precision of the estimated
treatment effects.

Our methodology relies on two main sets of assump-
tions: those of network meta-analysis2 and risk modeling
assumptions.11 Within the network meta-analysis frame-
work, we emphasize the transitivity assumption, which
suggests that patient populations, study designs, and
other factors that can modify the treatment effect should
closely align across groups of studies that compare

FIGURE 3 Predicted probability of relapsing within the next 2 years as a function of the baseline risk (Stage 3) into the randomized

clinical trials (RCTs) population. The x-axis shows the baseline risk of relapsing within the next 2 years (after re-calibration, stage 2) and the

y-axis shows the predicted probability to relapse within the next 2 years under each one of the available treatments. Between the two red

vertical dashed lines are the baseline risk values observed in the three RCTs with individual participant data.29–31 The distribution of the

baseline risk in these three trials is presented at the bottom of the graph. IPD, individual participant data.

TABLE 3 Predicted % average risk difference and odds ratio of each active treatment versus placebo in the populations in randomized

clinical trials. Results are shown for all patients, and for two baseline risk groups.

Treatment effects Treatment All patients
Baseline risk <30% low-
risk patients

Baseline risk >50% high-
risk patients

Risk difference of drug versus
placebo (95% CrI)

Dimethyl
fumarate

38.2 (26.1, 50.4) 17.6 (10.5, 29.8) 58.1 (37.9, 73.9)

Glatiramer
acetate

41.1 (25.3, 57.6) 24.5 (13.8, 42.3) 56.6 (31.5, 77.0)

Natalizumab 27.2 (16.1, 40.6) 15.2 (8.6, 26.2) 39.0 (20.2, 59.4)

Odds ratio of drug versus placebo
(95% CrI)

Dimethyl
fumarate

0.43 (0.32, 0.57) 0.50 (0.35, 0.71) 0.36 (0.25, 0.51)

Glatiramer
acetate

0.53 (0.35, 0.83) 0.78 (0.49, 1.30) 0.34 (0.20, 0.61)

Natalizumab 0.28 (0.20, 0.39) 0.43 (0.29, 0.62) 0.17 (0.10, 0.26)

Abbreviation: CrI, credible interval.
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different interventions. Examination of the standard
assumptions underlying meta-analysis and meta-
regression are also required: normality in the distribution
of random effects, knowledge of the variance of the treat-
ment effects, etc.56 In addition, the risk modeling
approach assumes that the variables composing the risk
score comprehensively capture both prognosis and effect
modification.11,57 Evaluating this assumption can be
challenging, particularly when the outcome is insuffi-
ciently studied or when there is a scarcity of prognostic
studies on the subject. These assumptions are essential
foundations of our approach, ensuring the validity and
reliability of the results. The approach has several
caveats. It requires that at least one IPD dataset per inter-
vention is available. The access to IPD data entails many
challenges and difficulties described in detail
elsewhere.58–60 We implemented the three-stage
approach by fitting three separate models instead of
developing a single Bayesian model. We used an existing
prognostic model for the baseline risk (stage 1), and we
re-calibrated it (stage 2) within a frequentist setting to
take advantage of the software's re-calibration options.
Consequently, uncertainty was not accounted between
the different stages and the results from stage three might
be over-precise. In addition, the imputation method used,
although it allows the use of AD studies even if study-
level covariates are missing, may not be the optimal one.
Other methods, like advanced multiple imputations tech-
niques for study-level characteristics, may be used.61

Finally, in the RRMS application, we used common treat-
ment effects model (Stage 3) to enable model conver-
gence, because of the small number of studies. This
assumption can be relaxed if more studies are available.

The implementation of our approach in the RRMS
example shows that several patient characteristics influ-
ence the baseline risk of relapse, which in turn modifies
the effect of treatments. Natalizumab appears to be the
optimal treatment (i.e., minimizes the predicted probabil-
ity of relapsing) over almost the entire baseline risk
range. However, its advantage over dimethyl fumarate
for patients with low baseline risk is very small or
non-existing. Dimethyl fumarate might be the optimal
treatment for these patients, as natalizumab is a drug
considered less safe.26,27 The results are in agreement
with those of a recent published work,21 as well as
aligned with expert opinions in neurology. The
optimism-corrected discrimination of the prediction
model for the baseline risk (stage 2) was small
(AUC = 0.61) but sufficient for our aim. The discrimina-
tive ability of the existing prognostic models for relapses
in MS is generally low (less than 65%), indicating that
relapses might be associated with unknown fac-
tors.21,37,49,62 Second, it has been shown that models with

low AUC can still be useful when their predictions are
used as potential effect modifiers of treatment.4,18,63 This
was the case in our application where we showed clini-
cally meaningful differences between the interventions
for different levels of the baseline risk (Figure 3). Note
that the findings of this model, are as expected by practi-
tioners and as described in international guidelines,
namely that natalizumab is to be administered as a sec-
ond line treatment. Prognostic scores from models with
low AUC were previously used as effect modifiers; see for
example, the Thrombolysis in Myocardial Infarction and
the CHADS2 risk score; both were powerful in detecting
the heterogeneous treatment effects of via a risk model-
ing approach.64–68

The application in the example of RRMS is used as an
example to illustrate the methodology, showing the
potential of our approach, which can make prediction of
individualized treatment effects in RCTs and real-world
populations; however, it is not ready for use in clinical
practice. Decision-making tools need bootstrap (or cross-
validation) internal and external validation and need to
show evidence about all relevant treatment options,
before they are considered for use.69 In addition, we
focused primarily on validating the model's predicted
probability to relapse; future research could explore more
sophisticated validation techniques for validating the
treatment benefit.70–73 Finally, similar to the well-known
phases of clinical research in drug development, Heinze
et al. define four phases of methodological research.74

The present article can be considered as a phase I devel-
opment, where an idea is introduced and, based on the
fact that its components are well established in the evi-
dence synthesis and prognostic research field, it is
expected to provide valid results. However, phase II and
III studies with extensive simulation scenarios are needed
before the proposed models are employed in practice.

The presented approach offers many opportunities for
further development. Several bias-adjusted methods have
been proposed to combine non-randomized data and
RCTs to estimate average treatment effects in a meta-
analysis framework.75,76 Some of them use the baseline
risk to adjust for selection bias in the real-world data in a
meta-analysis framework.75 The approach we presented
could be further extended by using observational data to
inform not only the baseline risk in stage 1, but also the
relative treatment effects (in Stage 3) using appropriate
bias-adjusted modeling.75,76 Evidence about treatment
cost and safety could be incorporated to extend the model
further and to better inform clinical decision-making.
Besides, it is possible that other study-level characteris-
tics, like the year of randomization and the risk of bias,
may also influence the treatment effects. Such variables
can be added to the network meta-regression model, if

12 CHALKOU ET AL.
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the number of studies permits. Finally, the implementa-
tion of the three stages into a single Bayesian model will
allow naturally to incorporate uncertainty from all stages
in the final result and avoid spuriously overprecise
conclusions.

6 | CONCLUSION

The proposed approach combines all relevant evidence
sources and can be applied to estimate individualized
predictions of treatment effects for any health condition.
Consequently, it has the potential to assist clinical prac-
tice and decision-making toward treatment recommenda-
tions and precision medicine.
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