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A B S T R A C T   

The rapid population growth in Africa is associated with an increasing demand for livestock products which in 
turn can lead to antimicrobial use. Antimicrobial usage in animals contributes to the emergence and selection of 
resistant bacteria which constitutes a serious public health threat. This study aims to review and summarize the 
available information on highest priority critically important antimicrobials (HPCIAs) resistance in livestock 
production in Africa. This work will help to inform future policies for controlling antimicrobial resistance (AMR) 
in the food production chain. A scoping review was conducted according to the Cochrane handbook and 
following PRISMA 2020 guidelines for reporting. Primary research studies published after 1999 and reporting 
resistance of Escherichia coli, Enterococcus spp, Staphylococcus aureus, Salmonella spp, and Campylobacter spp to 
HPCIAs in poultry, cattle, pigs, goats, and sheep in Africa were searched in four databases. A total of 312 articles 
were included in the review. The majority of the studies (40.7) were conducted in North African countries. More 
than 49.0% of included studies involved poultry and 26.2% cattle. Cephalosporins and quinolones were the most 
studied antimicrobial classes. Of the bacteria investigated in the current review, E. coli (41.7%) and Salmonella 
spp (24.9%) represented the most commonly studied. High levels of resistance against erythromycin in E. coli 
were found in poultry (MR 96.1%, IQR 83.3–100.0%), cattle (MR 85.7%, IQR 69.2–100.0%), and pigs (MR 
94.0%, IQR 86.2–94.0%). In sheep, a high level of resistance was observed in E. coli against nalidixic acid (MR 
87.5%, IQR 81.3–93.8%). In goats, the low level of sensibility was noted in S. aureus against streptomycin (MR 
86.8%, IQR 19.4–99.0%). The study provides valuable information on HPCIAs resistance in livestock production 
in Africa and highlights the need for further research and policies to address the public health risk of AMR. This 
will likely require an investment in diagnostic infrastructure across the continent. Awareness on the harmful 
impact of AMR in African countries is a requirement to produce more effective and sustainable measures to curb 
AMR.   

1. Introduction 

An increase of the African population of around 90% has been pro-
jected for 2050 (Abramova, 2022). This rapid population growth is 
correlated with an increasing demand for livestock products and anti-
microbial use (AMU) in livestock sector (Schar et al., 2018; OECD/FAO, 
2023). An estimated 73% of all antimicrobials sold worldwide are used 

in livestock production (Van Boeckel et al., 2017). Between 2010 and 
2030, the global consumption of antimicrobials will increase by 67%. A 
third of the increase in livestock will be imputable to shifting production 
practices in middle-income countries from subsistence farming to com-
mercial production (Tiseo et al., 2020). 

One Health has been defined as “an integrated, unifying approach 
that aims to sustainably balance and optimize the health of people, 
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animals and ecosystems” (WHO, 2023). Antimicrobial resistance is an 
intricate problem compounded by various factors. Its complex epide-
miology embraces human, animals and the environment. Therefore, it 
has been claimed that antimicrobial resistance is a good illustration of a 
health problem that must be tackled using a One Health approach in 
order to be adequately addressed (Velazquez-Meza et al., 2022). 

Antimicrobial usage in animals contributes to the emergence and 
selection of resistant strains of bacteria in animals and humans. Such 
resistant bacteria may lead to a negative impact on population health 
and the economy (Liu et al., 2018; De Oliveira et al., 2020; Dutra et al., 
2021). Antimicrobial resistance (AMR) is a serious public health concern 
and one of the most important health challenges in the 21st century 
(FDA, 2020; Tarakdjian et al., 2020). Murray et al. (2022). It was esti-
mated that the death rate attributable to AMR in 2019 was highest in 
western sub-Saharan Africa, reaching a burden of 27.3–114.8 deaths per 
100 000 population. According to the same authors, the deaths attrib-
utable to and associated with bacterial antimicrobial resistance in Africa 
are higher than that observed in other regions such as East Asia, western 
Europe and Central latin America. The AMR panorama in Africa is 
compounded by several factors, including, but not limited by, lack of 
knowledge of stakeholders about AMU and AMR, limited or lack of 
surveillance systems and options to control the use of antimicrobials in 
human and veterinary medicine, lack of and/or inadequate border 
controls, lack of rules and regulation enforcement, inadequate use of 
antimicrobials or lack of treatment guidelines (Vougat Ngom et al., 
2017; Mouiche et al., 2018; Elton et al., 2020). 

AMR has a complex epidemiology and resistant bacteria can be 
transmitted across species and ecosystems. Evidence indicates that a 
reduction in AMU in animal husbandry would lead to a decrease in AMR 
levels in food animals (WHO, 2017a; Bennani et al., 2020). The spread in 
animals of MDR bacteria of clinical relevance in human medicine has 
raised public health concerns about the use of certain antimicrobials in 
the veterinary sector (Collignon et al., 2013). This has contributed to 
lead international organizations to develop policies aimed at preserving 
the efficacy of medically important antimicrobials. It is with this in mind 
that the WHO has classified five classes of antibiotics (third and fourth 
generation cephalosporins, quinolones, glycopeptides, macrolides, and 
polymyxin mainly represented by colistin and polymyxin B in 
food-producing animals) as highest priority critically important anti-
microbials (HPCIAs) based on their clinical importance in human 
medicine and the risk of resistance transfer from animals (WHO, 2018a). 
Measures to reduce AMU in animal production are particularly stringent 
with the use of HPCIAs (Diana et al., 2021). Several countries (e.g. 
Switzerland, Austria) have tried to reduce HPCIAs usage in production 
animals (Diana et al., 2021; Ngom et al., 2022). However, little is known 
about African countries. Previous studies on AMU and resistance in food 
producing animals in Africa (i.e. in central Africa) indicated a large 
deficit of data on antimicrobial usage and resistance (Cuong et al., 2018; 
Kimera et al., 2020). 

Even though various original studies (Coulidiaty et al., 2021; 
Kagambèga et al., 2021) and reviews (Kimera et al., 2020; Paintsil et al., 
2022) have been published on AMR in animals in Africa, to the best of 
our knowledge none focused on HPCIAs. Summarizing available infor-
mation on HPCIAs resistance in Africa is of great importance for 
designing policies and mitigation strategies to reduce the public health 
risk of AMR. 

The aim of this study is to review and summarize the available in-
formation on HPCIAs resistance in livestock production in Africa to 
better inform future policies aiming to control HPCIAs in the animal 
sourced food systems. Poultry, cattle, pigs, goats and sheep were the 
animal species considered in this review due to their relevance in the 
African context in terms of livestock production and antimicrobials 
consumption (FAOSTAT, 2021; Mulchandani et al., 2023). This study 
focused on resistance of Escherichia coli, Enterococcus spp, Staphylococcus 
aureus, Salmonella spp, and Campylobacter spp because of their role as 
indicator bacteria for AMR surveillance in One health approach or their 

foodborne implications and impact on human health (Murray et al., 
2022; Paintsil et al., 2022). Most of them are also included in the WHO 
priority pathogens list to guide research and development of new anti-
biotics for drug-resistant bacterial infections (WHO, 2017c). 

2. Methods 

This review was performed as described in the Cochrane handbook 
(Higgins et al., 2021) and reported according to the Preferred Reporting 
Items for Systematic reviews and Meta-Analyses extension for scoping 
reviews (PRISMA-ScR) (Tricco et al., 2018). A scoping review protocol 
was first created according to the Preferred Reporting Items for Sys-
tematic Review and Meta-analysis Protocols (PRISMA-P) guidelines 
(Moher et al., 2015). 

2.1. Eligibility criteria 

Primary research studies reporting E. coli, S. aureus, Salmonella spp, 
Campylobacter spp and Enterococcus spp resistance to HPCIAs were 
eligible for inclusion in the scoping review. In addition, these studies 
must have been conducted in poultry (limited to chicken, duck, turkey 
and geese), cattle, pigs, goats or sheep, in Africa, and published between 
2000 and 2021. Indeed, previous reviews on AMR in Africa (Mouiche 
et al., 2019; Kimera et al., 2020; Kivumbi and Standley, 2021) showed 
that most of the studies were carried out after 2010. Considering the 
languages spoken by the researchers involved in this review, research 
studies available in English and French were selected. 

2.2. Information sources 

Searches were conducted in March 2022 in CAB abstracts (in Ovid), 
Pubmed (in MEDLINE) and Web of Sciences (WOS) via access of the 
University of Bern (Switzerland). In addition, African Journals Online 
was also consulted. Most WOS databases were used (Web of Science 
Core Collection, BIOSIS Citation Index, KCI-Korean Journal Database, 
Medline, Russian Science Citation Index and SciELO Citation Index). 
Arts & Humanities Citation Index (A&HCI), Conference Proceedings 
Citation Index-Science (CPCI-S), Conference Proceedings Citation Index- 
Social Science & Humanities (CPCI-SSH) and Social Sciences Citation 
Index (SSCI) were excluded because the focus of our study is on 
microbiological rather than social science data on antimicrobial 
resistance. 

2.3. Search strategy 

The search strategy included a multi-stranded approach that uses a 
series of searches, with different combinations of concepts to gather all 
possibly related research and thus achieve high sensitivity (Higgins 
et al., 2021). The search string was adapted to each database as needed 
to reflect differences in database interfaces. As the aim of this study is to 
review the available information on HPCIAs resistance in livestock 
production in Africa, search strategy included the formatting of the 
following terms according to different architectures of the databases and 
their search engines: [HPCIAs] AND [Resistance or resistant or suscep-
tibility] AND [poultry or cattle or sheep or goat or pig] AND [African 
countries]. The search strings used in CAB Abstracts are presented in  
Table 1. Supplement 1 shows the general search strategy applied. 

2.4. Selection process 

After deduplication in Zotero, citations were uploaded to the Rayyan 
software for screening. Three pairs of independent reviewers (NR and 
AT, MJ and ML and WM and GA) carried out the screening at each phase. 
Each pair screened one third of the total number of uploaded citations. 

Firstly, the selection process consisted of title and abstract screening. 
To increase consistency among reviewers, a calibration exercise was 
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performed. All the reviewers have first screened 100 randomly selected 
studies. This calibration exercise enabled online discussion and solved 
disagreements before carrying out the full selection process (Sanguinetti 
et al., 2021). Eligibility of studies were assessed with the following 
questions:  

1. Is the abstract of the study available? Yes [Include], No [Exclude]  
2. Does the study concern bacterial resistance to antibiotics? Yes 

[Include], No [Exclude], Unclear [Include]  
3. Does the study concern at least one of the following species: poultry, 

cattle, pig, sheep, goat? Yes [Include], No [Exclude], Unclear 
[Include]  

4. Is the study primary research? Yes [Include], No [Exclude], Unclear 
[Include]  

5. Does the study take place in at least one African country? Yes 
[Include], No [Exclude] Unclear [Include] 

Studies were excluded if both reviewers responded ‘no’ to any of the 
screening questions. When consensus between two reviewers was not 
reached, a third reviewer (MF) was asked to resolve the conflict. The 
remaining studies passed to the next selection process stage. 

The second stage involved the full-text screening. A calibration ex-
ercise was also conducted during this stage. For this phase, 30 random 
papers were screened by all the reviewers. Eligibility of studies was 
assessed with the following questions:  

1. Is a full text available? Yes [Include], No [Exclude]  
2. Is the full text available in English or French? Yes [Include], No 

[Exclude] 
3. Does the study concern at least one of these bacteria E. coli, Salmo-

nella spp, Campylobacter spp, S. aureus and Enteroccocus spp Yes 
[Include], No [Exclude]  

4. Does the study concern bacterial resistance to at least one HPCIA? 
Yes [Include], No [Exclude] 

Farm to fork studies were not considered. Studies where bacteria 
were isolated in meat, milk, or environment (litter, waste, etc.) were also 
excluded, except when milk from animals with mastitis was analyzed. 

2.5. Data charting process 

Data charting was conducted in Excel 2020 A standardized data- 
charting form was used for the data extraction. A pre-test was run 
where all reviewers screened 20 studies The extraction form was 
developed by the main author and validated by all the authors. Like in 
the screening phase, each pair of independent reviewers performed the 
data extraction of one third of the included papers. Discussion sessions 
were held to solve disagreements (by a third reviewer) for which a 
consensus was not found. 

2.6. Data items 

Data extracted included publishing year, country where the sample 
collection was conducted, study design, animal species studied, type of 
sample collected, bacteria of interest, HPCIAs to which bacteria of in-
terest are resistant, method of susceptibility testing, susceptibility 
testing standards, resistant genes analyzed. All the variables extracted 
are shown in Supplement 2. Quantitative data on HPCIAs (e.g. number 
of strains tested for HPCIAs, number of resistant strains, etc.) were also 
collected. For the susceptibility testing, intermediate-resistant samples 
were recorded as resistant in this study (Ahmed et al., 2019). The use of 
molecular studies has been increasing and they provide an important 
contribution to better understand the AMR dynamics. In line with this, 
we collected data on the HPCIAs genes identified in these studies. 

2.7. Data analysis 

Characteristics of the included studies were narratively summarized 
after tabulation. First, the proportion of resistant isolates was calculated 
for each study based on number of isolates tested and number of isolates 
resistant to HPCIAs. The median and interquartile range (IQR) of the 
proportion of resistant isolates for each bacterium-HPCIA class/coun-
try/species was then assessed to calculate a standardized measure from 
the collected data. This was done when at least three studies were car-
ried out for the same bacteria-HPCIA combination. Descriptive statistics 
were performed, and a map was created using Microsoft Excel 2020 and 
Qgis 3.30. respectively. 

Table 1 
Bibliographic search strategy used to search papers in Cab Abstract database.  

Major terms Key words 

#1 highest priority critically 
important antimicrobial 

1 ("highest priority critically important 
antimicrobial$" or HPCIA or HP-CIA or ketolide$1 
or cephalosporin$1 or cefcapene$1 or 
cefdaloxime$1 or cefdinir$1 or cefetamet$1 or 
cefixime$1 or cefmenoxime$1 or cefodizine$1 or 
cefotaxime$1 or cefovecin$1 or cefpimizole$1 or 
cefpodoxime$1 or cefteram$1 or ceftibuten$1 or 
ceftiofur$1 or ceftiolene$1 or ceftizoxime$1 or 
ceftriaxone$1 or cefoperazone$1 or ceftazidime 
$1 or oxacephems$1 or quinolone* or 
Levofloxacin$1 or ciprofloxacin$1 or norfloxacin 
$1 or danofloxacin$1 or eurofloxacin$1 or 
moxifloxacin$1 or ofloxacin$1 or norfloxacin$1 
or marbofloxacin$1 or gemifloxacin$1 or 
enoxacin$1 or lomefloxacin$1 or sparfloxacin$1 
or gatifloxacin$1 or polymyxin$1 or macrolide$1 
or tilmicosin$1 or erythromycin$1 or spiramycin 
$1 or tulathromycin$1 or glycopeptide$1 or 
colistin$1 or tylosin$1 or vancomycine$1 or 
teicoplanine$1).ti,ab. 

#2 resistance 2 (resistance or resistant or susceptibility or 
susceptible).ti,ab. 

#4 poultry or cattle or sheep or 
goat or pig 

3 exp pigs/ 
4 exp cattle/ 
5 exp poultry/ 
6 exp goats/ 
7 exp sheep/ 
8 3 or 4 or 5 or 6 or 7 
9 (pigs or pig or swine* or pork or piglet* or boar* 
or weaner or sow or fattener or "Sus domesticus" 
or chick* or poultry* or broiler* or layer* or 
turkey* or duck* or geese or goose or fowl* or 
avian* or egg or eggs or bird* or hen or hens or 
"Gallus gallus" or flock* or cattle or beef or cow* 
or calf or calves or "Bos taurus" or "Bos indicus" or 
heifer* or bull* or bovine or dairy or zebu or 
sheep* or caprine or goat* or ovine or ewe or 
"small ruminant" or "food-producing animal*" or 
"food animal*" or "animal husbandry" or "animal 
farming" or "domestic animal*" or livestock).ti, 
ab.1625461 
10 8 or 9 

#3 African countries 11(Africa or African or Comoros or Djibouti or 
Madagascar or Malawi or Seychelles or Cameroon 
or "Central African Republic" or Chad or Congo or 
"Equatorial Guinea" or "Atlantic Islands" or Gabon 
or Morocco or Sudan or Botswana or Lesotho or 
Swaziland or Benin or "Burkina Faso" or "Cape 
Verde" or Ghana or Guinea or Mauritania or Niger 
or Senegal or "Sierra Leone" or Togo or Burundi or 
Eritrea or Ethiopia or Kenya or Mozambique or 
Rwanda or Somalia or Tanzania or Uganda or 
Zambia or Zimbabwe or Angola or Algeria or 
Egypt or Tunisia or Namibia or "South Africa" or 
Gambia or Liberia or Mali or Nigeria or "Ivory 
Cost").ti,ab. 

#1 AND #2 AND #3 AND #4 12 1 and 2 and 10 and 11 
13 limit 12 to yr="2000–2021"  
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3. Results 

3.1. Study selection 

The result of the selection process, based on the inclusion criteria is 
shown in Fig. 1. Of the 2596 publications initially identified in the 
search, 1474 records were screened using the title and abstract and 548 
were subjected to the full-text screening. Finally, there were 312 articles 
that evaluated HPCIAs resistance of selected bacteria in cattle, poultry, 
pigs, goats or sheep in Africa. 

3.2. Study characteristics 

Of the 312 studied included, 46.8% (146/321) were published be-
tween 2016 and 2020 and 26.9% (84/321) between 2011 and 2015 
(Supplement 1 Table S1). One hundred (32.1%) studies were longitu-
dinal and 46 (14.7%) were cross sectional. Data about antimicrobial 
resistance in selected animals and targeted bacteria were not available 
for 61.1% (33/54) of the countries in the African continent. One hun-
dred and twenty-seven out of 312 (40.7%) studies were carried out in 
the North African region. Only one article was from Central Africa (i.e. 
Cameroon). Most of the studies were from Egypt (23.7%;74/312), 
Nigeria (23.4%; 73/312), Ethiopia (9.9%; 31/312) and South Africa 
(9.9%; 31/312). Almost half (193/312) of included studies involved 
poultry and 26.4% (103/312) cattle. Most studies focused on E. coli 
(49.4%; 154/312) and Salmonella spp (29.5%; 92/312). Disc diffusion 
was the most commonly used drug susceptibility method (83.6%; 261/ 
312) with Clinical and Laboratory Standards Institute (CLSI) as the main 
data interpretation guideline (62.4%, 209/331), followed by National 
Committee for Clinical Laboratory Standards (NCCLS) (9.9%, 33/331), 
and European Committee on Antimicrobial Susceptibility Testing 
(EUCAST) (8.9%, 30/344). In total, 45 different HPCIAs agents were 
studied (Supplement 1 Table S2). Most studies focused on gentamycin 
(74.4%, 232/312), ciprofloxacin (72.8%, 227/312), streptomycin 

(51.9%, 162/312), nalidixic acid (44.6%, 139/312), erythromycin 
(39.1%, 122/312), and cefotaxime (31.7%, 99/312). 

Studies about E. coli (26.6%, 41/154), S. aureus (27.8%, 20/72) and 
Enterococcus spp (25.0%, 5/20) were undertaken mostly in Egypt 
(Fig. 2). Nigeria had the highest number of studies on Salmonella spp 
(25.0%, 23/92), while South Africa hosted the largest number of studies 
about Campylobacter spp (29.0%, 9/31). 

3.3. Antimicrobial resistance in selected studies 

Escherichia coli was the most common organism studied. It showed 
high level of resistance to commonly used HPCIAs such as erythromycin 
in poultry (MR 96.1%, IQR 83.3–100.0%) and pigs (MR 94.0%, IQR 
86.2–94.0%), nalidixic acid in sheep (MR 87.5%, IQR 81.3–93.8%), 
flumequine in poultry (MR 86.1%, IQR 82.1–91.7%), neomycin (MR 
85.2%, IQR 8.3–86.1%) and erythromycin (MR 85.7%, IQR 
69.2–100.0%) in cattle. E. coli was found to be less resistant towards 
cefotaxime in cattle (MR 0%, IQR 0–27.9%), and pigs (MR 0%, IQR 
0–17.8%). In poultry, E. coli was highly sensitive to ofloxacin (MR 0%, 
IQR 0–62.1%), cefepime (MR 0%, IQR 0–0.4%) and cefotaxime (MR 0%, 
IQR 0–11.9%). The majority of E. coli isolates from goats were suscep-
tible to HPCIAs (Table 2). 

As shown in Table 3, for S. aureus, most of the included studies 
conducted in selected animals aimed at testing the susceptibility to 
erythromycin, gentamycin and streptomycin. Only gentamycin was 
tested against S. aureus isolated from pigs. The highest level of resistance 
of this bacteria were found against streptomycin in goats (MR 86.8%, 
IQR 19.4–99.0%) and sheep (MR 83.9%, IQR 41.9–91.9%). 

Data on Salmonella spp resistance in goats and sheep were not found 
(Table 4). The highest proportion of resistant isolated against erythro-
mycin were found in poultry (MR 96.9%, IQR 68.4–99.6%) and cattle 
(MR 80.0%, IQR 55.7–100.0%). Against flumequine the highest level of 
resistance were found in poultry (MR 83.3% IQR 66.4–100.0%). 

As for Salmonella spp, the data of resistance of Campylobacter spp and 

Studies included in review 
(n = 312) 

Records screened (n = 1,474) 
Records excluded after title and 
abstract screening (n = 926) 

Web of Science (via Web of Science) (n = 1,085)Medline (via PubMed) (n = 553)

African Journals Online databases (n = 104)CAB Abstract (via OVID) (n = 854)

Sc
re

en
in

g

Full text articles assessed for 
eligibility (n = 534) 

In
cl

ud
ed

 
Id

en
tif

ic
at

io

Reports sought for retrieval 
(n = 548) 

Reports not retrieved 
(n = 14)

Records identified from 
databases (n = 2,596) 

Records removed before 
screening: 
Duplicate records removed  
(n = 1,122)

Reports excluded (213): 
• Not in English or French (n = 2) 
• Not selected animal species (n = 12) 
• Not selected bacteria or not HPCIA (n = 84) 
• Not in Africa (n = 24) 
• Not AMR (n = 2)
• Not original research (n = 25)
• Sample collected on dead animals (n = 8) 
• Retracted paper (n = 1) 
• Duplicate papers (n = 5) 
• Other (sample from meat, milk, 

environment, collected at 
home/retail/slaughterhouse, farm to fork 
study) (n = 59) 

Fig. 1. Flow diagram illustrating the selection of eligible studies.  

R. Vougat Ngom et al.                                                                                                                                                                                                                         



Preventive Veterinary Medicine 226 (2024) 106173

5

Enterococcus spp in goats and sheep were not found (Tables 5 and 6). For 
Campylobacter spp, the lowest levels of susceptibility were noted against 
gentamycin in pigs 60.6 (60.6%). In contrast, the highest resistance of 
Enterococcus spp was found against norfloxacin (MR 94.3%, IQR 
85.6–97.1%) and erythromycin (MR 85.8%, IQR 40.6–97.9%) in 
poultry. 

A summary of AMR resistance genes identified in included studies 
can be found in Table 7. Only 97 (30.2%) articles studied resistant genes. 
All of them used Polymerase Chain Reaction (PCR) for genes identifi-
cation. Most genes such as blaCTX-M, blaTEM, blaZ, ermB, ermC, qnr, vanA, 
vanB, str, gyr, aac(6′)- Ib-cr, and mrc were detected in all the animal 
species. The methods used for the detection of the resistance genes were 
mainly PCR and Whole genome Sequencing Typing (WGS). 

4. Discussion 

This study aimed to review and summarize the available information 
on resistance of Escherichia coli, Enterococcus spp, Staphylococcus aureus, 
Salmonella spp, and Campylobacter spp to HPCIAs in poultry, cattle, pigs, 
goats, and sheep in Africa. 

Most of the selected studies were conducted after 2010 (>70%) and 
took place in the North region of Africa (41.1%). This is in accordance 
with previous reviews performed in Africa on AMR (Kimera et al., 2020; 
Ahmed et al., 2017) and can be explained by the increase in importance 
of AMR due to its impact on public health. However, this review showed 
that 61.1% of African countries have no published studies that met our 

inclusion criteria. The focus of studies was predominantly on poultry 
and cattle. This is likely due to their higher contribution to meat pro-
duction in Africa (FAOSTAT, 2021). We also hypothesize that it might be 
linked to the fact that poultry displays higher resistance rates than other 
livestock species (Alonso et al., 2017). Geographically, most of the 
studies were carried out in Egypt (24.6%) and Nigeria (23.7%). This 
might be associated with their capacity to better afford well-equipped 
health and research facilities needed to conduct such research 
(Schroeder et al., 2014). 

Of the studied bacteria in the current review, E. coli represented the 
most commonly studied organism among the selected animal species. 
E. coli could be regarded as one of the common food contaminating 
organisms in animal sourced food, especially in the LMICs. It has also 
been extensively used in monitoring of AMR (Gruel et al., 2021; Intha-
vong et al., 2022). One reason for this is that E. coli represents a major 
reservoir of resistance genes, which may be responsible for treatment 
failures in both human and veterinary medicine (Poirel et al., 2018). In 
addition, the prevalence and AMR levels in E. coli represent a good in-
dicator of the ‘selective pressure’ among antimicrobials commonly used 
in food-producing animals either as growth promoters, prophylaxis or 
treatment (Van Den Bogaard et al., 2000). In general, antimicrobial 
resistance in E. coli is considered one of the major worldwide challenges 
in both animals and humans (Poirel et al., 2018). 

Among the HPCIAs used in animals studied in this review, highest 
resistance of E. coli was manifested against erythromycin in E. coli iso-
lates from poultry, pigs and cattle. Interestingly, according to reports, 

Fig. 2. Map of the Africa showing country and the number of articles included in the review.  
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the majority of antimicrobials are used to enhance growth performance, 
notably of pigs and chickens (Xiong et al., 2018; Van et al., 2020). This 
high level of resistance against erythromycin has also been reported in 
some African countries previously (Byarugaba et al., 2011; Katushabe 
et al., 2022). This finding is not surprising, as erythromycin has been 
widely used as a growth promoter in food-producing animals across 
African countries. For instance, in 2016, a survey published by the 
World Organization for Animal Health on antimicrobial use by region 
documented that AMU as growth promoters was authorised in 15% of 
African countries that participated in the survey (WOAH, 2017). It was 
also reported that the most used antimicrobial classes at the time of the 
survey in Africa were tetracyclines and macrolides (e.g erythromycin). 
Antibiotics used as growth promoters are often administered to animals 
in smaller quantities than for therapeutic purporses. However, this 
practice is more likely to apply substantial pressure with regard to AMR 
emergence as it involves exposing bacteria to sublethal amounts of the 
antibiotic repeatedly (Van et al., 2020). 

Similarly, highest resistance levels of E. coli isolated from sheep, 
poultry and cattle were reported against nalidixic acid, flumequine and 
neomycin, respectively. This could reflect the extensive use of these 
antimicrobials among these food-producing animals across African 
countries. In a 3-year retrospective study (2010 – 2012) of antimicrobial 
usage in livestock production system in Southwestern Nigeria, fluo-
roquinolones (e.g flumequine), tetracyclines, and β-lactams/ 

aminoglycosides (e.g neomycin) represented the majority of antimi-
crobials used, with an increased consumption of 40.4% within the study 
period (Adesokan et al., 2015). On top of that, the antimicrobials most 
frequently used in food-producing animals by Ghanaian livestock 
keepers, either for preventing or treating bacterial infections, were flu-
oroquinolones, aminoglycosides, tetracyclines and penicillins (Donkor 
et al., 2012; Boamah and Agyare, 2016). Similarly, a survey in Rwanda 
indicated that about 97% of livestock farmers use antibiotics in animals 
mainly for prophylactic purposes either for disease prevention or as 
growth promoters (Manishimwe et al., 2017). It is important to note 
that, while the USA and Europe have banned the use of critically 
important antimicrobials as growth promoters in food-producing ani-
mals, other countries or regions such as the African continent do not 
have any strict regulation over their use and thus, livestock farmers still 
use these antimicrobial classes as growth promoters. In south-east Asian 
countries, surveillance for AMR and AMU in the animal production is 
limited (WHO, 2018b). Many of the critically important drugs of highest 
priority are used in animals in large quantities (Malik et al., 2023). In 
this region, 85% of the antibiotics used in layer production were 
attributed to prophylaxis including growth promotion (Ferdous et al., 
2019; Imam et al., 2020). 

E. coli isolated from cattle, pigs and poultry were highly susceptible 
to cefotaxime and ofloxacin. One possible reason for this finding may be 
that these antimicrobials are not used frequently among these food- 

Table 2 
Median resistance (MR) with interquartile range (IQR) of E. coli in different animal species.  

HPCIAs Cattle Poultry Pigs Goats Sheep  

Included 
studies/ 
Total 
isolates 

Median (IQR) 
in % 

Included 
studies/ 
Total 
isolates 

Median (IQR) 
in % 

Included 
studies/ 
Total 
isolates 

Median 
(IQR) in % 

Included 
studies/ 
Total 
isolates 

Median 
(IQR) in % 

Included 
studies/ 
Total 
isolates 

Median 
(IQR) 

Cefepime 13/538 31.6 
(1.7–41.7) 

13/916 0 (0–0.2)  / / / / / 

Cefotaxime 57/988 0 (0–27.9) 105/6315 0 (0–6.2) 21/739 0 (0–17.75) / / / / 
Cefpodoxime 5/165 0.8 (0–10.4) 4/218 21.9 

(14.1–44.8) 
4/67 51.8 

(27.7–75.9) 
/ / / / 

Ceftazidime 20/1264 21.1 (0–50.0) 33/15575 5.6 (0–37.5) 7/373 2.0 (0–24.9) 4/177 0 (0–0.8) / / 
Ceftiofur / / 13/597 4.0 

(1.25–4.75) 
/ / / / / / 

Ceftriaxone 14/989 24.8 
(5.5–33.4) 

31/1394 43.6 (6.3–75) 6/252 3.6 (0–4.2) 5/181 1.5 
(0.4–50.7) 

/ / 

Ciprofloxacin 38/14633 4.4 
(0.4–21.2) 

69/18098 39.2 
(10.1–63.7) 

14/888 2.8 
(0.4–9.3) 

12/1058 0 (0–0.7) 10317 12.5 
(6.3–31.3) 

Colistin 9/520 1.5 (0–7.8) 26/5538 6.1 (0–42.9) 3/181 1.5 
(0.7–50.7)  

/ / / 

Erythromycin 12/621 85.7 
(69.2–100.0) 

16/630 96.1 
(83.3–100.0) 

4/395 94.0 
(86.2–94.0) 

5/90 0 (0–30.0) / / 

Enrofloxacin 9/487 10.7 
(8.0–21.6) 

17/4257 73.7 
(57.7–91.5) 

/ / / / / / 

Flumequine / / 5/4279 86.1 
(82.1–91.7) 

/ / / / / / 

Gentamicin 41/2063 13.3 
(1.2–32.7) 

71/8480 20.4 
(4.6–69.7) 

18/1090 5.33 
(0.4–7.7) 

14/275 0 (0–1.5) 100 25.0 
(0–51.1) 

Levofloxacin 3/627 2.38 
(1.2–3.5) 

9/384 54.2 
(43.8–77.9) 

/ /  /  / 

Nalidixic acid 19/1324 32.5 
(10.4–78.6) 

56/3051 67.1 
(23.0–94.0) 

10/697 12.5 
(4.9–30.3) 

9/314 2.2 (0–3.0) 75 87.5 
(81.3–93.8) 

Neomycin 10/292 85.2 
(8.3–86.1) 

6/4429 72.8 
(33.5–92.2)  

/ / / / / 

Norfloxacin 12/1178 4.6 (0–10.4) 21/4567 75.0 
(27.7–84.6) 

6/352 8.9 
(3.3–10.8) 

/ / / / 

Ofloxacin 5/729 2.6 (0–7.7) 19/1408 0 (0–62.1) / / / / / / 
Polymyxin B 4/83 25.0 

(22.1–31.3)  
/ / / / / / / 

Spectinomycin 3/28 60.0 
(30.0–80.0) 

4/3773 72.5 
(52.1–88.4) 

/ / / / / / 

Streptomycin 30/13850 53.3 
(20.0–84.6) 

51/17163 63.6 
(35.0–87.7) 

12/601 48.0 
(33.5–60.0) 

11/10613 22.0 
(4.4–50.8) 

/ / 

Vancomycin 4/104 1.7 
(0.9–50.9) 

/ / / / / / / / 

IQR: interquartile range; /: data not available; MR and IQR were calculated only when at least 3 values were available. 
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producing animals across the African countries. Non availability/ 
accessibility of these HPCIAs in the market of some countries can also be 
another reason (Vougat Ngom et al., 2017). In Tunisia, for instance, 
similar findings were reported among E. coli isolates collected from 
cattle (Tayh et al., 2022). This finding is of public health significance 
because third-generation cephalosporins, such as cefotaxime, and fluo-
roquinolones have been widely and extensively used in the management 
of Gram-negative bacterial infections in humans (Collignon et al., 2009). 
Drug resistant Gram-negative bacteria are among the most concerning 
around the world. For example, the Centers for Disease Control reported 
that carbapenem-resistant Enterobacteriaceae spp. are estimated to have 

caused, in 2017, a total of 130 million dollars in U.S. healthcare costs 
(Morris and Cerceo, 2020). The majority of E. coli isolated from sheep 
were sensitive to HPCIAs. This could reflect the minimal usage of these 
critically important antimicrobials in sheep production across the Afri-
can countries or that sheep production is mainly managed in an exten-
sive management production systems resulting in low usage of 
antimicrobials either as growth promoters or for therapeutic purposes. 

In this review, the majority of the studies which screened for HPCIAs 
against S. aureus isolated from selected food-producing animals across 
African countries tested against gentamycin, streptomycin and eryth-
romycin. The higher resistance of this bacteria was observed against 

Table 3 
Median resistance (MR) with interquartile range (IQR) of S. aureus in different animal species in Africa.  

HPCIAs  Cattle  Poultry  Pigs  Goats  Sheep  

Included 
studies 
/Total 
isolates 

Median 
(IQR) in % 

Included 
studies 
/Total 
isolates 

Median 
(IQR) in % 

Included 
studies 
/Total 
isolates 

Median 
(IQR) in % 

Included 
studies 
/Total 
isolates 

Median 
(IQR) in % 

Included 
studies 
/Total 
isolates 

Median 
(IQR) in % 

Cefotaxime 4/56 61.1 
(41.7–80.6)  

/ / / / / / / 

Ceftriaxone / / 3/84 78.3 
(67.8–89.1) 

/ / 4/82 0 (0–35.9) / / 

Ciprofloxacin 17/318 0 (0–22.3) / / / / 9/161 0 (0–2.3) 10/203 30.2 
(1.7–53.0) 

Erythromycin 26/1157 26.1 
(4.6–52.0) 

15/857 74.7 
(72.2–100) 

/ / 10/199 69.4 
(10.2–99.5) 

10/178 50.0 
(0–100.0) 

Enrofloxacin 9/225 10 
(9.4–23.3)  

/ / / / / / / 

Gentamycin 31/1182 5.7 (0–20.8) 16/851 21.5 
(6.7–33.4) 

4/57 45.2 
(22.6–67.9) 

12/234 0.0 (0–44.4) / / 

Neomycin 10/409 0 (0–16.2)  / / / / / / / 
Norfloxacin 6/51 11.2 

(0–14.8) 
3/368 27.1 

(13.5–33.1) 
/ / / / / / 

Polymyxin B 6/169 43.3 
(11.4–89.9) 

/ / / / / / / / 

Streptomycin 22/1066 48.2 
(21.0–68.6) 

14/631 24.6 
(9.3–52.1) 

/ / 7/184 86.8 
(19.4–99.0) 

5/59 83.9 
(41.9–91.9) 

Tylosin / / 3/49 0 (0–50.0) / / / / / / 
Vancomycin 15/473 20 (0–25.3)  / / / 6/51 31.25 

(15.6–32.3) 
/ / 

IQR: interquartile range; /: data not available; MR and IQR were calculated only when at least 3 values were available. 

Table 4 
Median resistance (MR) with interquartile range (IQR) of Salmonella spp. in different animal species in Africa.  

HPCIAs Cattle Poultry Pigs  

Included studies/ Total 
isolates 

Median (IQR) in % Included studies/Total 
isolates 

Median (IQR) in % Included studies/Total 
isolates 

Median (IQR) in 
% 

Azithromycin / / 3/26 15.4 (15.4) / / 
Cefepime / / 7/286 47.1 (6.3–82.7) / / 
Cefotaxime 9/122 0 (0–21.0) 32/865 0 (0–32.1) 5/48 0 (0–6.3) 
Ceftazidime 6/37 0 (0–16.7) 12/739 0 (0–50.0) 4/253 3.1 (0–29.7) 
Ceftiofur / / 8/276 0 (0–12.5) / / 
Ceftriaxone 9/57 0 (0–10.0) 25/934 25.0 (0–58.3) 7/388 42.1 (1.6–94.5) 
Ciprofloxacin 19/201 0 (0–25.0) 65/2359 27.3 (4.6–63.4) 6/394 25 (0.9–31.3) 
Colistin / / 13/1040 7.8 (0–59.4) / / 
Erythromycin 6/95 80.0 (55.7–100.0) 14/610 96.9 (68.8–99.6) / / 
Enrofloxacin / / 20/895 31.1 (8.8–49.6) / / 
Flumequin / / 8/640 83.3 (66.4–100.0) / / 
Gentamycin 14/187 1.2 (0–21.7) 2/2434 19.0 (0–41.8) 65/252 5.0 (0.7–9.9) 
Levofloxacin / / 5/135 25.6 

(12.8–38.546)  
/ 

Nalidixic acid 12/163 0 (0–16.7) 51/1535 57.1 (19.3–82.8) 5/384 15.2 (0–25.0) 
Neomycin / / 22/9077 27.0 (4.6–100.0) / / 
Norfloxacin / / 25/1057 20.6 (11.3–51.4) / / 
Ofloxacin 4/93 8.5 (4.3–37.6) 13/387 41.4 (1.2–72.2) / / 
Pefloxacin / / 3/615 44.8 (22.4–67.2) / / 
Spectinomycin / / 8/282 7.0 (0.4–53.1) / / 
Streptomycin 16/191 20 (0–51.8) 48/1830 51.4 (26.2–75.39) 6/63956 12.3 (1.6–25.0) 
Vancomycin / / 3/20 50.0 (25.0–75.0) / / 

IQR: interquartile range; /: data not available; MR and IQR were calculated only when at least 3 values were available. 
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streptomycin in goat and sheep. This may be indicative of high usage of 
this antimicrobial in small ruminants mainly for therapeutic purposes 
against mastitis in sheep and goats. Indeed S. aureus is a significant 
public health bacterial pathogen, causing mastitis in cattle, sheep and 
goats (Ajose et al., 2022; El-Deeb et al., 2022). It has been shown that 
aminoglycosides (e.g streptomycin) is one of the frequently utilized 
antimicrobials in mastitis therapy (Vakanjac et al., 2013; Vidović et al., 
2022). This is a serious issue as sheep and goats represent an important 
category of small ruminants commonly raised by poor-resource com-
munities in in African nations as a source of meat, milk and immediate 
cash (El-Deeb et al., 2022). Staphylococcus. aureus causes great economic 
losses in dairy farms (Martins et al., 2019). Resistance of S. aureus can 
complicate the treatment of mastitis, which is considered an increasing 
challenge (Gordon and Lowy, 2008). It has also been documented as a 
common cause of hospital- and community-acquired infections (Guo 
et al., 2020). 

Salmonella spp and Campylobacter spp are major worldwide public 
health concerns. Salmonella spp accounts for 93.8 million foodborne 
illnesses and 155,000 deaths per year (Marchello et al., 2020). Animals 
are the primary source of this pathogen, and animal-based foods are the 
main transmission route to humans (Ferrari et al., 2019). Meanwhile, 
acquisition of resistance to various antimicrobials, which might help 
decrease the effectiveness of treatment of foodborne illnesses, represent 
an additional risk for public health. In this review, Salmonella spp iso-
lated from poultry and cattle were found to show the highest resistance 
to erythromycin, nalidixic acid, pefloxacin and ciprofloxacin. The high 
antimicrobial-resistant median observed is in line with the previous 
studies reported in low-and-middle income countries (Asuming-Bediako 
et al., 2019; Gahamanyi et al., 2020; Paintsil et al., 2022) showing an 
increasing trend of antimicrobial resistance in Salmonella spp and 
Campylobacter spp. This could be due to the fact that quinolones (cip-
rofloxacin) and macrolides are amongst the first line antimicrobials used 
to counteract the impact of Salmonella spp (Marchello et al., 2020) and 
Campylobacter spp (Gahamanyi et al., 2020) infections in food animal 
production and hence contributing to an increase of the selection and 

emergence of resistance to this class of antimicrobials. In addition, lack 
of knowledge of farmers towards biosecurity measures in livestock 
production in Africa represents another major issue for antimicrobial 
use and emergence of resistant bacteria (Moffo et al., 2021), which 
might have consequences for public health. Misuse of antibiotics, failure 
to consult veterinarians before the antibiotherapy, absence of a clear 
regulation on the use of antibiotics in animals in Africa and the wide-
spread use of substandard drugs (Vougat Ngom et al., 2017; Jaime et al., 
2022) are among the potential factors that justified the emergence and 
selection of multi-drug resistant foodborne pathogens. 

The high median proportion of resistant Campylobacter spp from 
poultry against ciprofloxacin and erythromycin is an indicator of their 
overuse for prevention and cure diseases, which affected poultry pro-
duction in many African countries (Caudell et al., 2020; Kiambi et al., 
2021). In poultry farms, antimicrobials are mostly administrated 
through drinking water for a specific indication and might also affect 
non target bacteria present in the gastro-intestinal tract. Interference of 
non-target bacteria with non-specific antimicrobials increases their 
chance to acquire resistance. This is also a serious issue for animal and 
human health because campylobacteriosis is a serious bacterial infec-
tion, which is a common foodborne disease epidemiologically linked to 
the consumption of poultry products (Asmai et al., 2020). In 2019 in the 
European Union, 220,682 human cases of campylobacteriosis were 
confirmed with an average notification rate of 59.7 per 100,000 people 
(EFSA, 2021). In many parts of Africa, campylobacteriosis is considered 
a significant public health problem (Hlashwayo et al., 2021). 

Enterococcus spp are considered in various antimicrobial resistance 
surveillance programmes as an indicator of AMR (WHO, 2017b) for 
Gram positive bacteria. In this review, it was found that Enterococcus spp 
showed the highest resistance against norfloxacin and erythromycin in 
poultry production. This result is in line with that reported by De Jong 
et al. (2018) in European Union countries where, among the HPCIAs 
studied, Enterococcus spp had higher resistance only to erythromycin in 
animals. Resistance of pathogens responsible for foodborne illnesses to 
highly critically antimicrobials agents present the higher risk for public 

Table 5 
Median resistance (MR) with interquartile range (IQR) of Campylobacter spp. in different animal species in Africa.  

HPCIAs  Cattle  Poultry  Pigs  

Included studies/ Total 
isolates 

Median (IQR) in % Included studies/Total 
isolates 

Median (IQR) in % Included studies/Total 
isolates 

Median (IQR) in 
% 

Ceftriaxone / / 5/26 57.1 (10.7–100.0) / / 
Ciprofloxacin 4/170 29.6 (17.7–41.5) 19/1752 45.8 (35–09–71.7) 3/330 28.8 (28.8) 
Erythromycin 5/228 29.3 (23.4–57.8) 19/1717 45.7 (14.3–90.0) 3/330 40.9 (40.9) 
Gentamycin 4/170 33.4 (19.0–47.7) 16/1334 11.2 (2.3–38.3) 3/330 60.6 (60.6) 
Nalidixic acid 5/228 19.8 (9.9–32.3) 18/1331 50.6 (28.1–84.0) /  
Ofloxacin / / 3/62 2.0 (1.0–2.9) / / 
Streptomycin / / 10681 44.7 (34.3–76.8) / / 

IQR: interquartile range; /: data not available; MR and IQR were calculated only when at least 3 values were available. 

Table 6 
Median resistance (MR) with interquartile range (IQR) of Enterococcus spp. in different animal species in Africa.  

HPCIAs Cattle Poultry Pigs  

Included studies/ Total 
isolates 

Median (IQR) in 
% 

Included studies/ Total 
isolates 

Median (IQR) in 
% 

Included studies/ Total 
isolates 

Median (IQR) in % 

Cefotaxime 3/152 16.88 (9.7–24.1) / /  / 
Ciprofloxacin 11/704 0.8 (0–12.3) 7/360 31.5 (11.25–100) 3/525 70.3 (35.2–73.9) 
Erythromycin 10/840 31.3 (17.5–72.0) 9/713 85.8 (40.6–97.9) 4/720 76.55 

(57.21–86.1) 
Enrofloxacin 3/355 42.2 (38.4–46.1)  / / / 
Gentamycin 9/355 50.0 (32.0–78.8) 8/479 81.3 (27.9–98.6) 3/400 79.5 (40.7–89.7) 
Neomycin 3/394 72.73 (36.4–81.7) / / / / 
Norfloxacin / / 230 94.3 (85.6–97.1)  / 
Streptomycin 7/536 36.3 (0–45.5) 4/449 33.3 (21.2–48.5) / / 
Vancomycin 10/840 4.1 (0–18.6) 7/489 44.4 (3.1–78.2) / / 

IQR: interquartile range; /: data not available; MR and IQR were calculated only when at least 3 values were available. 
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health in Africa and worldwide. Better policies concerning antimicrobial 
usage associated with capacity building, awareness campaigns of 
stakeholders should be increased to prevent misuse of critically anti-
microbials agents for human medicine in food animals in order to pre-
serve public health. 

The resistance of bacteria observed against HPCIAs in this review 
might also be the result of cross and co resistance patterns and not only a 
result of the use of these antimicrobials in livestock production. 

This review revealed that only 30.2% articles studied resistance 
genes and all of them used PCR. The most frequently reported genes 
were blaCTX-M, blaTEM, blaZ, ermB, ermC, qnr, vanA, vanB, str, gyr, aac(6′)- 
Ib-cr, and mrc. This finding is similar with those of Kimera et al. (2020). 
This can be explained by the lack of equipment in Africa. Indeed, per-
forming molecular analysis requires technology which is very expensive 
and not always accessible in most laboratories facilities in countries with 
limited resources and where the diagnostic capacities are suboptimal. 
African countries should improve their policies because enhancing the 
diagnostic capacity of laboratories is an essential step for generating 
reliable and accurate data, particularly in settings where fundamental 
gaps and capacity constraints may prevent the early and rapid detection 
of many animal diseases (FAO, 2023). 

This study was subject to certain limitations. This review focused on 
peer-reviewed publications and had limited scope for inclusion of “grey” 
literature or governmental and non-governmental reports. In addition, 
since for certain region like central Africa, we only found data from less 
than half of the countries, the findings may not be generalizable to the 
entire region. Furthermore, most of the AMR studies were based on 
phenotypic rather than molecular techniques, thus limiting under-
standing of transmission dynamics. Risk of bias assessment of the 
selected studies was not perfomed as it is not a mandatory step for a 
scoping review. However, it must be stressed that the quality of in-
dividuals studies has an impact on the results presented in this review 
For example, lack of standardized laboratory protocol may account for 
variations in the level of AMR reported in the included studies. In 
addition, the proportion of resistance presented is this review was 
calculated when at least three studies were carried out for the same 
bacteria-HPCIA combination even if only one isolate was studied. It 
would have been preferable to include studies reporting high number of 
isolates to ensure a high degree of precision of the data. Our search 
string did not specifically target resistance genes. Therefore, a more 
detailed review of molecular analysis conducted in African research 
should be conducted. 

5. Conclusion 

Research articles on HPCIAs resistance of selected bacteria and ani-
mal species in Africa were not available from 61.1% of countries and 
only 30.2% articles studied resistant genes. This highlights that there is a 
knowledge gap regarding the current levels of HPCIAs resistance in 
bacteria isolated from livestock. Such gap might have implications in the 
public health management and policies that are implemented in African 
countries. It is therefore relevant to have a clearer picture of the resis-
tance patterns to HPCIAs, as well as to develop a better understanding of 
the emergence and selection of AMR in the African continent with a 
focus on those countries which are not or underrepresented in this re-
view. This will likely require a financial and technical investment in 
diagnostic infrastructure at basic level across Africa. Awareness of 
different stakeholders on the harmful impact of AMR in Africa countries 
and improvement of farm biosecurity are important alternatives that can 
also contribute to address AMR. 
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Table 7 
HPCIA resistance genes detected in food animals in Africa.  

Animal 
species 

HPCIAs resistant genes identified References 

Cattle mecA, blaCTX-M-15, blaZ, blaTEM, 
ermB, ermC, norA, qnrS, qnr, mfd, 
vatA, arnA, blaCTX, mcr-1, mcr-2, 
mcr-3, qnrB, strA, ermA, mec, aph 
(30)-III, spc, qnrefm, mecA1, 
mecA2, mecC, ermF, ermQ, blaCTX- 

M-1, mphA, aada2, sak, scn, sea, hlb, 
mermB, blaACC, blaCIT, vanB, 
vanC2/3, strB, 

Saidi et al. (2015); Sghaier et al. 
(2019); Youssif et al. (2021);  
Zaatout et al. (2019); Raheel 
et al. (2020); Okubo et al. (2019); 
Elmonir et al. (2021); Tartor 
et al. (2021); Badi et al. (2018);  
Emeru et al. (2019); Awad et al. 
(2017); Freitas et al. (2020); 
Elsayed et al., 2019; Braun et al. 
(2016); Algammal et al., 2020;  
Ahmed et al. (2020); Ahmed 
et al. (2019); Sahar et al., 2018;  
Abdeen et al. (2021); Monistero 
et al. (2020); Matloko et al. 
(2021); Madoshi et al. (2018);  
Iweriebor et al. (2016); Gwida 
et al. (2020); Iweriebor et al. 
(2015); Montso et al. (2019) 

Poultry gyrA, BlaCTX-M, blaOXA, blaSHV, 
ermC, qnrS, aacC, blaTEM, blaCMY, 
mrc-1.1, blaCTX-M-15, blaTEM-1B, 
blaTEM-1, blaOXA-1, aac(3)-lia, 
aadA2, strA, strB, parC, aadA, 
Asp87-Asn, blaOXA-61,blaCTM-1, 
qnrB69, bla-CMY-98, qnrB, aadA1, 
qnrA, qepA, mfd, qnr, ermB, vanA, 
vanB, vatA, arnA, aadA, vanC, 
qnrS1, CITM, ere, aac(3)-(IV), dfr 
(A1), ASTeSuTmp, aac(6’)-ib-cr, 
blaZ, aac(6’) aph (2”), blaSHV-12, 
cmeB, blaOXA-61, sul1, dfrA, qnrD, 
pyrC, aadA2b, aadA5, armA, aac 
(3)-IId, aac(3)-Ib, aph(3)-Ia, aph 
(3)-Ib, aph(3)-Id, ant(2)-Ia, qnrB1, 
qnrB19, qnrB52, qnS1, qnrS2, 
qnrS3, qnrS7, qnrS11, qnrS13, 
pare, (PMRC)-mrc-1.1, aac2, gyrB, 
aac3–1, mphA, aadA14, acrA, 
qnrB2, qnrA1, aada2, mrx, qnrB5, 
blaCMY-2 

Tuan et al.; 2016; Yhiler et al., 
2019; Younis et al., (2017);  
Pillay et al., (2020); Shabana 
et al., (2019); Ramadan et al., 
(2018); Soliman et al., (2021);  
Ojo et al., (2016); Salem et al. 
(2016); Reddy and Zishiri, 
(2017); Sghaier et al., (2019);  
Raufu et al. (2021); Vounba 
et al., (2018); Roshdy et al., 
(2016); Okubo et al., (2019);  
Osman et al., (2019); Vounba 
et al. (2019); Raufu et al., (2013); 
Badi et al., (2018); Amer et al., 
(2018); Barka et al., (2021);  
Benameur et al., (2018); El-Aziz 
and Gharib, (2015); Amen et al., 
(2019); Gharbi et al. (2021);  
Elkenany et al., (2018); Awad 
et al., (2016); Aworh et al., 
(2021); Ezzeldeen et al. (2013);  
Ayandiran et al., (2018); Ammar 
et al., (2015); Anyanwu et al., 
(2021); Barbieri et al., (2017);  
Ammar et al., (2019); Djeffal 
et al. (2017); Farghaly et al., 
(2013); Benameur et al., (2021);  
Abdelgader et al., (2018); Ahmed 
et al., (2013); Sahar et al. (2018); 
Hassan et al., (2021); Moawad 
et al., (2018); Larbi et al., (2021); 
Yhiler et al. (2019); Mnif et al., 
(2012); Jouini et al., (2021);  
Ibrahim et al., (2019); Mthembu 
et al., (2019); Lebdah et al., 
(2017); Kimera et al., (2021);  
Kilani et al., (2015); Messaili 
et al., (2019); Abdeen et al., 
(2018); Agabou et al., (2016) 

Pigs gyrA, parC, blaTEM-1B, aac(3)-Ild, 
aac(3)-Id, aadA7, cmeB, mfd, qnr, 
ernB, vanB, vanA, vatA, arnA, 
blaTCX-M, blaTEM, strA, aac(6)-Ib-cr, 
qnrB, vanC1, vanC2/3 

Raufu et al. (2021); Sithole et al. 
(2021); Okubo et al. (2019);  
Olowe et al. (2015); Fashae and 
Hendriksen (2014); Iwu et al. 
(2017); Kimera et al. (2021);  
Iweriebor et al. (2015) 

Goats blaCTX-M-15, mfd, qnr, ermB, vanA, 
vanB, vatA, arnA 

Sghaier et al. (2019); Okubo 
et al. (2019); El-Zamkan and 
Mohamed (2021); Gharsa et al. 
(2015) 

Sheep blaCTX-M-1, blaCTX-15, blaTEM-1, 
ermB, erm(C), vanA, qnrA, qnrB, 
qepA, aac(6’)-Ib-cr 

Sghaier et al. (2019);El-Zamkan 
and Mohamed (2021); El-Aziz 
and Gharib (2015); Gharsa et al. 
(2012)  
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Registration and protocol 

The protocol of this review was archived at the Veterinary Public 
Health Institute of the University of Bern in Switzerland website (http 
://www.vphi.ch/unibe/portal/fak_vetmedizin/c_dept_dcr-vph/f_inst 
_vphi/content/e21055/e76940/e1046889/e1206018/310322-Scopi 
ngReviewProtocol-HPCIAsresistanceinAfrica_Final_eng.pdf) and regis-
tered in the Systematic Reviews for Animals and Food (SYREAF) website 
(https://syreaf.org). 
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Gharsa, H., Ben Slama, K., Lozano, C., Gómez-Sanz, E., Klibi, N., Ben Sallem, R., 
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