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Abstract

Aim: To conduct a systematic review with meta-analysis to provide a comprehensive

synthesis of randomized controlled trials (RCTs) and prospective cohort studies inves-

tigating the effects of currently available bolus advisors on glycaemic parameters in

adults with diabetes.

Materials and Methods: An electronic search of PubMed, Embase, CINAHL,

Cochrane Library and ClinicalTrials.gov was conducted in December 2022. The risk of

bias was assessed using the revised Cochrane Risk of Bias tool. (Standardized) mean

difference (MD) was selected to determine the difference in continuous outcomes

between the groups. A random-effects model meta-analysis and meta-regression
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were performed. This systematic review was registered on PROSPERO

(CRD42022374588).

Results: A total of 18 RCTs involving 1645 adults (50% females) with a median gly-

cated haemoglobin (HbA1c) concentration of 8.45% (7.95%–9.30%) were included.

The majority of participants had type 1 diabetes (N = 1510, 92%) and were on multi-

ple daily injections (N = 1173, 71%). Twelve of the 18 trials had low risk of bias. The

meta-analysis of 10 studies with available data on HbA1c showed that the use of a

bolus advisor modestly reduced HbA1c compared to standard treatment

(MD �011%, 95% confidence interval �0.22 to �0.01; I2 = 0%). This effect was

accompanied by small improvements in low blood glucose index and treatment satis-

faction, but not with reductions in hypoglycaemic events or changes in other second-

ary outcomes.

Conclusion: Use of a bolus advisor is associated with slightly better glucose control

and treatment satisfaction in people with diabetes on intensive insulin treatment.

Future studies should investigate whether personalizing bolus advisors using artificial

intelligence technology can enhance these effects.

K E YWORD S

bolus advisor, diabetes type 1, diabetes type 2, glycaemic control, insulin therapy

1 | INTRODUCTION

Self-management is the cornerstone of diabetes treatment for people

with type 1 or type 2 diabetes on intensive insulin treatment. To

achieve optimal glycaemic control, people with diabetes are required

to adjust their insulin dose based on multiple dynamic and personal

parameters, including glucose concentrations and the carbohydrate

content of their meals. The efforts needed for such insulin dose

adjustments in people's everyday life are considered time-consuming,

challenging, and error-prone,1–5 with limited health literacy and fear

of hypoglycaemia posing potential obstacles.2,3,6

To overcome these barriers, bolus advisors have been developed

to assist people with diabetes in calculating their mealtime insulin

boluses.7 Although initially introduced as a new feature of insulin

pumps, bolus advisors are now also available for individuals on multi-

ple daily injections (MDI) in the form of mobile applications, stand-

alone devices, or as integrated parts of glucose meters.7 Parameters

included in standard bolus advisors are the carbohydrate content of a

meal (by self-assessment), the insulin-to-carbohydrate ratio, the cur-

rent and target glucose levels, and the insulin-sensitivity factor,

whereas insulin-on-board is incorporated in bolus advisors for insulin

pumps.8 Standard bolus advisors have been reported to improve bolus

estimation,1 increase patient satisfaction,9–11 improve quality of

life,11,12 and reduce hypoglycaemic events,11,13 although the effect on

glycated haemoglobin (HbA1c) values or time in range (TIR) is less

clear.5,12,14,15 Importantly, the success of bolus advisors very much

depends on the frequency of glucose monitoring,16 adjustment of

dynamic insulin parameters (e.g., insulin sensitivity factor),16 the accu-

racy of carbohydrate calculation, and integration of the outcome with

planned activities.17 More recently, adaptive bolus advisors have been

developed, which include features of artificial intelligence (AI),14,18,19

advanced nutrient calculators,20,21 wireless and automated transfer of

treatment-related (glucose, insulin) data, and/or physical activity

tracking.14,21,22 Although these additional features might increase the

potential for achieving greater accuracy, their effect in optimizing gly-

caemic control remains to be established.23

Two prior systematic reviews on a small number of studies, one

of which included a meta-analysis, failed to show an effect of (adap-

tive) bolus advisors on glycaemic control in people with type 1 diabe-

tes.24,25 Our study builds upon these previous reports by

incorporating a broader range of glycaemic endpoints and more

diverse populations, including patients on MDI therapy, and with

type 2 diabetes. In addition, new evidence on bolus advisors has

emerged since the publication of the meta-analysis.25 Therefore, the

purpose of this systematic review and meta-analysis was to summa-

rize all available evidence from randomized controlled trials (RCTs)

and prospective cohort studies on the effects of currently available

bolus advisors on or their associations with glycaemic parameters

and quality of life in adults with type 1 or type 2 diabetes on insulin

treatment.

2 | MATERIALS AND METHODS

This systematic review was conducted according to the updated rec-

ommendations in the Preferred Reporting Items for Systematic

reviews and Meta-Analysis (PRISMA) 2020 statement, along with its

extensions, and the Cochrane Handbook for Systematic Reviews of

2 DEN BROK ET AL.

 14631326, 0, D
ow

nloaded from
 https://dom

-pubs.pericles-prod.literatum
online.com

/doi/10.1111/dom
.15521 by U

niversitat B
ern, W

iley O
nline L

ibrary on [21/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Interventions.26,27 The protocol was registered in PROSPERO

(CRD42022374588).

The electronic search, screening of relevance by abstract and title,

assessment of eligibility of full-text articles, data extraction and risk of

bias assessment were independently performed by two authors (E.J.

D.B. and C.H.S.). Any inconsistencies were discussed until consensus

was obtained. If necessary, the senior authors (U.P.-B. and B.E.d.G.)

were consulted to make the final decision.

2.1 | Outcomes of interest

Our primary outcome measure was the post-intervention difference

in HbA1c between experimental and control groups. Secondary out-

comes included the frequency of hypoglycaemic events, TIR, time

below range (TBR), time above range (TAR), mean and postprandial

glucose, low blood glucose index (LBGI), high blood glucose index

(HBGI), mean amplitude of glycaemic excursions (MAGE), glycaemic

variability expressed as coefficient of variation (CV) or standard devia-

tion (SD), total, basal and bolus insulin, and body weight. In addition,

the effect of bolus advisors on patient-reported outcomes was

investigated.

2.2 | Data source and search strategy

A sensitive electronic search of MEDLINE (PubMed), Embase

(Ovid), Cochrane Library (Wiley), CINAHL (EBSCO) and

ClinicalTrials.gov was conducted in December 2022. All articles

available online in the databases were included for assessment,

resulting in a database coverage from 2003 to 2022. The final

search included a combination of title/abstract words and Medical

Subject Headings (PubMed) and Emtree (EMBASE) terms. No lan-

guage or date limitations were applied to the search strategy. To

identify future relevant articles, alerts in all four databases were

created. Full details of the search strategy are available in the

Supplementary Appendix.

2.3 | Eligibility criteria

All peer-reviewed RCTs and prospective cohort studies assessing

the effect of a bolus advisor alone and combined with other

support systems (e.g., continuous glucose monitoring [CGM]) on

glycaemic parameters (TIR, HbA1c, glucose variability, hypogly-

caemia) and patient-reported outcomes in adults with diabetes

on intensive insulin therapy were included. In silico studies or

studies involving children or participants with types of diabetes

other than type 1 or type 2, for example, maturity-onset diabe-

tes of the young, were excluded. In addition, ‘grey literature’ or

publications from unidentified sources (conference papers,

reports, etc.) and observational studies other than prospective

cohort studies, were disregarded.

2.4 | Study selection

Studies identified by the search strategy were imported into

COVIDENCE software, version 1.0 (www.covidence.org). The

COVIDENCE software automatically removed duplicates from

the two searches. Next, articles were independently screened

for eligibility based on title and abstract against the inclusion

and exclusion criteria. When in doubt, the full text of the article

was read. All potentially relevant articles identified after title

and abstract review underwent full-text reading. To identify

other possible relevant trials, a backward and forward citation

search of included articles was conducted through the PubMed

interface in December 2022. If study reports were not publicly

available, authors were contacted with the request to share

their article.

2.5 | Data extraction

A standardized data extraction template was designed within

the COVIDENCE software, collecting desired information from

each included article regarding report, study treatment and par-

ticipant characteristics, results, and conflicts of interest. More

information on the data extraction can be found in the Supple-

mentary Appendix (Data S1). If data were missing, the original

investigators were contacted with the request for additional

information. For some studies, estimated means and SD were

calculated (e.g., from five-number summary values or confidence

intervals [CIs]). Mean HbA1c levels expressed in mmol/mol in

one study5 were converted to %. As it was not possible to con-

vert an SD expressed in mmol/mol to %, an SD was imputed

based on the average SDs of the studies included in the meta-

analysis.26

2.6 | Risk of bias assessment

The risk of bias was assessed using the revised Cochrane ‘Risk of Bias’
tool for randomized trials (RoB 2.0), employing the additional guidance

for cluster-randomized and crossover trials.28 Supporting information

and justification for judgements of risk of bias (low risk of bias; some

concerns; or high risk of bias) were recorded. For each study, an over-

all risk of bias judgement across the five domains using the Grading of

Recommendations Assessment, Development and Evaluation

(GRADE) was made (Table S1).

2.7 | Statistics

As the effects of bolus advisors were deemed to vary according

to patient age, carbohydrate-counting skills, and the type of

bolus advisor used, the random-effects model was chosen. A

restricted maximum likelihood random-effects variance estimator

DEN BROK ET AL. 3
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was used to estimate the heterogeneity variance.26 The thresh-

old for substantial heterogeneity was considered ≥50%, quanti-

fied as Higgin's I2.26 In addition, the impact of heterogeneity

was explored by performing a meta-regression. Potential publi-

cation bias was assessed via funnel plot asymmetry. Several

subgroup and sensitivity analyses were performed to explore

the influence of study characteristics on the effect size. The

meta-regression, the analysis of potential publication bias, and

the sensitivity and subgroup analyses were only performed on

outcomes with a minimum of 10 studies included in the meta-

analysis as recommended by the Cochrane Handbook.26

p values of <0.05 were taken to indicate statistical significance.

The statistical program R version 4.2.3 and its environments

were used for data analysis.

3 | RESULTS

A total of 1702 studies were identified by the literature search on

PubMed (315), Embase (860), Cochrane (242), CINAHL (149) and

ClinicalTrials.gov (136), 675 of which were duplicates (Figure 1).

After removing duplicates, 1028 articles remained, of which

835 articles were excluded based on title and abstract screening

(reasons for exclusion are listed in Figure 1). The full texts of the

remaining 152 articles were retrieved and reviewed, after which

another 134 articles were deemed irrelevant. By citation

screening of the included studies, another two relevant

articles were identified. Overall, 18 RCTs were included in the anal-

ysis.5,6,9–15,20,21,29–35 No observational studies matching the inclu-

sion criteria were identified.

Records identified from:

Databases (n = 4)

PubMed (n = 315)

Embase (n = 860)

CINAHL (n = 149)

Cochrane (n = 242)

Registers (n = 1)

Clinicaltrial.gov (n = 136)

Citation screening (n = 2)

Total (n = 1704)

Records removed:

Duplicate records removed (n = 675)

By automation tool (n = 564)

Manually (n = 111)

Records screened (title/abstract)

(n = 1028)

Records excluded (n = 875)

Wrong intervention (n = 742)

Paediatric population (n = 52)

Study design (n = 46)

In silico (n = 34)

Study protocol (n = 1)

Full-text reports assessed for 

eligibility (n = 152)

Reports excluded (n = 134):

Abstract conference (n = 57)

Wrong study design (n = 22)

Wrong outcomes (n = 14)

Wrong intervention (n = 4)

Paediatric population (n = 12)

Study protocol (n = 17)

Ongoing study (n = 7)

Terminated trial (n = 1)

Studies included in review (n = 18)

Identification of studies via databases and registers
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F IGURE 1 Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram for the identification of studies
included in the systematic review.
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F IGURE 2 Mean difference (MD) and 95% confidence interval (CI) of glycated haemoglobin (HbA1c; %). Random-effects (RE) model meta-
analysis with restricted maximum likelihood model. (A) Analysis in all studies disregarding study design. (B) Analysis in studies with a parallel group
design.; Q, Cochrane's Q test for heterogeneity; I2, heterogeneity statistics.
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Characteristics of the 18 included RCTs are presented in Table 1.

The 18 trials comprised a total of 1645 adults, the majority of whom had

type 1 diabetes (N = 1510), with only a few studies enrolling participants

with type 2 diabetes. The median (interquartile range [IQR]) HbA1c at

baseline averaged 69 (63-78) mmol/mol 8.45% (7.95%–9.30%), the

median (IQR) age was 42 (37–44) years, and the median (IQR) diabetes

duration was 18 (16–21) years. The studies included an equal number of

males and females, of whom the majority were on MDI therapy

(N = 1173). Study length ranged from 2 to 52 weeks. Only five studies

examined an adaptive bolus advisor (i.e., Diabetes Interactive Diary

[DID],21 Predictive Personalised Decision Support [PEPPER],14

VoiceDiab,20 smart bolus calculator30 and DIABEO31), of which two

compared the adaptive bolus advisor to a standard bolus advisor.14,30

The effect of bolus advisors on HbA1c was reported in 14 studies,

11 with a parallel, two with a crossover, and one with a cluster design.

Ten trials (eight parallel and two crossover studies) were included in

the meta-analysis, as four studies did not report data on post-

intervention HbA1c levels. The meta-analysis of these 10 studies

showed a significant, albeit limited, effect of bolus advisors on HbA1c

levels compared to standard treatment (mean difference

[MD] �0.11%, 95% CI �0.22 to �0.01; I2 = 0% [Figure 2]). The effect

on HbA1c slightly increased (MD �0.16%, 95% CI �0.28 to �0.03;

I2 = 0% [Figure 2]), although the effect size remained modest when

only studies with a parallel design were included in the analysis. Nei-

ther analysis exhibited substantial heterogeneity. The meta-regression

identified no study characteristics that had a potential modification

effect on the primary outcome.

The analysis of the primary outcome in studies with a parallel

group design, excluding studies with potential for a high risk of bias,33

showed bolus advisors to significantly lower HbA1c (MD �0.19%,

95% CI �0.32 to �0.0.06; I2 = 0% [Figure S4]). This effect did not

change (MD �0.19%, 95% CI �0.34 to �0.05; I2 = 0% [Figure S5])

when only parallel studies without high risk of bias assessing only a

standard bolus advisor were included in the analysis.

The subgroup analysis revealed no difference in the reduction of

HbA1c levels when adaptive bolus advisors (MD �0.11%, 95%

CI �0.30 to 0.08; I2 = 0% [Figure S6]) were compared to standard

bolus advisors (MD �0.10%, 95% CI �0.26 to 0.05; I2 = 20% [-

Figure S6]). This finding should be interpreted with caution, as only

two studies with different study designs assessing an adaptive bolus

advisor were available for the meta-analysis. The (additional) sensitiv-

ity analyses are shown in the Supplementary Appendix.

Large variability was found in the data collection and reporting of

hypoglycaemic events. Only five studies explicitly reported quantita-

tive data (e.g., mean with SD or 95% CI, or median with IQR) on hypo-

glycaemic events based on patient reports and/or glucose meter

downloads. Furthermore, the units used to express and the definition

of hypoglycaemia varied, making it difficult to compare the trials.

Therefore, a standardized mean difference (SMD) was used in the

meta-analysis. No significant effect was found in the number of hypo-

glycaemic events between the experimental and control group

(SMD �0.09, 95% CI �0.28 to 0.11; I2 = 0% [Figure S7]).

The effect of bolus advisors on LBGI was reported in five studies,

one with a parallel and four with a crossover study design. For LBGI,

the SMD was pooled since both self-monitored blood glucose (one

study) and CGM (four studies) were used to evaluate the outcome.

Based on this limited number of studies, the use of a bolus advisor

was associated with a lower LBGI than in the control arm

(SMD �0.24, 95% CI �0.47 to �0.01; I2 = 0% [Figure 3]).

There was no significant difference between the bolus advisor

group and the control group in terms of TIR, TBR, TAR, glycaemic vari-

ability expressed as CV, HBGI, MAGE, SD, mean glucose and post-

prandial glucose, bolus, basal and total insulin, and body weight

(Figures S13–S25).

Several questionnaires were used in the different clinical trials to

assess quality of life, fear of hypoglycaemia, and treatment satisfac-

tion (Figures S26–S29). In the meta-analysis, only the status version

of the Diabetes Treatment Satisfaction Questionnaire (DTSQs)

showed a significant improvement in the experimental group versus

the control group, both in the analysis including all five studies

(SMD 0.26, 95% CI 0.09 to 0.44; I2 = 0% [Figure 3]) and in the analy-

sis including only the RCTs with a parallel group design (SMD 0.31,

95% CI 0.12 to 0.50; I2 = 0% [Figure S23]).

Twelve of the 18 trials had low risk of bias, three fell into the

‘some concern’ category and three showed high risk of bias

(Figures S1–S3). The more frequent concerns were related to

bias arising from the randomization process, bias due to missing

results and bias in the selection of the reported results. The overall

quality of evidence for each domain and for the cluster-randomized

trial is shown in Figures S1–S3.

Limited information was available about the intensity of bolus

advisor use during the study period. In general, a moderate adherence

to bolus advisor usage was maintained; on average, participants in the

intervention group requested 3.8 bolus recommendations per day.

The contour-enhanced funnel plot indicated no significant asym-

metry, suggesting that publication bias is unlikely (Figure S30).

4 | DISCUSSION

This systematic review comprehensively synthesized evidence on the

effect of currently available bolus advisors on glycaemic parameters in

adults with type 1 or type 2 diabetes on intensive insulin therapy.

In the meta-analysis, the use of a bolus advisor demonstrated a statis-

tically significant reduction in HbA1c compared to continuation of

standard care. The use of a bolus advisor was also associated with a

modest decrease in LBGI and an improvement in treatment satisfac-

tion, but not with improvements in any other glycaemic parameter,

including hypoglycaemic events, times in, above or below range or

glucose variability, or in other patient-reported outcomes.

Whereas previous systematic reviews failed to show an effect of

bolus advisors on HbA1c, our findings now demonstrate these tools

to significantly reduce HbA1c. However, the effect size was smaller

than what is usually regarded as clinically relevant.35 We also found

use of a bolus advisor to be associated with somewhat lower LBGI,

but not with lower incidence of hypoglycaemic events, even though

one study had an integrated stop-before-low function integrated in

the device, and two studies followed a strict hypo-/hyperglycaemia
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safety protocol.14,30,36 Analogously, a previously published meta-

analysis demonstrated a small, although not significant, decrease in

hypoglycaemic events among a smaller number of study partici-

pants.25 Although the clinical relevance of the observed reduction in

LBGI may be called into question, even minor improvements in

mitigating the risk of hypoglycaemia could benefit treatment satisfac-

tion and should be viewed in the context of glycaemic control that did

not deteriorate or even improved. Indeed, it is reassuring that the

reduction in HbA1c, albeit modest, was not associated with increased

TBR or more hypoglycaemic events.

F IGURE 3 Standardized mean difference (SMD) and 95% confidence interval (CI) of low blood glucose index (LBGI) and Diabetes Treatment
Satisfaction Questionnaire (DTSQ). Random-effects (RE) model meta-analysis with restricted maximum likelihood model. (A) Meta-analysis on
LBGI in all studies. (B) Meta-analysis on DTSQ in all studies.
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The limited benefits associated with bolus advisors can be attrib-

uted to several factors that necessitate consideration. First, the clinical

effectiveness of bolus advisors is highly dependent on the accuracy of

the user input.17 People with diabetes are required to regularly monitor

their glucose levels, precisely calculate the carbohydrate content of their

meals, and provide sufficient and accurate data on personal and dynamic

parameters. Carbohydrate counting plays a crucial role in diabetes self-

management, requiring people with diabetes to gain knowledge about

the macronutrient content of their meal, read and understand food

labels, and possess sufficient numerical skills to calculate the bolus insu-

lin dose.37 Several systematic reviews and meta-analyses have demon-

strated the beneficial effect of carbohydrate counting on glycaemic

control.38–40 However, there is limited information available regarding

the accuracy of carbohydrate counting in adults with diabetes. A study

conducted by Meade et al.2 found that individuals with type 1 diabetes

had an average test score of 59% when assessing their carbohydrate-

counting skills. Similarly, a study by Brazeau et al.3 revealed that inaccu-

rate carbohydrate counting is common among the diabetes population

and associated with suboptimal glycaemic control.

Treatment adherence is another crucial factor in maximizing the ben-

efits of using a bolus advisor. Achieving and maintaining the behaviour

modifications necessary for treatment compliance has proven challeng-

ing.41 Seeking insulin dose suggestion may also be perceived as burden-

some as people with diabetes must possess the necessary technical skills

to operate bolus advisors.10,14 It is important to note that limited health

literacy is not uncommon among the diabetes population,42–44 which can

pose challenges in effectively utilizing these tools. Furthermore, the

refusal to use a bolus advisor could also be attributed to a lack of trust in

its advice or reluctance to make changes in customary behaviours.

The limited effects of current bolus advisors may also stem from

the fact that they only provide recommendations for prandial insulin,

without considering basal insulin needs. In adults, basal insulin usually

comprises 45%–60% of the total daily insulin dose and particularly

aims to maintain fasting glucose concentrations at consistent levels

throughout the day.45 According to Monnier et al.,46 the relative con-

tribution of fasting glucose to overall glycaemic control increases with

increasing HbA1c levels. In this systematic review, baseline HbA1c

levels averaged 69 mmol/mol (8.45%), which may indicate that even

substantial improvements in postprandial glucose excursions are

unlikely to result in clinically meaningful improvements in overall gly-

caemic control. In addition, bolus advisors do not adequately account

for the variability in insulin requirements that arise from dynamic fac-

tors such as insulin sensitivity, physical activity, sleep duration/quality

and illness, and ignore the influence of other macronutrients such as

protein and fat, which can affect postprandial glucose excursions.17

To address the limited effects identified in previous clinical trials,

some potential improvements could be considered. One possible

advancement is the development of automated algorithms for meal

nutrient content estimation based on image or voice recognition algo-

rithms.20,47 This would alleviate the burden on users to manually input

carbohydrate content, promoting accuracy and reducing errors.

Advanced AI algorithms could further optimize personalized insulin

dose recommendations by incorporating personal and dynamic fac-

tors. Additionally, exploring algorithms that have the capability to

adjust both bolus and basal insulin and that operate based on real-

time data from CGM, connected insulin pens, and insulin pumps with-

out the need for explicit meal announcement have the potential to

streamline the process and improve overall user experience.48

A strength of this systematic review is that it assessed the effect

of both standard and adaptive bolus advisors on multiple glycaemic

parameters in adults with type 1 or type 2 diabetes on MDI or contin-

uous subcutaneous insulin infusion. Throughout the entire process of

conducting this systematic review, all methodological steps were per-

formed independently by the first two authors, thus minimizing the

likelihood of errors and increasing the reliability of findings. Moreover,

our carefully designed and comprehensive search strategy maximized

the retrieval of relevant articles. To mitigate the potential impact of

bias stemming from missing data, study investigators were contacted

with the request for additional information.

There are also some limitations. First, the methodological and

clinical heterogeneity observed across studies, including variations in

intervention, study design and outcome measures, did not enable a

direct head-to-head comparison between bolus advisors. Second, the

limited number of available RCTs for the meta-analysis of the second-

ary outcomes further constrained our analyses. Third, the reporting of

trial data was sometimes inadequate to facilitate a pair-wise meta-

analysis of crossover trials as recommended by the guidelines.26 The

available data on the effects of (adaptive) bolus advisors on glycaemic

control in adults with type 2 diabetes mellitus was limited. Further

research incorporating a larger body of evidence would be beneficial

for a more comprehensive understanding of their potential impact.

In conclusion, use of a bolus advisor is associated with small

reductions in HbA1c and LBGI and slight improvement in treatment

satisfaction, when compared to standard treatment, in people with

diabetes on intensive insulin treatment. Given that even small

improvements in glycaemic parameters may still be relevant in the

context of diabetes-related complications, these data argue for a more

personalized rather than a ‘one-size-fits-all’ approach to currently

available bolus advisors for individuals living with diabetes. Future

studies should focus on incorporating additional factors, including

automated algorithms for meal nutrient content estimation and basal/

bolus titration, and the use of AI with self-learning principles to

enhance and optimize the effectiveness of bolus advisors in the man-

agement of people with diabetes on intensive insulin treatment.
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