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HIV-1 RNA genetic diversity predicts time since infection which is important for clinical care and 

research. It's unclear, however, whether proviral DNA genetic diversity sampled under suppressive 

antiretroviral therapy can be used for this purpose. We tested whether proviral genetic diversity 

from NGS sequences predicts time since infection and recency in 221 people with HIV-1 with 

known infection time. Proviral diversity was significantly associated with time since infection 

(p<5*10-07, R2 up to 25%) and predictive of treatment initiation during recent infection (AUC-

ROC up to 0.85). This shows the utility of proviral genetic diversity as a proxy for time since 

infection. 
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INTRODUCTION 

Knowing the time since infection in people with human immunodeficiency virus type I (PWH) is 

relevant for transmission epidemiology, HIV therapy and for many research questions in general. 

Since a longer time of infection without therapy means a longer period of ongoing replication and 

therefore increased viral evolution, it directly impacts the within host viral diversity and proviral 

reservoir size. This has implications, e.g., when deciding on simplifying antiretroviral therapy [1] 

or in investigations about immune responses [2]. Yet, its estimation is often challenging due to 

lack of a previous negative HIV test or recall of unambiguous risk situations leading to an 

infection.  

As HIV diversity increases with infection time, different diversity-based approaches have been 

developed for estimating time since infection and especially if a PWH is recently, i.e., less than 1 

year, infected. For example, [3] used ambiguous nucleotide frequency from Sanger sequences from 

routine HIV drug resistance testing, and [4,5] showed that an average pairwise diversity score 

(APD) based on NGS provides an even more accurate measure: In plasma virus derived sequences 

from ART-naive PWH, APD score correlates well with time since infection and has an ROC area 

under the curve (AUC) of over 95% to determine if PWH were infected recently [4].  

For a large number of PWH, the pre-ART sequences required for these approaches are not 

available. However, increasing numbers of PWH may have proviral DNA sequences performed 

for research purposes or to guide treatment simplifications or treatment with long acting 

antiretrovirals [6]. Such proviral DNA sequences might in principle inform on the time between 

infection and therapy initiation, as it is expected that the diversity of the viral reservoir increases 

with the length of this time window, but then stops after ART has suppressed viral replication 

[7,8]. However, proviral diversity also differs in important ways from pre-ART viral diversity: 

proviral diversity represents the accumulated diversity over the entire infection, it may be affected 

by the decay of the reservoir, and by hypermutations in proviral DNA caused by APOBEC3G/F 

[9].  

As these differences may affect the association with prediction of infection time, we evaluate in 

this study the utility of proviral sequences sampled post ART as a proxy for the time between 

infection and ART. Given the role of APOBEC3G/F as a source of noise, we combine this 

approach with a hypermutation filtering on a next generation sequencing (NGS) read level. 
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METHODS 

PWH/Sequence selection criteria 

We included PWH with an accurate date of infection enrolled in the Swiss HIV Cohort Study 

(SHCS), a prospective, multicentric cohort study enrolling PWH in Switzerland [10] and/or in the 

Zurich Primary Infection Cohort (ZPHI) a multi-centric cohort study enrolling PWH during 

primary HIV infection [11]. These include PWH with a negative HIV-1 test within one year prior 

to the date of diagnosis and PWH with a clinical diagnosis of a documented primary HIV infection 

based on a comprehensive clinical assessment by a highly experienced research team. We 

determined the date of diagnosis as the earliest date of the following events: SHCS registration, 

first HIV-1 positive test, or first HIV-1 laboratory measurement. The date of infection was defined 

as described previously [3]: (i) for PWH in the ZPHI as the estimated date of infection, (ii) for 

PWH with primary infections as the date of diagnosis minus 30 days (to account for incubation 

time), and (iii) for all others as the midpoint between diagnosis date and last negative test. We 

selected proviral NGS sequences from those selected PWH without ART interruption and 

virological failure until sampling happened. Samples were predominantly sequenced in a study, 

which systematically sequenced the proviral DNA of all SHCS participants without HIV-RNA 

genotyping available [12]. We considered the length of two time-windows for the analysis, the 

number of years from the date of infection until date of ART start (tInfectionToART), i.e., time since 

infection, and the time number of years from ART start until proviral NGS sequence sampling 

(tARTtoSampling) (Figure 2A). 

NGS sequencing  

DNA was isolated from on average 5 million PBMCs and proviral DNA was amplified by (i) near 

full-length PCR and followed by two nested hemi length PCRs [12]. If unsuccessful, (ii) near full-

length PCR followed by nested near full-length PCR or (iii) two hemi-length PCRs amplifying a 

5’ amplicon and a 3’ amplicon followed by nested hemi-length PCRs was performed as previously 

described [7]. NGS sequencing was performed for the near full-length HIV-1 genome using the 

MiSeq Reagent Kit v2 (300-cycles). Majority consensus alignments were created from the NGS 

reads using SmaltAlign (https://github.com/medvir/SmaltAlign). From majority consensus 

sequences, respective genes (gag, pol, env) were extracted with BLAST and codon alignments 

were made with the HIV-1 reference strain HXB2 using MACSE2 [13]. 

APOBEC hypermutation filtering 

Hypermutation filtering was performed based on a previously published method  [9,14]. We 

adapted this method to the level of single NGS reads, using three different p-value thresholds to 

determine hypermutation status of a read and subsequent removal, (i) a constant  threshold of 

p<0.05, (ii) a liberal dynamic threshold based on the bootstrapped lower 95% confidence interval 

of the mean from the hypermutation p-value distribution of RNA sequences, randomly selected 

from the SHCS NGS database at the University Hospital Zurich, for each HIV-1 genome position 
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(HXB2 as reference), and (iii) a conservative dynamic threshold based on the bootstrapped upper 

95% confidence interval of the upper 90% percentile interval of the p-value distribution of RNA 

sequences for each HIV-1 genome position (HXB2 as reference). Filters and their effect are shown 

for an example in Supplementary figure 1. After filtering, we generated a new fastq file, reran 

SmaltAlign, and recalculated the APD. 

Average pairwise diversity score 

We calculated the APD score as described by [4,5] based on the third codon position of gag, pol, 

and env individually on the NGS sequence reads and after applying the three different 

hypermutation filters described above with a coverage threshold of 100 reads for each position. 

Time since infection to ART/recent infection analysis 

We used linear regression models to determine the fraction (R2) of the variance of tInfectionToART 

(time since infection) explained by the APD score calculated on gag, pol, and env. We used ROC 

curve analysis to determine optimal APD cutoffs for the prediction of recent infection by the APD 

score calculated on gag, env, and pol separately and in combination for all different hypermutation 

thresholds. We used two approaches, (i) including all NGS data sets comprising at least 100 codons 

of the respective gene env/gag/pol (designated as “partial length”), and (ii) full length, including 

only NGS data sets covering nearly the entire gene, i.e., >95% of codons of the respective gene 

gag/pol/env (designated as “full length”). 

RESULTS 

We identified 221 PWH with a total of 247 sequences in the SHCS and ZPHI study with an 

accurate HIV-1 infection date reported and HIV-1 DNA NGS sequences availability. At least one 

of the three genes had full length in 127 PWH (Figure 1). The median tInfectionToART was 0.41 years 

(IQR 0.15, 2.27) and the median tARTtoSampling was 2.29 years (IQR 0.95, 4.46) (Supplementary 

table 1). We also found an increasing CD4 T cell count from 431 cells/l (IQR 300, 627) at ART 

initiation to 636 (IQR 505, 852) at the NGS sample date and a respective decrease for HIV RNA 

viral load from 18,000 copies/ml (IQR 26, 146,801) to undetectable (IQR 0, 0). 

We found significant associations of APD with tInfectionToART, but not with tARTtoSampling 

(Supplementary table 2, Supplementary figures 2/3).  Depending on the gene considered and the 

hypermutation-filtering threshold used, APD explained between 5% and 25% of the variance in 

tInfectionToART (quantified as the R2 in a linear regression model, Figure 2B/C), with the best 

performance (R2 = 25%) obtained for pol full length and the dynamic conservative threshold. By 

contrast, APD explained only between 1% and 6% of the variance of tARTtoSampling,(Supplementary 

figure 4,5,6). Overall, across genes, hypermutation filter increases the R2 of tInfectionToART, in 

particular for pol full length and env. For gag, however, R2 is highest without any filtering (Figure 

2C). When assessing the ability of APD to predict tInfectionToART in leave-one-out cross validation, 
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we found the lowest mean absolute error (MAE) in predicting tInfectionToART by pol with dynamic 

conservative threshold and full length (MAE of 1.19 years). Whereas the MAE was highest for 

env (MAE of 2.19 years), with dynamic liberal threshold and full length (Supplementary table 3). 

When testing the ability of APD to predict whether ART was initiated in recent infection (<1 year), 

we obtained areas under the ROC curve (AUC_ROC) ranging from 0.7 (0.62-0.78) for env without 

hypermutation filtering and partial length to 0.85 (0.73-0.96) for env 0.05 and dynamic 

conservative threshold and full length. We found improvements of AUCs with stricter 

hypermutation filtering thresholds (Figure 2C, Supplementary figure 7/8). For gag APD the AUC 

peak is reached with the 0.05 and dynamic liberal threshold (0.82, 0.72-0.92) whereas for pol and 

env APD the AUC peak is reached with the conservative dynamic (and 0.05) threshold, 0.84 (0.75-

0.93) and 0.85 (0.73-0.96) respectively (Figure 2D). 

DISCUSSION 

In this work we showed that a diversity score derived from proviral DNA HIV-1 NGS sequences 

from individuals on suppressive ART is associated with the time since infection (tInfectionToART) and 

recent infection status. Its predictive accuracy is lower than that of viral diversity derived from 

plasma HIV-1 RNA [4], in particular when partial sequences were included. However, when 

restricting the analysis to full-length sequences and hypermutation filtering, predictive 

performances are in the range of what is achieved with treatment-naive plasma RNA for pol/env 

(AUC of 0.84/0.85 for proviral DNA compared to >=0.95 for viral RNA). For gag, hypermutation 

filtering showed no improvements which may be explained by the lower G→A substitution rates 

in gag [15]. The performance increase comparing partial pol to the entire pol gene is striking 

(Figure 2C). This may be explained by absence of the pol positions 3000 to 4000 in almost 50% 

of sequences (Supplementary Figure 9), which previously were shown to have the highest 

predictability for time since infection [5]. Finally, we show that the APD only has minor 

associations with tARTtoSampling, confirming our assumption and previous evidence [7] that there is 

almost no viral evolution under suppressive ART.  

The main limitation of this work is the small number of recovered gene sequences, which is most 

likely due to low reservoir sizes in early treated PWH [1]. It may also be because of the low 

specificity from the hypermutation filtering and subsequent failure of NGS assembly due to a lack 

of reads. Another limitation is the between sequence overlap in partial length sequences which 

may impact comparability of APDs inferred from different regions within a gene. Further, we 

could not identify an overall optimal hypermutation filtering threshold across all genes. 

Nevertheless, we show improvements of both the explained variance and AUC with hypermutation 

filtering compared to not filtering at all.  

In summary, this work shows the utility of APDs derived from proviral sequences as a proxy for 

the time since infection and recent infection prediction. This may be useful for PWH without a 
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baseline drug resistance test to decide on treatment simplification strategies in clinical practice or 

to determine infection recency in HIV research, for example, to retrospectively estimate HIV-1 

incidence. 
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FIGURE LEGENDS 

Figure 1 Flowchart of PWH selection and availability of HIV-1 genome sequences. APD, average 

pairwise diversity score; ART, anti-retroviral therapy; PWH, people with HIV-1; SHCS, Swiss 

HIV Cohort Study; ZPHI, Zurich Primary HIV Infection study. 

 

Figure 2 Time since HIV-1 infection to ART initiation prediction with proviral genetic diversity 

from NGS sequencing A: Illustration of the HIV-infection course and definitions of time since 

infection to ART initiation and time since ART initiation to proviral NGS sampling B: Time 

infection to ART in dependence of APD derived from full length pol sequences. C: R2, the 

goodness of fit calculated as the explained variation in time infection to ART by APD,  of linear 

regression from time infection to ART in dependence of APD derived from partial length and 

restricted to full length gag/pol/env sequences D: AUCs and ROC curves for the prediction of time 

infection to ART <1 year (recent infection status) with APDs derived from partial length and 

restricted to full length env/pol/gag sequences. AUCs with 95% confidence intervals are shown in 

Supplementary table 4. All other ROC curves for other hypermutation filters and genes are shown 

in supplementary figures 7/8. B-D: Analyses were repeated for different levels of hypermutation 

filtering: (i) hypermutation unfiltered, (ii) 0.05 threshold, (iii) dynamic liberal threshold, and (iv) 

dynamic conservative threshold (visualized at an example in supplementary figure 1). APD, 

average pairwise diversity score; ART, anti-retroviral therapy; AUC, area under the curve; ROC, 

receiver operating characteristic. 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/advance-article/doi/10.1093/infdis/jiae149/7632595 by U

PD
 E-Library user on 10 April 2024



 

DOI: 10.1093/infdis/jiae149 10 

 

 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/advance-article/doi/10.1093/infdis/jiae149/7632595 by U

PD
 E-Library user on 10 April 2024


	1

