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Abstract
We introduce the notion of the algebraic overshear density property which implies
both the algebraic notion of flexibility and the holomorphic notion of the density
property. We investigate basic consequences of this stronger property, and propose
further research directions in this borderland between affine algebraic geometry and
elliptic holomorphic geometry. As an application, we show that any smoothly bordered
Riemann surface with finitely many boundary components that is embedded in a
complex affine surface with the algebraic overshear density property admits a proper
holomorphic embedding.

Keywords Shear · Overshear · Locally nilpotent derivation · Density property ·
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1 Introduction

1.1 History

Starting with the seminal work of Andersén and Lempert (1992) on C
n, n ≥ 2, the

study of complex manifolds with infinite-dimensional holomorphic automorphism
groups has been an extremely active area in several complex variables. At the same
time, the study of such highly symmetric objects in affine algebraic geometry has
been very active as well. In fact, the study of the algebraic automorphism group of C

n

has started much earlier than in several complex variables. The starting point of the
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complex analytic investigations has been motivated by results and questions from the
algebraic case. For example, Rosay and Rudin (1988, Open Question 6, p. 79) asked
in 1988 whether the group of (volume-preserving) holomorphic automorphisms of C

n

was generated by shears in coordinate directions, i.e., maps of the form

(z1, . . . , zn) �→ (z1, . . . , zn−1, zn + f (z1, . . . , zn−1)), (1)

where f ∈ O(Cn−1) is an arbitrary polynomial or holomorphic function of n−1 vari-
ables. They can be viewed as time-1 maps of the vector field θ = f (z1, . . . , zn−1)

∂
∂zn

.
In complex analysis (when f is holomorphic) such an automorphism is called a shear
and such a vector field is called a shear field. If f is a polynomial, the complex analysts
call the automorphism a polynomial shear, whereas in affine algebraic geometry it is
called an elementary automorphism.

Overshears in coordinate directions are maps of the form

(z1, . . . , zn) �→ (z1, . . . , zn−1, f (z1, . . . , zn−1) · zn), (2)

where f ∈ O∗(Cn−1) is a nowhere vanishing holomorphic function. By simple con-
nectedness of C

n−1, the function f is the exponential f = eg of some holomorphic
g ∈ O(Cn−1). Again, such an automorphism is the time-1 map of a complete(ly
integrable) holomorphic vector field θ = g(z1, . . . , zn−1)zn

∂
∂zn

.
The problem in affine algebraic geometry that corresponds to the question ofRosay–

Rudin, is the tame generator conjecture, asking whether polynomial maps of the form
(1) together with affine automorphisms (the group generated by them is called the tame
subgroup) generate the algebraic automorphism group ofC

n . This is classically known
to be true for n = 2, much later it has been shown by Shestakov and Umirbaev (2003)
to bewrong for n = 3, and it is still open for n > 3. The notion of tame subgroupwhich
is very much coordinate dependent must be replaced by the group SAutCn , generated
by the flowmaps (respectively the corresponding one-parameter subgroups) of locally
nilpotent derivations, for short LNDs. The notion of a locally nilpotent derivation is
coordinate-independent andmakes sense on any affine algebraic variety, seeDefinition
2.3. The polynomial shears in Eq. (1) are examples of LNDs in C

n . Understanding
the importance of LNDs in affine algebraic geometry, a group of mathematicians
introduced the notion of flexibility which proved extremely useful. The main result
of their paper (Arzhantsev et al. 2013, Theorem 0.1) states the equivalence of the
following three properties for an affine-algebraic manifold X :

(1) X is flexible, i.e., the LNDs span the tangent space in each point.
(2) The group SAut(X) acts transitively.
(3) The group SAut(X) acts infinitely transitively, i.e., m-transitive for any m ∈ N.

We denote the class of flexible manifolds by FLEX.
Concerning the above-mentioned question of Rosay–Rudin, the answer given by

Andersén and Lempert is simply no, the group generated by shears and overshears in
C
n is meagre in the holomorphic automorphism group Authol Cn (even for n = 2).

However, themain result in their paper, the first version of the now so-calledAndersén–
Lempert Theorem, implies that the group generated by shears and overshears in C

n is
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dense in compact-open topology in the holomorphic automorphism group Authol Cn .
TheAndersén–Lempert Theorem,which in current formhas been proved byForstnerič
and Rosay (1993a), led to a number of remarkable geometric constructions in C

n . We
refer the reader to the textbook of Forstnerič (2017) and to the overview articles
of Kaliman and Kutzschebauch (2011) and Kutzschebauch (2014) for an account
on this subject. As an interesting example, let us just name the existence of proper
holomorphic embeddings of ϕ : C

k ↪→ C
n which are not straightenable, i.e., for

no holomorphic automorphism α of C
n its image α(ϕ(Ck)) is equal to the first k-

coordinate plane C
k ×{0}. This in turn led to the negative solution of the holomorphic

linearization problem. One can construct reductive subgroups of Authol Cn , which are
not conjugated to a subgroup of linear transformations (for details see Derksen 1998).

The idea behind the Andersén–Lempert Theorem was generalized by Varolin to
complex manifolds other thanC

n (Varolin 2001). He introduced the notion of the den-
sity property, see Definition 2.6. This is a precise way of saying that the holomorphic
automorphism group of a Stein manifold is large.

Methods from algebraic geometry turned out to be very fruitful in the search for
manifolds with density property. Already Varolin had introduced the notion of alge-
braic density property for an affine algebraic manifold, which implies the density
property. However, the algebraic density property is merely a tool for proving the
density property, it does, for example, not imply flexibility since it is not using LNDs.
For more details on flexibility see (Kutzschebauch 2014).

Some of the geometric constructions done in C
n with the help of the Andersén–

Lempert Theorem could be generalized to Stein manifolds with the density property.
However, there are constructionswhich still rely on the coordinates inC

n . For example,
the great embedding results of Riemann surfaces intoC

2 originating in the Ph.D. thesis
of Wold which can be stated briefly as follows: If a bordered Riemann surface admits
a non-proper holomorphic embedding into C

2, then it also has a proper holomorphic
embedding into C

2 (Forstnerič and Wold 2009, Corollary 1.2). The geometric idea
behind these results is to push the boundary of the bordered Riemann surface to infinity
using a sequence of holomorphic automorphisms. To construct those automorphisms,
a combination of the Andersén–Lempert Theorem with an explicitly given shear auto-
morphism is used. Themethod of “precomposition with a shear” goes back to Buzzard
and Forstnerič (1997), p. 161, and has been formalized in the notion of nice projection
property in Kutzschebauch et al. (2009), Definition 2.1. All this research described
above is part of a newly emerged area of elliptic holomorphic geometry, which also
comprises Oka theory, the theory around the Oka–Grauert–Gromov homotopy princi-
ple. Stein manifolds with the density property are elliptic in the sense of Gromov, and,
thus they are Okamanifolds.We refer to the textbook of Forstnerič (2017), Proposition
5.6.23 for details, see also Kutzschebauch (2014).

1.2 The new notion

The aim of this paper is to introduce a new notion of largeness of the holomorphic
automorphism group of an affine algebraic manifold. We call it algebraic overshear
density property. It is stronger than the algebraic density property, in fact, it implies
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both the density property and the notion of flexibility introduced by Arzhantsev et al.
(2013), p. 768. We are confident that this is the correct notion to generalize the geo-
metric constructions known for C

n using both the “nice projection property” and
Andersén–Lempert Theory to an affine-algebraic manifold X . Moreover, our notion
fits in the modern point of view of affine algebraic geometry concentrating on LNDs
and the group SAut(X) generated by their flows. In addition to the powerfulAndersén–
Lempert Theorem we have the theory of locally nilpotent derivations to our disposal.
For example, the existence of a quotient π : X → X//Ga which is quasi-affine
according to Winkelmann (2003), and is a geometric quotient when restricted to an
appropriate Zariski open subset (Vinberg and Popov 1989, Theorem 4.4) will be used
in Sect. 5. This can be used to replace the use of shears in the “precomposition with a
shear” trick.

The paper grew out of a discussion at the conference Frontiers in Elliptic Holo-
morphic Geometry held in Jevnaker which brought together researchers from affine
algebraic geometry and elliptic holomorphic geometry. The idea to introduce a new
notion closing the gap between different versions of flexibility in the two areas is due
to Finnur Lárusson to whom we express our sincere gratitude. We also thank him for
the careful reading of a first manuscript and proposing Problem 6.1.

The paper is organized as follows. In Sect. 2, we recall the definitions and define our
new property. In the subsequent section we give some geometric consequences of the
algebraic overshear density property and a criterion for it. In Sect. 4, we go through
the list of affine algebraic manifolds known to have the algebraic density property,
and explain which of them also have the algebraic overshear density property. his
shows that our new property is strictly stronger than the algebraic density property.
Moreover, we show that any algebraic vector bundle over an affine flexible base has the
algebraic overshear density property. In Sect. 5, we prove that any smoothly bordered
Riemann surface Rwith finitelymany boundary components and non-empty boundary
that is embedded in a complex affine surface X with the algebraic overshear density
property, can be properly embedded into X . This generalizes the embedding result of
Forstnerič and Wold (2009) for the case X = C

2. In the last section, we propose some
open problems. These mainly concern the geometric constructions which have been
developed inC

n but not easily generalize to Stein manifolds with the density property.

2 Definitions

Definition 2.1 Let X be a complex manifold and let � be a C-complete holomorphic
vector field on X . Let f ∈ O(X) such that

(1) �( f ) = 0, then f · � is called a shear of � or a �-shear vector field.
(2) �2( f ) = 0, then f · � is called an overshear of � or a �-overshear vector field.

Lemma 2.2 Let X be a complex manifold and let� be aC-complete holomorphic vec-
tor field on X. Then the shears and overshears of � are also C-complete holomorphic
vector fields on X.

Proof See Varolin (1999), Proposition 3.2 for an abstract proof or see Andrist and
Kutzschebauch (2018), Lemma 3.3 for an explicit formula of the flow maps. ��
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Definition 2.3 Let X be a complex affine variety. A locally nilpotent derivation (LND)
on X is a C-linear derivation D : C[X ] → C[X ] such that for each f ∈ C[X ] there
exists a number n ∈ N such that Dn( f ) = 0.

We denote set of the algebraic shear vector fields of X by LND(X). These are
precisely the LNDs on X .

Definition 2.4 Let X be a smooth complex affine variety (we call such a variety below
a complex affine manifold).

(1) The set of holomorphic shear vector fields of X consist of all holomorphic vector
fields that are holomorphic shears of vector fields in LND(X).

(2) The set of algebraic overshear vector fields of X consist of all algebraic vector
fields that are algebraic overshears of vector fields in LND(X).

(3) The set of holomorphic overshear vector fields of X consist of all holomorphic
vector fields that are holomorphic overshears of vector fields in LND(X).

Definition 2.5 Let X be a complex affinemanifold.We say that X enjoys the algebraic
overshear density property if the Lie algebra generated by the algebraic overshear
vector fields coincides with the Lie algebra of all algebraic vector fields. We denote
the class of these manifolds by AOSD.

As a comparison, we give also the original definition of the (algebraic) density
property introduced by Varolin (2001), Sect. 3.

Definition 2.6 (1) Let X be a complex affine manifold. We say that X enjoys the
algebraic density property if the Lie algebra generated by the complete algebraic
vector fields coincides with the Lie algebra of all algebraic vector fields.

(2) Let X be a complex manifold. We say that X enjoys the density property if the Lie
algebra generated by the complete holomorphic vector fields is dense (w.r.t. the
topology of locally uniform convergence) in the Lie algebra of all holomorphic
vector fields.

3 Geometric consequences and a criterion

Proposition 3.1 Let X be a complex affine manifold. If X has the algebraic overshear
density property, then it is flexible.

Proof Let x0 ∈ X be a point. We will now find finitely many LNDs on X that span
the tangent space in x0.

Since X is affine, we can span the tangent space in x0 by finitely many algebraic
vector fields �1, . . . , �n where n = dim X .

The algebraic overshear density property implies that for each j = 1, . . . , n
there exist finitely many LNDs � j,1, . . . , � j,m( j) and regular functions f j,1 ∈
ker�2

j,1, . . . , f j,m( j) ∈ �2
j,m( j) such that each � j is a Lie combination of f j,k · � j,k

where k = 1, . . . ,m( j).
We make the following observation: Let f · � resp. ˜f · ˜� be overshears of LNDs

� resp. ˜�. Then we obtain for their Lie bracket:

[

f · �, ˜f · ˜�
] = f �( ˜f ) · ˜� − ˜f ˜�( f ) · � + f ˜f

[

�, ˜�
]
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Hence, we see that each vector � j |x0 is a complex linear combination of the LNDs
� j,k and their Lie brackets, evaluated in x0. Moreover, a Lie bracket of two LNDs �

and ˜� can be expressed using the flow map ϕt of �:

[

�, ˜�
]

x = lim
t→0

dϕ−t ˜�ϕt (x) − ˜�x

t

Since� is an LND, its flow ϕt is algebraic, and we can approximate
[

�, ˜�
]

arbitrarily
well by the sum of two LNDs. Applying these arguments inductively, we see that each
vector � j |x0 can be approximated arbitrarily well by a complex linear combination
of LNDs. Since spanning the tangent space is an open condition, we conclude that
finitely many LNDs span the tangent spaces in an open neighborhood of x0.

The set where these LNDs do not span the tangent spaces, must be an algebraic
subvariety. Hence, we obtain the desired conclusion by a standard argument. ��

We will need the following notion of a compatible pair which was introduced by
Kaliman and Kutzschebauch (2008a), Definition 2.5:

Definition 3.2 Let X be an affine algebraic manifold X . A compatible pair of LNDs
are �, 	 ∈ LND(X) such that

(1) ∃ h ∈ (ker�2\ ker�) ∩ ker	
(2) spanC{ker� · ker	} contains a non-trivial Oalg(X)-ideal

Proposition 3.3 Let X be an affine algebraic manifold that is flexible and a admits a
compatible pair of LNDs. Then X has the algebraic overshear density property.

Proof The proof follows the lines of proof of Theorems 1 and 2 from Kaliman and
Kutzschebauch (2008a). The compatible pair creates a submodule of the algebraic
vector fields which is contained in the Lie algebra generated by algebraic overshear
vector fields. Then transitivity of SAut(X) follows from flexibility, and the transitivity
on a tangent space is also an easy consequence of flexibility. In fact, in Arzhantsev
et al. (2013), Theorem 4.14 and Remark 4.16 even more is proven, namely that any
element in SL(TpX) is contained in the isotropy group of SAut(X) at a point p ∈ X .
Since the pull-back of an LND by an algebraic automorphism is again an LND, the
above reasoning shows that the Lie algebra generated by algebraic overshear vector
fields is equal to the Lie algebra of all algebraic vector fields on X . ��
Theorem 3.4 Let X be a complex affine manifold with the algebraic overshear density
property. Then the group generated by flows of algebraic overshear vector fields is
dense in the identity component Aut1(X) in compact-open topology.

Proof This is a direct application of the Andersén–Lempert Theorem, which can be
found implicitly in Andersén and Lempert (1992), Forstnerič and Rosay (1993a, b),
and Varolin (2001). For C

n, n ≥ 2, the best explicit reference is Forstnerič (2017),
Theorem 4.9.2 with 
 = C

n . For the general case, the analogous theorem can be
found explicitly in Kaliman andKutzschebauch (2011), Theorem 2where one chooses

 = X and any �1 ∈ Aut1(X). Only the flows of those complete vector fields are
used for the approximation that were needed to establish the density property. This is
implicit in the proof of Kaliman and Kutzschebauch (2011), Theorem 2. ��
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Theorem 3.5 Let X be a complex affine surface with the algebraic overshear density
property and let Y be a complex manifold. If the holomorphic endomorphisms of X
and the holomorphic endormophisms of Y are isomorphic as semi-groups, then X and
Y are biholomorphic or anti-biholomorphic.

Proof Ageneral orbit of theC
+-action generated by anLNDgives an algebraic embed-

ding of C ↪→ X which is automatically proper. The theorem then follows from a
theorem of Andrist (2011), Theorem 3.3. ��
Remark 3.6 For a manifold X with the density property there exists a proper holo-
morphic immersion C → X . If in addition dim X ≥ 3, then there exists a proper
holomorphic embedding C → X (see Andrist and Wold 2014, Theorem 5.2) and the
above theorem follows. If dim X = 2, we do not know in general, whether a proper
holomorphic embedding C → X exists.

4 (Algebraic) density versus Algebraic overshear density: all known
examples

We will go through the list of known examples of affine-algebraic manifolds with
the density property, and indicate for each one of them whether or not they have the
algebraic density property resp. the algebraic overshear density property. As a general
feature one can see that the gap between algebraic density property and algebraic
overshear density property as rather narrow, but existent.

(1) A homogeneous space X = G/H where G is a linear algebraic group and H is a
closed algebraic subgroup such that X is affine and whose connected components
are different from C and from (C∗)n, n ≥ 1, has algebraic density property.
It is known that if H is reductive, then the space X = G/H is always affine.

However, there is no known group-theoretic criterion that would characterize
when G/H is affine. The above result has a long history, it includes all examples
known from the work of Varolin (2001), Toth and Varolin (2000), Kaliman and
Kutzschebauch (2008a), and Donzelli et al. (2010). The final result has been
obtained by Kaliman and Kutzschebauch (2017). The one-dimensional manifolds
C and C

∗ do not have the density property, however the following problem is well
known and seems notoriously difficult:
Open Problem: Does (C∗)n, n ≥ 2, have the density property?

It is conjectured that the answer is no, more precisely one expects that all holo-
morphic automorphisms of (C∗)n, n ≥ 2 preserve the form ∧n

i=1
dzi
zi

up to sign.

We are able to characterize those homogeneous spaces X from above which have
the algebraic overshear density property.

Theorem 4.1 Let X = G/H be an affine homogeneous space of a connected linear
algebraic group G < GLn(C) by a closed algebraic subgroup H. Then X has the
algebraic overshear density property if and only if all algebraic morphisms X → C

∗
are trivial.
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Proof Since the algebraic maps from C to C
� are constant, the flow curves of an LND

have to be tangent to the fibers of any algebraic morphism X → C
∗. This proves

the necessity part. To see the sufficiency of the condition, we follow the proof of the
algebraic density property for X ofKaliman andKutzschebauch (2017), Theorem11.7.
That proof needs only LNDs and their algebraic overshears if (and only if) the torus
T1 introduced in Kaliman and Kutzschebauch (2017), Notation 4.10, p. 1319 is trivial,
which in turn follows from the triviality of all algebraic morphisms X → C

∗, and
by Kaliman and Kutzschebauch (2017), Proposition 5.2. X is isomorphic to Z × T1
where Z is an affine flexible variety by Kaliman and Kutzschebauch (2017), Lemma
4.11. Thus, by Proposition 3.3 it suffices to establish existence of a compatible pair
of LNDs on Z . There are two cases, and in the first one such existence follows from
Kaliman and Kutzschebauch (2017), Proposition 7.1. In the second one, there is a
construction of compatible pairs in the proof of Kaliman and Kutzschebauch (2017),
Corollary 8.2 where the assumptions of the latter corollary are checked for Z in the
proof of Kaliman and Kutzschebauch (2017), Theorem 10.6. ��
Example 4.2 (for Theorem 4.1)

• The motivating example is of course C
n , n ≥ 2, where it is sufficient to take

algebraic overshears of ∂
∂z1

, . . . , ∂
∂zn

to establish the algebraic overshear density
property as it was shown by Andersén and Lempert (1992).

• GLn(C), n ≥ 2, has the algebraic density property, but not the algebraic overshear
density property, since det : GLn(C) → C

∗ is non-trivial.
• SLn(C), n ≥ 2, has the algebraic overshear density property.

We continue our list of all known examples for the algebraic overshear density
property.

(2) The manifolds X given as a submanifold in C
n+2 with coordinates u ∈ C, v ∈ C,

z ∈ C
n by the equation uv = p(z), where the zero fiber of the polynomial

p ∈ C[Cn] is smooth (otherwise X is not smooth) have the algebraic density
property and, thus, the density property (Kaliman and Kutzschebauch 2008b). We
claim that all these examples have the algebraic overshear density property:

(a) For n = 1 this is the main result of Kutzschebauch and Lind (2011), Sect.
3. Note that for n = 1 this is also an example of a complex manifold with
density property that does not admit compatible pairs (see Definition 3.2)
which follows from Proposition 2.9 in Kaliman and Kutzschebauch (2016).

(b) For n ≥ 2 it is an easy exercise to show that the groupSAut(X) acts transitively
on X and that the pairs of LNDs (θi , θ j ), i �= j form compatible pairs where
θi := ∂ p

∂zi
∂
∂u − u ∂

∂zi
. The result now follows from Proposition 3.3.

(3) Before formulating the next result, recall thatGizatullin surfaces are by definition
the normal affine surfaces on which the algebraic automorphism group acts with
an open orbit whose complement is a finite set of points. By the classical result
of Gizatullin, they can be characterized by admitting a completion with a simple
normal crossing chain of rational curves at infinity. EveryGizatullin surface admits
aC-fibration with at most one singular fibre which is however not always reduced.
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SmoothGizatullin surfaceswhich admit such aC-fibration that the singular fibre
is reduced (sometimes called generalized Danielewski surfaces) have the density
property (Andrist 2018). We do not know except for the case of Danielewski
surfaces whether they have the algebraic overshear density property, since in the
proof of the density property one uses LNDs pulled back by certain holomorphic
(non-algebraic) automorphisms arising as flow maps of algebraic vector fields.
These pullbacks are not necessarily algebraic vector fields.

(4) Certain algebraic hypersurfaces in C
n+3:

{(x, y, z0, z1, . . . , zn) ∈ C × C × C
n+1 : x2y = a(z) + x · b(z)}

where degz0 a ≤ 2, degz0 b ≤ 1 and not both degrees are zero. This class includes
the Koras–Russell cubic threefold and has the density property according to
Leuenberger (2016).
TheKoras–Russell cubic {x+x2y+u2+v3 = 0} ⊂ C

4
x,y,u,v which is famous for

being diffeomorphic to R
6, but being not algebraically isomorphic to C

3 cannot
be flexible and, hence, does not have the algebraic overshear density property,
since all LNDs necessarily fix the x-coordinate axis, see Makar-Limanov (1996).
We do not know whether those examples of Leuenberger have algebraic density
property by the same reason as in the class of examples (3) above.

(5) The Calogero–Moser spaces Cn have the algebraic overshear density property. An
inspection of the proof in Andrist (2021) shows that only overshears are needed:
The density property follows from the existence of a non-degenerate algebraic
SL2(C) action and from flexibility. Hence, all the involved vector fields are over-
shears of LNDs.

Recently, Ugolini and Winkelmann proved that if X is a complex affine manifold
that is flexible, and if E → X is an algebraic vector bundle over X , then E is flexible
as well (Ugolini and Winkelmann 2022, Theorem 1.6). Moreover, they proved that if
X is a complex affine manifold with the density property, and if E is algebraic and
flexible, then E has the density property (Ugolini and Winkelmann 2022, Corollary
1.5). Thus, if X has the algebraic overshear density property, then it follows from their
results that the total space E of an algebraic vector bundle E → X has the density
property. However, their proof requires as an essential ingredient the Euler vector field
which is a C

∗-action and not an LND. This leads naturally to the question whether the
total space E admits the overshear density property. Indeed, this is true by our next
result.

Theorem 4.3 Let X be a flexible complex affine manifold. Let E → X be an algebraic
vector bundle over X. Then E has the algebraic overshear density property.

Before we start with the proof let us remind some general construction for an LND
� acting on an affine-algebraic variety X .

Remark 4.4 We quote the following from Arzhantsev et al. (2013), Remarks 2.7:
According to Vinberg and Popov (1989), Theorem 3.3 the field of rational invari-
ants is the quotient field of the ring C[X ]� of regular invariants for an affine-algebraic
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variety X for an LND �. Hence by a corollary of the Rosenlicht theorem on rational
invariants (see Vinberg and Popov 1989, Proposition 3.4) the regular invariantsC[X ]�
separate orbits on an �-invariant open dense subset U (�) of X . Shrinking U (�) if
necessary we can achieve thatU (�) has a geometric quotientU (�)/�, which admits
a locally closed embedding into some C

N by regular invariants in C[X ]� (see also
Vinberg and Popov 1989, Theorem 4.4).

Proof of Theorem 4.3 Wechoose a non-trivial LND� on X which exists due to flexibil-
ity. We now apply the Remark 4.4 above to the (C,+)-action induced by� and obtain
an�-invariant opendense subsetU (�)of X .Also by the sameRosenlicht theorem (see
e.g. Springer 1998, Proposition 14.2.2) we have an isomorphism� : Cz ×Y → U (�)

where Y is an affine-algebraic variety Y , and �∗(�) = ∂
∂z .

Moreover, the algebraic vector bundle π : E → X is trivial over a non-empty
Zariski-open subset V ⊂ X . In particular, the bundle is trivial over U (�) ∩ V . On
C × Y , we can extend the trivialization from �−1(U (�) ∩ V ) to C × Y ′ for some
non-empty Zariski-open subset Y ′ ⊂ Y using the action of �∗(�) and the fact that an
algebraic vector bundle is invariant under the flow of an LND of the base space (see
e.g. Ugolini and Winkelmann 2022, Theorem 11.1).

We set W := �(C × Y ′). Since W ⊂ X is a �-invariant Zariski-open subset of
the affine variety U (�), there exists a non-zero regular function f : X → C with
W ⊂ { f �= 0} that is �-invariant: In fact, we can find a non-zero function which is a
polynomial in the finitely many regular invariants ofC[X ]� that embed Y ∼= U (�)/�

as a locally closed subset into C
N .

Let r ≥ 1 be the rank of E . A dense affine subset of E is now given by W × C
r ∼=

(Cz × Y ′) × C
r
w. The subscripts indicate the variable names, i.e. z ∈ Cz ∼= C and

w = (w1, . . . , wr ) ∈ C
r
w

∼= C
r . By �̂wealsodenote the extensionof the isomorphism

� to the trivial bundle, �̂ : (Cz × Y ′) × C
r
w → W × C

r . Let 	 := �̂∗ ∂
∂w1

. Then
˜� := ( f ◦ π) · �̂∗�∗� and ˜	 := ( f ◦ π) · 	 are well defined algebraic vector fields
on E and are in fact LNDs. On (Cz × Y ′) × C

r
w, the vector fields

∂
∂z and ∂

∂w1
form

a compatible pair, since the span of the product of their kernels contains in fact all
regular functions. Hence, ˜� and ˜	 form a compatible pair on E , since the span of the
product of their kernels contains the ideal generated by f ◦ π .

Moreover, we have flexibility of the total space E by Ugolini and Winkelmann
(2022), Theorem 11.4, and hence the result follows from Proposition 3.3. ��

5 Embedding bordered Riemann surfaces

We generalize the following result from C
2 to complex-affine surfaces with the alge-

braic overshear density property.

Theorem 5.1 Let X be a complex affine surface with the algebraic overshear density
property and let R ⊂ X be an embedded, smoothly bordered Riemann surface with
finitely many boundary components and non-empty boundary. Then there exists a
proper holomorphic embedding of the Riemann surface R into X.
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Remark 5.2 The exact assumption in the Theorem is that R◦ is the interior of a closed
domain with boundary of class Cr , r ≥ 2, in a compact (not necessarily connected)
Riemann surface R̂. We may assume that the boundary consists of real analytic Jor-
dan curves, and R has no connected component without boundary, see Stout (1965),
Theorem 8.1. Note that any conformal diffeomorphism of R onto such a domain is
in C1(R̂); see Alarcón et al. (2021), Theorem 1.10.10. By embeddded, we mean that
there exists an injective and immersive C1-map f : R → X that is holomorphic in the
interior R◦ of R. By an application of the Mergelyan theorem as in the proof of Corol-
lary 1.2 in Forstnerič and Wold (2009) we may assume that f is, in fact, holomorphic
in an open neighborhoodU of R in R̂. The corresponding form of the manifold-valued
Mergelyan Theorem can be found in Fornæss et al. (2020), Corollary 8 on p. 178.

Remark 5.3 A complex-affine surface X with the algebraic overshear density prop-
erty has trivial Makar-Limanov invariant, since it is flexible (Arzhantsev et al. 2013,
Proposition 5.1). For a normal complex-affine surface non-isomorphic to C × C

∗ and
C

∗×C
∗, this is one of the equivalent conditions implying that X is a Gizatullin surface

(see Bandman and Makar-Limanov 2001 in the smooth case, and Dubouloz 2004 in
the normal case). Together, this implies that our X above is a homogeneous Gizatullin
surface. We will however not make use of this fact in the following proof. We do
not know whether the result of Theorem 5.1 extends to all homogeneous Gizatullin
surfaces. Our proof uses the density property which is not established for all homoge-
neousGizatullin surfaces. The first author proved that Gizatullin surfaces with reduced
degenerate fibre have the density property (Andrist 2018) which does not cover all
homogeneous Gizatullin surfaces.

Among the ingredients, we will need Zariski’s finiteness theorem:

Theorem 5.4 (Zariski 1954, cited after Freudenburg 2017, Sect. 6.3). For a field k, let
A be an affine normal k-domain, and let K be a subfield of frac(A) containing k. If
tr.deg.k K ≤ 2, then K ∩ A is finitely generated over k.

Corollary 5.5 Let X be a complex-affine surface, and let � ∈ LND X. Then the GIT
quotient X//C

+
� is affine.

Any non-trivial LND � admits a local slice, i.e., in our context a polynomial
function f : X → C, such that �( f ) �= 0 but �2( f ) = 0. If the GIT quotient
X//C

+
� is affine, then there exists a Zariski-open subset U in the quotient s.t. the

corresponding fibration over U is trivial and each such fibre is isomorphic to C, see
Freudenburg (2017), Principle 11, p. 27 and the comment (Freudenburg 2017, p. 34).

The proof of the main theorem of this section uses the idea of a “pre-composition
with a shear” from the original proof of Forstnerič and Wold in the case of X = C

2

(Forstnerič and Wold 2009). It has been generalized to X = C × C
∗ by Lárusson

(2014) and to X = (C∗)2 by Ritter (2018). We give a short outline of their proof and
indicate the necessary adjustments to our situation.

Proof According to Proposition 3.1, we can choose two LNDs �1 and �2 on X that
are not proportional. Denote by πk : X → X//C

+
�k

the projection to the GIT quotient
of �k for k = 1, 2. Note the following facts:
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(1) X//C
+ is a smooth affine curve, since X is a smooth surface, and, thus, the

quotient is normal which excludes singularities. In addition, the existence of a
second non-proportional locally nilpotent derivation gives a non-constant map
of C (any generic orbit of this second LND) into X//C

+ and, thus, X//C
+ is

isomorphic to C.
(2) The general fibres ofπk are isomorphic toCwith only finitely many special fibres.

In the first step of the proof, we expose points w.r.t. π2. We indicate the necessary
adjustments to the method introduced by Forstnerič and Wold (2009), Sect. 4.

Definition 5.6 A point p ∈ ∂R is called exposed w.r.t. πk (k = 1, 2) if

π−1
k (πk(p)) ∩ R = {p}

Moreover, Fp := π−1
k (πk(p)) and the boundary ∂R intersect transversely, in fact

TpFp ∩ Tp∂R = {0}.
Following the procedure in Forstnerič and Wold (2009), Sect. 4 we change the

embedding of R into X so that in each of the finitely many boundary curves (∂R)i
there exists an exposed point pi and such that each of the exposed points lies in a
general fibre of π2. The proof goes exactly as the proof of Theorem 4.2 in Forstnerič
and Wold (2009). The conclusion that pi is in a general fibre can be easily achieved
by adding this assumption to choice of the points pi (same notation in the proof of
Theorem 4.2) before choosing the arcs λi in that proof (see also Fig. 2 in Forstnerič and
Wold 2009). The Mergelyan Theorem for maps to C

2 (functions) should be replaced
by the (Oka) manifold-valued Mergelyan Theorem proved by Forstnerič and Wold
(2019) which can be found in Fornæss et al. (2020), Corollary 8. By the definition of
an exposed point we then have π2(pi ) �= π2(p j ) for pi �= p j .

In the second step, we follow the procedure in Forstnerič and Wold (2009), Sect.
5 which in turn relies on Wold (2006), Sect. 4, in particular Lemma 1 therein. We
consider π1 restricted to π−1

2 {q} for a point q ∈ X//C
+
�2

∼= C where in fact we will
choose q = π2(pi ). Since this fibre is isomorphic to C as well, we can find algebraic
coordinates andwriteπ1|π−1

2 {q} as a polynomialmapC → C. Choosing a sufficiently
small Euclidean neighborhood D ⊂ C around q such that all fibers above points in D
are general, we can write

π1(z, w) = an(w) · zn + an−1(w) · zn−1 + · · · + a1(w) · z + a0(w)

where w ∈ D and z ∈ C is in the fibre above w w.r.t. π2(z, w) = w. The coefficients
ai ∈ O(D) are holomorphic functions. Note that this map can’t be of degree 0 in z
since the LNDs �1, �2 are not proportional.

Let ϕ2(x, t) with time t ∈ C and x ∈ X be the (complete) flow of �2.
Consider the map

x �→ �(x) := ϕ2

(

x,
∑

i

αi

π2(x) − π2(pi )

)
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with αi ∈ C\{0}. When restricted to R, this sends precisely the exposed points to
infinity. The choices of the finitely many constants αi have to be made such that the
π1-projections of the paths given by “the opened boundary components” ui : R →
�((∂R)i ) are pairwise disjoint outside a compact. Note that these projections lie in
the quotient isomorphic to C. Hence, we can proceed with the choice of constants αi

as in the original proof for C
2 where the projection was onto a coordinate axis; we

just need to notice the following:
Without loss of generality, we may assume q = 0 in suitable coordinates for D. We

locally (around the exposed point) parametrize the curve (∂R)i through the exposed
point by γi = (γ 1

i , γ 2
i ) and assume γ 1

i (0) = q = 0. Let γ 1
i (t) = a1i t + a2i t

2 + . . . be
the Taylor expansion in t centered at 0. For small enough D we can assume that

∑

i

αi

π2(x) − π2(pi )
= αi

w
+ O(1)

We then obtain for t → 0 that

π1(�(γi (t))) = an(γ
2
i (t)) · (γ 1

i (t))n + · · · =
(

αi

a1i

)n
1

tn
+ . . .

Our calculations show that the assumptions of Wold (2006), Lemma 1 are satisfied; In
particular, for t close to zero, we obtain that each projection π1(�(γi (t))) is C1-close
to the union of two different straight rays L1, L2 going to infinity in opposite directions
(one ray for t → 0+ and another ray for t → 0−). As said above by choosing the
coefficients αi accordingly, we achieve that all those rays for all the exposed points
are different. Thus, outside a big disc �R ⊂ X//C

+
�1

∼= C, the images π1(�(γi (t)))
of the opened boundary curves together with �R form a “Mergelyan set”, i.e., the
complement has no bounded components. We are not using Wold (2006), Lemma 1
as it stands, only the strategy of its proof. The necessary adjustments for our case are
indicated in the proof of Lemma 5.7 below.

In the third step, we consider now the “opened” boundary curves ui : R → X . Our
aim is to push them to infinity by applying inductively a sequence of automorphisms
of X while keeping the interior of R in the domain of convergence of this sequence.

Since X is a Stein manifold, we can exhaust it byO(X)-convex compacts {Xm}m∈N
such that Xm ⊂ X◦

m+1 and ∪m∈NXm = X . Similarly, we exhaust R by compacts Rm .
We will apply the following lemma inductively:

Lemma 5.7 There exists a holomorphic automorphism α : X → X such that for any
given O(X)-convex compacts K ⊂ L ⊂ X and any ε > 0, we obtain that

(1) ‖α − id ‖K < ε (w.r.t. any fixed embedding of X into some C
N )

(2) α ◦ ui (R) ∩ L = ∅ for every opened boundary curve ui : R → X.

Proof We obtain α in the form α = f ◦ s where s is a shear map. This is the so called
“precomposition with a shear” trick invented by Buzzard and Forstnerič (1997). First,
the automorphism f is constructed usingAndersén–Lempert theory as inWold (2006),
Lemma 1 to expell a big but still compact part of the opened boundary curve from the
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compact L in X . Note that the proof does not make use of the linear structure of C
2.

Also, their application of Stolzenberg’s result (Stolzenberg 1966) on the holomorphic
convexity of the union of a holomorphically convex compact and finitelymany smooth
real arcs attached to it, is justified in our situation, since it holds in any Stein manifold
instead of C

2, see for example the points (1) and (2) in the proof of Forstnerič and
Wold (2009), Theorem 5.1.

In the second step, the precomposing shear map s is constructed as the time-1
map of a holomorphic shear h�1: Here, the holomorphic function h which is in the
kernel of the LND �1, is obtained by using Mergelyan’s theorem. It is used to ensure
that no parts from “far away” in the opened boundary curves can come back to the
compact set L ⊂ X (recall thatAndersén–Lempert theory gives only approximation on
compacts). Indeed, we verified in the second step above that the assumptions of Wold
(2006), Lemma 1 are satisfied, which allows the use of Mergelyan’s theorem. Note
that the corresponding GIT quotient is isomorphic to C and the set C\(�R ∪ π1(ui ))
has no bounded components. Moreover, we choose R big enough so that the finitely
many image points of the exceptional fibers E1, . . . , Er of π1 are contained in �R .
Hence, we can apply Mergelyan’s theorem in one dimension. ��

The final embedding of R is now obtained by applying Lemma 5.7 for each K =
Xm ∪ (αm−1 ◦ · · · ◦ α1)(R j(m)), j(m) ≥ m and L = Xm′ , inductively in m ∈ N as
in Forstnerič and Wold (2009), Theorem 5.1, p. 111. Here, j(m) ∈ N is chosen big
enough such that K is polynomially convex, see point (2) in the proof of Forstnerič and
Wold (2009), Theorem 5.1, p. 111, and where m′ ≥ m is chosen such that Xm′ ⊃ K
in each step.

For each m ∈ N we obtain an automorphism αm : X → X such that ‖αm −
id ‖Xm∪(αm−1◦···◦α1)(Rm( j)) < 2−m as well as αm ◦ (αm−1 ◦ · · · ◦ α1 ◦ ui (R)) ∩ Xm′ = ∅
for every opened boundary curve ui .

Then the limit g := limm→∞ αm ◦αm−1◦· · ·◦α1 converges uniformly on compacts
of a Fatou–Bieberbach domain
 := ⋃

m∈N(αm ◦αm−1◦· · ·◦α1)
−1(Xm) and defines a

biholomorphic map g : 
 → X (see Prop. 4.1.1. from Forstnerič (2017). This domain
does not contain the opened boundary curves since they are pushed out of the compact
Xm′ in stepm (thus going to infinity). However, R is inside the domain of convergence,
since the maps αm are closer and closer to identity on the exhausting compact subsets
R j(m) ⊃ Rm . Thus, the restriction g|R : R → X is a proper holomorphic embedding
of the open Riemann surface R into X . ��

6 Open problems

Recall that we denote the class of flexible manifolds by FLEX and the class of man-
ifolds with the algebraic overshear density property by AOSD. For the following
problem, let us moreover denote the class of manifolds with the algebraic density
property by AD. We know that AD\FLEX �= ∅, for e.g. C × C

∗ is in this set, see
Arzhantsev et al. (2013) for a larger list of examples. By Proposition 3.1 we know that
AD∩FLEX ⊆ AOSD. However, we do not know whether this inclusion is strict. This
motivates the following problem.
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Problem 6.1 (1) Is FLEX\AD �= ∅ among affine-algebraic manifolds?
(2) Is (AD ∩ FLEX)\AOSD �= ∅?
Definition 6.2 Let X be a complex manifold and τ ∈ Aut X . We call τ a generalized
translation if for any O(X)-convex compact K � X there exists an m ∈ N such that
for the iterate τm it holds that

(1) τm(K ) ∩ K = ∅ and
(2) τm(K ) ∪ K is O(X)-convex.

Problem 6.3 Let X be a complex-affine manifold with the algebraic overshear density
property. Does there exist a generalized translation (Andrist and Wold 2015, Defini-
tion 1.4) on X? This would imply that there exist two automorphisms that generate a
dense subset of the identity component of the automorphism group Aut1(X).

Problem 6.4 Let X be a complex-affine manifold with the algebraic overshear density
property and with dim X ≥ 3. Does there exist a compatible pair of LNDs on X?

The result of Andersén and Lempert, answering the question of Rosay and Rudin
mentioned in the introduction, says that the group generated by overshears is meagre
in Authol(Cn). However, they use only shears and overshears from formulas (1) and
(2) which we would like to call coordinate shears and coordinate overshears. Our
definition is more general. If one uses all LNDs instead of only coordinate shears,
the question becomes more tricky. It is for example not clear, whether the group
generated by flows of all overshears for all LNDs can be generated by the overshears
for a countable number of LNDs. For C

2, the group of algebraic automorphisms can
be generated by all shears along the coordinate directions. Hence, it is clear that the
problem has a positive answer for C

2. In C
3, the algebraic coordinate shears are not

sufficient to generate the group of algebraic automorphisms by the result of Shestakov
and Umirbaev. However, it is conjectured that a single algebraic automorphism of C

n

together with the affine group generates the algebraic automorphism group of C
n (for

n ≥ 4 see for example Kanel-Belov 2018 Problem (3) in the last section).
If this is true, it would most likely give a solution to our next problem in case

X = C
n . In this context we ask the following question.

Problem 6.5 Let X be a complex-affine manifold with the algebraic overshear den-
sity property. Is the group generated by flows of holomorphic overshear vector fields
meagre in Aut1 X?

For a partial derivative � = ∂
∂z j

in C
n , it is immediate that ker� is a ring of

functions in n−1 variables. An important ingredient in the above-mentioned proof of
Andersén and Lempert is to have a good growth estimate (in terms of d) for the vector
space dimension of ker� ∩ { f ∈ C[z1, . . . , zn] : deg f ≤ d} where deg is the total
degree of f . This naturally leads to the following more general question for LNDs.

Problem 6.6 Let X be a smooth affine variety over an algebraically closed field k
of characteristic zero admitting a Gm-action. Let k[X ] = ⊕∞

j=0 Bj be the grading

123



Beitr Algebra Geom

induced by this Gm-action, and denote by deg the corresponding degree function. Let
� be a locally nilpotent derivation on k[X ]. Does the following hold?

lim
d→∞

dim{ f ∈ ker� : deg f ≤ d}
dim{ f ∈ k[X ] : deg f ≤ d} = 0

Kaliman (2015) shows that an algebraic isomorphism of two affine subva-
rietes X ,Y ⊂ C

n extends to a holomorphic automorphism of C
n if n >

max(2 dim X , dim T X). The key ingredient in his proof is to use overshears of a suit-
able LND. More recently, an improved theorem was also given by Kaliman (2020).

Problem 6.7 Let Z be an affine-algebraic manifold with the algebraic overshear den-
sity property. Let X and Y be algebraically isomorphic irreducible subvarieties of Z.
Does every algebraic isomorphism X → Y extend to a holomorphic automorphism
Z → Z?

Problem 6.8 Can all results about embeddings of open Riemann surfaces intoC
2 from

the recent article of Alarcón and Forstnerič (2023) be generalized to embeddings into
complex-affine surfaces with the algebraic overshear density property?
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