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We show that the cycle relation between Dehn twists about curves in a circuit detects 
whether the circuit bounds an embedded disc. This is done by determining the 
isomorphism type of the group generated by said Dehn twists for various surfaces.
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1. Introduction

A very well-known fact in the theory of mapping class groups is that relations between Dehn twists 
about pairs of curves detect whether the curves intersect zero, one, or at least two times [1, Section 3.5]. 
More precisely, let α1 and α2 be curves in a surface S, and let Ti be the Dehn twist about αi. Then α1

and α2 are disjoint (up to homotopy) if and only if the associated Dehn twists satisfy the commutation 
relation T1T2 = T2T1. Similarly, α1 and α2 intersect precisely once (again, up to homotopy) if and only 
if the associated Dehn twists satisfy the braid relation T1T2T1 = T2T1T2. In all other cases, T1 and T2

generate a free subgroup of the mapping class group of S. This article will be on another instance of the 
observation that the presence or absence of certain relations between Dehn twists has consequences about 
the constellation of the involved curves.

Recent work on so-called bouquets of curves (families α1, . . . , αn of curves intersecting, up to isotopy, in 
one common point) shows that pairwise braid relations and the so-called cycle relation TiTjTkTi = TjTkTiTj

or TiTkTjTi = TkTjTiTk between all triples αi, αj , αk of distinct curves is equivalent to the family α1, . . . , αn
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of pairwise non-isotopic curves forming a bouquet [2, Theorem 1]. Here, we seek to characterize circuits of 
curves in a very similar way, featuring longer cycle relations.

A family α1, . . . , αn of n curves in a surface S is said to form a circuit if each curve αi intersects αi−1
and αi+1 precisely once, and is disjoint from all other curves αj , where indices are taken modulo n. A 
circuit α1, . . . , αn is said to bound a disc if the complement S \ (α1 ∪ · · · ∪ αn) has a connected component 
homeomorphic to a disc. We say that a circuit α1, . . . , αn bounds an embedded closed disc in S if there is 
an embedding of a closed disc such that its boundary gets mapped to points in the union α1 ∪ · · · ∪ αn.

We write M(S) for the mapping class group (consisting of isotopy classes of orientation-preserving 
homeomorphisms fixing the boundary) of an orientable surface S. Circuits of curves have previously been 
studied by Labruère, who showed that if α1, . . . αn is a circuit bounding an embedded closed disc Δ such 
that when travelling in the counter-clockwise manner around Δ the curves appear in the order α1, . . . , αn, 
then the cycle relation Tn · · ·T1Tn · · ·T3 = Tn−1 · · ·T1Tn · · ·T2 holds [3, Proposition 2]. In fact, her result is 
considerably stronger, see Proposition 4.6 below. It is worth emphasizing the fact that Δ being embedded 
is important: if the boundary of Δ has self-intersections, then the cycle relation may not hold.

Another result that will feature in this article is by Mortada, asserting that if S is a certain neighbourhood 
(denoted below by Mn, see Fig. 5) of a circuit α1, . . . , αn, then the homomorphism A( ˜An−1) → M(S), 
mapping the standard generator si to Ti for all i, is injective [4, Theorem 5.5.4]. Here, A( ˜An−1) is an Artin 
group, see Section 2. We will reprove this result and generalize it (see Theorem 1.2 and Proposition 4.2
below) in order to prove our main result.

Theorem 1.1. Let α1, . . . , αn be a circuit of n ≥ 3 curves in a surface S. Then the circuit α1, . . . , αn bounds 
an embedded closed disc Δ if and only if one of the two cycle relations

Tn · · ·T1Tn · · ·T3 = Tn−1 · · ·T1Tn · · ·T2

or

T1 · · ·TnT1 · · ·Tn−2 = T2 · · ·TnT1 · · ·Tn−1

holds. The first relation corresponds to the curves appearing in the cyclic order α1, . . . , αn when travelling 
in the counter-clockwise manner around Δ, and the second corresponds to the other cyclic order.

The left-to-right direction is being taken care of by Labruère’s result, whereas Mortada’s shows part of the 
right-to-left direction. In fact, the main topological insight allowing us to prove Theorem 1.1 is the following 
positive answer to Conjecture 5.5.5 in his thesis, which asserts that the homomorphism A( ˜An−1) → M(S)
mapping si to Ti is injective whenever S is a regular neighbourhood of α1 ∪ · · · ∪αn. We prove the result by 
constructing suitable branched coverings of annuli by regular neighbourhoods of circuits in order to apply 
the Birman-Hilden theorem.

Theorem 1.2. Let S be a regular neighbourhood of a circuit α1, . . . , αn of n ≥ 3 curves. Then the subgroup 
of M(S) generated by the Dehn twists Ti about αi is geometrically isomorphic to A( ˜An−1).

A geometric embedding of an Artin group into the mapping class group of a surface is an injective ho-
momorphism mapping the standard generators to Dehn twists, and a geometric isomorphism is a bijective 
geometric embedding or its inverse. It is an open question what Artin groups geometrically embed into 
the mapping class group of a surface, although partial answers are plentiful. For instance, the group gen-
erated by Dehn twists about two curves intersecting two or more times is isomorphic to a free group on 
two generators. Hence, the free group of two generators (which is the Artin group A( ˜A1) by convention) 
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Fig. 1. A neighbourhood of the curves α1, . . . , α4 and the resulting curves x = α and y = T3T2(α1) that must cobound one of the 
dotted bigons.

geometrically embeds [1, Theorem 3.14]. More generally, free groups geometrically embed [5, Theorem 1.1]. 
Perron-Vannier [6, Théorème 1] showed that both A(An) and A(Dn) geometrically embed.

On the other hand, because two Dehn twists can only generate Z, Z2, a quotient of A(A2), or a free 
group [1, Section 3.5.2], the Artin group A(Γ) does not geometrically embed if Γ contains a weight different 
from 2, 3, ∞. Labruère showed that A( ˜Dn−1) does not geometrically embed [3, Theorem], where ˜Dn−1 is 
the graph

· · ·

with n vertices for n ≥ 5, and shortly after, Wajnryb showed that neither do the exceptional groups A(E6), 
A(E7), A(E8) [7, Theorem 3].

In the same article, Wajnryb appears to claim that Labruère also showed that A( ˜An−1) does not geo-
metrically embed [7, Theorem 2]. But this is not true (it contradicts Theorem 1.2). Possibly, the confusion 
comes from Labruère considering not a regular neighbourhood S of a family of curves intersecting in a 
circuit pattern, but rather a surface S ∪ Δ containing an additional embedded closed disc (in our notation 
of Section 4.1 below, Labruère considers the surface Nn ∪Δ1). By Theorem 1.1, considering S ∪Δ instead 
of S causes the introduction of a cycle relation.

Presumably, Theorem 1.1 could be proven without any Artin group theory by considering the action of 
Dehn twists on curves in the surfaces, as the standard cycle relation Tn · · ·T1Tn · · ·T3 = Tn−1 · · ·T1Tn · · ·T2
is equivalent to the commutation relation

Tn · · ·T2T
−1
3 · · ·T−1

n · T1 = T1 · Tn · · ·T2T
−1
3 · · ·T−1

n

(see [8, Section 1] for a justification of this). It thus suffices to prove that if for the homeomorphism 
h = Tn · · ·T3 the curves h(α2) and α1 are disjoint (up to homotopy), then the circuit α1, . . . , αn bounds an 
embedded disc. This idea is illustrated in Fig. 1, where we consider a neighbourhood (later called N4) of 
the circuit in the case that the cycle relation T4T3T2T1T4T3 = T3T2T1T4T3T2 holds. The strategy of proving 
the result pictorially has a few drawbacks, however. Most notably, is not very convincing to rely solely on 
such pictures, as the reasoning for the presence of discs seems very prone to error, in particular for some of 
the surfaces that are less easily drawn in a flat way. In the author’s opinion, the approach taken in this text 
is more insightful and reliable.

A brief summary of sections is as follows. Section 2 is a collection of prerequisites from Artin group 
theory and its relation to the theory of mapping class groups. In Section 3 we discuss possible regular 
neighbourhoods of circuits and prove Theorem 1.2. In our path toward a proof of Theorem 1.1 we get 
sidetracked in Section 4 and investigate the effect of all (possibly non-embedded) discs on the relational 
theory of the group G(S) generated by the Dehn twists T1, . . . , Tn (note that G(S) depends not only on S
but also on the circuit α1, . . . , αn). This allows us to determine many isomorphism types of G(S) for the 
surfaces S arising from regular neighbourhoods by gluing in discs, see Table 1, which is interesting in its 



4 L. Ryffel / Topology and its Applications 332 (2023) 108522
Fig. 2. The graphs An, Bn, Dn, En, ˜An−1. All five graphs have n vertices.

own right. The reader mainly interested in Theorem 1.1 may wish to focus on Subsections 4.1, 4.2, 4.3, and 
skip the rest of Section 4. Finally, in Section 5, we prove Theorem 1.1.

2. Artin groups and mapping class groups

2.1. Artin groups

To an undirected multigraph Γ (i.e., a graph with any number, infinity included, of edges between 
two vertices, but no edge between a vertex and itself), we associate the corresponding Artin group A(Γ) by 
describing a presentation. The generators of A(Γ) are the vertices of Γ, and the relations are sts . . . = tst . . ., 
where the words on both sides have length nst + 2, where nst is the number of edges between s and t. The 
numbers nst + 2 are sometimes referred to as weights. Explicitly, if there is no edge between s and t then 
they satisfy the commutation relation st = ts (weight 2), if s and t are joined by a single edge then s and t

satisfy the braid relation sts = tst (weight 3), and so on. It is customary that s and t satisfying no such 
relation is allowed. This corresponds to infinitely many edges joining s and t (weight ∞). We call an Artin 
group A(Γ) irreducible if Γ is a connected graph. A few example graphs Γ are listed in Fig. 2.

2.2. The Birman exact sequence

For a surface S, we write C(S, n) for the configuration space of n points in S [1, Section 9.1.2]. In order 
to relate Artin groups to mapping class groups of surfaces, a very useful tool is the Birman exact sequence.

Lemma 2.1 ([1, Theorem 9.1]). Let S be a surface without marked points such that the identity component 
of the group of orientation-preserving homeomorphisms S → S keeping the boundary ∂S fixed, is simply 
connected. Let Sn be the surface obtained from S by marking n points in the interior of S. Then there is an 
exact sequence

1 −→ π1(C(S, n)) −→ M(Sn) −→ M(S) −→ 1,

where the homomorphism M(Sn) → M(S) is obtained from forgetting that the marked points are marked.

The Birman exact sequence is commonly used to prove that mapping class groups of certain surfaces 
are generated by finitely many Dehn twists [1, Theorem 4.1]. Another application is the following classical 
Lemma.

Lemma 2.2 ([1, Section 9.1]). Let n ≥ 2, and let Δ be a closed disc and Δn be Δ with n marked points. 
Then the groups A(An−1), π1(C(Δ, n)), and M(Δn), are pairwise isomorphic.

Beware that the isomorphism between A(An−1) and M(Δn) is not geometric, because the generators are 
mapped to half-twists (which are not Dehn twists). It turns out that the Birman exact sequence can also be 
applied to the annulus Z rather than the disc Δ. This yields the following crucial result for our work here.

Lemma 2.3. Let n ≥ 2, and let Z be an annulus and let Zn be Z with n marked points. Then the groups 
A(Bn), π1(C(Z, n)), and the kernel of the homomorphism M(Zn) → M(Z) forgetting that the marked 
points are marked, are pairwise isomorphic.
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Fig. 3. The images of the elements t, s0, s1, s2 of A(B3) in π1(C(Z, 3)).

Fig. 4. The images of the elements t, s0, s1, s2 of A(B3) in M(Zn).

Proof. In [9, Theorem One], it is shown that A(Bn) is isomorphic to the fundamental group π1(C(Z, n))
of the configuration space of n points in the annulus Z. Because the identity component of the space of 
orientation-preserving homeomorphisms of Z keeping the boundary fixed is contractible [10, Lemma 0.10], 
we can apply Lemma 2.1 to show that π1(C(Z, n)) embeds into the mapping class group M(Zn) of the 
annulus with n marked points. More specifically, by exactness of the Birman exact sequence, the image of 
π1(C(Z, n)) is the kernel of the homomorphism M(Zn) → M(Z) forgetting that the marked points are 
marked. �
Remark 2.4. The group π1(C(Z, n)) can be thought of as n-stranded braids in Z × [0, 1]. Projecting to the 
central curve of Z at each height in [0, 1], but remembering which strand goes over and which goes under, 
yields diagrams of elements of π1(C(Z, n)), similarly as for the ordinary braid group π1(C(Δ, n)), where one 
usually projects to a diameter of Δ at each height. Let us refer to the generators of A(Bn) by the symbols 
t, s1, . . . , sn−1. We also write s0 = δsn−1δ

−1, where δ = ts1 . . . sn−1. The isomorphism A(Bn) → π1(C(Z, n))
maps the elements t, s0, s1, . . . , sn−1 to the annular braids depicted in Fig. 3 for the case n = 3, and stacks 
the braids from bottom to top when reading the word in A(Bn) from left to right.

Remark 2.5. We can also explicitly describe the images of the elements t, s0, s1, . . . , sn−1 in M(Δn). The 
element t maps to a product TαT

−1
β of two Dehn twists about two curves α (inner) and β (outer) depicted 

in Fig. 4. More importantly for us, the elements si map to so-called half-twists [1, Section 9.1.3] about the 
arcs depicted in Fig. 4.

We are now ready to describe the group A( ˜An−1) appearing in Theorem 1.2 quite explicitly.

Lemma 2.6 ([11, Section 1]). Let t, s1, . . . , sn−1 be the standard generators of A(Bn) corresponding to the 
vertices in Fig. 2 from left to right, and let sn = δsn−1δ

−1, where δ = ts1 · · · sn−1. Then the subgroup G of 
A(Bn) generated by the si is isomorphic to A( ˜An−1) under an isomorphism mapping the si to the standard 
generators. Moreover, G is the kernel of the homomorphism A(Bn) → Z mapping t to one and all other 
generators to zero.
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Fig. 5. The neighbourhoods N3, N4, M4. Opposite ends of the strips are identified, unless indicated otherwise.

2.3. Birman-Hilden theory

In the 1970s, Birman and Hilden proved highly influential results about fibre-preserving isotopies. Their 
work spawned an entire research area referred to as Birman-Hilden theory, recently surveyed by Margalit 
and Winarski [12]. Only a very small part of this theory will find its way into this text.

For an orientation-preserving involution ι on a surface S, let us write S/ι for the quotient of S by ι with 
the images of the fixed points of ι marked. With this notation, we have the following reformulation of the 
classical Birman-Hilden theorem.

Lemma 2.7. Let the surface S have at least one boundary component, and let ι be a continuous involution 
on S with finitely many fixed points. Suppose that ι leaves the curves αi invariant as sets and restricts to 
a reflection of each αi. Then there is a well-defined homomorphism G(S) → M(S/ι) mapping the Dehn 
twists Ti about the αi to half-twists.

Proof. Let f be a symmetric homeomorphism of S, i.e., a homeomorphism that commutes with ι. Then f
induces a homeomorphism f on the quotient S/ι. The Birman-Hilden theorem [13, Theorem 1] asserts that 
the mapping class of f does not depend on the symmetric representative of the mapping class of f . The 
Dehn twist Ti about a simple closed curve αi is symmetric up to isotopy, so we obtain a homomorphism 
G(S) → M(S/ι). Moreover, ι restricts to an involution of an annular neighbourhood of αi exchanging the 
two boundary components. Hence, T i is a half-twist. �

It is worth pointing out the nontrivial part of the proof of the result referred to as the Birman-Hilden 
theorem in Farb-Margalit’s book [1, Section 9.4.1] is Lemma 2.7, formulated in a slightly different way [1, 
Proposition 9.4]. The involutions ι they use yield well-defined maps from the braid group A(An) on n + 1
strands to the group generated by Dehn twists about a chain of n curves (each curve intersecting the 
previous and the next).

3. Neighbourhoods of circuits

This section is concerned with the proof of Theorem 1.2. Let α1, . . . αn be a circuit. Up to orientation-
preserving homeomorphism, there are two possible regular neighbourhoods of the union α1 ∪ · · · ∪ αn, see 
Fig. 5. One way to see this is as follows. There is only one possible regular neighbourhood of the smaller 
set α1 ∪ · · · ∪ αn−1. Now the curve αn might sit in the regular neighbourhood in two different ways.

If n is odd, those two ways lead to regular neighbourhoods Nn
� and Nn

� that are related by an orientation-
reversing homeomorphism. For brevity, we will abbreviate Nn

� by the symbol Nn and usually not talk about 
Nn

� explicitly, as all the results about Nn carry over to Nn
� by enumerating the αi in the opposite order. 

The left-hand side of Fig. 11 below displays a drawing of the surface Nn embedded into R3.
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Fig. 6. Another view of the surfaces Nn and Mn for even n.

If n is even, the two possible neighbourhoods Nn and Mn are related to themselves via an orientation-
reversing homeomorphism, so orientation is less of a concern in this case. The neighbourhoods Nn and Mn

differ, for example, in their number of boundary components: Nn has four and Mn just two. A drawing of 
the surfaces Nn and Mn embedded into R3 can be found in Fig. 6.

Now let S be any of the above regular neighbourhoods of α1 ∪ · · · ∪ αn. Notice that in each case, S can 
be thought of as a union of n cross-shaped pieces, see Fig. 5. Turning all those pieces by an angle of π yields 
a well-defined involution ι of S. We will call ι the cross-involution. Note that in the drawings from Figs. 6
and 11, the cross-involution is a rotation about the x-axis by an angle of π.

Proof of Theorem 1.2. With the notation from Section 2.3, the surface S/ι is an annulus with n marked 
points in each case. This may be verified by counting the number of boundary components of S/ι and 
computing its Euler characteristic. By Lemma 2.7, there exists a homomorphism ϕ : G(S) → M(Zn) map-
ping the Dehn twists Ti to half-twists. By Lemma 2.6, the image of ϕ is isomorphic to A( ˜An−1). But the 
inverse homomorphism A( ˜An−1) → G(S) mapping the generator si to Ti is well-defined. Hence, ϕ is an 
isomorphism. �
4. Gluing in discs

In this section, we glue in discs to regular neighbourhoods of circuits in order to obtain more geometric 
embeddings of Artin groups, which we will need in order to prove the right-to-left direction of Theorem 1.1. 
In fact, the results in this section are much stronger than what is needed. Each possible combination of discs 
that can be glued in to neighbourhoods is investigated separately, and a few interesting relations between 
Dehn twists about circuits are discussed.

4.1. Building circuit surfaces

We now adopt the perspective that the circuit α1, . . . , αn stays fixed while the surface S containing it 
varies. We will write G(S) for the subgroup of M(S) generated by the Dehn twists Ti about αi. The inclusion 
homomorphism theorem asserts the following.

Lemma 4.1 ([1, Theorem 3.18]). Suppose S and S′ are closed and connected subsurfaces of a surface S ∪S′

with disjoint interiors. Let K be the kernel of the inclusion-induced homomorphism M(S) → M(S ∪ S′). 
Then:

(i) If S′ = Δ1 is a once-marked disc with ∂Δ1 ⊂ ∂S, then K is cyclically generated by the Dehn twist Tα

about the boundary curve of Δ1.
(ii) If S′ = Z is an annulus with ∂Z ⊂ ∂S, then K is cyclically generated by TαT

−1
β , where Tα and Tβ are 

Dehn twists about the boundary curves α and β of Z, respectively.
(iii) If S′ is neither a disc, a once-marked disc, nor an annulus, then K is trivial.

In particular, K is a subgroup of the centre of M(S).
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Fig. 7. The surfaces N3, N3 ∪ Δ1, N3 ∪ 2Δ1, N3 ∪ Δ2.

Fig. 8. The surfaces N6 ∪ Δ1
�, N6 ∪ 2Δ1

�, N6 ∪ Δ1
� ∪ Δ1

�, N6 ∪ Δ1
� ∪ 2Δ1

�.

Note that the inclusion homomorphism theorem makes no assertion in the case that S′ is a disc Δ. This 
means that to compare G(S ∪Δ) to G(S) is expected to require more creativity than to compare G(S ∪ S′)
to G(S) for other surfaces S′.

Not all boundary components of neighbourhoods of α1∪ · · · ∪αn are equivalent. Considering intersection 
points between the αi as vertices of polygons allows us to make the following observation. If n is odd, then 
two boundary components of Nn are exchanged by the cross-involution. They both have the property that 
if they are capped by a disc, then α1, . . . , αn bound an n-gon. We will denote such a disc by Δ1, and the 
union of two such discs by 2Δ1. Both of these will make the circuit bound embedded closed discs. The third 
boundary component can be capped off by a disc Δ2. The curves α1, . . . , αn bound a 2n-gon in S ∪ Δ2. 
Note that the circuit does not bound a closed embedded disc in Nn ∪ Δ2. For brevity, we will sometimes 
say that the boundary of Δ1 is an n-gon and that the boundary of Δ2 is a 2n-gon. See Fig. 7 for a visual 
description of the various discs.

If n is even, the situation is qualitatively different. All four boundary components of Nn are n-gons, 
and both boundary components of Mn are 2n-gons. But they differ in the following way. Travelling around 
the boundary component in the counter-clockwise direction, as seen from the centre of the disc, the curves 
might appear in the order α1, . . . , αn or the other way around. In the first case, we will write Δ�, and 
Δ� otherwise, with the appropriate superscript numbers. See Fig. 8 for the different discs in Nn. We will 
usually abbreviate Δ� by Δ with the appropriate superscript number, and we will abbreviate Δ2

� ∪Δ2
� by 

2Δ2. A list of all surfaces that are obtained by gluing in discs to a regular neighbourhood of α1 ∪ · · · ∪ αn

can be found in Table 1. Note that gluing in any disc into Nn makes the circuit bound an embedded closed 
disc, and no disc in Mn has this effect.

4.2. Extending the cross-involution

It turns out that for certain surfaces S containing a neighbourhood of α1, . . . , αn, the cross-involution of 
the neighbourhood extends to S. In these cases, by very similar reasoning as in the proof of Theorem 1.2, 
we are able to determine the group G(S).

Proposition 4.2. Let S be a regular neighbourhood of a circuit of n ≥ 3 curves α1, . . . αn, and let S′ be a 
2n-gon Δ2 (such a disc does not exist if n is even and S = Nn), or the union 2Δ2 of two 2n-gons (such a 
union only exists for even n and S = Mn). Then G(S ∪ S′) is geometrically isomorphic to A( ˜An−1).
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Table 1
Various surfaces S obtained from regular neighbourhoods of 
a circuit α1, . . . , αn by gluing in discs. In this table, n ≥ 3
and k ≥ 1. Moreover, “not Artin” is short for “not geomet-
rically isomorphic to an Artin group”.

S G(S) Reference

Nn A( ˜An−1) Theorem 1.2
Nn ∪ Δ1 A(Dn) Proposition 4.6
Nn ∪ 2Δ1 A(An−1) Proposition 4.3

N2k+1 ∪ Δ2 A( ˜A2k) Proposition 4.2
N2k+1 ∪ Δ1 ∪ Δ2 not Artin Proposition 4.17
N2k+1 ∪ 2Δ1 ∪ Δ2 not Artin Proposition 4.10

N2k+4 ∪ Δ1
� ∪ Δ1

� not Artin Proposition 4.11
N2k+4 ∪ 2Δ1

� ∪ Δ1
� not Artin Proposition 4.11

N2k+4 ∪ 2Δ1
� ∪ 2Δ1

� not Artin Proposition 4.11

N4 ∪ Δ1
� ∪ Δ1

� A(A3) Proposition 4.12
N4 ∪ 2Δ1

� ∪ Δ1
� A(A2) Proposition 4.12

N4 ∪ 2Δ1
� ∪ 2Δ1

� SL(2,Z) Proposition 4.12

M2k+2 A( ˜A2k+1) Theorem 1.2
M2k+2 ∪ Δ2 A( ˜A2k+1) Proposition 4.2
M2k+2 ∪ 2Δ2 A( ˜A2k+1) Proposition 4.2

Proof. In each case, the cross-involution ι extends to S ∪ S′ in a straightforward fashion. In the case that 
S′ = Δ2 is a 2n-gon, ι gets one additional fixed point, so (S∪S′)/ι is a disc Δn+1 with n +1 marked points. 
Again, the homomorphism ϕ : G(S) → M(Δn+1) is well-defined by Lemma 2.7. The images of the Ti under 
ϕ fix the last puncture. Because Δ minus one point is homotopy equivalent to the annulus Z, we have that 
the subgroup of π1(C(Δ, n +1)) fixing one strand is isomorphic to π1(C(Z, n)). By Lemmas 2.3 and 2.6, the 
image of ϕ is isomorphic to A( ˜An−1). Since the inverse homomorphism is well-defined, the result follows 
for this case.

Similarly, if S′ = 2Δ2, we get a well-defined homomorphism ϕ : G(S) → M(Σn+2), where Σn+2 is a sphere 
with n + 2 marked points. The images of the Ti fix two of the punctures. Because the group of orientation-
preserving homeomorphisms of Σ is not simply connected, there is no Birman exact sequence. That is, we 
cannot apply Lemma 2.1 directly to get a description of M(Σn+2). However, it is straightforward to show 
that the kernel of the map π1(C(Σ, n + 2)) → M(Σn+2) is generated by the map rotating the n +2 marked 
points by a full twist [1, Section 9.1]. Because such a full twist cannot be expressed by just n generators, we 
have that the image of ϕ is isomorphic to the subgroup of π1(C(Σ, n + 2)) fixing two strands. But because 
Σ minus two points is homotopy equivalent to Z, we get that the image of ϕ is isomorphic to A( ˜An−1), as 
desired. �

Recall that for odd n we abbreviate Nn
� by Nn, and for all n, we abbreviate Δ1

� by Δ1. Using these 
conventions allows us to concisely state the following result which is essentially equivalent to a version of 
the Birman-Hilden theorem stated in the book by Farb and Margalit [1, Theorem 9.2].

Proposition 4.3. For n ≥ 3, the group G(Nn ∪ 2Δ1) is geometrically isomorphic to the braid group A(An−1)
on n strands.

Proof. Let us write S = Nn ∪ 2Δ1 The cross-involution ι extends to Nn ∪ 2Δ1 with no additional fixed 
points. This yields a well-defined homomorphism ϕ : G(S) → M(Δn) mapping the Ti to half-twists by 
Lemma 2.7. Since these half-twists generate M(Δn), Lemma 2.2 yields that the image of ϕ is isomorphic 
to A(An−1). �
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Remark 4.4. It is not difficult to show that the kernel of the inclusion-induced homomorphism G(Nn) →
G(Nn ∪ 2Δ1) is normally generated by the relation Tn · · ·T2 = Tn−1 · · ·T1. One possible strategy is to 
explicitly compute the kernel of the inclusion-induced homomorphism π1(C(Z, n)) → π1(C(Δ, n)).

4.3. The cycle relation

The surface the current subsection is about is Nn∪Δ1. Luckily for us, this case has almost entirely been 
solved by Labruère, and the rest can be extracted from work by Baader and Lönne.

If the circuit α1, . . . , αn bounds an n-gon Δ1
� or Δ1

�, we will say that α1, . . . , αn form a cycle. The 
standard cycle relation between the Dehn twists T1, . . . , Tn is Tn · · ·T1Tn · · ·T3 = Tn−1 · · ·T1Tn · · ·T2. 
One can show that this relation is equivalent to the commutation relation T1f = fT1 where f =
(Tn · · ·T3)T2(Tn · · ·T3)−1 [8, Section 1]. Using this representation of the standard cycle relation it becomes 
a routine task to verify that the standard cycle relation holds in the surface Nn∪Δ1. Similarly, the reverse 
cycle relation T1 · · ·TnT1 · · ·Tn−2 = T2 · · ·TnT1 · · ·Tn−1, holds in the surface Nn

� ∪Δ1
�. But Labruère made 

an even stronger observation.

Lemma 4.5 ([3, Proposition 2]). The kernel of the homomorphism A( ˜An−1) → G(Nn ∪ Δ1) mapping the 
standard generators si to Ti is normally generated by the cycle relation.

Proposition 4.6. For n ≥ 3, the group G(Nn ∪ Δ1) is geometrically isomorphic to A(Dn).

Proof. Let s1, . . . , sn be the standard generators of A(Dn) read from left to right in Fig. 2. Using Lemma 4.5, 
one can verify that an explicit isomorphism A(Dn) → G(Nn∪Δ1) is given by s1 �→ (Tn · · ·T3)−1

T1(Tn · · ·T3)
and si �→ Ti for i ≥ 2. �
Remark 4.7. Baader and Lönne prove the considerably more general but also less easily digested result 
that the secondary braid group is invariant via a geometric isomorphism under elementary conjugation [8, 
Section 4]. Indeed, by Lemma 4.5, the group G(Nn∪Δ1) is geometrically isomorphic to the secondary braid 
group [8, Definition 1] associated to the positive braid word σ1σ2σ

n−2
1 σ2σ1, whereas A(Dn) is geometrically 

isomorphic to the group associated to σ2
1σ2σ

n−2
1 σ2.

4.4. Inhomogeneous relations

Sadly, we do not manage to compute the remaining groups G(S) up to isomorphism. We will, however, 
get to know the groups well enough to exclude the possibility of them being geometrically isomorphic to an 
Artin group.

A relation t = t′ is called homogeneous if the exponent sums of t and t′ agree. Otherwise, the relation 
t = t′ is called inhomogeneous. The strategy in the current subsection will be to find inhomogeneous relations 
in G(S). The following elementary result allows us to conclude that G(S) is not geometrically isomorphic to 
an Artin group.

Lemma 4.8. If G(S) has an inhomogeneous relation, then G(S) is not geometrically isomorphic to an Artin 
group.

Proof. We argue contrapositively: The map sending each generator of an Artin group A(Γ) to one extends 
to a homomorphism A(Γ) → Z because all relations in A(Γ) are homogeneous, and hence also hold in Z. �
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Fig. 9. The curves α1, . . . , α6, the curve T3T4T5T6(α1), and the curve β = T6T5T4T
2
3 T4T5T6(α1), all in the surface N6 ∪Δ1

� ∪Δ1
�.

An effective way to produce inhomogeneous relations is to apply the classical result called the chain 
relation. Recall that a chain of curves is a family α1, . . . , αn of n curves such that αi intersects αj exactly 
once if j = i ± 1 and zero times otherwise.

Lemma 4.9 ([1, Proposition 4.12]). Let α1, . . . , αn be a chain of n curves, and let Ti be the Dehn twist about 
αi. If n is even, let β be the boundary curve of a regular neighbourhood of α1 ∪ · · · ∪ αn. Similarly, if n is 
odd, let β1, β2 be the two boundary curves. Then:

(i) If n is even, then (Tn · · ·T1)2n+2 = Tβ.
(ii) If n is odd, then (Tn · · ·T1)n+1 = Tβ1Tβ2 .

Proposition 4.10. For odd n ≥ 3, the relation (Tn−1 · · ·T1)2n = 1 holds in the group G(Nn ∪ 2Δ1 ∪ Δ2). In 
particular, it is not geometrically isomorphic to an Artin group.

Proof. Note that the boundary of a regular neighbourhood of the chain α1, . . . , αn−1 is null-homotopic. The 
proposition now follows from Lemma 4.9 and Lemma 4.8. �
Proposition 4.11. The group G(Nn ∪Δ1

� ∪Δ1
�) is not geometrically isomorphic to an Artin group if n ≥ 6, 

and neither is G(S) for any supersurface S of Nn ∪ Δ1
� ∪ Δ1

�.

Proof. Suppose the curves are arranged as in Fig. 9. Let β = Tn · · ·T3T3 · · ·Tn(α1). Then β ∪ α1 is the 
boundary of a regular neighbourhood of α3 ∪ · · · ∪ αn−1, see Fig. 9. By the Lemma 4.9, the relation 
(Tn−1 · · ·T3)n−2 = T1Tβ follows. Because Tβ is conjugate to T1 by the formula Tf(α1) = fT1f

−1 [1, Fact 3.7]
for f = Tn · · ·T3T3 · · ·Tn, the relation in question is inhomogeneous for n ≥ 6. Lemma 4.8 leads us to the 
desired conclusion.

If the indices of the curves are shifted by one from the ones in Fig. 9, we instead end up with the 
relation (Tn−2 · · ·T2)n−2 = TnTβ′ where β′ = Tn−1 · · ·T2T2 · · ·Tn−1(αn), which is also inhomogeneous for
n ≥ 6.

The statement about supersurfaces follows from the fact that the inclusion-induced homomorphisms 
preserve inhomogeneous relations. �

4.5. Pathological cases

The case n = 4 becomes strange when too many discs are glued in, because some of the curves be-
come isotopic. The relations from the proof of Proposition 4.11 do not reflect this, so we cover this case 
separately.
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Fig. 10. The surfaces N4, N4 ∪ Δ1
� ∪ Δ1

�, N4 ∪ 2Δ1
� ∪ Δ1

�, N4 ∪ 2Δ1
� ∪ 2Δ1

�.

Proposition 4.12. The following statements hold.

(i) The group G(N4 ∪ Δ1
� ∪ Δ1

�) is geometrically isomorphic to A(A3).
(ii) The group G(N4 ∪ 2Δ1

� ∪ Δ1
�) is geometrically isomorphic to A(A2),

(iii) The group G(N4 ∪ 2Δ1
� ∪ 2Δ1

�) is isomorphic to SL(2, Z), and not geometrically isomorphic to an 
Artin group.

Proof. Suppose the curves and discs are arranged as in Fig. 10. We consider each surface S separately.

(i) Let S = N4 ∪ Δ1
� ∪ Δ1

� Because α2 and α4 are isotopic in S, we have that G(S) is generated by 
T1, T2, T3. Moreover, S is a regular neighbourhood of α1, α2, α3, so G(S) is isomorphic to A(A3) [1, 
Section 9.4.1].

(ii) Let S = N4 ∪ 2Δ1
� ∪ Δ1

�. In addition to α2 being isotopic to α4 from the previous case, α1 is also 
isotopic to α3. So G(S) is generated by T1, T2. Moreover, S is a regular neighbourhood of α1 ∪ α2. 
Hence, G(S) is isomorphic to A(A2) [1, Theorem 9.2].

(iii) Let S = N4∪2Δ1
�∪2Δ1

�. Then S is just a torus with meridian α1 and α2. It is well-known that M(S)
is generated by T1, T2, and that it is isomorphic to SL(2, Z) [1, Theorem 2.5]. Moreover, the inhomo-
geneous relation (T1T2)6 = 1 (see [1, Section 3.5]) shows that G(S) is not geometrically isomorphic to 
an Artin group.

If the indices of the curves are instead shifted by one, the same arguments hold. �

4.6. One last surface

Up to orientation-reversing homeomorphism, we have now glued in every possible combination of discs, 
except one. For this final surface S = Nn ∪Δ1 ∪Δ2, the strategy of finding inhomogeneous relations failed, 
so the proof that G(S) is not geometrically isomorphic to an Artin group turns out to be the most involved 
argument in this text. Toward a contradiction, we will assume that G(S) is geometrically isomorphic to an 
Artin group A(Γ). We then exclude all possibilities for the graph Γ. Lemma 4.13 below is a statement about 
Coxeter groups that helps achieve this for most graphs.

The Coxeter group C(Γ) is obtained from A(Γ) by adding the relations s2 = 1 for all generators s. If C(Γ)
is finite, we will say that A(Γ) is of finite type. Otherwise, A(Γ) is of infinite type. The finite Coxeter groups 
were classified by Coxeter himself [14, Theorem‡]. They are groups of the form C(Γ), where Γ = An, Bn, Dn

for arbitrary n, Γ = En for n = 6, 7, 8, or a few more graphs that do not appear in this text. See Fig. 2 for 
a list of the mentioned graphs.

Lemma 4.13 ([15, Theorem 0.4 and Table 3]). Let n ≥ 3 with n �= 4. If there exists a surjective homomor-
phism C(Dn) → C(Γ), then Γ is either the one-vertex graph A1, the graph An−1, or the graph Dn.
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Next, we need two results about the group-theoretic properties of the Artin groups A(An−1) and A(Dn). 
The first result asserts that A(An−1) is “geometrically co-Hopfian”.

Lemma 4.14. Let n ≥ 2. Every injective homomorphism A(An−1) → A(An−1) such that the image of a 
standard generator is conjugate to a standard generator is an isomorphism.

Proof. Think of A(An−1) as the group G(S) generated by α1, . . . , αn−1, where S is the surface Nn ∪ 2Δ1, 
see Proposition 4.3. Then a homomorphism as in the assumption corresponds to an injective homomorphism 
ϕ : G(S) → G(S) mapping each Ti to a Dehn twist T ′

i about a curve α′
i. Because ϕ is injective, the α′

i are 
pairwise non-isotopic. Moreover, the curves α′

1, . . . , α
′
n−1 form a chain because consecutive curves satisfy 

the braid relation [1, Section 3.5.2]. Hence, by the change of coordinates principle [1, Section 1.3.3], there 
exists a homeomorphism f of S such that α′

i = f(αi). Thus, ϕ is given by conjugation by f , and hence is 
an isomorphism. �
Remark 4.15. Bell and Margalit in fact describe all the injective homomorphisms from the n-strand braid 
group A(An−1) to itself, even the non-geometric ones, for n ≥ 4 [16, Main Theorem 1]. Their uniform 
description of these homomorphisms does not hold for n = 3 because A(A2) modulo its centre is not 
co-Hopfian (it is isomorphic to the free product Z/2 ∗Z/3).

Our final lemma in this Section asserts that finite type Artin groups are “Hopfian”.

Lemma 4.16. Every surjective homomorphism from a finite type Artin group onto itself is an isomorphism.

Proof. Because finite type Artin groups are residually finite [17, Corollary 1.2] they are also Hopfian [18, 
Theorem IV.4.10]. �
Proposition 4.17. For odd n ≥ 3, the group G(Nn ∪ Δ1 ∪ Δ2) is not geometrically isomorphic to an Artin 
group.

Proof. Write S = Nn ∪ Δ1 ∪ Δ2. Suppose toward a contradiction that G(S) is geometrically isomorphic 
to A(Γ) for a graph Γ. Recall that by Proposition 4.6, the group G(Nn ∪ Δ1) is geometrically isomorphic 
to A(Dn). Thus, the inclusion-induced homomorphism G(Nn ∪ Δ1) → G(S) gives rise to a surjective 
homomorphism C(Dn) → C(Γ) (note that we use here that the isomorphism A(Dn) → G(Nn ∪ Δ1) is 
geometric). From Lemma 4.13 it follows that Γ is either A1, An−1, or Dn. We will now rule out each of 
those graphs.

We first argue that G(S) contains a strict subgroup isomorphic to A(An−1). Consider the plastic view 
of Nn as on the left of Fig. 11. Capping of the top and right boundary components with discs yields the 
surface S on the right. Now rotating about the x-axis by an angle of π yields an involution ι of S. Suppose 
the curves α1, . . . , αn are numbered such that αn is the right-most curve. Then ι preserves α1, . . . , αn−1, 
but not αn. Thus, the strict subgroup of G(S) generated by T1, . . . , Tn−1 is isomorphic to A(An−1). This 
excludes the case Γ = A1 immediately, and an application of Lemma 4.14 excludes the case Γ = An−1.

Next, we show that the inclusion-induced homomorphism G(Nn ∪ Δ) → G(S) is not injective. To this 
end, consider the boundary curve β of the chain α1, . . . , αn−1 in Nn ∪ Δ. Then β intersects αn twice. 
But the image of β under the inclusion map Nn ∪ Δ → S does not intersect the image of αn. Hence, the 
commutator TβTnT

−1
β T−1

n is a non-trivial element of the kernel. By Lemma 4.16, Γ cannot be Dn, excluding 
all possibilities for Γ. �
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Fig. 11. Another view of the surfaces Nn and Nn ∪ Δ1 ∪ Δ2 for odd n.

5. Proof of the main theorem

This short final section is about gluing in punctured discs and annuli to the surfaces from Table 1 and 
collecting the relevant results in this text to prove Theorem 1.1.

Proposition 5.1. Let S be a surface containing a circuit α1, . . . , αn. Suppose that G(S) is geometrically 
isomorphic to A( ˜An−1). Let Δ1 be a once-marked disc whose interior is disjoint from the interior of S, with 
∂Δ1 ⊂ ∂S. Then the inclusion-induced homomorphism G(S) → G(S ∪ Δ1) is an isomorphism. Similarly, if 
Z is an annulus whose interior is disjoint from the interior of S, with ∂Z ⊂ ∂S, then the inclusion-induced 
homomorphism G(S) → G(S ∪ Z) is an isomorphism.

Proof. Charney and Peifer show that for n ≥ 3, the centre of A( ˜An−1) is trivial [11, Proposition 1.3]. It now 
follows from Lemma 4.1 that the inclusion-induced homomorphisms G(S) → G(S∪Δ1) and G(S) → G(S∪Z)
are injective and hence isomorphisms. �
Proof of Theorem 1.1. We prove the right-to-left implication, as the left-to-right implication follows from 
Labruère’s result [3, Proposition 2]. Contrapositively, suppose that the circuit α1, . . . , αn does not bound 
an embedded closed disc. In other words, the complement of a regular neighbourhood of α1, . . . , αn in S is 
a union of surfaces that are not embedded discs. Let S′ be the union of such a neighbourhood with all the 
non-embedded discs in its complement. Theorem 1.2 and Proposition 4.2 imply that G(S′) is geometrically 
isomorphic to A( ˜An−1). The complement of S′ in S is a union of surfaces that are not discs, so by Propo-
sition 5.1 and Lemma 4.1, it follows that also G(S) is geometrically isomorphic to A( ˜An−1). But the cycle 
relation does not hold in this group. Indeed, as remarked above, the centre of A( ˜An−1) is trivial, whereas 
the quotient of A( ˜An−1) by the normal subgroup generated by the cycle relation is isomorphic to A(Dn)
(see Lemma 4.5 and Proposition 4.6), which has infinite cyclic centre [19, Satz 7.2]. �
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