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We prove a representation theorem for totally ordered idempotent monoids 
via a nested sum construction. Using this representation theorem we obtain a 
characterization of the subdirectly irreducible members of the variety of semilinear 
idempotent distributive �-monoids and a proof that its lattice of subvarieties 
is countably infinite. For the variety of commutative idempotent distributive �-
monoids we give an explicit description of its lattice of subvarieties and show that 
each of its subvarieties is finitely axiomatized. Finally we give a characterization of 
which spans of totally ordered idempotent monoids have an amalgam in the class 
of totally ordered monoids, showing in particular that the class of totally ordered 
commutative idempotent monoids has the strong amalgamation property and that 
various classes of distributive �-monoids do not have the amalgamation property. We 
also show that exactly seven non-trivial finitely generated subvarieties of the variety 
of semilinear idempotent distributive �-monoids have the amalgamation property; 
we are able to determine for all but three of its subvarieties whether they have the 
amalgamation property or not.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Distributive �-monoids are monoids with a distributive lattice-order such that multiplication distributes 
over both binary meets and binary joins. They occur naturally as inverse-free reducts of lattice-ordered 
groups (�-groups) and indeed have the same equational theory as the latter [9]. More generally, distributive 
�-monoids occur as residual-free reducts of fully distributive residuated lattices (see e.g., [6]) and a system-
atic study of distributive �-monoids can further the investigation of these reducts and the corresponding 
implication-free fragments of substructural logics [19] (see e.g., [20]). For example, it can help answer the 
question whether two classes of fully distributive residuated lattices can be distinguished by residual-free 
equations or quasi-equations.

Despite providing one of the most natural generalizations of �-groups, the structure theory of distributive 
�-monoids is not yet at a very sophisticated state, possibly because the tools and techniques of �-group theory 
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do not extend well in the absence of inverses. In particular, there does not yet exist a good characterization 
of congruences of distributive �-monoids (but see [30,4,9], where congruences are constructed from prime 
lattice ideals of distributive �-monoids) and not much is known about subdirectly irreducible members 
of this class to date (see [40], covering the finite commutative case). On the other hand, there exists a 
natural analogue of the representation theorem of Holland [24] of �-groups as subalgebras of �-groups of 
automorphisms of chains. That is, in [2] Anderson and Edwards show that every distributive �-monoid 
embeds into the distributive �-monoid of endomorphisms of a chain. Note, however, that in [39] Repnitskii 
shows that the variety generated by the inverse-free reducts of abelian �-groups is not finitely axiomatizable, 
gives a recursive axiomatization for this variety, and proves that in contrast to the case of all distributive 
�-monoids, there are equations that hold in this variety but not in all commutative distributive �-monoids. 
Extending the result of Repnitskii, it is proved in [9] that there are equations that hold in all inverse-free 
reducts of totally ordered �-groups that do not hold in all totally ordered distributive �-monoids.

In this paper, we consider the variety of semilinear idempotent distributive �-monoids, i.e., distributive 
�-monoids that are subdirect products of totally ordered idempotent monoids. At the center of this paper 
lies the nested sum construction. The nested sum construction was considered by Aglianò and Montagna 
in [1] under the name ‘ordinal sum’ for totally ordered BL-algebras. It was generalized by Galatos in [18]. 
The nested sum construction has been used to obtain representation results in a range of settings, including 
totally ordered BL-algebras [1], totally ordered n-contractive MTL-algebras [25], semilinear commutative 
idempotent residuated lattices [35,36], and �-involutive idempotent residuated chains [16].

In the current paper, we extend on one hand the theory of nested sum representations to totally ordered 
idempotent monoids, and on the other hand we use the nested sum construction to overcome some of the 
current deficits of the theory of distributive �-monoids. In particular, we give an explicit characterization 
of subdirect irreducibility in the variety of semilinear idempotent distributive �-monoids in terms of the 
nested sum representation which also leads to a better understanding and description of the subvariety 
lattices. The nested sum representation is not only useful to further the structure theory, but also helps us 
better understand homomorphisms between totally ordered idempotent monoids. In particular, it is useful 
for establishing the amalgamation property for classes of idempotent distributive �-monoids, a fundamental 
algebraic property (see e.g., [28]) that has been studied in great depth for many varieties of residuated 
lattices (see [34] for an overview and further references).

The paper is structured as follows. In Section 2, we introduce the necessary definitions and preliminary 
results about distributive �-monoids that will be used in the later sections. In Section 3, we lay the ground 
work for the paper. We first introduce the nested sum construction for the finite case and prove a representa-
tion theorem (Theorem 3.7) for finite totally ordered idempotent monoids in terms of nested sums, followed 
by some results obtained using this representation. Then we introduce the nested sum construction in the 
general case and prove a representation theorem (Theorem 3.15) for arbitrary totally ordered idempotent 
monoids. Using the general representation theorem we characterize embeddings between totally ordered 
idempotent monoids with respect to their nested sum decomposition (Lemma 3.17).

In Section 4, we provide a characterization of the subdirectly irreducible members of the variety of 
semilinear idempotent distributive �-monoids in terms of nested sums first for the finite case (Theorem 4.3) 
and then for the general case (Theorem 4.6). The characterization in the finite case also yields a counting 
result for finite subdirectly irreducibles (Corollary 4.4).

In Section 5, we use the characterization of finite subdirectly irreducibles to investigate the lattice of 
subvarieties of the variety of idempotent distributive �-monoids. Similarly to [36] we use the nested sum 
representation to obtain a description of the lattice of subvarieties of the variety of semilinear idempotent 
distributive �-monoids, resulting in a proof that the lattice of subvarieties is countably infinite (Theorem 5.1).

In Section 6, we first specialize the results of Section 4 and Section 5 to the commutative case and then 
obtain an explicit description of the lattice of subvarieties of the variety of commutative idempotent dis-
tributive �-monoids (Theorem 6.6). Using the explicit description of its lattice of subvarieties we establish 
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that every proper subvariety of the variety of commutative idempotent distributive �-monoids can be rel-
atively axiomatized by a single equation (Theorem 6.10). We conclude the section with a brief discussion 
of some consequences of the results in the context of Sugihara monoids and commutative fully distributive 
residuated lattices.

In Section 7, we shift our focus to the amalgamation property for classes of semilinear idempotent 
distributive �-monoids. First, we use the nested sum representation to give a complete characterization 
of the spans of totally ordered idempotent monoids that have an amalgam in the class of totally ordered 
monoids (Theorem 7.10) in terms of not ‘restricting’ to one of two forbidden spans. In particular, we show 
that the class of totally ordered commutative idempotent monoids has the strong amalgamation property 
(Corollary 7.5) and the forbidden spans enable us to show that several classes of distributive �-monoids 
do not have the amalgamation property. Finally, we show that exactly seven non-trivial finitely generated 
subvarieties of the variety of semilinear idempotent distributive �-monoids have the amalgamation property 
(Theorem 7.27), and establish the failure of this property for all but three non-finitely generated subvarieties 
(Corollary 7.31).

2. Preliminaries

Conventions We assume that the reader is familiar with the basic notions of universal algebra which can 
be found for example in [5]. We mostly follow the notation of [5]. In particular for an algebra A we denote its 
universe by A, for S ⊆ A we denote the subalgebra of A generated by S by Sg(S), the congruence lattice of 
A by Con(A), the trivial congruence on A by ΔA, i.e., ΔA = {〈a, a〉 | a ∈ A}, and for a, b ∈ A, the principal 
congruence generated by {〈a, b〉} by ΘA(a, b). We write Θ(a, b) if the algebra is clear. For a class of algebras 
K we denote by H(K), S(K), P (K), PU (K), PS(K), and I(K) the closure of K under homomorphic images, 
subalgebras, products, ultraproducts, subdirect products, and isomorphic images, respectively. Moreover, we 
will denote by V (K) and Q(K) the variety and quasivariety generated by K, respectively. For a variety V and 
a set X, we denote by FV(X) the V-free algebra over X and for n ∈ N we write FV(n) for FV({1, . . . , n}).

A distributive �-monoid is an algebra M = 〈M, ∧, ∨, ·, e〉 such that

(1) 〈M, ∧, ∨〉 is a distributive lattice,
(2) 〈M, ·, e〉 is a monoid,
(3) for all a, b, c, d ∈ M ,

a(b ∨ c)d = abd ∨ acd and a(b ∧ c)d = abd ∧ acd.

As in (3) we will sometimes write ab for a · b, we will drop unnecessary brackets if no confusion arises, and 
we will assume that · binds stronger than ∧ and ∨.

The class DLM of distributive �-monoids forms a variety (equational class). We call a distributive �-
monoid idempotent if its monoid reduct is idempotent, i.e., satisfies the equation x2 ≈ x, and commutative
if its monoid reduct is commutative. We denote the variety of idempotent distributive �-monoids by IdDLM
and the variety of commutative idempotent distributive �-monoids by CIdDLM.

Example 2.1. An �-group is an algebra L = 〈L, ∧, ∨, ·, −1, e〉 such that 〈L, ∧, ∨〉 is a lattice, 〈L, ·, −1, e〉 is a 
group, and a ≤ b implies cad ≤ cbd for all a, b, c, d ∈ L, where ≤ is the lattice order of L. It is well-known 
that the lattice reduct of an �-group is distributive and that products distribute over meets and joins. Hence, 
the inverse-free reducts of �-groups are distributive �-monoids.

Example 2.2. Let 〈Ω, ≤〉 be a chain, i.e., a totally ordered set. Then the set End(〈Ω, ≤〉) of all order-preserving 
endomorphisms on Ω with composition ◦ and point-wise lattice-order gives rise to the distributive �-monoid 
End(〈Ω, ≤〉) = 〈End(Ω), ∧, ∨, ◦, idΩ〉.
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In fact every distributive �-monoid can be seen as a subalgebra of an �-monoid of endomorphisms on 
a chain. Similarly to �-groups (see [24]) there is a Holland-style representation theorem for distributive 
�-monoids.

Theorem 2.3 ([2], see also [3]). Every distributive �-monoid embeds into the �-monoid End(〈Ω, ≤〉) of en-
domorphisms on some chain 〈Ω, ≤〉.

We call a distributive �-monoid M = 〈M, ∧, ∨, ·, e〉 an ordered monoid if its lattice order is a total order. 
As there is a one-to-one correspondence, we will also consider ordered monoids as relational structures 
M = 〈M, ·, e, ≤〉, where 〈M, ·, e〉 is a monoid, ≤ is a total order on M , and for all a, b, c, d ∈ M , a ≤ b

implies cad ≤ cbd. We note that a map between ordered monoids is a homomorphism if and only if it is a 
monoid homomorphism and it is order-preserving. We denote the class of ordered monoids by OM and the 
class of idempotent ordered monoids by IdOM. We will also denote the class of commutative idempotent 
ordered monoids by CIdOM.

We call a distributive �-monoid semilinear if it is contained in the variety SemDLM generated by the 
class OM. We denote the variety of semilinear idempotent distributive �-monoids by SemIdDLM. Note that 
in the literature semilinear distributive �-monoids are also called representable (see e.g., [9]) following the 
nomenclature for �-groups.

Recall that an algebra A is called congruence-distributive if its congruence lattice Con(A) is a distribu-
tive lattice and a class of algebras is called congruence-distributive if all of its members are congruence-
distributive. It is well-known that lattices are congruence-distributive and hence every algebra with a lattice 
reduct is also congruence-distributive. In particular, every distributive �-monoid is congruence-distributive. 
We also recall the following useful result by Jónsson about subdirectly irreducible algebras in congruence-
distributive varieties:

Theorem 2.4 (Jónsson’s Lemma [26, Theorem 3.3.]). Let K be a class of algebras such that V (K) is 
congruence-distributive. Then every subdirectly irreducible algebra in V (K) is contained in HSPU (K) and 
V (K) = IPSHSPU (K).

In this paper we will often use a special case of Theorem 2.4.

Corollary 2.5 ([26, Corollary 3.4.]). If K is a finite set of finite algebras such that V (K) is congruence-
distributive, then the subdirectly irreducible algebras of V (K) are in HS(K), and V (K) = IPS(HS(K)).

The class OM of ordered monoids is a positive universal class, i.e., closed under HSPU . So, by Theo-
rem 2.4, we get the following result.

Proposition 2.6. Every subdirectly irreducible algebra in SemDLM is totally ordered and a distributive �-
monoid is semilinear if and only if it is isomorphic to a subdirect product of ordered monoids.

It follows, in particular, that SemIdDLM is the variety generated by IdOM. We have the following equa-
tional characterization of semilinearity, where for terms s and t we denote by s ≤ t the equation s ∧ t ≈ s.

Proposition 2.7 ([9, Proposition 5.4.], see also [3, Corollary 6.10]). A distributive �-monoid is semilinear if 
and only if it satisfies the equation z1xz2 ∧ w1yw2 ≤ z1yz2 ∨ w1xw2.

An important consequence of Proposition 2.7 is the following result, which was first proved by Merlier 
in [30].
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Corollary 2.8 ([30, Corollary 2], see also [9]). Every commutative distributive �-monoid is semilinear.

Hence, in particular CIdDLM is the subvariety of SemIdDLM consisting of its commutative members and 
is generated by CIdOM.

For a distributive �-monoid M = 〈M, ∧, ∨, ·, e〉, we define its order dual M∂ by M∂ = 〈M, ∨, ∧, ·, e〉. 
Taking the order dual of a distributive �-monoid corresponds to reversing its lattice order, so in particular 
for an ordered monoid M = 〈M, ·, e, ≤〉 we have M∂ = 〈M, ·, e, ≥〉. For a term t we define the dual t∂ of t
recursively by

• x∂ = x if x is a variable;
• (u · v)∂ = u∂ · v∂ ;
• (u ∧ v)∂ = u∂ ∨ v∂ ;
• (u ∨ v)∂ = u∂ ∧ v∂ ;

and we extend the notion of a dual to equations by setting (t ≈ s)∂ := t∂ ≈ s∂ .
For a variety V of distributive �-monoids we denote by V∂ the class consisting of the order duals of the 

algebras in V. It is clear that V∂ is also a variety axiomatized by the duals of the axioms of V. We call a 
variety V self-dual if V = V∂ .

Lemma 2.9. Let V be a variety of distributive �-monoids axiomatized by a set Σ of equations. Then V is 
self-dual if and only if V |= ε∂ for every ε ∈ Σ.

So we obtain the following corollary, where we note that the dual of the equation from Proposition 2.7 is 
a substitution instance of the original equation.

Corollary 2.10. The varieties DLM, IdDLM, CIdDLM, and SemIdDLM are self-dual.

Most of the varieties we consider in this paper are self-dual, so in the following we will use this fact to 
shorten some of the proofs by referring to duality.

A variety V is called locally finite if every finitely generated algebra contained in V is finite. For a variety 
V of distributive �-monoids we denote by Vm the variety generated by the monoid reducts of V. Note that 
Vm is a variety of monoids.

Lemma 2.11. A subvariety V of DLM is locally finite if and only if the variety Vm generated by the monoid 
reducts of the members of V is locally finite.

Proof. First note that a variety is locally finite if and only if every finitely generated free algebra is finite.
For the right-to-left direction assume that Vm is locally finite. Then for every n ∈ N the free algebra 

FVm(n) is finite and, using the distributivity of the lattice reduct and the distributivity of products over 
meets and joins, it is straightforward to see that every member of the free algebra FV(n) corresponds to a 
meet of joins of members of FVm(n). Thus, since FVm(n) is finite, modulo the lattice axioms there are only 
finitely many different such terms. Hence also FV(n) has to be finite for every n ∈ N, i.e., V is locally finite.

For the left-to-right direction note first that, by the definition of Vm, for any monoid terms s, t we have 
V |= s ≈ t if and only if Vm |= s ≈ t, so FVm(n) can be considered as a subset of FV(n). Now suppose that V
is locally finite. Then for every n ∈ N the free algebra FV(n) is finite and thus also FVm(n) is finite. Hence 
Vm is locally finite. �
Theorem 2.12 ([22], [29, Theorem 2]). The variety of idempotent monoids is locally finite.
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Hence, by Lemma 2.11, we get some immediate corollaries.

Corollary 2.13. Every variety of idempotent distributive �-monoids is locally finite.

Since every variety of idempotent distributive �-monoids is locally finite, recursive axiomatizability yields 
the decidability of their quasi-equational theories.

Corollary 2.14. Every recursively axiomatized subvariety of IdDLM has a decidable quasi-equational theory. 
In particular the variety SemIdDLM has a decidable quasi-equational theory.

Corollary 2.15. Every subvariety of SemIdDLM is generated by its finite subdirectly irreducible (totally or-
dered) members as a quasivariety.

Thus to describe subvarieties of SemIdDLM, it is enough to consider the finite subdirectly irreducible 
members of a given subvariety.

3. Nested sums

For idempotent distributive �-monoids the product is much more restricted than in the general non-
idempotent case.

Lemma 3.1 (cf. [33,42]). For every idempotent distributive �-monoid M and a, b ∈ M we have:

(i) a ∧ b ≤ ab ≤ a ∨ b.
(ii) If e ≤ ab, then ab = a ∨ b.
(iii) If ab ≤ e, then ab = a ∧ b.
(iv) If M is totally ordered, then ab ∈ {a, b}.

Note that it follows from Lemma 3.1 that for every idempotent ordered monoid M and subset S ⊆ M , 
the set S ∪ {e} is the universe of the subalgebra Sg(S) of M and ab ∈ {a, b} for all a, b ∈ S ∪ {e}. In the 
sequel we will use this fact without explicitly mentioning it.

Lemma 3.2. Let M be a non-trivial idempotent ordered monoid with top element  and bottom element ⊥. 
Then exactly one of the following holds:

(1) For all a ∈ M we have ⊥ · a = a · ⊥ = ⊥.
(2) For all a ∈ M we have  · a = a ·  = .
(3) For all a ∈ M \{, ⊥} we have ⊥ · a = a · ⊥ = ⊥,  · a = a ·  = , ⊥ ·  = ⊥, and  · ⊥ = .
(4) For all a ∈ M \{, ⊥} we have ⊥ · a = a · ⊥ = ⊥,  · a = a ·  = , ⊥ ·  = , and  · ⊥ = ⊥.

Proof. First note that if ⊥ ·  =  · ⊥ = ⊥, then we get ⊥ · a = a · ⊥ = ⊥ for all a ∈ M , since ⊥ · a ≤ ⊥ · 
and a · ⊥ ≤  · ⊥. Similarly if  · ⊥ = ⊥ ·  = , then we get  · a = a ·  =  for all a ∈ M . Suppose 
that ⊥ ·  = ⊥ and  · ⊥ =  and let a ∈ M \{⊥, }. We show ⊥ · a = a · ⊥ = ⊥. If ⊥ < a ≤ e, then 
⊥ · a = a · ⊥ = ⊥, by Lemma 3.1. So, since M is totally ordered it suffices to consider the case e ≤ a < . 
Then, by Lemma 3.1, a ·  =  · a = . Hence, ⊥ · a = ⊥ ·  · a = ⊥ ·  = ⊥. On the other hand if 
a · ⊥ = a, then a ·  = a · ⊥ ·  = a · ⊥ = a, contradicting the fact that a ·  = . Thus, also a · ⊥ = ⊥. 
That  · a = a ·  =  for all a ∈ M \{⊥, } follows by duality. Moreover, the case where ⊥ ·  =  and 
 · ⊥ = ⊥ is symmetrical. Finally, exactly one of the four cases holds, since in every non-trivial idempotent 
ordered monoid we have ⊥ �= . �
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Example 3.3. Consider the algebras C2, C∂
2 , G3, and D3 which are defined as follows:

The algebras C2, C∂
2 , G3, and D3 are idempotent ordered monoids. The notation of C∂

2 makes sense, 
since it is isomorphic to the order dual of C2. The notation for C2 and C∂

2 also indicates that the algebras 
are commutative and have two elements. The notation for G3 indicates that it has three elements and 
that the non-identity elements are left-absorbing (French: ‘à gauche’) and similarly D3 has three elements 
and the non-identity elements are right-absorbing (French: ‘à droite’). Also, the algebras G3 and D3 are 
connected. Indeed, we have G3 ∼= 〈D3, ∗, e, ≤〉, where a ∗ b := b · a. Moreover, C2 and C∂

2 are subalgebras of 
G3 and D3 and it is easy to see that C2, C∂

2 , G3, and D3 are simple. Indeed, already their monoid reducts 
are simple. We also note that each of these four algebras corresponds to a different case of Lemma 3.2. They 
are the minimal examples of each case.

As discussed in Section 1, nested sums were introduced by Galatos in [18] and since used to provide a 
plethora of structure theorems for classes of residuated lattices (see [1,25,35,36]). They have been deployed 
especially heavily in the context of BL-algebras, where they are usually called ordinal sums [1]. Following 
the discussion in Fussner and Galatos [16], we adopt the terminology nested sum instead of ordinal sum.

Let M and N be idempotent ordered monoids, where we relabel the elements such that M ∩N = {e}. 
We define the nested sum of M and N by M �N = 〈M ∪N, ·, e ≤〉, where · is the extension of the monoid 
operations on M and N with a · b = b · a = a for all a ∈ M \{e} and b ∈ N , and ≤ is the least extension 
of the orders of M and N that satisfies for all a ∈ M \{e} and b ∈ N that a ≤ b if a ≤M e and b ≤ a if 
e ≤M a.

Intuitively this means that we replace the identity e in M with N and extend the order and product in 
such a way that the elements of N behave with respect to elements of M like e.

Example 3.4. Consider the algebras C2 and G3 of Example 3.3, where we rename the element ⊥ in C2 as 
1. The order of the nested sum G3 � C2 is drawn in Fig. 1 and it has the following multiplication table:

· e 1 ⊥ 
e e 1 ⊥ 
1 1 1 ⊥ 
⊥ ⊥ ⊥ ⊥ ⊥
    

It is no coincidence that we consider the algebras of Example 3.3. We will see later that every finite 
idempotent ordered monoid is isomorphic to a nested sum of these four algebras.

Lemma 3.5 (cf. [35, Proposition 4.8]). Let M and N be idempotent ordered monoids. Then M � N is an 
idempotent ordered monoid. Moreover, M and N embed into M �N via the inclusion maps.
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Fig. 1. The nested sum G3 � C2.

Lemma 3.6 (cf. [36, Proposition 3.3]). Let M1, M2, and M3 be idempotent ordered monoids. Then

M1 � (M2 � M3) ∼= (M1 � M2) � M3.

Since the nested sum is associative up to isomorphism, it makes sense to use the notation M1� · · ·�Mn

for nested sums of idempotent ordered monoids M1, . . . , Mn. To shorten the notation we will denote this 
nested sum also by �n

i=1 Mi and we set �0
i=1 Mi = 0, where 0 is a fixed trivial algebra. So we assume 

that for all nested sums there is a fixed relabeling of the elements. We note that M � 0 ∼= 0 � M ∼= M for 
all M, i.e., 0 can be seen as the neutral element of the nested sum operation.

Theorem 3.7. Each finite idempotent ordered monoid M is isomorphic to a unique nested sum �n
i=1 Mi of 

algebras Mi ∈ {C2, C∂
2 , G3, D3}.

Proof. We prove the claim by induction on the cardinality of M. If |M | = 1, then M ∼= �0
i=1 Mi. Suppose 

that |M | = m > 1 and the claim is already proved for all k < m. By Lemma 3.2, there are four cases:

• If M has a bottom element ⊥ such that ⊥ · a = a · ⊥ = ⊥ for all a ∈ M , then we have M ∼= C2 � L, 
where L is the subalgebra of M with the subuniverse L = M \{⊥}.

• If M has a top element  such that  · a = a ·  =  for all a ∈ M , then we have M ∼= C∂
2 �L, where 

L is the subalgebra of M with the subuniverse L = M \{}.
• If M has bottom and top elements ⊥ and  such that ⊥ ·  = ⊥ and  · ⊥ = , then we have 

M ∼= G3 � L, where L is the subalgebra of M with the subuniverse L = M \{⊥, }.
• If M has bottom and top elements ⊥ and  such that  · ⊥ = ⊥ and ⊥ ·  = , then we have 

M ∼= D3 � L, where L is the subalgebra of M with the subuniverse L = M \{⊥, }.

In each case we have |L| < m, so the claim follows by the induction hypothesis. For uniqueness note that 
in every step the first term of the nested sum is unique, yielding the uniqueness for every Mi. �

From the uniqueness of the above nested sum decomposition we obtain the following counting result:

Corollary 3.8. The number I(n) of idempotent ordered monoids with n ∈ N \{0} elements (up to isomor-
phism) is recursively defined by I(1) = 1, I(2) = 2, and

I(n) = 2 · I(n− 1) + 2 · I(n− 2) (n > 2).

Moreover,

I(n) = (1 +
√

3)n − (1 −
√

3)n√ .

2 3
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Proof. It is clear that the trivial algebra is the only 1-element algebra and that C2 and C∂
2 are the only 2-

element idempotent ordered monoids up to isomorphism. Now every idempotent ordered monoid with n > 2
elements, by Theorem 3.7, is isomorphic to a nested sum L �M where either |M | = n −1 and L ∈ {C2, C∂

2}
or |M | = n − 2 and L ∈ {G3, D3}. So, by the decomposition, it follows that I(n) = 2 · I(n − 1) +2 · I(n − 2). 
A standard calculation then yields the closed formula for I(n). �
Remark 3.9. The closed formula for I(n) is the same formula as in [21] for the number of idempotent 
residuated chains with n elements, but in [21] the number of n-element idempotent residuated chains 
should be I(n − 1), since every finite idempotent residuated chain is of the form C2 � M, where M is an 
idempotent ordered monoid, i.e., the number of idempotent residuated chains with n + 1 elements is equal 
to the number of idempotent ordered monoids with n elements. So an alternative proof of Corollary 3.8 can 
be obtained by using the result of [21] about idempotent residuated chain.

Theorem 3.10. Let M1, . . . , Mn, N1, . . . , Nn be idempotent ordered monoids and for i = 1, . . . , n let 
ϕi : Mi → Ni be a homomorphism with ϕ−1

i ({e}) = {e} for i = 1, . . . , n − 1. Then the map ϕ : �n
i=1 Mi →

�n
i=1 Ni defined by ϕ�Mi

= ϕi is a homomorphism with ker(ϕ) =
⋃n

i=1 ker(ϕi).

Proof. It suffices to consider the case n = 2. Note that the map ϕ is well defined, since ϕ1(e) = ϕ2(e) = e

and M1 ∩ M2 = {e}. First we show that ϕ is a monoid homomorphism. By definition we have ϕ(e) = e. 
Moreover, ϕ1 and ϕ2 are monoid homomorphisms, so it suffices to take a ∈ M1 \{e} and b ∈ M2, and 
therefore ab = ba = a. Since ϕ−1

1 ({e}) = {e}, we have ϕ(a) ∈ N1 \{e} and clearly ϕ(b) ∈ M2. So we get 
ϕ(ab) = ϕ(a) = ϕ(a)ϕ(b), by the definition of the nested sum. Hence ϕ is a monoid homomorphism. To 
see that ϕ is order-preserving it again suffices to consider a ∈ M1 \{e} and b ∈ M2, since both ϕ1 and ϕ2
are order-preserving. If a ≤ b, then a ≤M1 e. So, since ϕ1 is order-preserving and ϕ−1

1 ({e}) = {e}, we have 
ϕ(a) ≤N1 e, ϕ(a) �= e, and ϕ(b) ∈ N2, yielding ϕ(a) ≤ ϕ(b). Similarly if b ≤ a, we get ϕ(b) ≤ ϕ(a). Hence 
ϕ is a homomorphism. That we have ker(ϕ) = ker(ϕ1) ∪ ker(ϕ2) is immediate, since ϕ1[L1] ∩ ϕ2[L2] = {e}
and ϕ−1

1 ({e}) = {e}. �
Corollary 3.11. Let M1, . . . , Mn, N1, . . . , Nn be idempotent ordered monoids and for i = 1, . . . , n let 
ϕi : Mi → Ni be an �-monoid embedding. Then the map ϕ : �n

i=1 Mi →�n
i=1 Ni defined by ϕ�Mi

= ϕi is 
an �-monoid embedding.

Analogous to the case of similar constructions the nested sum can be generalized to infinite nested sums. 
Let C = 〈C, �〉 be a chain and let {Mc}c∈C be a family of idempotent ordered monoids Mc = 〈Mc, ·c, e, ≤c〉, 
where we relabel the elements such that Mc∩Md = {e} for all c �= d. We define the nested sum �c∈C Mc =
〈
⋃

c∈C Mc, ·, e, ≤〉, where

• the product · extends ·c for all c ∈ C such that for all c, d ∈ C with c � d and a ∈ Mc \{e}, b ∈ Md we 
have a · b = b · a = a,

• and the order ≤ is the least extension of the orders ≤c such that for all c, d ∈ C with c � d and 
a ∈ Mc \{e}, b ∈ Md we have a ≤ b if a ≤c e and b ≤ a if e ≤c a.

We set �c∈∅ Mc = 0. Note that for a non-empty subchain D of C, if we restrict the operations of �c∈C Md

to 
⋃

d∈D Md, we obtain the nested sum �d∈D Md. The finite nested sums that we considered above corre-
spond to the cases where C is a finite chain. The next lemma generalizes Lemma 3.5.

Lemma 3.12. Let C = 〈C, �〉 be a chain and let {Mc}c∈C be a family of idempotent ordered monoids. Then 
the nested sum �c∈C Mc is an idempotent ordered monoid. Moreover, Mc embeds into �c∈C Mc via the 
inclusion map for every c ∈ C.
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Proof. Note that all the properties we need to check involve at most three different algebras in the nested 
sum. Thus the claim follows from the fact that for idempotent ordered monoids M1, M2, M3 the nested 
sum M1 � M2 � M3 is an idempotent ordered monoid. �

Let M be an idempotent monoid. We consider the Green equivalence relation DM defined by letting for 
a, b ∈ M

a DM b :⇐⇒ aba = a and bab = b.

In [13] Dubreil-Jacotin proved that an idempotent monoid M is totally orderable if and only if for all 
a, b ∈ M , ab ∈ {a, b} and every equivalence class of DM contains at most two elements (see also [31,32] or 
[41] for a characterization of totally orderable idempotent semigroups).

Lemma 3.13 ([13]). Let M be an idempotent ordered monoid. For two distinct elements a, b ∈ M the following 
are equivalent:

(1) a DM b.
(2) The subalgebra Sg(a, b) of M is isomorphic to G3 or D3.
(3) ab �= ba.

Moreover, every equivalence class of DM has at most two elements.

Proof. Let a, b ∈ M be two distinct elements.
(1) ⇒ (3): Suppose contrapositively that ab = ba, then we get aba = baa = ba = bba = bab. Hence 

〈a, b〉 /∈ DM.
(3) ⇒ (2): Suppose ab �= ba. Then clearly a �= e and b �= e. So the subalgebra Sg(a, b) of M has universe 

{a, b, e}. Moreover, by Lemma 3.1, since ab �= ba, we get a < e < b or b < e < a. So Sg(a, b) is isomorphic 
to G3 or D3.

(2) ⇒ (1): Suppose that the subalgebra Sg(a, b) of M is isomorphic to G3 or D3. Then clearly aba = a

and bab = b, so a DM b.
That every equivalence class of DM has at most two elements is immediate, by Lemma 3.1 and the fact 

that for any three distinct elements of M either at least two are positive or at least two are negative, and 
thus do not generate G3 or D3. �
Lemma 3.14. Let M be an idempotent ordered monoid and let a, b, c ∈ M be three distinct elements with 
a DM b. Then ac = ca and bc = cb, and ac = a if and only if bc = b.

Proof. First note that, by Lemma 3.13, every equivalence class of DM contains at most two elements, so 
〈a, c〉, 〈b, c〉 /∈ DM and we get ac = ca and bc = cb. Suppose now that ab = a and ba = b. Then, if ac = a, 
we get bc = bac = ba = b. Conversely, if bc = b, then we get ac = abc = ab = a. For the case ab = b and 
ba = a the proof is symmetric, noting that ac = ca and bc = cb. �

The next theorem generalizes Theorem 3.7.

Theorem 3.15. Let M be an idempotent ordered monoid. Then we have M ∼=�c∈C Mc for some chain C =
〈C, �〉 and Mc ∈ {C2, C∂

2 , G3, D3}. Moreover, this nested sum is unique over the algebras {C2, C∂
2 , G3, D3}.

Proof. Let C = {[a] | a ∈ M \{e}}, where [a] = {b ∈ M | a DM b} for a ∈ M , and define the relation � on 
C by
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[a] � [b] ⇐⇒ ab = ba = a or a DM b.

By Lemma 3.1 (iv) and Lemma 3.14, � is well-defined and C = 〈C, �〉 is a chain. Define for a ∈ M \{e}, 
the algebra M[a] to be the subalgebra Sg([a]) of M with universe [a] ∪{e}. By Lemma 3.13, we get for every 
c ∈ C that Mc is isomorphic to one of the algebras in {C2, C∂

2 , G3, D3}. Moreover, by construction, we 
get M = �c∈C Mc. The nested sum is unique over the algebras {C2, C∂

2 , G3, D3}, since, by Lemma 3.13, 
for every nested sum N = �d∈D Nd over the algebras {C2, C∂

2 , G3, D3} with M = N we have for all 
a, b ∈ N \{e} that a DM b if and only if a, b ∈ Nd for some d ∈ D. This also implies that D and C are 
isomorphic. �
Remark 3.16. Similar constructions also using the Green equivalence relation D were considered in [8,7] for 
idempotent residuated chains and conic idempotent residuated lattices.

Let C, D be chains and M = �c∈C Mc, N = �d∈D Nd idempotent ordered monoids with Mc, Nd ∈
{C2, C∂

2 , G3, D3}. If ϕ : M → N is an embedding, then for every c ∈ C, ϕ(Mc) is a subalgebra of N and, 
by Lemma 3.13 and Theorem 3.15, there exists a unique d ∈ C such that ϕ(Mc) ⊆ Nd. Thus we get an 
injective map fϕ : C → D, where fϕ(c) is the unique element of D such that ϕ(Mc) ⊆ Nfϕ(c).

On the other hand if we have an order-embedding f : C → D such that for every c ∈ C, Mc is a 
subalgebra of Nf(c), then we can define the map ϕf : M → N , where ϕf (a) = a ∈ Nf(c) for a ∈ Mc.

Lemma 3.17. Let C, D be chains, M = �c∈C Mc, N = �d∈D Nd idempotent ordered monoids with 
Mc, Nd ∈ {C2, C∂

2 , G3, D3}, ϕ : M → N an embedding, and f : C → D an order-embedding such that for 
every c ∈ C, Mc is a subalgebra of Nf(c).

(1) The map fϕ : C → D is an order-embedding such that for every c ∈ C, Mc is a subalgebra of Nfϕ(c).
(2) The map ϕf : M → N is an �-monoid embedding.
(3) We have ϕfϕ = ϕ and fϕf

= f .

Proof. (1) By definition of the map fϕ, we already know that fϕ is injective and that Mc is a subalgebra 
of Nfϕ(c) for each c ∈ C. So it remains to show that fϕ is order-preserving. Let c1, c2 ∈ C such that c1 � c2
and suppose for a contradiction that f(c2) � f(c1). Then for a ∈ Mc1 \{e} and b ∈ Mc2 \{e} we have 
ϕ(a) = ϕ(a · b) = ϕ(a) · ϕ(b) = ϕ(b). Hence a = b a contradiction. Hence fϕ is order-preserving.

(2) By Corollary 3.11 and since f is an order-embedding, if c1, c2 ∈ C with c1 � c2, then the map ϕf

restricted to Mc1 �Mc2 is an �-monoid embedding into Nf(c1) �Nf(c2). So, since checking whether ϕ is an 
�-monoid embedding involves at most two terms of the nested sum, ϕf is an �-monoid embedding.

(3) is immediate from the definition. �
Corollary 3.18. Let M = �m

i=1 Mi, N = �n
j=1 Nj be idempotent ordered monoids with Mi, Nj ∈

{C2, C∂
2 , G3, D3}. Then M embeds into N if and only if there exists an order-embedding f : {1, . . . , m} →

{1, . . . , n} such that for every i ∈ {1, . . . , m} we have that Mi is a subalgebra of Nf(i).

4. Subdirectly irreducible algebras in SemIdDLM

In this section we use the nested sum decomposition to give a characterization of the subdirectly irre-
ducible members of SemIdDLM. Note that in contrast to �-groups and residuated lattices not very much is 
known about congruences and subdirectly irreducible elements in varieties of distributive �-monoids. For 
the semilinear and idempotent case the nested sum representation helps us overcome this problem.

The next lemma shows that the nested sum decomposition of a finite subdirectly irreducible idempotent 
ordered monoid does not contain any consecutive occurrences of C2 or any consecutive occurrences of C∂

2 .
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Lemma 4.1. Every finite subdirectly irreducible idempotent ordered monoid is isomorphic to a nested sum 

�n
i=1 Mi with Mi ∈ {C2, C∂

2 , G3, D3} such that if Mi = Mi+1, then Mi ∈ {G3, D3} for every i ∈
{1, . . . , n − 1}.

Proof. Suppose that M is a finite idempotent ordered monoid. Then by Theorem 3.7, there is a unique 
nested sum decomposition M ∼= �n

i=1 Mi with Mi ∈ {C2, C∂
2 , G3, D3}. Suppose contrapositively that 

Mj = Mj+1 for some j ∈ {1, . . . , n − 1} with Mj ∈ {C2, C∂
2}. Let a be the non-identity element in Mj and 

b be the non-identity element in Mj+1. Let N1 = �j−1
i=1 Mi, N2 = Mj�Mj+1, and N3 = �n

k=j+2 Mk. Then 
M = N1�N2�N3 and, by Theorem 3.10, the homomorphism ϕ : N1�N2�N3 → N1�Mj �N3 induced 
by the homomorphisms ϕ1 = idN1 , ϕ2 : N2 → Mj with ϕ2(e) = e, ϕ2(a) = ϕ2(b) = a, and ϕ3 = idN3

has kernel ker(ϕ) = ker(ϕ1) ∪ ker(ϕ2) ∪ ker(ϕ3) = ΔM ∪ {〈a, b〉, 〈b, a〉}. Moreover, by Theorem 3.10, the 
map ψ : M →�n−1

i=1 Mi, induced by the homomorphisms ψi = idMi
for i = 1, . . . , n − 1 and ϕn(c) = e for 

c ∈ Mn is a homomorphism with kernel ker(ψ) = ΔM ∪M2
n. But then ker(ϕ) ∩ ker(ψ) = ΔM , so M is not 

subdirectly irreducible. �
Lemma 4.2. Let M = �n

i=1 Mi with Mi ∈ {C2, C∂
2 , G3, D3} such that if Mi = Mi+1, then Mi ∈ {G3, D3}

for every i ∈ {1, . . . , n − 1}. Let a, b ∈ M such that a �= b, and a · b = a or b · a = a. Then Θ(a, b) = Θ(a, e).

Proof. We show the claim for a · b = a (the case b · a = a is symmetric). Since a · b = a and e · b = b we 
have Θ(a, b) ⊆ Θ(a, e). Conversely, if a ≤ e ≤ b or b ≤ e ≤ a, then we are done, since lattice congruence 
classes are convex. Otherwise using the assumptions that a �= b and a · b = a, we get that either e < b < a

or a < b < e. Without loss of generality we assume that e < b < a. So for a ∈ Mi and b ∈ Mj we get i < j, 
since both a and b are strictly positive.

If Mi ∈ {G3, D3} or Mj ∈ {G3, D3}, then there exists c ∈ Mi ∪Mj with c < e < b < a such that ac = a

and bc = c, or ca = a and cb = c, yielding 〈a, c〉 ∈ Θ(a, b) and, by convexity, 〈a, e〉 ∈ Θ(a, b).
Otherwise Mi = Mj = C∂

2 . So, by assumption, i + 1 �= j and Mi+1 �= C∂
2 , i.e., Mi+1 ∈ {C2, G3, D3}. 

But then, there exists a c ∈ Mi+1 such that c < e < b < a, ac = a, and bc = c, yielding 〈a, c〉 ∈ Θ(a, b). 
Thus, by convexity, we get 〈a, e〉 ∈ Θ(a, b). �
Theorem 4.3. Let M be a non-trivial finite idempotent distributive �-monoid. Then the following are equiv-
alent:

(1) M is subdirectly irreducible.
(2) M ∼= �n

i=1 Mi for some n ∈ N \{0} with Mi ∈ {C2, C∂
2 , G3, D3} such that if Mi = Mi+1, then 

Mi ∈ {G3, D3} for every i ∈ {1, . . . , n − 1}.
(3) Con(M) is a chain.

Proof. The implication (1) ⇒ (2) follows from Lemma 4.1 and the implication (3) ⇒ (1) is clear, since M
is finite.

For the implication (2) ⇒ (3) assume that (2) holds and consider two principal congruences Θ(a, b)
and Θ(c, d) for a, b, c, d ∈ M . If a = b or c = d, then we have Θ(a, b) = ΔM or Θ(c, d) = ΔM , yielding 
Θ(a, b) ⊆ Θ(c, d) or Θ(c, d) ⊆ Θ(a, b). So suppose that a �= b and c �= d. Then, by Lemma 3.1, a · b ∈ {a, b}
and c ·d ∈ {c, d}. Thus, by Lemma 4.2, Θ(a, b) ∈ {Θ(a, e), Θ(b, e)} and Θ(c, d) ∈ {Θ(c, e), Θ(d, e)}. Without 
loss of generality we may assume that Θ(a, b) = Θ(a, e) and Θ(c, d) = Θ(c, e). There are two cases, either 
a · c = a or a · c = c. If a · c = a, we get 〈a, c〉 = 〈a · c, e · c〉 ∈ Θ(a, e), so Θ(c, e) ⊆ Θ(a, e). If a · c = c, we get 
〈a, c〉 = 〈a ·e, a ·c〉 ∈ Θ(c, e), so Θ(a, e) ⊆ Θ(c, e). Hence we have either Θ(a, b) ⊆ Θ(c, d) or Θ(c, d) ⊆ Θ(a, b). 
So Con(M) is a chain. �

Arguing similarly as in Corollary 3.8, yields the following counting result:
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Corollary 4.4. The number S(n) of subdirectly irreducible idempotent ordered monoids with n ∈ N \{0}
elements (up to isomorphism) is recursively defined by S(1) = 1, S(2) = 2, S(3) = 4, and

S(n) = S(n− 1) + 2S(n− 2) + 2S(n− 3) (n > 3).

It follows from Theorem 4.3, that if the algebras C2 and C∂
2 do not occur in the nested sum decomposition 

of a non-trivial finite idempotent ordered monoid, then it is subdirectly irreducible. As the next example 
shows this is no longer true in the infinite case.

Example 4.5. Consider the chain ω of natural numbers and set for n ∈ ω, Mn = G3 and M = �n∈ω Mn. 
Then, if we define for n ∈ ω the congruence θn = ΔM ∪ (

⋃
m≥n Mm)2, we get 

⋂
n∈ω θn = ΔM . Hence M

is not subdirectly irreducible. Thus, there are infinite nested sums that are not subdirectly irreducible even 
though they do not have any occurrence of C2 or C∂

2 in their decomposition.

The next theorem is the correct generalization of Theorem 4.3.

Theorem 4.6. Let M = �c∈C Mc be an idempotent ordered monoid such that for all c ∈ C, Mc ∈
{C2, C∂

2 , G3, D3}. Then the following are equivalent:

(1) M is subdirectly irreducible.
(2) C contains a maximal element and for all d1, d2 ∈ C with d1 � d2 and Md1 = Md2 ∈ {C2, C∂

2} there 
exists b ∈ C such that d1 � b � d2 and Mb �= Md1 .

(3) Con(M) is a chain containing an atom.

Proof. The implication (3) ⇒ (1) is clear.
(1) ⇒ (2): Suppose that M is subdirectly irreducible. If C does not contain a maximal element, then we 

can define for every c ∈ C the congruence θc = ΔM ∪ (
⋃

c�d Md)2 such that ΔM =
⋂

c∈C θc, contradicting 
the fact that M is subdirectly irreducible. So C must contain a maximal element m and we can define the 
congruence μ = M2

m∪ΔM . Now suppose for a contradiction that there exist d1, d2 ∈ C with d1 � d2 such that 
for all b ∈ [d1, d2], Mb = C2. Then for Mb \{e} = {⊥b} the relation θ = ΔM ∪{〈⊥b1 , ⊥b2〉 | b1, b2 ∈ [d1, d2]}
is a congruence of M and clearly μ ∩ θ = ΔM , a contradiction. Dually we also get a contradiction if for all 
b ∈ [d1, d2], Mb = C∂

2 . Hence, for all d1, d2 ∈ C with d1 � d2 and Md1 = Md2 ∈ {C2, C∂
2} there exists 

b ∈ C such that d1 � b � d2 and Mb �= Md1 .
(2) ⇒ (3): Suppose that C contains a maximal element m and for all d1, d2 ∈ C with d1 � d2 and 

Md2 = Md1 ∈ {C2, C∂
2} there exists b ∈ C such that d1 � b � d2 and Mb �= Md1 . First note that 

μ = M2
m ∪ ΔM is an atom in Con(M), since Mm is simple and m is the maximal element of C. Now 

let ΘM(a1, b1) and ΘM(a2, b2) be principal congruences for a1, a2, b1, b2 ∈ M . Then, by assumption, there 
exists a finite subchain D of C and nested sum N = �d∈D Md with a1, a2, b1, b2 ∈ N such that N does not 
contain consecutive occurrences of C2 or C∂

2 , respectively. But then, by Theorem 4.3, Con(N) is a chain 
and we have either Θ(a1, b1)M ∩ N2 ⊆ ΘM(a2, b2) ∩ N2 or ΘM(a2, b2) ∩ N2 ⊆ ΘM(a1, b1) ∩ N2. Hence 
ΘM(a1, b1) ⊆ ΘM(a2, b2) or ΘM(a2, b2) ⊆ ΘM(a1, b1). Thus Con(M) is a chain containing an atom. �
Corollary 4.7. Up to isomorphism the algebras C2, C∂

2 , G3, and D3 are exactly the simple semilinear 
idempotent distributive �-monoids.

5. The lattice of subvarieties of SemIdDLM

In this section we use the nested sum representation and the characterization of the finite subdirectly 
irreducibles to investigate the lattice of subvarieties of SemIdDLM.
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Recall that a poset 〈P, ≤〉 is called well-founded if it neither contains an infinite antichain nor an infinite 
descending chain. For two algebras A and B we define the relation ≤HS (≤IS) by A ≤HS B if and only 
if A ∈ HS(B) (A ≤IS B if and only if A ∈ IS(B)). Moreover, for a variety V of finite type we denote by 
V∗ a set which contains exactly one algebra from each of the isomorphism classes of the finite subdirectly 
irreducible members of V. Then 〈V∗, ≤HS〉 and 〈V∗, ≤IS〉 are posets. The following result by Davey shows 
how to describe the lattice of subvarieties of V using 〈V∗, ≤HS〉 if V is congruence-distributive and locally 
finite, where we recall that a complete lattice D = 〈D, ∧, ∨〉 is called completely distributive if for all index 
sets I, J and {ai,j}i∈I,j∈J ⊆ D we have

∧{∨
{ai,j | j ∈ J} | i ∈ I

}
=

∨{∧
{ai,f(i) | i ∈ I} | f : I → J

}
.

Theorem 5.1 ([11, Theorem 3.3]). Let V be a congruence-distributive, locally finite variety of finite type. 
Then the lattice of subvarieties of V is completely distributive and is isomorphic to the lattice of order ideals 
of the poset 〈V∗, ≤HS〉 via the map I �→ V (I) mapping an order ideal of 〈V∗, ≤HS〉 to the subvariety of V
that it generates.

Corollary 5.2 ([36, Corollary 4.3]). Let V be a congruence-distributive, locally finite variety of finite type. 
Then the lattice of subvarieties of V is countable if and only if 〈V∗, ≤HS〉 is well-founded.

As SemIdDLM is a congruence-distributive, locally finite variety of finite type we want to use Theorem 5.1
and Corollary 5.2. By Theorem 3.7, we can assume that SemIdDLM∗ consists of the unique nested sum 
decompositions of the finite subdirectly irreducible algebras.

Lemma 5.3. Every homomorphic image of an idempotent ordered monoid M is isomorphic to a subalgebra 
of M.

Proof. We prove that for every congruence θ on M, the quotient M/θ is isomorphic to a subalgebra of 
M. For a congruence θ on M let ϕ : M → M be a map such that ϕ(e) = e and that maps every element 
to a fixed representative of its congruence class. So in particular for the congruence class of e the fixed 
representative is e. Since the congruence classes of θ are convex it is clear that ϕ is order-preserving. Let 
a, b ∈ M with ab = a. If cd = c for all c, d ∈ M with 〈a, c〉, 〈b, d〉 ∈ θ, then ϕ(a) · ϕ(b) = ϕ(a). If cd = d for 
some c, d ∈ M with 〈a, c〉, 〈b, d〉 ∈ θ, then 〈a, d〉 = 〈ab, cd〉 ∈ θ, yielding 〈a, b〉 ∈ θ. But then ϕ(a) = ϕ(b), 
so ϕ(ab) = ϕ(a) = ϕ(a)ϕ(a) = ϕ(a)ϕ(b). Hence ϕ is a homomorphism and, by the definition of ϕ we have 
ker(ϕ) = θ. Thus the claim follows by the homomorphism theorem. �
Corollary 5.4. We have 〈SemIdDLM∗, ≤HS〉 = 〈SemIdDLM∗, ≤IS〉.

Let 〈P, ≤〉 be a poset. We define the order ≤∗ on the set σ(P ) of finite sequences of P by

〈p1, . . . , pn〉 ≤∗ 〈q1, . . . , qm〉 :⇐⇒ there exists an order-embedding

f : {1, . . . , n} → {1, . . . ,m} such that

pi ≤ qf(i) for all i ∈ {1, . . . , n}.

Lemma 5.5 (Higman’s Lemma [23, Theorem 4.3]). If 〈P, ≤〉 is a well-founded poset, then 〈σ(P ), ≤∗〉 is a 
well-founded poset.

Fig. 2 depicts the order ≤IS restricted to the set {C2, C∂
2 , G3, D3}, which is clearly well-founded. The 

algebras C2 and C∂
2 are incomparable with respect to ≤IS, since they are not isomorphic, and the same 
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Fig. 2. The order ≤IS on the set {C2,C∂
2 ,G3,D3}.

holds for G3 and D3. Moreover, the algebras C2 and C∂
2 are subalgebras of the algebras G3 and D3. So we 

have C2 ≤IS G3, C2 ≤IS D3, C∂
2 ≤IS G3, and C∂

2 ≤IS D3.
Now if we consider the poset 〈σ({C2, C∂

2 , G3, D3}), ≤∗
IS〉, by Corollary 3.18, it is immediate that for all 

M, N ∈ SemIdDLM∗ such that M = M1 � · · ·�Mm, N = N1 � · · ·�Nn with Mi, Nj ∈ {C2, C∂
2 , G3, D3}

we have

M ≤IS N ⇐⇒ 〈M1, . . . ,Mm〉 ≤∗
IS 〈N1, . . . ,Nn〉. (1)

So, since restrictions of well-founded partial orders are well-founded, Lemma 5.5 yields that 〈SemIdDLM∗,

≤IS〉 is well-founded.

Theorem 5.6. The lattice of subvarieties of SemIdDLM is countably infinite.

Proof. Since 〈SemIdDLM∗, ≤IS〉 is well-founded, it follows from Corollary 5.4 and Corollary 5.2 that the 
lattice of subvarieties of SemIdDLM is countable. That it is infinite follows from Corollary 2.5 and the fact 
that, by Corollary 4.4, SemIdDLM contains infinitely many finite subdirectly irreducibles. �
Remark 5.7. By Theorem 5.1, the lattice of subvarieties of SemIdDLM is isomorphic to the lattice of order 
ideals of 〈SemIdDLM∗, ≤IS〉 via the map I �→ V (I). Moreover, by Theorem 4.3, we have a description of 
the finite subdirectly irreducible elements of SemIdDLM in terms of the nested sum decomposition and, 
by the equivalence (1), we have a description of the order ≤IS on SemIdDLM∗ in terms of the nested sum 
decomposition. Hence, we get a more or less explicit description of the lattice of subvarieties of SemIdDLM
in terms of the nested sum decomposition of its finite subdirectly irreducible members.

6. The commutative case

In this section we apply the results of the previous two sections to the commutative case to get an explicit 
description of the lattice of subvarieties of CIdDLM. Using this description we obtain a finite axiomatization 
for every subvariety of CIdDLM.2

From the nested sum decomposition and the characterization of subdirectly irreducibles we immediately 
get the following result for the commutative case:

Corollary 6.1. Let M be a finite commutative idempotent ordered monoid. Then M ∼= �n
i=1 Mi with Mi ∈

{C2, C∂
2}. Moreover, M is subdirectly irreducible if and only if for all i ∈ {1, . . . , n −1} we have Mi �= Mi+1.

Furthermore, we get the following counting result:

Corollary 6.2. There are up to isomorphism 2n−1 commutative idempotent ordered monoids of size n ≥ 1.

2 The axiomatization was suggested to the author by Nick Galatos.
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Fig. 3. The poset 〈CIdDLM∗,≤IS〉.

Proof. Note that every commutative idempotent ordered monoid of size n ≥ 1 has a unique nested sum 
representation �n−1

i=1 Mi with Mi ∈ {C2, C∂
2}. So it is clear that there are 2n−1 idempotent ordered monoids 

of size n ≥ 1. �
Remark 6.3. Again Corollary 6.2 also follows from the corresponding counting result about commutative 
idempotent residuated chains in [21]. In [12] a counting result is obtained for finite totally ordered commu-
tative idempotent semigroups.

For n > 2 we define inductively the algebras Cn and C∂
n by

Cn := C2 � C∂
n−1

C∂
n := C∂

2 � Cn−1

and we set C1 = C∂
1 = 0. Note that these are exactly the commutative idempotent ordered monoids that 

do not contain consecutive occurrences of C2 or C∂
2 . Hence, Corollary 6.1 yields an explicit characterization 

of the subdirectly irreducible idempotent ordered monoids in the commutative case:

Corollary 6.4. For every n > 1 the algebras Cn and C∂
n are up to isomorphism the only subdirectly irreducible 

commutative idempotent ordered monoids with n elements.

Remark 6.5. For n ≥ 2 the algebras Cn are exactly the distributive �-monoid reducts of the finite Sugihara 
chains of length n (for the definition of a Sugihara monoid see e.g., [38]). Indeed, the same is true for n ≥ 2
and the unique extension of Cn with an implication.

If we let CIdDLM∗ = {Cn, C∂
n | n ≥ 2} and we consider 〈CIdDLM∗, ≤IS〉, then it follows from Corol-

lary 3.18 that for 2 ≤ m < n we have Cm ≤IS Cn, C∂
m ≤IS C∂

n, Cm ≤IS C∂
n, and C∂

m ≤IS Cn. Thus the 
poset 〈CIdDLM∗, ≤IS〉 has the form represented by Fig. 3.

If for X ⊆ CIdDLM∗ we denote by ↓X the downwards closure of X under ≤IS , then it is clear from Fig. 3
that every proper order ideal of 〈CIdDLM∗, ≤IS〉 is equal to either ↓{Cn}, ↓{C∂

n} or ↓{Cn, C∂
n} for some 

n ∈ N. Thus Corollary 5.4 together with Theorem 5.1 yields the following characterization of the lattice of 
subvarieties of CIdDLM.

Theorem 6.6. The lattice of subvarieties of CIdDLM is the lattice represented by Fig. 4.

Let us recall that a class of algebras K is called a prevariety if it is closed under I, S, and P or equivalently 
K = ISP (K).
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Fig. 4. The lattice of subvarieties of CIdDLM.

Corollary 6.7. Every non-trivial proper subvariety of CIdDLM can be generated as a prevariety by two or 
fewer finite subdirectly irreducible algebras.

Corollary 6.8. Every infinite subdirectly irreducible member of CIdDLM generates CIdDLM as a quasi-variety.

Let us for every natural number n ≥ 2 rename the elements of Cn such that Cn = 〈{e, 1, . . . , n −1}, ·, e, ≤〉
with

Cn =
{
{n− 1 < · · · < 3 < 1 < e < 2 < 4 < · · · < n− 2} n even,
{n− 1 < · · · < 4 < 2 < e < 1 < 3 < · · · < n− 2} n odd,

(2)

and m · k = maxN(m, k), and dually C∂
n = 〈{e, 1, . . . , n − 1}, ·, e, ≤〉 with

C∂
n =

{
{n− 2 < · · · < 4 < 2 < e < 1 < 3 < · · · < n− 1} n even,
{n− 2 < · · · < 3 < 1 < e < 2 < 4 < · · · < n− 1} n odd,

(3)

and m · k = maxN(m, k). We define the equations σn for n ≥ 2 inductively as follows: we set σ2 := (x1 ≤ e)
and if σn = (sn ≤ tn) is already defined, we set

σn+1 :=
{
sn ∧ xn−1xn ≤ tn if n + 1 is even,
sn ≤ tn ∨ xn−1xn if n + 1 is odd.

So for n ≥ 3 we have

σn =
{
x1 ∧ x2x3 ∧ . . . ∧ xn−2xn−1 ≤ e ∨ x1x2 ∨ . . . ∨ xn−3xn−2 n even,
x1 ∧ x2x3 ∧ . . . ∧ xn−3xn−2 ≤ e ∨ x1x2 ∨ . . . ∨ xn−2xn−1 n odd.
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Lemma 6.9.

(i) Let n ≥ 2 be even. Then we have C∂
n �|= σn. Moreover, for every M ∈ CIdOM with M �|= σn and 

elements a1, . . . , an−1 ∈ M witnessing the failure of σn via the valuation xk �→ ak, the subalgebra 
Sg(a1, . . . , an−1) is isomorphic to C∂

n via the map ak �→ k.
(ii) Let n ≥ 2 be odd. Then we have Cn �|= σn. Moreover, for every M ∈ CIdOM with M �|= σn and 

elements a1, . . . , an−1 ∈ M witnessing the failure of σn via the valuation xk �→ ak, the subalgebra 
Sg(a1, . . . , an−1) is isomorphic to Cn via the map ak �→ k.

Proof. For the first part of (i) note that for n = 2 we clearly have 1 > e in C∂
2 , and for n > 2 even and 

1, . . . , n − 1 ∈ C∂
n we get, by Equation (3), that

1 ∧ 2 · 3 ∧ . . . ∧ (n− 2) · (n− 1) = 1

> e

= e ∨ 1 · 2 ∨ . . . ∨ (n− 3) · (n− 2).

Thus C∂
n �|= σn. Similarly we get for the first part of (ii) that for n ≥ 2 odd, Cn �|= σn.

Now we prove the second parts of (i) and (ii) together by induction on n ≥ 2. For n = 2 we have 
σ2 = (x1 ≤ e) and if M ∈ CIdOM and a1 ∈ M such that a1 � e, then, since M is totally ordered, we get 
a1 > e and the subalgebra Sg(a1) = 〈{e, a1}, ≤, ·, e〉 is clearly isomorphic to C∂

2 .
Now suppose that n > 2 is odd and (i) holds for n − 1. Then for σn−1 = (sn−1 ≤ tn−1), σn has the 

following form

sn−1 ≤ tn−1 ∨ xn−2xn−1

Let M ∈ CIdOM and a1, . . . , an−1 ∈ M witnessing the failure of σn. Then, since M is totally ordered we 
have

sMn−1(a1, . . . , an−1) > tMn−1(a1, . . . , an−1) ∨ an−2an−1

Hence we get

sMn−1(a1, . . . , an−1) > tMn−1(a1, . . . , an−1)

So the elements a1, . . . , an−2 witness the failure of σn−1 via the map xk �→ ak and the induction hypothesis 
yields that Sg(a1, . . . , an−2) is isomorphic to C∂

n−1 via the map ak �→ k. Thus, by Equation (3), we get that

Sg(a1, . . . , an−2) = {an−3 < · · · < a4 < a2 < e < a1 < a3 < · · · < an−2}

and ai · aj = amax(i,j) for i, j ∈ {1, . . . , n − 1}. Now since sn−1 is a meet containing x1 we get

an−2 ≥ a1 > an−2an−1,

yielding e > an−1 and an−2an−1 = an−1. Thus, since an−2 · an−3 = an−2, we get an−1 < an−3 and, by 
Equation (2), Sg(a1, . . . , an−1) is isomorphic to Cn via the map ak �→ k.

The case where n is even and (ii) holds for n − 1 is very similar. �
For n ≥ 2 and two disjoint sets {x1, . . . , xn−1} and {y1, . . . , yn−1} of distinct variables let σn(x1, . . . ,

xn−1) = (sn ≤ tn) and σ∂
n(y1, . . . , yn−1) = (t∂n ≤ s∂n), and define γn := (snt∂n ≤ tns

∂
n). Note that s∂n and t∂n

are strictly speaking not the duals of sn and tn, since we change the variables.



S. Santschi / Journal of Pure and Applied Algebra 228 (2024) 107627 19
Theorem 6.10.

(1) If n ≥ 2 is even, then the equations σn and σ∂
n axiomatize the subvarieties V (Cn) and V (C∂

n), respec-
tively, relative to CIdDLM.

(2) If n ≥ 2 is odd, then the equations σn and σ∂
n axiomatize the subvarieties V (C∂

n) and V (Cn), respectively, 
relative to CIdDLM.

(3) For n ≥ 2 the equation γn+1 axiomatizes the subvariety V (Cn, C∂
n) relative to CIdDLM.

Proof. First note that it follows from Theorem 6.6 that if an equation holds in Cn but not in C∂
n, then it 

axiomatizes V (Cn) and, dually, if an equation holds in C∂
n but not in Cn, then it axiomatizes V (C∂

n). Thus 
(1) and (2) follow immediately from Lemma 6.9 and the fact that C∂

n is the order dual of Cn. For (3) note 
that if two varieties V1 and V2 are axiomatized by sets of equations Σ1 and Σ2, respectively, then V1 ∩V2 is 
axiomatized by Σ1 ∪ Σ2. Thus V (Cn, C∂

n) = V (Cn+1) ∩ V (C∂
n+1) is axiomatized by the set {σn+1, σ∂

n+1}. 
But also for every idempotent ordered monoid M and a, b, c, d ∈ M we have that a ≤ b and c ≤ d implies 
ac ≤ bd. So, by definition of γn+1, we get that V (Cn, C∂

n) |= γn+1. On the other hand if we substitute in 
γn+1 the variables y1, . . . , yn by e, we obtain σn+1 and if we substitute the variables x1, . . . , xn by e, we 
obtain σ∂

n+1. So γn+1 axiomatizes V (Cn, C∂
n) relative to CIdDLM. �

Remark 6.11. It follows from Theorem 6.6 and the fact that for every n ∈ N \{0} we have V (Cn) = ISP (Cn)
that every finite member of CIdDLM embeds into a power of Cn for some n ∈ N \{0}. Moreover, clearly 
every finite distributive �-monoid with an absorbing bottom element is the residual-free reduct of a fully 
distributive residuated lattice.3 Thus the class of Sugihara monoids and the class of commutative idem-
potent fully distributive residuated lattices satisfy the same universal first-order sentences in the language 
{∧, ∨, ·, e}. This slightly generalizes Corollary 25 of [38]. Furthermore it follows from Theorem 6.10 that 
non-isomorphic finite Sugihara chains can be distinguished by equations in the language {∧, ∨, ·, e}.

7. Amalgamation

In this section we use the nested sum representation to study the amalgamation property for idempotent 
ordered monoids.

Let K be a class of algebras of the same type. A span in K is a pair 〈i1 : A ↪→ B, i2 : A ↪→ C〉 of 
embeddings between algebras A, B, C ∈ K. The class K has the amalgamation property if for every span 
〈i1 : A ↪→ B, i2 : A ↪→ C〉 in K there exists a D ∈ K and embeddings j1 : B ↪→ D, j2 : C ↪→ D such that 
j1 ◦ i1 = j2 ◦ i2, i.e., the following diagram commutes:

B

A D

C

i1 j1

i2 j2

The triple 〈D, j1, j2〉 is called an amalgam of the span. We say that K has the strong amalgamation property
if for every span 〈i1 : A ↪→ B, i2 : A ↪→ C〉 there exists an amalgam 〈D, j1, j2〉 such that j1[B] ∩ j2[C] =
(j1 ◦ i1)[A] which we call a strong amalgam of the span.

Proposition 7.1. The variety DLM does not have the amalgamation property.

3 A residuated lattice is called fully distributive if its residual-free reduct is a distributive �-monoid (see e.g., [6]).
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Proof. The set of invertible elements of a distributive �-monoid gives rise to a subalgebra which is the 
inverse-free reduct of an �-group. Suppose for a contradiction that DLM has the amalgamation property. 
Then every span of inverse-free reducts of �-groups has an amalgam and, by taking the subalgebra of 
invertible elements of the amalgam, we can assume that this amalgam is the inverse-free reduct of an �-
group, since monoid homomorphisms map invertible elements to invertible elements. Hence, it follows that 
the variety of �-groups has the amalgamation property, contradicting [37, Theorem 3.1]. �

It is well-known that the variety of distributive lattices does not have the strong amalgamation property. 
We will now show that this failure of the strong amalgamation property is inherited by every non-trivial 
subvariety of DLM.

Lemma 7.2. The only two atoms in the lattice of subvarieties of DLM are V (C2) and V (C∂
2 ). Moreover, 

V (C2) consists of all algebras 〈D, ∧, ∨, ∧, e〉, where 〈D, ∧, ∨〉 is a distributive lattice with greatest element e, 
and V (C∂

2 ) consists of all algebras 〈D, ∧, ∨, ∨, e〉, where 〈D, ∧, ∨〉 is a distributive lattice with least element 
e.

Proof. Let V be a non-trivial subvariety of DLM. Then there is an M ∈ V that is non-trivial, i.e., there is 
an a0 ∈ M with a0 �= e. But then either a0 ∧ e < e or a0 ∨ e > e. If a = a0 ∧ e < e, then we consider the 
subalgebra A of M generated by a. We have A = {an | n ∈ N} and an+1 ≤ an, so the map ϕ : A → C2

defined by ϕ(e) = e and ϕ(an) = ⊥ for n > 0 is a homomorphism. Hence C2 ∈ V. Otherwise if a0 ∨ e > e

we consider a = a0 ∨ e and, arguing dually, we get C∂
2 ∈ V.

The second part follows from the fact that C2 = 〈{⊥, e}, ∧, ∨, ∧, e〉, where 〈{⊥, e}, ∧, ∨〉 is the two 
element distributive lattice, and V (C2) = ISP (C2). Dually the claim for V (C∂

2 ) follows. �
Proposition 7.3. No non-trivial subvariety of DLM has the strong amalgamation property.

Proof. Let V be a non-trivial subvariety of DLM. By Lemma 7.2, we may assume, without loss of generality, 
that V (C∂

2 ) ⊆ V, otherwise V (C2) ⊆ V and the argument is dual. We consider the three-element chain C =
〈{0, 1, 2}, ∧, ∨, ∨, 0〉 with 0 < 1 < 2, and the four-element distributive lattice D = 〈{⊥, a, b, }, ∧, ∨, ∨, ⊥〉
with ⊥ < a < , ⊥ < b < , and a and b incomparable. Then, by Lemma 7.2, D, C ∈ V. Define the maps 
ϕ : C → D by ϕ(0) = ⊥, ϕ(1) = a, ϕ(2) = , and ψ : C → D by ψ(0) = ⊥, ψ(1) = b, ψ(2) = . It is easy to 
see that ϕ and ψ are �-monoid embeddings. Moreover, it is well-known (see e.g., [15]) that the span 〈ϕ, ψ〉
considered as a span in the variety of distributive lattices does not have a strong amalgam, so it does not 
have a strong amalgam in V, since the lattice reduct of a strong amalgam in V would be a strong amalgam 
in the variety of distributive lattices. �

Let S = 〈i1 : L ↪→ M, i2 : L ↪→ N〉 and S ′ = 〈j1 : L′ ↪→ M′, J2 : L′ ↪→ N′〉 be spans of idempotent 
ordered monoids. We say that S restricts to S ′ if the algebras L′, M′, and N′ are subalgebras of L, M, and 
N, respectively, and i1�L′ = j1 and i2�L′ = j2. Moreover, we extend this notion in the obvious way to the 
case where the algebras L′, M′, and N′ embed into L, M, and N, respectively, by identifying L′, M′, and 
N′ with the images of the respective embeddings.

Recall from Section 5 that C2 embeds into G3 and D3 via the obvious inclusion maps. Moreover, clearly 
these are the only possible embeddings from C2 into G3 and D3, respectively. We denote the resulting span 
by S1 := 〈C2 ↪→ G3, C2 ↪→ D3〉 and we define the span S2 := 〈C∂

2 ↪→ G3, C∂
2 ↪→ D3〉 dually. From here on 

we will denote the top element of G3 by  and the top element of D3 by ∗. We call a span 〈i1 : L ↪→ M, 
i2 : L ↪→ N〉 of idempotent ordered monoids a compatible span if it does not restrict to any of the spans S1

or S2 up to permuting the embeddings in the span.
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Proposition 7.4. Let L, M, N be idempotent ordered monoids. Then every compatible span 〈i1 : L ↪→ M, 
i2 : L ↪→ N〉 has an amalgam in the class IdOM of idempotent ordered monoids. In particular, every span of 
commutative idempotent ordered monoids has a strong amalgam.

Proof. Let A, B, C be chains, L = �a∈A La, M = �b∈B Mb, N = �c∈C Nc such that La, Mb, Nc ∈
{C2, C∂

2 , G3, D3}, and let 〈i1 : L → M, i2 : L → N〉 be a compatible span. Then, by Lemma 3.17, there 
are corresponding order-embeddings f : A → B and g : A → C. Without loss of generality we may assume 
that A = B ∩ C and f, g are the inclusion maps. By [14, Section 9.2], there exists an extension D of the 
chains B and C with D = B ∪ C. We define for every a ∈ A the algebra Pa as the largest algebra of the 
set {Ma, Na}. Note that the algebras Ma and Na cannot be two different algebras of the same cardinality, 
since clearly {Ma, Na} = {C2, C∂

2} is not possible because La is a non-trivial subalgebra of Ma and Na, 
and {Ma, Na} = {G3, D3} would contradict the assumption that the span is compatible. Hence Pa is well-
defined for each a ∈ A and we get, in particular, that both Ma and Na embed into Pa and the embeddings 
agree on the images of La under i1 and i2. Moreover, we define the algebras Pd for d ∈ D \A by

Pd =
{

Md if d ∈ B \A,

Nd if d ∈ C \A.

Then, by construction, for every b ∈ B, Mb embeds into Pb and for every c ∈ C, Nc embeds into Pc. Define 
P = �d∈D Pd. Then, by construction, Lemma 3.17 yields that the maps j1 : M ↪→ P and j2 : N ↪→ P
corresponding to the inclusions B ↪→ D and C ↪→ D are embeddings and together with the algebra P they 
form an amalgam for the span.

If L, M, and N are commutative, then the algebras G3 and D3 cannot occur in their e-sum decomposition, 
i.e., the span is always compatible. Moreover, in the construction of P we have Pa = Na = Ma for every 
a ∈ A, so P is a strong amalgam. �
Corollary 7.5. The class CIdOM of commutative idempotent ordered monoids has the strong amalgamation 
property.

The next example shows that the amalgam constructed in the proof of Proposition 7.4 is not necessarily 
a strong amalgam and even if we restrict to compatible spans a strong amalgam does not always exist.

Example 7.6. Consider the span 〈C2 ↪→ G3, C2 ↪→ G3〉. Clearly it is compatible, but it does not have a 
strong amalgam in IdOM. To see this let 〈M, j1 : G3 → M, j2 : G3 → M〉 be an amalgam of the span in 
IdOM. Then, by Lemma 3.17, j1(G3) and j2(G3) are components of the nested sum decomposition of M
isomorphic to G3. But we have j1(⊥) ∈ j1(G3) ∩ j2(G3), so we get j1(G3) = j2(G3), i.e., the amalgam is 
not strong.

Note that every span 〈i1 : 0 ↪→ L, i2 : 0 ↪→ M〉 is compatible. So we get the following result.

Corollary 7.7. The class IdOM of idempotent ordered monoids has the joint embedding property, i.e., each 
pair L, M of idempotent ordered monoids embeds into a common idempotent ordered monoid N.

The next proposition shows that being compatible is not only a sufficient condition for spans of idempotent 
ordered monoids to have an amalgam in the class of ordered monoids but also a necessary condition.

Proposition 7.8. The spans S1 and S2 do not have an amalgam in the class OM of ordered monoids.
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Proof. Suppose for a contradiction that there exists an amalgam E in the class of ordered monoids for the 
span S1 with embeddings j1 : G3 ↪→ E and j2 : D3 ↪→ E, then, either j1() ≤ j2(∗) or j2(∗) ≤ j1(). If 
we have j1() ≤ j2(∗), then we get

j1() = j1( · ⊥) = j1() · j1(⊥)

= j1() · j2(⊥)

≤ j2(∗) · j2(⊥)

= j2(∗ · ⊥)

= j2(⊥)

= j1(⊥).

So, since j1 is order-preserving, j1() = j1(⊥), contradicting the injectivity of j1. Similarly j2(∗) ≤ j1(), 
yields j2(∗) = j2(⊥) which is again a contradiction. Hence S1 does not have an amalgam in OM. For the 
span S2 the claim follows by duality. �
Corollary 7.9. The classes OM and IdOM do not have the amalgamation property.

From Proposition 7.8 and Proposition 7.4 we get the following result.

Theorem 7.10. For a span S = 〈i1 : L ↪→ M, i2 : L ↪→ N〉 of idempotent ordered monoids the following are 
equivalent:

(1) S has an amalgam in OM.
(2) S has an amalgam in IdOM.
(3) S is compatible.

So to check whether a span of idempotent ordered monoids has an amalgam in the class of ordered 
monoids it suffices to check if it restricts (up to permuting the embeddings in the span) to one of the spans 
S1 and S2. The next proposition shows that the spans S1 and S2 do also not have an amalgam in the bigger 
classes SemDLM and IdDLM.

Proposition 7.11. The spans S1 and S2 do not have an amalgam in the varieties SemDLM and IdDLM.

Proof. For SemDLM suppose for a contradiction that the span S1 has an amalgam E ∈ SemDLM with 
inclusion maps G3 ↪→ E and D3 ↪→ E. Then, since E is semilinear, we have without loss of generality 
E =

∏
i∈I Ei for a family of ordered monoids {Ei}i∈I . So there is an i ∈ I and there are homomorphisms 

j1 : G3 → Ei and j2 : D3 → Ei such that j1�C2= j2�C2 and j1(e) �= j1(⊥), so also j2(e) �= j2(⊥). But, since 
G3 and D3 are simple, j1 and j2 are embeddings. Hence Ei is an amalgam for the span which is an ordered 
monoid, contradicting Proposition 7.8. For the span S2 the claim follows by duality.

For IdDLM suppose again for a contradiction that the span S1 has an amalgam E ∈ IdDLM with embed-
dings j1 : G3 ↪→ E and j2 : D3 ↪→ E and E ∈ IdDLM. Then j1(e) ≤ j1(), j2(∗), so

j1() · j2(∗) = j1() ∨ j2(∗) = j2(∗) · j1(),

by Lemma 3.1 (ii). Thus we get

j1() · j2(∗) · j2(⊥) = j2(∗) · j1() · j1(⊥) = j2(∗) · j1().
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But we also have

j1() · j2(∗) · j2(⊥) = j1() · j2(⊥) = j1() · j1(⊥) = j1().

Hence j1() ∨ j2(∗) = j1(), i.e., j2(∗) ≤ j1(), and as in the proof of Proposition 7.8 we get a 
contradiction. For the span S2 the claim follows by duality. �
Corollary 7.12. No subvariety of SemDLM or IdDLM that contains the algebras G3 and D3 has the amalga-
mation property. In particular, the varieties SemDLM, SemIdDLM, and IdDLM do not have the amalgamation 
property.

The next example shows that the spans S1 and S2 have amalgams in the variety DLM.

Example 7.13. Consider the chain 3 = 〈{0, 1, 2}, ≤〉 with the natural order 0 < 1 < 2 and the distributive 
�-monoid End(3) = 〈End(3), ∧, ∨, ◦, id3〉, where we recall that End(3) is the set of order-preserving maps 
on 3, ◦ is composition, and meet and join are defined point-wise. Let 〈k0, k1, k2〉 denote the member of 
End(3) that maps 0 to k0, 1 to k1, and 2 to k2, e.g., 〈0, 1, 2〉 denotes id3. We define j1 : G3 → End(3)
by j1(⊥) = 〈0, 0, 2〉, j1(e) = id3, j1() = 〈1, 1, 2〉 and j2 : D3 → End(3) by j2(⊥) = 〈0, 0, 2〉, j2(e) = id3, 
j2(∗) = 〈0, 2, 2〉. Then 〈End(3), j1, j2〉 is an amalgam of the span S1 in DLM. To see this first note that 
clearly both maps are order-preserving and all elements in the images of j1 and j2 are idempotent. Hence, it 
remains to show that the maps preserve the products of ⊥,  and ⊥, ∗, respectively. For this we calculate:

j1() ◦ j1(⊥) = 〈1, 1, 2〉 ◦ 〈0, 0, 2〉 = 〈1, 1, 2〉 = j1() = j1(⊥),

j1(⊥) ◦ j1() = 〈0, 0, 2〉 ◦ 〈1, 1, 2〉 = 〈0, 0, 2〉 = j1(⊥) = j1(⊥),

j2(∗) ◦ j2(⊥) = 〈0, 2, 2〉 ◦ 〈0, 0, 2〉 = 〈0, 0, 2〉 = j2(⊥) = j2(∗⊥),

j2(⊥) ◦ j2() = 〈0, 0, 2〉 ◦ 〈0, 2, 2〉 = 〈0, 2, 2〉 = j2(∗) = j2(⊥∗).

Therefore, 〈End(3), j1, j2〉 is an amalgam for S1 in DLM and, by duality, also S2 has an amalgam in DLM.

An algebra A is said to have the congruence extension property if for every subalgebra B of A and 
congruence Ψ ∈ Con(B) there exists a congruence Θ ∈ Con(A) such that Ψ = B2 ∩ Θ. We say that 
a variety V has the congruence extension property if all of its members have the congruence extension 
property.

Proposition 7.14. The algebras C4, C∂
4 , M �N, and N �M for M ∈ {C2, C∂

2}, N ∈ {G3, D3} do not have 
the congruence extension property.

Proof. We first prove that C∂
4 does not have the congruence extension property (the proof for C4 is dual). 

Recall that the algebra C∂
4 = 〈{2, e, 1, 3}, ·, e, ≤〉 with 2 < e < 1 < 3. Consider the subalgebra M =

Sg({e, 1, 3}) of C∂
4 . The order on M is e < 1 < 3. Clearly the relation Ψ = ΔM ∪ {〈1, 3〉, 〈3, 1〉} is a non-

trivial congruence of M. Let Θ be the congruence of C∂
4 generated by Ψ. Then we have 〈2, 3〉 = 〈2 ·1, 2 ·3〉 ∈ Θ. 

Hence, by the convexity of the congruence classes, we get Θ = C∂
4 × C∂

4 .
For C2 � G3 with the bottom element of C2 renamed to 1 consider the subalgebra M = Sg(1, ⊥, e). 

The order on M is 1 < ⊥ < e and the relation Ψ = Δ2 ∪ {〈1, ⊥〉, 〈⊥, 1〉} is a congruence on M. Let Θ
be the congruence on C2 � G3 generated by Ψ. Then we have 〈1, 〉 = 〈 · 1,  · ⊥〉 ∈ Θ. Thus, by the 
convexity of the congruence classes, we get Θ = (C2 ∪G3) × (C2 ∪G3). The proofs for the other cases are 
very similar. �
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Corollary 7.15. DLM, IdDLM, SemDLM, SemIdDLM, and CIdDLM do not have the congruence extension 
property.

Lemma 7.16. A locally finite congruence-distributive variety V has the congruence extension property if and 
only if all finite subdirectly irreducible algebras in V have the congruence extension property.

Proof. By [34, Proposition 21], V has the congruence extension property if and only if all finitely generated 
algebras in V have the congruence extension property. Since we assume V to be locally finite, this is equivalent 
to all finite algebras in V having the congruence extension property. But all finite algebras in V embed into 
finite products of finite subdirectly irreducible algebras and, since V is congruence-distributive, it follows, 
by [28, Proposition 3.2], that the congruence extension property is preserved by finite products. So V having 
the congruence extension property is equivalent to all finite subdirectly irreducible algebras in V having the 
congruence extension property. �
Proposition 7.17. Let V be a subvariety of SemIdDLM. Then V has the congruence extension property if and 
only if V is a subvariety of V (C3, C∂

3 , G3, D3).

Proof. For the right-to-left direction note that up to isomorphism the subdirectly irreducible members 
of V (C3, C∂

3 , G3, D3) are C2, C∂
2 , C3, C∂

3 , G3, and D3 which clearly all have the congruence extension 
property. So, by Lemma 7.16, we get that V (C3, C∂

3 , G3, D3) has the congruence extension property. The 
left-to-right direction follows from Proposition 7.14 together with the fact that, by Theorem 4.3 and Corol-
lary 4.4, any bigger finite subdirectly irreducible algebra in SemIdDLM contains one of the algebras from 
Proposition 7.14 as a subalgebra. �
Corollary 7.18. Let V be a subvariety of CIdDLM. Then V has the congruence extension property if and only 
if V is a subvariety of V (C3, C∂

3 ).

We call a variety V residually small if there is an upper bound on the cardinality of the universes of the 
subdirectly irreducible algebras in V.

Lemma 7.19 ([27, Corollary 2.11]). Let V be a congruence-distributive variety. If V is residually small and 
has the amalgamation property, then it has the congruence extension property.

Recall that a variety is called finitely generated if it is generated by a finite set of finite algebras.

Proposition 7.20. No finitely generated subvariety of DLM that contains any of the algebras. C4, C∂
4 , M �N, 

or N � M for M ∈ {C2, C∂
2}, N ∈ {G3, D3} has the amalgamation property.

Proof. Let V be a finitely generated subvariety of DLM that contains one of the algebras. Then, by Propo-
sition 7.17, V does not have the congruence extension property. Moreover, since V is finitely generated, it 
follows from Corollary 2.5 that V∗ contains only finitely many subdirectly irreducible algebras, yielding that 
it is residually small. Thus the claim follows from Lemma 7.19. �
Corollary 7.21. No proper subvariety of CIdDLM that contains C4 or C∂

4 has the amalgamation property.

Let V be a variety. We denote by VFSI the class of finitely subdirectly irreducible members of V, i.e., 
VFSI contains all algebras A ∈ V such that ΔA is meet-irreducible in Con(A). Moreover, we say that a 
class of algebras K has the one-sided amalgamation property if for every span 〈i1 : A → B, i2 : A → C〉
in V there exists an algebra D ∈ K, a homomorphism j1 : B → D, and an embedding j2 : C → D such 
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that j1 ◦ i1 = j2 ◦ i2. The triple 〈D, j1, j2〉 is called a one-sided amalgam of the span. We note that the 
amalgamation property implies the one-sided amalgamation property.

Lemma 7.22 (Relativized Jónsson’s Lemma [10, Lemma 1.5.]). Let K be a class of algebras. Then Q(K)FSI ⊆
ISPU (K). In particular, if K is a finite set of finite algebras and at least one member of K has the trivial 
algebra as a subalgebra, then Q(K)FSI ⊆ IS(K).

Theorem 7.23 ([17, Corollary 3.5.]). Let V be a congruence-distributive variety with the congruence extension 
property such that VFSI is closed under subalgebras. Then V has the amalgamation property if and only if 
VFSI has the one-sided amalgamation property.

Lemma 7.24. For n ∈ {2, 3} we have V (Cn)FSI = IS(Cn), V (C∂
n)FSI = IS(C∂

n), V (Cn, C∂
n)FSI =

IS(Cn, C∂
n), V (G3)FSI = IS(G3), V (D3)FSI = IS(D3), and V (G3, D3)FSI = IS(G3, D3).

Proof. For the left-to-right inclusions note that all the varieties are generated by the respective algebras as 
quasi-varieties, by Corollary 2.5 and Lemma 5.3. Thus the left-to-right inclusion follows from Lemma 7.22.

For the right-to-left inclusions note that for n ∈ {2, 3} every member of IS(Cn, C∂
n) is either trivial or 

subdirectly irreducible. The same is also true for IS(G3), IS(D3) and IS(G3, D3). �
Proposition 7.25. None of the varieties V (M, N) generated by distinct algebras M, N ∈ {C3, C∂

3 , G3, D3}
has the amalgamation property.

Proof. For V (G3, D3) the claim is immediate from Proposition 7.11. Otherwise note that, by Proposi-
tion 7.17, in any case the variety has the congruence extension property and, by Lemma 7.24, we have that 
V (M, N)FSI = IS(M, N) is closed under subalgebras.

For V (C3, C∂
3 ) we have that IS(C3, C∂

3 ) consists up to isomorphism of the algebras 0, C2, C∂
2 , C3, 

and C∂
3 . Suppose for a contradiction that the variety V (C3, C∂

3 ) has the amalgamation property and consider 
the span 〈i1 : C∂

2 ↪→ C3, i2 : C∂
2 ↪→ C∂

3 〉. Then it follows from Theorem 7.23 that there exists an algebra 
D ∈ {0, C2, C∂

2 , C3, C∂
3}, a homomorphism j1 : C3 → D, and an embedding j2 : C∂

3 → D such that j1 ◦ i1 =
j2◦i2. Since j2 is an embedding, we must have D = C∂

3 and j2 = idC∂
3
. If we use the notation C∂

2 = {e < }, 
C3 = {2 < e < 1} and C∂

3 = {1∂ < e < 2∂}, we get

2∂ = j2(2∂) = j2(i2()) = j1(i1()) = j1(1).

Thus we also get

j1(2) = j1(2 · 1) = j1(2)j1(1) = j1(2) · 2∂ = 2∂ ,

yielding j1(e) = e < 2∂ = j1(2), contradicting the fact that homomorphisms are order-preserving.
For V (M, N) with M ∈ {G3, D3} and N ∈ {C3, C∂

3} we note that the class IS(M, N) consists up to 
isomorphisms of the algebras 0, C2, C∂

2 , M, and N. Suppose for a contradiction that V (M, N) has the 
amalgamation property and consider the span 〈i1 : C2 ↪→ M, i2 : C2 ↪→ N〉. Then, by Theorem 7.23, there 
exists an algebra D ∈ {0, C2, C∂

2 , M, N}, a homomorphism j1 : M → D, and an embedding j2 : N → D
such that j1 ◦ i1 = j2 ◦ i2. Because j2 is an embedding we get D = N, by cardinality reasons. But also, since 
M is simple and not isomorphic to N, the map j1 needs to be constant with j2(M) = {e}, contradicting 
j1 ◦ i1 = j2 ◦ i2. �
Proposition 7.26. The varieties V (C2), V (C∂

2 ), V (C2, C∂
2 ), V (C3), V (C∂

3 ), V (G3), and V (D3) have the 
amalgamation property.
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Proof. To shorten the notation we let U = V (C2), V = V (C2, C∂
2 ), and W = V (C3). By Lemma 7.24, 

UFSI = IS(C2), VFSI = IS(C2, C∂
2 ), and WFSI = IS(C3) are closed under subalgebras. So, by Theorem 7.23, 

it suffices to show that UFSI, VFSI, and WFSI have the one-sided amalgamation property.
For U note that UFSI = IS(C2) consists up to isomorphism of the algebras C2 and 0. Thus every span 

in UFSI has C2 with the respective inclusion maps as a one-sided-amalgam. So UFSI has the amalgamation 
property.

For V note that up to isomorphism VFSI = IS(C2, C∂
2 ) consists of the algebras 0, C2, and C∂

2 . Thus 
the only spans in VFSI for which a one-sided amalgam is not clear are the spans 〈i1, i2〉 and 〈i2, i1〉, where 
i1 : 0 ↪→ C2 and i2 : 0 ↪→ C∂

2 are the obvious embeddings. But for the span 〈i1, i2〉 the maps f : C2 → C∂
2 , 

f(e) = f(⊥) = e and idC∂
3

form a one-sided amalgam, and for the span 〈i2, i1〉 the maps idC2 and g : C∂
2 →

C2, g(e) = g() = e form a one-sided amalgam. Thus VFSI has the one-sided amalgamation property.
For W again note that WFSI = IS(C3) consists up to isomorphism of the algebras 0, C2, C∂

2 , and C3. Let 
〈i1 : A ↪→ B, i2 : A ↪→ C〉 be a span in WFSI, i.e., without loss of generality A, B, C ∈ {0, C2, C∂

2 , C3}. Then 
the inclusion maps j1 : B ↪→ C3 and j2 : C ↪→ C3 form an amalgam, since for every A ∈ {0, C2, C∂

2 , C3}
there exists a unique embedding into C3. Hence WFSI has the amalgamation property.

For V (C∂
2 ) and V (C∂

3 ) the claim follows by duality and for V (D3) and V (G3) the proofs are very similar 
to the proof for V (C3), also using the uniqueness of embeddings. �

Combining Propositions 7.20, 7.25, and 7.26 we get the following characterization for amalgamation in 
non-trivial finitely generated subvarieties of SemIdDLM.

Theorem 7.27. The non-trivial finitely generated subvarieties of SemIdDLM that have the amalgamation 
property are V (C2), V (C∂

2 ), V (C2, C∂
2 ), V (C3), V (C∂

3 ), V (G3), and V (D3).

Corollary 7.28. The non-trivial proper subvarieties of CIdDLM with the amalgamation property are V (C2), 
V (C∂

2 ), V (C2, C∂
2 ), V (C3), and V (C∂

3 ).

Let us define for n ∈ N the algebras

G2n+1 :=
n

�
i=1

G3 and D2n+1 :=
n

�
i=1

D3.

Note that G1 = D1 = 0. Moreover, for n > 1 we assume that G2n+1 = {⊥1, . . . , ⊥n, e, n, . . . , 1}, where 
for i ∈ {1, . . . , n} the elements ⊥i and i are the bottom and top element of the i-th copy of G3, respectively. 
Analogously we assume that for n > 1 we have D2n+1 = {⊥1, . . . , ⊥n, e, n, . . . , 1}.

Lemma 7.29. If V is a subvariety of SemIdDLM that is not finitely generated, then CIdDLM ⊆ V.

Proof. Suppose that V is a subvariety of SemIdDLM that is not finitely generated. Then, since V is locally 
finite, there exists an indexed family of finite subdirectly irreducible algebras {Mi}i∈N with |Mi| < |Mi+1|
for each i ∈ N, i.e., the family contains finite subdirectly irreducible algebras which strictly increase in size. 
By Proposition 2.6, each subdirectly irreducible member of V is totally ordered. So let c(Mi) be the number 
of components in the nested sum decomposition of Mi. Note that, since the biggest possible components 
are G3 and D3, we have |Mi| ≤ 1 + 2c(Mi). Therefore, without loss of generality we may also assume that 
also c(Mi) < c(Mi+1) for each i ∈ N. Thus, by Theorem 4.3 and the fact that C2, C∂

2 ≤IS G3, D3, for 
every n ≥ 1 there exists an i ∈ N such that Cn ≤IS Mi. Hence, CIdDLM ⊆ V, by Theorem 6.6. �
Proposition 7.30. Let V be a subvariety of SemIdDLM. If V is not finitely generated and each span of totally 
ordered members has an amalgam in V, then V ∈ {CIdDLM, V ({G2n+1 | n ∈ N}), V ({D2n+1 | n ∈ N})}.
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Proof. Since V is not finitely generated, by Lemma 7.29, we have CIdDLM ⊆ V. If V �= CIdDLM, then not 
all members of V are commutative. Hence either G3 ∈ V or D3 ∈ V, but not both, by Proposition 7.11. 
Assume, without loss of generality, that G3 ∈ V. Then every finite subdirectly irreducible member of V
is isomorphic to a finite nested sum of the algebras C2, C∂

2 , G3, so clearly V ⊆ V ({G2n+1 | n ∈ N}), by 
Lemma 3.17. For the reverse inclusion we prove by induction that for every n ∈ N we have G2n+1 ∈ V. 
Before we start the induction note that, since CIdDLM ⊆ V, we have C3 ∈ V and, by assumption, the span 
〈i1 : C∂

2 ↪→ C3, i2 : C∂
2 ↪→ G3〉 has an amalgam 〈A, j1 : C3 → A, j2 : G3 → A〉 in V. Moreover, using the 

notation C3 = {2 < e < 1} we get

j1(2) · j2(⊥) = j1(2) · j1(1) · j2(⊥) = j1(2) · j2() · j2(⊥) = j1(2) · j2() = j1(2).

But, since j1(2), j2(⊥) ≤ e, by Lemma 3.1, we have j1(2) · j2(⊥) = j1(2) ∧ j2(⊥), yielding j1(2) ≤ j2(⊥). 
Moreover, since j1(2) commutes with j1(1) = j2() and j2(⊥) does not commute with j2(), we have 
j1(2) �= j2(⊥), yielding j1(2) < j2(⊥). Summarizing, we have j1(2) < j2(⊥) < e < j2() and j1(2) absorbs 
any element in {j2(⊥), e, j2()}. Thus, A contains a copy of C2 �G3 as a subalgebra. Hence C2 �G3 ∈ V.

The base case n = 1 of the induction is clear. Suppose that G2n+1 ∈ V and that C2�G3 has the universe 
{1 < ⊥ < e < }. Now consider the span 〈i1 : C2 → C2�G3, i2 : C2 → G2n+1〉 with i1(⊥) = 1 and i2(⊥) =
⊥n. Then, by assumption, we know that the span has an amalgam 〈B, j1 : C2 �G3 → B, j2 : G2n+1 → B〉. 
Since 1 · ⊥ = 1 ·  = 1 in C2 � G3 and j2(⊥n) = j1(1), we get j2(⊥n) · j1(⊥) = j2(⊥n). Thus as above 
j2(⊥n) < j1(⊥), since j2(⊥n), j1(⊥) ≤ e and j2(⊥n) = j1(1) commutes with j1(). On the other hand we 
have

j2(n) · j2() = j2(n) · j2(⊥n) · j1() = j2(n) · j2(⊥n) = j2(n).

But, since e ≤ j2(n), j1(), by Lemma 3.1, j2(n) · j1() = j2(n) ∨ j1(), yielding j1() ≤ j2(n). 
Moreover, since j1() commutes with j2(⊥n) = j1(1) and j2(n) does not, we get j2(n) �= j1(), i.e., 
j2() < j1(n). Summarizing, we have j2(⊥n) < j1(⊥) < e < j1() < j2(n), constituting a copy of G5 in 
A. But also, for every k < n, ⊥k and k absorb ⊥n and n. Hence it follows from the above that j2(⊥k)
and j2(k) absorb j1(⊥) and j1(). Moreover, we have

j2(⊥1) < · · · < j2(⊥n) < j1(⊥) < e < j1() < j2(n) < · · · < j1(1).

Thus, B contains a subalgebra isomorphic to G2n+1 � G3 = G2(n+1)+1 and we get that G2(n+1)+1 ∈ V. 
This concludes the proof. �
Corollary 7.31. Let V be a subvariety of SemIdDLM that is not finitely generated such that V /∈
{CIdDLM, V ({G2n+1 | n ∈ N}), V ({D2n+1 | n ∈ N})}. Then V does not have the amalgamation prop-
erty.

Note that the class CIdOM of commutative idempotent ordered monoids contains all finitely subdirectly 
irreducible members of CIdDLM, is closed under subalgebras, and has the strong amalgamation property. 
Similarly the classes containing the totally ordered members of the varieties V ({G2n+1 | n ∈ N}) and 
V ({D2n+1 | n ∈ N}), respectively, contain all finitely subdirectly irreducible members, are closed under 
subalgebras, and have the amalgamation property, by using the construction in the proof of Proposition 7.4. 
But the varieties CIdDLM, V ({G2n+1 | n ∈ N}), and V ({D2n+1 | n ∈ N}) do not have the congruence exten-
sion property, so there is no obvious way of extending the amalgamation property from their totally ordered 
members to the whole variety. Hence, it remains open whether these three varieties have the amalgamation 
property or not.
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