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The isotropic Grassmannian parametrizes isotropic subspaces of 
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1. Introduction

The Grassmannian Gr(k, V ) is the space of k-dimensional subspaces of a vector space V . As an 
algebraic variety it is naturally embedded into the projective space P (

∧k V ) via the Plücker embed-
ding. The defining equations of this variety are quadrics known as the Plücker relations. The smallest 
nontrivial example is the Grassmannian Gr(2, 4), which has a single defining equation known as the 
Klein quadric. For an arbitrary Grassmannian Gr(k, V ), the Plücker relations are still quadrics, but we 
need many quadrics of high rank to generate the defining ideal. However, in Kasman et al. (2008), 
Kasman et al. showed that if one only considers the Plücker relations that can be obtained from 
pulling back the Klein quadric, their vanishing locus is already the Grassmannian. In particular, since 
the Klein quadric has rank six, this implies that any Grassmannian can be set-theoretically defined by 
quadrics of rank six.

If a vector space is equipped with a nondegenerate quadratic form, the variety of isotropic linear 
subspaces is known as the isotropic Grassmannian. It is natural to ask if any isotropic Grassmannian 
can also be set-theoretically defined by pulling back the defining equations of a fixed small isotropic 
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Grassmannian. In this paper we show that this is indeed the case when considering maximal isotropic 
subspaces in V .

Theorem 1.1. Let K be an algebraically closed field of characteristic not equal to 2, and V a K-vector space 
equipped with a nondegenerate quadratic form. Then the isotropic Grassmannian Griso(� dim V

2 �, V ) in its 
Plücker embedding can be defined set-theoretically by pulling back the defining equations of

• Griso(3, 7) if V is odd-dimensional,
• Griso(4, 8) if V is even-dimensional.

Since the ideals of Griso(3, 7) and Griso(4, 8), and indeed of any isotropic Grassmannian, are gen-
erated by finitely many quadrics, this implies a universal bound on the ranks of the quadrics needed 
to set-theoretically define any maximal isotropic Grassmannian. Notably, this bound is precisely four.

In Draisma and Eggermont (2018), Draisma and Eggermont introduced the notion of a Plücker 
variety, of which the Grassmannian is a special case. They proved a universality result that generalizes 
the universality of the Klein quadric, which was recently further generalized by Nekrasov (2020). Our 
main theorem is a first step towards defining isotropic Plücker varieties, which should generalize the 
isotropic Grassmannian in the same way that Plücker varieties generalize Grassmannians.

Organization. The remainder of this article is organized as follows. Section 2 is about ordinary 
Grassmannians. In this section we recall the definition of the Grassmann cone and Grassmann cone 
preserving maps, and state the universality of the Klein quadric by Kasman et al. (Theorem 2.3). In 
Section 3 we provide the necessary background on quadratic forms before we introduce isotropic 
Grassmannians and isotropic Grassmann cone preserving maps (IGCP maps). In Section 4 we state 
and prove the Main Theorem 4.1, which states that if V has dimension at least 9, then starting with 
a � dim V

2 �-form ω not in the isotropic Grassmann cone, there is an IGCP map mapping ω outside of 
the isotropic Grassmann cone. This immediately implies Theorem 1.1. A key ingredient in our proof 
is Proposition 4.7, which gives a characterization of forms in Ĝriso(� dim V

2 �, V ). In Section 5 we show 
how the Main Theorem 4.1 fails for dim V at most 8, by giving counterexamples for Griso(3, 7) and 
Griso(4, 8). The first counterexample is related to the exceptional group G2 and to the octonions. Fi-
nally, in Appendix A, we provide a computational proof that the ideals of Griso(3, 7) and Griso(4, 8) are 
generated by quadrics of rank at most four. Together with Theorem 1.1 this implies the same bound 
for any isotropic Grassmannian (Corollary 4.3). We also sketch an alternative proof of Corollary 4.3, 
which relies on a connection to the Cartan embedding instead of on Theorem 1.1.

Acknowledgments. We would like to thank Jan Draisma and Rob Eggermont for introducing us to 
this topic and for many helpful discussions, especially concerning the counterexamples.

2. The ordinary Grassmannian

Let V be a finite-dimensional vector space over any field K, and k ≤ dim V . The Grassmann cone is 
defined as

Ĝr(k, V ) := {v1 ∧ · · · ∧ vk | v1, . . . , vk ∈ V } ⊂
∧k

V ,

where 
∧k V is the k’th exterior power of V . For ω = v1 ∧ · · · ∧ vk ∈ Ĝr(k, V ), we will denote the 

corresponding subspace span{v1, . . . , vk} ⊆ V as Lω . If dim V = n, we will sometimes write Ĝr(k, n)

instead of Ĝr(k, V ). Choosing a basis (e1, . . . , en) of V induces coordinates {xI | I ⊂ {1, . . . , n}, |I| = k}
on 

∧k V , which are known as the Plücker coordinates. The Grassmann cone is a subvariety of 
∧k V , 

and its defining equations are quadrics referred to as the Plücker relations (Shafarevich, 1994, (1.24)). 
In the case where k = 2 and V =K4, there exists only one Plücker relation, called the Klein quadric

P2,4 = x1,2x3,4 − x1,3x2,4 + x1,4x2,3.

The Grassmannian is the projectivization of the Grassmann cone:
2
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Gr(k, V ) := P (Ĝr(k, V )) =
(

Ĝr(k, V ) \ {0}
)

/K× ⊆ P

(∧k
V

)
.

It is a projective variety whose defining equations are the Plücker relations.

Definition 2.1. A linear map ϕ : ∧k V → ∧q W is Grassmann cone preserving (GCP) if

ϕ(Ĝr(k, V )) ⊆ Ĝr(q, W ).

Example 2.2. We give two examples of GCP maps.

(1) If f : V → W is a linear map, the induced map 
∧k f : ∧k V → ∧k W is Grassmann cone preserv-

ing.
(2) For β ∈ V ∗ the contraction map

ϕβ :
∧k

V →
∧k−1

kerβ ⊆
∧k−1

V

defined as

v1 ∧ · · · ∧ vk �→
k∑

i=1

(−1)i−1β(vi)v1 ∧ · · · ∧ v̂ i ∧ · · · ∧ vk

is GCP. Below we give a coordinate-independent description of ϕβ .

Proof. Let v1 ∧ · · · ∧ vk ∈ Ĝr(k, V ) \ {0}. Note that he vectors v1, . . . , vk are linearly independent. 
We distinguish two cases. First, assume that span{v1, . . . , vk} ⊆ kerβ . Then, ϕβ(v1 ∧ · · · ∧ vk) = 0 ∈
Ĝr(k − 1, kerβ). Now consider the case that ker β ∩ span{v1, . . . , vk} has dimension k − 1. After 
possibly replacing v1, . . . , vk with some v ′

1, . . . , v
′
k such that v ′

1 ∧ · · · ∧ v ′
k = v1 ∧ · · · ∧ vk , we can 

assume that v1 /∈ kerβ , but v2, . . . , vk ∈ kerβ . Then, ϕβ(v1 ∧· · ·∧ vk) = β(v1)v2 ∧· · ·∧ vk is contained 
in Ĝr(k − 1, kerβ). This proof also shows that ϕβ takes values in 

∧k−1 kerβ . �
The contraction map ϕβ can also be described coordinate-independently. Recall that there is a 

natural isomorphism 
∧k V ∼= Altk(V ∗), where Altk(V ∗) is the space of alternating multilinear maps 

V ∗ × · · · × V ∗ →K. Under this identification, ϕβ agrees with the map

Altk(V ∗) → Altk−1(V ∗), ω �→ ω(β, · , . . . , · ).
Next, we recall the universality result by Kasman et al.

Theorem 2.3 (Kasman et al., 2008, Theorem 3.4). Let ω ∈ ∧k V . Then ω ∈ Ĝr(k, V ) if and only if every GCP 
map to 

∧2 C4 maps ω to Ĝr(2, 4).

In fact, Kasman et al. show that the GCP maps can be chosen from an explicit finite collection. We 
can rephrase Theorem 2.3 in terms of the Klein quadric, as follows.

Corollary 2.4. Any Grassmannian is set-theoretically defined by pullbacks of the Klein quadric P2,4:

Ĝr(k, V ) =
{
ω ∈

∧k
V

∣∣∣∣ P2,4(ϕ(ω)) = 0 ∀ϕ ∈ GC P

(∧k
V ,

∧2
C4

)}
.

3. Quadratic spaces and the isotropic Grassmannian

Throughout the remainder of the paper, we will work in a field K of characteristic not 2. In 
this section, we will introduce quadratic spaces and isotropic Grassmannians, and establish several 
essential lemmas that we will later use to prove our main theorem.
3
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3.1. Quadratic spaces

In this subsection we introduce quadratic spaces. The material is fairly standard, for a reference 
see Artin (1957, Chapter 3). For Lemma 3.6 we did not find a proof in the literature, so we opted to 
give a proof here.

A quadratic space refers to a vector space V equipped with a quadratic form—or equivalently, a 
symmetric bilinear form 〈·, ·〉. We always assume that the bilinear form is nondegenerate. A vector 
v ∈ V is considered isotropic if 〈v, v〉 = 0. The set of all isotropic vectors in V is denoted by V iso. The 
orthogonal complement of a subspace L ⊆ V is defined as the space L⊥ := {v ∈ V | 〈v, u〉 = 0, ∀u ∈ L}. 
We call a subspace L ⊆ V isotropic if L ⊆ L⊥ , i.e. if 〈u, v〉 = 0 for all u, v ∈ L. By polarization, using 
CharK �= 2, this is equivalent to L ⊆ V iso. If L is isotropic but any proper superset L′ � L is not 
isotropic, we refer to L as maximal isotropic.

Definition 3.1. We call a tuple (e1, e−1, . . . , ek, e−k) of vectors in V hyperbolic if 〈ei, e−i〉 = 1 for i =
1, . . . , k, and 〈ei, e j〉 = 0 if i �= − j. Note that the ei are necessarily linearly independent. If 2k = dim V , 
then we call (e1, e−1, . . . , ek, e−k) a hyperbolic basis of V .

Theorem 3.2. Let L be an isotropic subspace of V , and e1, . . . , ek a basis of L. Then we can find vectors 
e−1, . . . , e−k ∈ V \ L such that (e1, e−1, . . . , ek, e−k) forms a hyperbolic tuple.

Proof. This is Artin (1957, Theorem 3.8) in the case where U = L is isotropic. �
Theorem 3.3 (See Artin (1957, Theorem 3.10)). All maximal isotropic subspaces of V have the same dimension, 
which is referred to as the Witt index of V .

Note that by Theorem 3.2, the Witt index can be at most 
⌊

dim V
2

⌋
. Moreover, this upper bound is 

attained when K is algebraically closed, regardless of the chosen nondegenerate quadratic form.

Convention 3.4. From this point onward, we make the assumption that V has maximal Witt index ⌊
dim V

2

⌋
. We will denote this Witt index by p.

Remark 3.5. If dim V = 2p is even, then by Theorem 3.2, V has a hyperbolic basis. Note that then a 
subspace L is maximal isotropic if and only if L = L⊥ .

If dim V = 2p + 1 is odd, then V has a basis

B = (e1, e−1, . . . , ep, e−p, e0) (3.1)

such that (e1, e−1, . . . , ep, e−p) is hyperbolic and 〈e0, ei〉 = 0 for all i �= 0. We will call B hyperbolic 
as well. Note that 〈e0, e0〉 �= 0 by nondegeneracy. If K is algebraically closed we can rescale e0 such 
that 〈e0, e0〉 = 1; in general we will write c0 := 1

2 〈e0, e0〉. Note that we can also find a basis of V
consisting of isotropic vectors, for instance by replacing e0 by e0 + e1 − c0e−1 in (3.1).

The following lemma will be used several times in the proof of our main theorem (to be precise: 
in Claim 4.8, Claim 4.10 and Claim 4.11).

Lemma 3.6. Let W1, W2 ⊆ V be maximal isotropic subspaces. Then for any choice of decomposition

W1 = (W1 ∩ W2) ⊕ U1 and W2 = (W1 ∩ W2) ⊕ U2

the isomorphism V → V ∗, v �→ 〈v, · 〉 restricts to an isomorphism U1 → U∗
2 . In particular, there exists a 

hyperbolic basis e1, e−1, . . . , ep, e−p, (e0) of V , such that

W1 = span{e1, . . . , ep} and W2 = span{e1, . . . , eq, e−(q+1), . . . , e−p},

4
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where q = dim(W1 ∩ W2).

Proof. Note that U1 and U2 have the same dimension because the maximal isotropic subspaces W1
and W2 have the same dimension. Thus it suffices to show that the map U1 → U∗

2 is injective. Arguing 
by contradiction, assume there is some u1 ∈ U1 \{0} such that 〈u1, u2〉 = 0 for all u2 ∈ U2. Then it also 
holds that 〈u1, w2〉 = 0 for all w2 ∈ (W1 ∩ W2) ⊕ U2 = W2 because (W1 ∩ W2) ⊕ span{u1} ⊆ W1 is 
isotropic. Since W2 and u1 ∈ U1 ⊆ W1 are isotropic, this implies that also W2 ⊕ span{u1} is isotropic. 
But W2 is strictly contained in W2 ⊕ span{u1} because u1 ∈ U1 \ {0}, contradicting the fact that W2
is maximal isotropic.

To see how the first statement implies the second one, choose a basis {e1, . . . , ep} of W1 such that 
{e1, . . . , eq} forms a basis for W1 ∩ W2. Let U1 = span{eq+1, . . . , ep} and choose some U2 such that 
W2 = (W1 ∩ W2) ⊕ U2. It follows from the first part that there are unique e−(q+1), . . . , e−p ∈ U2 such 
that 〈ei, e− j〉 = δi j for i, j = q + 1, . . . , p. Since W1 and W2 are isotropic, it holds that W1 ∩ W2 ⊆
U⊥

1 ∩ U⊥
2 , and W1 ∩ W2 is a maximal isotropic subspace of U⊥

1 ∩ U⊥
2 by reasons of dimension. So 

there exist e−1, . . . , e−q, (e0) ∈ U⊥
1 ∩ U⊥

2 such that (e1, e−1, . . . , eq, e−q, (e0)) forms a hyperbolic basis 
of U⊥

1 ∩ U⊥
2 . This completes the proof. �

3.2. The isotropic Grassmann cone

We now introduce the isotropic Grassmann cone. We continue to work in a quadratic space V
satisfying Convention 3.4.

Definition 3.7. For k ≤ p, the isotropic Grassmann cone is defined as

Ĝriso(k, V ) := {v1 ∧ · · · ∧ vk | 〈vi, v j〉 = 0} ⊂ Ĝr(k, V ) ⊂
∧k

V .

If k = p, then we call it the maximal isotropic Grassmann cone. Note that ω ∈ Ĝr(k, V ) lies in Ĝriso(k, V )

if and only if Lω ⊂ V is isotropic.

Definition 3.8. A linear map � : ∧k V → ∧q W is isotropic Grassmann cone preserving (IGCP) if 
�(Ĝriso(k, V )) ⊆ Ĝriso(q, W ).

We will only need one explicit family of IGCP maps; they are the analogue of the GCP maps from 
Example 2.2. Let v ∈ V iso be a non-zero isotropic vector. Define V v := v⊥/〈v〉 (note that 〈v〉 ⊆ v⊥
because v is isotropic). It is easy to see that

〈v̄1, v̄2〉V v := 〈v1, v2〉V ,

where v̄ i ∈ V v denotes the equivalence class of vi ∈ v⊥ in V v , is a well-defined nondegenerate bi-
linear form on V v (i.e., the formula is independent of the choice of representatives v1, v2 ∈ v⊥). 
Moreover, (V v , 〈·, ·〉V v ) again has maximal Witt index. We denote by πv the projection v⊥ � V v .

Definition 3.9. For v ∈ V iso \ {0} we define the linear map

�v :
∧k

V →
∧k−1

V v

as the following composition∧k
V

ϕv−→
∧k−1

v⊥
∧k−1 πv−−−−−→

∧k−1
V v ,

where ϕv is the contraction map introduced in Example 2.2. Explicitly, this map is given by

�v(v1 ∧ · · · ∧ vk) =
k∑

j=1

(−1) j−1〈v, v j〉v̄1 ∧ · · · ∧ v̂ j ∧ · · · ∧ v̄k. (3.2)
5
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Since �v is a composition of two GCP maps, it is itself GCP. By the same proof as Example 2.2, one 
readily sees that �v is in fact IGCP. More explicitly, the following holds.

Lemma 3.10. For ω ∈ Ĝriso(k, V ),

(1) if v ∈ L⊥
ω , then �v(ω) = 0,

(2) if v /∈ L⊥
ω , then �v(ω) �= 0, and

L�v (ω) = (Lω ∩ v⊥)/〈v〉.

Proof. If v ∈ L⊥
ω , then 〈v, w〉 = 0 for all w ∈ Lω . Therefore, ϕv(ω) = 0 and hence also �v (ω) = 0. 

This proves the first statement. For the second statement, suppose v /∈ L⊥
ω and choose a basis where 

ω = v1 ∧· · ·∧ vk , Lω = span{v1, . . . , vk} and Lω ∩ v⊥ = span{v1, . . . , vk−1}. By evaluating �v(ω) using 
(3.2), we obtain the result. �

We now give a more coordinate-independent description of �v . The bilinear form on V induces 
an isomorphism V

∼=−→ V ∗, v �→ 〈v, · 〉. Together with the natural isomorphism 
∧k V ∗ ∼= Altk V , this 

yields an isomorphism � : ∧k V
∼=−→ Altk V . Then �v is the composition

∧k
V

�−→ Altk V
�

�
v−→ Altk−1 V v

�−1

−−→
∧k−1

V v ,

where the middle map ��
v is given by the formula

�
�
v(ω�)(v̄1, . . . , v̄k−1) = ω�(v, v1, . . . , vk−1). (3.3)

Note that since ω� is alternating, this does not depend on a choice of representatives vi ∈ V for 
v̄ i ∈ V v .

3.3. Two lemmas about IGCP maps

We finish this section by proving two lemmas that will play a central role throughout the proof of 
our main theorem. The first lemma states that no nonzero ω are annihilated by all IGCP maps:

Lemma 3.11. Let ω ∈ ∧k V with 0 < k < dim V . If �v(ω) = 0 for all v ∈ V iso \ {0}, then ω = 0.

Proof. If �v (ω) = 0 for all v ∈ V iso \ {0}, then ω�(v, v2, . . . , vk) = 0 for all v ∈ V iso \ {0} and 
v2, . . . , vk ∈ v⊥ due to (3.3). But then by Proposition 3.12 below, ω�(w1, . . . , wk) = 0 for all 
w1, . . . , wk ∈ V . So ω� = 0, and hence ω = 0. This completes the proof. �
Proposition 3.12. If 0 < k < dim V , then the set{

v ∧ v2 ∧ · · · ∧ vk ∈
∧k

V
∣∣∣ v ∈ V iso \ {0} and v2, . . . , vk ∈ v⊥

}
spans 

∧k V .

Proof. Let S be the span of the given set in 
∧k V . We choose a hyperbolic basis e1, e−1, . . . , ep, e−p,

(e0) for V . It suffices to show that each pure wedge ei1 ∧ · · · ∧ eik is in S . If there exists j �= 0
such that #({ j, − j} ∩ {i1, . . . , ik}) = 1, then clearly ei1 ∧ · · · ∧ eik ∈ S . So we only need to show that 
e j1 ∧e− j1 ∧· · ·∧e jm ∧e− jm ∈ S when k = 2m, or e j1 ∧e− j1 ∧· · ·∧e jm ∧e− jm ∧e0 ∈ S when k = 2m +1, 
where j1, ..., jm ∈ {1, ..., p}.
6
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If m < p, we choose j0 ∈ {1, . . . , p} \ { j1, . . . , jm}. We define η = e j2 ∧ e− j2 ∧ · · · ∧ e jm ∧ e− jm if k
is even, and η = e j2 ∧ e− j2 ∧ · · · ∧ e jm ∧ e− jm ∧ e0 if k is odd. Based on the definition of j0 and S , we 
have (e j0 + e j1 ) ∧ (e− j0 − e− j1 ) ∧ η ∈ S . Expanding this expression, we obtain:

(e j0 + e j1) ∧ (e− j0 − e− j1) ∧ η = (e j0 ∧ e− j0 − e j1 ∧ e− j1) ∧ η + (terms in S).

Therefore, we conclude that

(e j0 ∧ e− j0 − e j1 ∧ e− j1) ∧ η ∈ S. (3.4)

Similarly, by considering (e j0 + e− j1 ) ∧ (e− j0 − e j1 ) ∧ η ∈ S , we can deduce

(e j0 ∧ e− j0 − e− j1 ∧ e j1) ∧ η ∈ S. (3.5)

Subtracting (3.4) from (3.5) and using the anti-symmetry of ∧, we obtain 2e j1 ∧ e− j1 ∧ η ∈ S . Since 
Char(K) �= 2 this shows that e j1 ∧ e− j1 ∧ . . . ∧ e jm ∧ e− jm (∧e0) ∈ S .

We still need to consider the case m = p; i.e. to show that e1 ∧ e−1 ∧ · · · ∧ ep ∧ e−p ∈ S if dim V =
2p + 1. For this we write η = e2 ∧ e−2 ∧ · · · ∧ ep ∧ e−p as before, and note that

2c0e1 ∧ e−1 ∧ η = (
(e0 + e1 − c0e−1) ∧ (e1 + c0e−1) − e0 ∧ e1 − c0e0 ∧ e−1

) ∧ η ∈ S,

where c0 = 1
2 〈e0, e0〉. �

The second lemma is a more technical variant of Lemma 3.11. We will use it to prove Claims 4.12
and 4.13 in the proof of the main theorem.

Lemma 3.13. Assume p ≥ 2 and 0 < k < dim V , and let ω ∈ ∧k V be nonzero. Let W and W ′ be maximal 
isotropic subspaces of V with dim(W ∩ W ′) = p − 1, and suppose that �v(ω) = 0 for every isotropic v ∈
W ∪ W ′ .

• If k > p, then ω is of the form α ∧ ω′ , where α lies in the one-dimensional space 
∧p+1

(W + W ′).

• If k ≤ p then ω ∈ ∧k
(W ⊥ ∩ W ′⊥).

Proof. We choose a hyperbolic basis of V such that W = span{e1, e2, . . . , ep} and W ′ = span{e−1,

e2, . . . , ep}. For {i1, . . . , i�} ⊂ {1, −1, . . . , p, −p, (0)}, we will write V î1,...,î�
for span{ei | i /∈ {i1, . . . , i�}}

⊆ V .
We prove by induction on i = 2, . . . , p + 1 that

ω = e1 ∧ e−1 ∧ e2 ∧ · · · ∧ ei−1 ∧ ω′
i + ω′′

i , (3.6)

with

ω′
i ∈

∧k−i
V

1̂,2̂,3̂,...,̂i−1,−1̂
and ω′′

i ∈
∧k

V
1̂,−1̂,−2̂,...,−̂i+1

,

and we put the first summand equal to zero if i > k.
First, let us show that (3.6) holds for i = 2. Indeed we can write

ω = e1 ∧ e−1 ∧ ω′
2 + e1 ∧ α + e−1 ∧ β + ω′′

2

with

ω′
2 ∈

∧k−2
V 1̂,−1̂, α,β ∈

∧k−1
V 1̂,−1̂, ω′′

2 ∈
∧k

V 1̂,−1̂.

By assumption we have

0 = �e1(ω) = �e1(e−1 ∧ α),

0 = �e−1(ω) = �e−1(e1 ∧ β),
7
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hence α = β = 0.
Next we assume (3.6) for some i, and want to show it for i + 1. We can write

ω′
i = ei ∧ ω′

i+1 + e−i ∧ α′ + β ′

ω′′
i = ω′′

i+1 + ei ∧ e−i ∧ α′′ + e−i ∧ β ′′,

where

ω′
i+1 ∈

∧k−i−1
V 1̂,2̂,...,î,−1̂, ω′′

i+1 ∈
∧k

V 1̂,−1̂,−2̂,...,−î,

α′ ∈
∧k−i−1

V 1̂,2̂,...,î,−1̂,−î, α′′ ∈
∧k−2

V 1̂,î,−1̂,−2̂,...,−î,

β ′ ∈
∧k−i

V 1̂,2̂,...,î,−1̂,−î, β ′′ ∈
∧k−1

V 1̂,î,−1̂,−2̂,...,−î .

We compute 0 = �ei (ω) = ē1 ∧ ē−1 ∧ ē2 ∧· · ·∧ ēi−1 ∧α′ +β ′′ , so we can conclude that α′ = β ′′ = 0.
Next we compute

�ei−e1(ω) =�ei−e1(e1 ∧ e−1 ∧ e2 ∧ · · · ∧ ei−1 ∧ ei ∧ ω′
i+1)

+ �ei−e1(e1 ∧ e−1 ∧ e2 ∧ · · · ∧ ei−1 ∧ β ′)
+ �ei−e1(ω

′′
i+1)

+ �ei−e1(ei ∧ e−i ∧ α′′).

The first and third summand are zero by Lemma 3.10. So we get

�ei−e1(ω) =ē1 ∧ ē2 ∧ · · · ∧ ēi−1 ∧ β ′ − ēi ∧ α′′,

so e2 ∧· · ·∧ ei−1 ∧β ′ = α′′ . If we do the analogous computation for �ei−e−1 (ω) we find that e2 ∧· · ·∧
ei−1 ∧ β ′ = −α′′ . So β ′ = α′′ = 0, and we get

ω = e1 ∧ e−1 ∧ e2 ∧ · · · ∧ ei ∧ ω′
i+1 + ω′′

i+1,

which is exactly (3.6) for i + 1 instead of i.
Finally, note that the case i = p + 1 is exactly what we want. Indeed we have

ω = e1 ∧ e−1 ∧ e2 ∧ · · · ∧ ep ∧ ω′ + ω′′,

with ω′ ∈ ∧k−p−1 V 1̂,2̂,...,p̂,−1̂ and ω′′ ∈ ∧k V 1̂,2̂,...,p̂,−1̂ = ∧k
(W ⊥ ∩ W ′⊥). But if k ≤ p the first sum-

mand is zero, and if k > p the second summand is zero since dim V 1̂,2̂,...,p̂,−1̂ = dim V − p − 1 ≤ p <
k. �
4. Universality for maximal isotropic Grassmannians

4.1. Statement and consequences of the main result

For this entire section, let V be a quadratic space of maximal Witt index p = � dim V
2 � over a field 

K of characteristic not 2.

Main Theorem 4.1. Assume dim V > 8 and let ω ∈ ∧p V . If for every isotropic vector v ∈ V iso , the image 
of v under the isotropic Grassmann cone preserving map �v lies in Ĝriso(p − 1, V v), then ω itself lies in 
Ĝriso(p, V ).

Corollary 4.2. For any ω ∈ ∧p V , it holds that ω ∈ Ĝriso(p, V ) if and only if
8
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• every IGCP map to 
∧3 K7 maps ω to Ĝriso(3, 7), if dim V = 2p + 1,

• every IGCP map to 
∧4 K8 maps ω to Ĝriso(4, 8), if dim V = 2p.

Proof of Corollary 4.2 assuming Main Theorem 4.1. One direction is straightforward from the defi-
nition of an IGCP map. To prove the other direction, we consider three cases depending on the 
dimension of V.

If dim V > 8, we can repeatedly apply the Main Theorem 4.1 to obtain the desired result. If 
dim V = 8 or dim V = 7, we can just apply the assumption to the identity map (which is trivially 
IGCP). For dim V < 7, we observe that the map ϕ : ∧p V → ∧p+1

(V ⊕ span{ep+1, e−p−1}), which 
sends ω to ω ∧ ep+1, has the property that ω lies in the isotropic Grassmann cone if and only if 
ϕ(ω) lies in the isotropic Grassmann cone. By applying these maps iteratively until we reach 

∧3 K7

or 
∧4 K8, we complete the proof. �
Similar to Kasman et al. (2008, Theorem 4.1), we obtain a statement about the ranks of quadrics 

defining the isotropic Grassmann cone, where we use the fact that Ĝriso(p, 2p) has two irreducible 
components (Harris, 1992, Theorem 22.14).

Corollary 4.3. The isotropic Grassmannian Ĝriso(p, 2p + 1) in its Plücker embedding can be defined by 
quadrics of rank at most 4. Furthermore, both irreducible components of Ĝriso(p, 2p) can be defined by linear 
equations and quadrics of rank at most 4.

Proof. By Corollary 2.4 it suffices to show the statement is true for Ĝr iso(3, 7) and Ĝriso(4, 8). This 
can be done by an explicit calculation, see Appendix A. �
Remark 4.4. The statement in Corollary 4.3 can also be deduced using the Cartan embedding, see 
Appendix A.

Remark 4.5. A natural question arises: is there a similar result if we replace the symmetric form 
with a skew-symmetric form, focusing on Lagrangian Grassmannians? The answer, in the case of 
considering only the Lagrangian Grassmann cone preserving (LGCP) maps �v for v ∈ V , defined as in 
Definition 3.9, is no.

To illustrate this, let us consider an 8-dimensional vector space V with basis (e1, . . . , e−4) and 
skew-symmetric form given by 〈ei, e−i〉 = 1 for i > 0, 〈ei, e−i〉 = −1 for i < 0, and all other pairings 
equal to 0.

Now, consider the vector α = e1 ∧ e−1 + e2 ∧ e−2 + e3 ∧ e−3 + e4 ∧ e−4, and define

ω = α ∧ α = 2
∑

1≤i< j≤4

ei ∧ e−i ∧ e j ∧ e− j ∈
∧4

V .

It can be observed that ω does not lie in the Grassmann cone since ω ∧ ω is a nonzero multiple 
of e1 ∧ e−1 ∧ e2 ∧ e−2 ∧ e3 ∧ e−3 ∧ e4 ∧ e−4. However, upon explicit computation, it can be seen that 
every LGCP map �v maps ω to zero, and thus it lies in the Lagrangian Grassmann cone.

This example can be generalized to any space of dimension 4m by considering ω = α∧m ∈ ∧2m V . 
Hence, we have a counterexample to the analogue of the Main Theorem 4.1 (and even to the analogue 
of Lemma 3.11). However, it is not yet a counterexample to the analogue of Corollary 4.2, as there 
might be additional LGCP maps that could be considered.

4.2. Structure of the proof

The aim of this subsection is twofold. First, we aim to prove Proposition 4.7, which will serve as 
the key ingredient in proving the Main Theorem 4.1. Secondly, we will give an outline of the proof of 
the Main Theorem 4.1 to make it more accessible, as it involves some technical aspects.
9
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We assume p ≥ 2. Note that we can always decompose V as

V = V ′ ⊕ span{ep, e−p}, (4.1)

where (ep, e−p) is a hyperbolic tuple, and span{ep, e−p} ⊂ V ′⊥ where V ′ again has maximal Witt 
index. For the remaining part of this section we are fixing this decomposition. Any ω ∈ ∧p V can be 
uniquely written as

ω = ω1 ∧ ep ∧ e−p + ω2 ∧ ep + ω3 ∧ e−p + ω4 (4.2)

where ω1 ∈ ∧p−2 V ′ , ω2, ω3 ∈ ∧p−1 V ′ and ω4 ∈ ∧p V ′ . The following observation shows that for 
v ∈ V ′ , a decomposition of ω maps to a decomposition of �v (ω).

Observation 4.6. Let ω be as in (4.2). Then for any v ∈ V ′ we have

�v(ω) =: ω′ = ω′
1 ∧ ēp ∧ ē−p + ω′

2 ∧ ēp + ω′
3 ∧ ē−p + ω′

4, (4.3)

where ω′
i = �v(ωi).

Next, we give conditions for ω to be in the isotropic Grassmann cone.

Proposition 4.7. Suppose we have written ω ∈ ∧p V in the form (4.2). Assume ω ∈ Ĝriso(p, V ), then one of 
the following holds:

(1) ω1 = ω3 = ω4 = 0 and ω2 ∈ Ĝriso(p − 1, V ′),
(2) ω1 = ω2 = ω4 = 0 and ω3 ∈ Ĝriso(p − 1, V ′),
(3) ω1 = 0, and ω2 , ω3 , ω4 are nonzero. Then

• ω2, ω3 ∈ Ĝriso(p − 1, V ′), ω4 ∈ Ĝr(p, V ′),
• Lω2 = Lω3 ⊆ Lω4 .
This case only occurs if dim V is odd.

(4) ω1 , ω2 , ω3 , ω4 are all nonzero. Then
• ω1 ∈ Ĝriso(p − 2, V ′), ω2, ω3 ∈ Ĝriso(p − 1, V ′), ω4 ∈ Ĝr(p, V ′),
• Lω2 ∩ Lω3 = Lω1 and Lω2 + Lω3 = Lω4 .

Proof. We define L′ := Lω ∩ V ′ . Note that p − 2 ≤ dim L′ ≤ p − 1, where the second inequality holds 
since L′ is an isotropic subspace of V ′ . We proceed by considering cases based on dim L′ . More pre-
cisely, we will show that (1), (2) or (3) hold if dim L′ = p − 1, and that (4) holds if dim L′ = p − 2.

Case 1. If dim L′ = p − 1, then L′ is a maximal isotropic subspace of V ′ . Since L′ has codimension 
one in Lω , there exists a vector v ∈ Lω such that Lω = L′ + span{v}. Since Lω is isotropic, we have 
Lω ⊆ L⊥

ω ⊆ L′⊥ . Therefore, v ∈ L′⊥ . We can write v = w + v ′ , where w ∈ span{ep, e−p} and v ′ ∈ V ′ . 
Moreover, note that w ∈ L′⊥ , and therefore, v ′ = v − w ∈ L′⊥ . If dim V is even, then L′ = L′⊥ ∩ V ′ , 
hence v ′ ∈ L′ . Consequently, we have

Lω = L′ + span{w + v ′} = L′ + span{w}.
Since ω is isotropic, the vector w is also isotropic. Thus, we can conclude that either

w ∈ span{ep} or w ∈ span{e−p}.
So we conclude

Lω = L′ + span{ep} or Lω = L′ + span{e−p},
and therefore

ω = ω2 ∧ ep or ω = ω3 ∧ e−p,
10
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where ω2, ω3 ∈ Ĝriso(p − 1, V ′).
If dim V is odd, there is a possibility that v ′ /∈ L′ . Nevertheless, we still have

Lω = L′ + span{w + v ′}.
Writing w = λep + μe−p , we obtain that 2λμ + 〈v ′, v ′〉 = 0. Since L′ is maximal isotropic in V ′ , the 
vector v ′ cannot be isotropic. Hence, we have λ �= 0 �= μ. Consequently, we can write

ω = ω′ ∧ (λep + μe−p + v ′),
where Lω′ = L′ . By doing so, we have expressed ω in the form (4.2), with ω1 = 0, ω2 = λω′ , ω3 = μω′ , 
and ω4 = ω′ ∧ v ′ . One can verify that this proves all the claims in (3).

Case 2. If dim L′ = p − 2, we can write Lω = span{ep + u, e−p + v} ⊕ L′ for some u, v ∈ V ′ . We 
choose (v1, . . . , v p−2) as a basis of L′ and express ω as

ω = v1 ∧ · · · ∧ v p−2 ∧ (ep + u) ∧ (e−p + v)

=: ω1 ∧ (ep + u) ∧ (e−p + v)

= ω1 ∧ ep ∧ e−p − ω1 ∧ v ∧ ep + ω1 ∧ u ∧ e−p + ω1 ∧ u ∧ v

=: ω1 ∧ ep ∧ e−p + ω2 ∧ ep + ω3 ∧ e−p + ω4.

To show that all ωi are nonzero, we need to show that {v1, v2, . . . , v p−2, u, v} are linearly indepen-
dent. We already know that {v1, . . . , v p−2} are linearly independent since they form a basis of L′ . 
Furthermore, v is also linearly independent from {v1, . . . , v p−2}; otherwise e−p ∈ Lω , but this would 
imply 〈ep +u, e−p〉 = 0. Hence, we need to show that u is linearly independent from {v1, . . . , v p−2, v}. 
Assuming u = λv + v ′ , where v ′ ∈ L′ , we obtain

ω = v1 ∧ · · · ∧ v p−2 ∧ (ep + λv) ∧ (e−p + v),

where the vectors {v1, . . . , v p−2, ep +λv, e−p + v} are all isotropic. In particular, the pairing 〈v, v〉 = 0. 
However, this implies 〈ep + λv, e−p + v〉 = 1, contradicting the isotropy of Lω . Hence, the vectors 
{v1, v2, . . . , v p−2, u, v} are linearly independent, implying that all ωi are nonzero. Note that by defi-
nition all ωi belong to the corresponding Grassmann cone. Furthermore, since u and v are isotropic 
and 〈vi, v j〉 = 0, 〈u, vi〉 = 0, 〈v, vi〉 = 0 for all i, j, we can conclude that ω1, ω2 and ω3 are isotropic. 
This proves the first statement in (4). The second statement follows from the definition and linear 
independence of {v1, v2, . . . , v p−2, u, v}. �

For the proof of the Main Theorem 4.1, we will fix ω ∈ ∧p V satisfying the assumption. We de-
compose ω as in (4.2). Then ω has one of the following zero patterns:

ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4
(0) 0 0 0 0 ∗ 0 0 0 (8)
(1) 0 0 0 ∗ ∗ 0 0 ∗ (9)
(2) 0 0 ∗ 0 ∗ 0 ∗ 0 (10)
(3) 0 0 ∗ ∗ ∗ 0 ∗ ∗ (11)
(4) 0 ∗ 0 0 ∗ ∗ 0 0 (12)
(5) 0 ∗ 0 ∗ ∗ ∗ 0 ∗ (13)
(6) 0 ∗ ∗ 0 ∗ ∗ ∗ 0 (14)
(7) 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ (15)

The proof splits into the Claims 4.8–4.14 which are based on the different zero patterns. First, we 
will show that zero patterns (0), (1), (3), (5), (6), (8)-(14) and (7) (if V is even-dimensional) are not 
possible:

• Claim 4.8 shows that the only possible zero patterns are (2), (4), (7) and (15), with (7) only 
occurring when V has odd dimension.
11
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Note that the highlighted zero patterns align with the cases in Proposition 4.7. We proceed by proving 
that the Main Theorem 4.1 is true if ω ∈ ∧p V has one of the highlighted zero patterns as follows:

• Claim 4.9 proves that the Main Theorem 4.1 is true if ω has zero pattern (2) or (4).
• Claim 4.10 and Claim 4.11 show that if ω has zero pattern (7) or (15), there are three possibilities 

for the dimension of the intersection Lω2 ∩ Lω3 :
(a) dim(Lω2 ∩ Lω3 ) = p − 2 (when dim V is even);
(b) dim(Lω2 ∩ Lω3 ) = p − 2 (when dim V is odd);
(c) dim(Lω2 ∩ Lω3 ) = p − 1 (when dim V is odd).

• Claim 4.12 shows that the Main Theorem 4.1 holds for case (a).
• Claim 4.13 shows that the Main Theorem 4.1 holds for case (b).
• Claim 4.14 shows that the Main Theorem 4.1 holds for case (c).

4.3. Proof of the main theorem

We will now prove the Main Theorem 4.1 following the strategy we just explained.

Proof of the Main Theorem 4.1.
Let ω �= 0 satisfy the assumption of Main Theorem 4.1. Trivially, ω cannot have zero pattern (0).

Claim 4.8. ω cannot have zero pattern (1), (3), (5), (6), or (8)-(14). If dim V is even it also cannot have zero 
pattern (7).

Proof.

Step 1. If ω1 �= 0, then ω2, ω3 and ω4 are also nonzero. In other words, ω cannot have zero patterns 
(8)–(14).

Proof. If ω1 �= 0, according to Lemma 3.11, there exists v ∈ V ′
iso such that �v(ω1) �= 0. Therefore, 

applying case (4) of Proposition 4.7 to

�v(ω) = �v(ω1) ∧ ep ∧ e−p + �v(ω2) ∧ ep + �v(ω3) ∧ e−p + �v(ω4)

we can conclude that �v(ω2), �v(ω3) and �v(ω4) are nonzero. This implies that ω2, ω3 and ω4 are 
nonzero as well. �
Step 2. If ω4 �= 0, then either ω has zero pattern (15), or dim V is odd and ω has zero pattern (7). In 
other words, ω cannot have zero patterns (1), (3), (5), and also not (7) if dim V is even.

Proof. As before, by Lemma 3.11 there exists v ∈ V ′
iso such that �v(ω4) �= 0. The result follows by 

applying Proposition 4.7 to �v(ω) as before. �
Step 3. ω cannot have zero pattern (6).

Proof. Assume ω has zero pattern (6). Our goal is to find a vector v ∈ V ′
iso such that �v (ω2) �=

0 �= �v(ω3). Then ω′ := �v (ω) also has the property that ω′
1 = 0 = ω′

4 but ω′
2 �= 0 �= ω′

3. So by 
Proposition 4.7 ω′ is not in Ĝriso(p − 1, V v), which is a contradiction with the assumption of the 
Main Theorem 4.1. We consider two cases:

Case 1. Assume Lω2 + Lω3 � V ′ . This case holds if dim V is odd, and also if dim V is even except when 
Lω2 ∩ Lω3 = 0. Since V is spanned by isotropic vectors, we can find an isotropic vector v that does not 
lie in the linear subspace Lω2 + Lω3 . Then we have the desired property that �v(ω2) �= 0 �= �v(ω3)

by Lemma 3.10.
12
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Case 2. Assume Lω2 + Lω3 = V ′ . In this case, dim V is even and Lω2 ∩ Lω3 = 0. By Lemma 3.6 we can 
choose a hyperbolic basis such that

ω2 = αe1 ∧ · · · ∧ ep−1 and ω3 = βe−1 ∧ · · · ∧ e−p+1.

Taking v := e1 + e−2, we have �v (ω2) �= 0 �= �v (ω3), satisfying the desired property. �
We now have considered all cases, and the proof of Claim 4.8 is complete. �

We now know that ω has one of the highlighted zero patterns. Next, we prove that the Main 
Theorem 4.1 holds if ω has zero pattern (2) or (4).

Claim 4.9. The Main Theorem 4.1 is true if ω has zero pattern (2) or (4).

Proof. Let ω have zero pattern (2). Then ω = ω3 ∧ e−p . For v = ep , by (3.2), we have �ep (ω) = ±ω3, 
which by assumption lies in Ĝriso(p − 1, V v) = Ĝriso(p − 1, V ′) and therefore also ω ∈ Ĝriso(p, V ). If 
ω has zero pattern (4) we proceed analogously, using v = e−p . �

For the rest of the proof, we assume that ω has zero pattern (15) or (7); where (7) can only occur 
if dim V is odd.

Claim 4.10. The intersection Lω2 ∩ Lω3 is nonzero.

Proof. Assume by contradiction that Lω2 ∩ Lω3 = 0. Then by Lemma 3.6 we can find a hyperbolic 
basis of V ′ such that

ω2 = αe1 ∧ · · · ∧ ep−1 and ω3 = βe−1 ∧ · · · ∧ e−p+1.

If dim V is even we take v = e1 + e−2. By Observation 4.6 we get

�v(ω) =: ω′ = ω′
1 ∧ ēp ∧ ē−p + ω′

2 ∧ ēp + ω′
3 ∧ ē−p + ω′

4.

Note that in the quotient space 
∧p−1

(e1 + e−2)
⊥/〈e1 + e−2〉, ω′

2 and ω′
3 have only the basis vector 

ē1 = ē−2 in common, thus

dim(Lω′
2
∩ Lω′

3
) = 1.

Since ω′ ∈ Ĝriso(p − 1, V v), we can conclude by Proposition 4.7 that the intersection Lω′
2
∩ Lω′

3
= Lω′

1
, 

in particular

dim(Lω′
2
∩ Lω′

3
) = p − 3.

This contradicts our assumption dim V > 8, which for dim V even implies p > 4.
If dim V is odd we take v = e0 + e−1 − c0e1, where c0 = 1

2 〈e0, e0〉. Then we find

ω′
2 = αē2 ∧ · · · ∧ ēp−1 and ω′

3 = −c0β ē−2 ∧ · · · ∧ ē−p+1.

Note that also in the quotient space 
∧p−1

(e0 + e−1 − c0e1)
⊥/〈e0 + e−1 − c0e1〉, we have that

dim(Lω′
2
∩ Lω′

3
) = 0.

But by inspecting cases (3) and (4) of Proposition 4.7, we see that

dim(Lω′
2
∩ Lω′

3
) ∈ {p − 2, p − 3},

which again is a contradiction since if dim V is odd, our assumption dim V > 8 implies p > 3. �

13
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We will use this result and distinguish if the dimension of V is odd or even.

Claim 4.11. One of the following holds.

(a) dim V is even, and dim(Lω2 ∩ Lω3) = p − 2,
(b) dim V is odd, and dim(Lω2 ∩ Lω3 ) = p − 2,
(c) dim V is odd, and dim(Lω2 ∩ Lω3 ) = p − 1 and thus Lω2 = Lω3 .

Proof. We write q := dim(Lω2 ∩ Lω3 ) > 0. By Lemma 3.6 we can find a hyperbolic basis of V ′ such 
that

ω2 = e1 ∧ · · · ∧ eq ∧ ω̃2 and ω3 = e1 ∧ · · · ∧ eq ∧ ω̃3,

where ω̃2, ω̃3 ∈ Ĝriso(p − q − 1, Ṽ ) and Ṽ = span{eq+1, e−q−1, . . . , ep−1, e−p+1}. Now if we choose v
as any negative indexed basis vector e−i and write w ′ = �v(ω), by Observation 4.6 we get

ω′
2 = ±ē1 ∧ · · · ∧ ēi−1 ∧ êi ∧ ēi+1 ∧ · · · ∧ ēq ∧ ω̃2,

ω′
3 = ±ē1 ∧ · · · ∧ ēi−1 ∧ êi ∧ ēi+1 ∧ · · · ∧ ēq ∧ ω̃3.

Therefore we have Lω′
2
∩ Lω′

3
= span{ē1, . . . , ̄ei−1, ̂ei, ̄ei+1, . . . , ̄eq} and it holds that

dim(Lω′
2
∩ Lω′

3
) = q − 1.

If dim V is even, then

dim(Lω′
2
∩ Lω′

3
) = p − 3,

hence we conclude q = p − 2, as desired. Similarly, if dim V is odd, then

dim(Lω′
2
∩ Lω′

3
) ∈ {p − 2, p − 3}.

We conclude q ∈ {p − 2, p − 1}. In other words, either q = p − 2, or Lω2 = Lω3 . �
We will finish the proof by a case analysis of the cases in Claim 4.11. For the first two cases we 

need Lemma 3.13.

Claim 4.12. The Main Theorem 4.1 holds in case (a).

Proof. Observe that for every v ∈ Lω2 ∪ Lω3 , either �v(ω2) or �v(ω3) is zero. By Proposition 4.7
and hence the possible zero patterns, this implies that also �v(ω1) and �v(ω4) are zero. Thus, 
applying Lemma 3.13 to them yields that ω1 ∈ ∧p−1

(L⊥
ω2

∩ L⊥
ω3

) = ∧p−1
(Lω2 ∩ Lω3 ) and ω4 ∈∧p+1

(Lω2 + Lω3 ). After choosing a hyperbolic basis for V ′ with Lω2 = span{e1, e2, . . . , ep−1} and 
Lω3 = span{e−1, e2, . . . , ep−1} and defining W := span{e1, e−1, ep, e−p}, we can write

ω = e2 ∧ · · · ∧ ep−1 ∧ η (4.4)

for some η ∈ ∧2 W . Note that Lω2 ∩ Lω3 = span{e2, . . . ep−1} is isotropic and orthogonal to W . Now, 
choose v = e−p+1. Then we have V v ∼= V ′′

v ⊕ W , where V ′′ = span{e2, e−2, . . . , ep−1, e−p+1}. Using 
(4.4) we can write

�v(ω) = ±ē2 ∧ · · · ∧ ēp−2 ∧ η.

By assumption we have �v (ω) ∈ Ĝriso(p − 1, V v). So we find that η ∈ Ĝriso(2, W ), which in turn 
implies ω ∈ Ĝriso(p, V ). �
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Claim 4.13. The Main Theorem 4.1 holds in case (b).

Proof. We choose a hyperbolic basis of V ′ with Lω2 = span{e1, e2, . . . , ep−1} and Lω3 = span{e−1, e2,

. . . , ep−1}. Applying Lemma 3.13 to ω1 and ω4 we get ω1 ∈ ∧p−2
(L⊥

ω2
∩ L⊥

ω3
) and ω4 = νe1 ∧ e−1 ∧

e2 ∧ · · · ∧ ep−1 for some ν ∈K× . So we can write

ω =
(
μ0e2 ∧ · · · ∧ ep−1 + e0 ∧

p−1∑
i=2

μie2 ∧ · · · ∧ êi ∧ · · · ∧ ep−1

)
∧ ep ∧ e−p

+ αe1 ∧ e2 ∧ · · · ∧ ep−1 ∧ ep + βe−1 ∧ e2 ∧ · · · ∧ ep−1 ∧ e−p

+ νe1 ∧ e−1 ∧ e2 ∧ · · · ∧ ep−1.

Picking v = e−2 yields

�v(ω) =
(
μ0e3 ∧ · · · ∧ ep−1 − e0 ∧

p−1∑
i=3

μie3 ∧ · · · ∧ êi ∧ · · · ∧ ep−1

)
∧ ep ∧ e−p

− αe1 ∧ e3 ∧ · · · ∧ ep−1 ∧ ep − βe−1 ∧ e3 ∧ · · · ∧ ep−1 ∧ e−p

+ νe1 ∧ e−1 ∧ e3 ∧ · · · ∧ ep−1.

By assumption ω′ = �v(ω) ∈ Ĝriso(p − 1, V v). Thus, by Proposition 4.7 one of the cases (1) – (4) 
holds. Clearly, cases (1) and (2), and since Lω′

2
�= Lω′

3
, also case (3), are not possible. Thus, case (4) 

holds, which implies that ω′
1 ∈ Ĝriso(p − 3, V ′

v) and Lω′
1
= Lω′

2
∩ Lω′

3
. In coordinates, this means that 

μi = 0 for i = 3, . . . , p − 1, and that μ0 �= 0. The same argument1 with v = e−3 shows that also 
μ2 = 0. We now have written ω as in (4.4), and can proceed exactly as in Claim 4.12. �
Claim 4.14. The Main Theorem 4.1 holds in case (c).

Proof. The proof is divided into several steps:

• Step 1 shows that ω1 = 0.
• Steps 2-4 show that ω4 = e1 ∧ · · · ∧ ep−1 ∧ u for some u ∈ V ′ .

– Step 2 shows that we can write:

ω4 = e1 ∧ · · · ∧ ep−1 ∧ u +
∑

j1,..., j�

μ J e j1 ∧ e− j1 ∧ · · · ∧ e j� ∧ e− j� (∧e0),

where we write p = 2� or p = 2� + 1, and the factor ∧e0 only appears in the latter case.
– Step 3 shows that all μ J are equal and thus:

ω4 = e1 ∧ · · · ∧ ep−1 ∧ u + μ
∑

j1,..., j�

e j1 ∧ e− j1 ∧ · · · ∧ e j� ∧ e− j� (∧e0).

– Step 4 shows that μ = 0.
• Step 5 then concludes that ω ∈ Ĝriso(p, V ).

Step 1. ω1 = 0

Proof. Note that for every v ∈ V ′
iso, if we consider ω′ := �v(ω) ∈ Ĝriso(p −1, V v), we have Lω′

2
= Lω′

3
. 

This implies that either ω′ = 0, or ω′ is in case (3) of Proposition 4.7. In both cases we conclude 
ω′

1 = 0. So we proved �v (ω1) = 0 for each v ∈ V ′
iso, which by Lemma 3.11 implies that ω1 = 0. �

1 here we use p ≥ 4.
15
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Now we choose a hyperbolic basis of V ′ such that Lω2 = Lω3 = span{e1, . . . , ep}. For any v ∈ V iso, we 
can apply Proposition 4.7 to �v(ω) and find:

(1) If v ∈ Lω2 , we have �v(ω4) = 0.
(2) If v ∈ V iso \ Lω2 , we have �v(ω4) ∈ Ĝr(p − 1, V v) with Lω2 ⊂ L�v (ω4) .

Step 2. ω4 is of the form

e1 ∧ · · · ∧ ep−1 ∧ u +
∑

j1,..., j�

μ J e j1 ∧ e− j1 ∧ · · · ∧ e j� ∧ e− j� (∧e0),

where we write p = 2� or p = 2� + 1, and the factor ∧e0 only appears in the latter case.

Proof. We will write

ω4 =
∑

i1,...,ip

λi1,...,ip ei1 ∧ · · · ∧ eip ,

where we always order the indices as follows: 1, −1, 2, −2, . . . , p − 1, −p + 1, 0. We will abbreviate 
λi1,...,ip to λI , where I = {i1, . . . , ip} ⊂ {1, −1, 2, −2, . . . , p − 1, −p + 1, 0}. If we choose v = ei , then
(1) tells us that

0 = �v(ω4) =
∑

−i∈I,i /∈I

±λI ē I\{−i} ∈
∧p−1

e⊥
i /〈ei〉,

where the occurring vectors ē I\{−i} are linearly independent. So if −i ∈ I but i /∈ I then λI = 0. On the 
other hand, if we choose v = e−i , then (2) tells us that

�v(ω4) =
∑

−i /∈I,i∈I

±λI ē I\{i} ∈
∧p−1

e⊥
−i/〈e−i〉

is of the form

ē1 ∧ · · · ∧ êi ∧ · · · ∧ ēp−1 ∧ u

for some u ∈ V ′ . So if i ∈ I but −i /∈ I , then λI = 0, unless {1, 2, . . . , p − 1} ⊂ I . Together with the 
above, this implies the claim. �
Step 3. All μI are equal, so we can write

ω4 = e1 ∧ · · · ∧ ep−1 ∧ u + μ
∑

j1,..., j�

e j1 ∧ e− j1 ∧ · · · ∧ e j� ∧ e− j� (∧e0).

Proof. Take v = ei − e j with i, j positive. Then �v(ω1) = 0 and �v (ω2) = �v(ω3) = 0, hence by 
Proposition 4.7 we get �v(ω4) = 0. But

ϕv(ω4) = −
∑
i∈ J

μ J e j1 ∧ e− j1 ∧ · · · ∧ ei ∧ ê−i ∧ · · · ∧ e j� ∧ e− j� (∧e0)

+
∑
j∈ J

μ J e j1 ∧ e− j1 ∧ · · · ∧ e j ∧ ê− j ∧ · · · ∧ e j� ∧ e− j� (∧e0).

After projecting to 
∧p−1

(ei − e j)
⊥/〈ei − e j〉 we get
16
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0 = �v(ω4) = −
∑

i∈ J , j /∈ J

μ J ē j1 ∧ ē− j1 ∧ · · · ∧ ēi ∧ ê−i ∧ · · · ∧ ē j� ∧ ē− j� (∧ē0)

+
∑

j∈ J ,i /∈ J

μ J ē j1 ∧ ē− j1 ∧ · · · ∧ ē j ∧ ê− j ∧ · · · ∧ ē j� ∧ ē− j� (∧ē0)

=ēi ∧
∑

i, j /∈ J ′
(−μ J ′∪{i} + μ J ′∪{ j})ē j′1 ∧ ē− j′1 ∧ · · · ∧ ē j′�−1

∧ ē− j′�−1
(∧ē0).

So we find that μ J ′∪{i} = μ J ′∪{ j} for every J ′ ⊂ {1, . . . , ̂i, . . . , ̂j, . . . , p − 1}. Letting i and j vary yields 
the result. �
Step 4. μ4 = 0

Proof. Finally, take v = e0 + e−1 − c0e1, where as before c0 = 1
2 〈e0, e0〉. If p = 2� we can write

�v(ω4) = ē2 ∧ · · · ∧ ēp−1 ∧ ũ + μ
∑
J�1

(ē−1 + c0ē1) ∧ ē j2 ∧ ē− j2 ∧ · · · ∧ ē j� ∧ ē− j�

and if p = 2� + 1 we have

�v(ω4) =ē2 ∧ · · · ∧ ēp−1 ∧ ũ + μ
∑
J�1

(ē−1 + c0ē1) ∧ ē j2 ∧ ē− j2 ∧ · · · ∧ ē j� ∧ ē− j� ∧ ē0

+ 2c0μ
∑

J

ē j1 ∧ ē− j1 ∧ · · · ∧ ē j� ∧ ē− j� .

In both cases we have L�v (ω4) ⊃ span{ē2, . . . , ̄ep−1} by (2) from which we conclude μ = 0. �
Step 5. ω ∈ Ĝriso(p, V )

Proof. Since ω1 = 0 and ω4 = e1 ∧ · · · ∧ ep−1 ∧ u for some u ∈ V ′ , we can write

ω = e1 ∧ · · · ∧ ep−1 ∧ u′

for some u′ ∈ span{e0, ep, e−1, . . . , e−p+1, e−p}. Choose v = e−1, then we have

�v(ω) = ē2 ∧ · · · ∧ ēp−1 ∧ u′ ∈ Ĝriso(p − 1, V v)

hence 〈u′, u′〉 = 0 and 〈e j, u′〉 = 0 for all j = 2, . . . , p − 1. Replacing v = e−1 with v = e−2 yields that 
also 〈e1, u′〉 = 0, hence ω ∈ Ĝriso(p, V ). �
This proves Claim 4.14. �
5. Counterexamples in small dimensions

In the Main Theorem 4.1, we assumed that dim V > 8. In this section, we will show that this 
assumption is actually necessary. In both 

∧3 K7 and 
∧4 K8, we will give a p-form ω that does not 

lie in the isotropic Grassmannian, but which maps to the isotropic Grassmannian upon applying any 
IGCP map �v . For case of simplicity, we assume the underlying field K is either C or R.
17
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5.1. Counterexample in dimension 7

Let V be a 7-dimensional vector space over K with a fixed basis {e0, e1, e2, e3, e−1, e−2, e−3}, and 
a quadratic form given by the matrix

J =
⎛⎝ − 1

2 0 0
0 0 I3
0 I3 0

⎞⎠ .

Choose

ω7 := e1 ∧ e2 ∧ e3 + e−1 ∧ e−2 ∧ e−3 + e0 ∧ (e1 ∧ e−1 + e2 ∧ e−2 + e3 ∧ e−3).

One verifies that ω7 /∈ Ĝr(3, V ), so in particular ω7 /∈ Ĝriso(3, V ). In Claim 5.2 below we will show 
that every �v maps ω7 to the isotropic Grassmann cone Ĝriso(2, 5). One could verify this by a di-
rect computation for an arbitrary isotropic vector v . However, we will exploit the fact that ω7 is 
sufficiently symmetric (Claim 5.1), so it suffices to do the computation for one fixed v ∈ V iso.

Consider the algebraic group

S O (V ) ={φ ∈ S L(V ) | 〈φ(x),φ(y)〉 = 〈x, y〉 ∀x, y ∈ V }
={A ∈ S L(7,K) | AT J A = J }

and its subgroup

G = stab(ω7) = {φ ∈ S O (V ) | φ · ω7 = ω7}.

Claim 5.1. The action of G on V iso is transitive.

Proof. Take any v0 ∈ V iso. We want to show that its orbit G · v0 has dimension six. Then G · v0 is a 
full-dimensional subvariety of the irreducible 6-dimensional variety V iso, and hence is equal to V iso. 
For this we use the formula

dim(G · v0) = dim G − dim(stabG(v0)),

where stabG(v0) = {φ ∈ G | φ · v0 = v0} is the stabilizer. We will compute both terms dim G and 
dim(stabG(v0)) by switching to Lie algebras.

The Lie algebra of S O (V ) is given by

so(V ) ={X ∈ sl(7,K) | X T J + J X = 0}

=
{⎛⎝ 0 −2yT −2xT

x a b
y c −aT

⎞⎠∣∣∣∣∣x, y ∈K3,a,b, c ∈K3×3,b + bT = c + cT = 0

}
.

We introduce the following notation.

For x =
⎛⎝x1

x2
x3

⎞⎠we write lx :=
⎛⎝ 0 −x3 x2

x3 0 −x1
−x2 x1 0

⎞⎠ .

We can compute the Lie algebra g ⊂ so(V ) of G as follows:

g={X ∈ so(V ) | X · ω7 = 0}

=
{⎛⎝ 0 −2yT −2xT

x a ly

y lx −aT

⎞⎠∣∣∣∣∣x, y ∈ K3,a ∈ sl(3,K)

}
.
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Observe that dimg = 3 + 3 + 8 = 14 and since dim G = dimg, G has also dimension 14. For the 
stabilizer, if we take v0 = e−3 ∈ V iso, we see that

stabg(v0) ={X ∈ so(V ) | X · e−3 = 0}
is the set of matrices in g whose final column is zero, which has dimension 8. So dim(G · v0) =
14 − 8 = 6 = dim V iso, as desired. �
Claim 5.2. For every v ∈ V iso , it holds that �v(ω7) ∈ Ĝriso(2, V v).

Proof. By the previous claim, it suffices to prove the claim for one fixed v0 ∈ V iso. Indeed, then any 
v ∈ V iso is of the form f · v0 for some f ∈ stab(ω7), and we get

�v(ω7) = � f ·v0( f · ω7) = f · �v0(ω7) ∈ Griso(2, V v),

since f · ω := (∧p f
)(

ω
)

and � f (v0) ◦ (∧3 f
) = (∧2 f

) ◦ �v0 for every f ∈ S O (V ). So we take 
v0 = e−3, and readily compute

�e−3(ω7) = ē1 ∧ ē2 ∈ Ĝriso(2, e⊥−3/〈e−3〉). �
In summary, this shows how the Main Theorem 4.1 fails for Ĝriso(3, 7): by Claim 5.2 ω7 satisfies 

the assumption but is itself not in Ĝriso(3, 7). In particular, this means that Ĝriso(3, 7) cannot be 
defined by pulling back the equations of Ĝr iso(2, 5) along IGCP maps of the form �v . We originally 
constructed our counterexample by analyzing where our proof fails if dim V = 7. However, it turned 
out, that ω7 is interesting also from different points of view, which we will discuss in the following 
remarks.

Remark 5.3. In 1900, Engel (1900) showed that if ω is a generic 3-form on C7, its symmetry group 
is isomorphic to the exceptional group G2, and that such a 3-form gives rise to a bilinear form βω . 
If we choose coordinates such that ω agrees with our form ω7, then this group G2 is precisely the 
stabilizer G we computed in Claim 5.1, and βω is up to scaling equal to our bilinear form given by J . 
For more about G2, we refer the reader to Fontanals (2018).

Remark 5.4. Alternatively we can construct ω7 as the triple product on the split octonions. Here we 
will follow the notation from Baez and Huerta (2014). Recall that the space H of quaternions is the 
4-dimensional real vector space with basis {1, i, j, k}, equipped with a bilinear associative product 
specified by Hamilton’s formula

i2 = j2 = k2 = i jk = −1.

The conjugate of a quaternion x = a + bi + cj + dk is given by x = a − bi − cj − dk. We also have a 
quadratic form given by QH(x) := xx = xx = a2 +b2 + c2 +d2. The space of split octonions is the vector 
space Os :=H⊕H with a bilinear (but nonassociative) product given by

(a,b)(c,d) := (ac + db̄, ād + cb).

The conjugate of an octonion (a, b) is given by (a,b) = (ā, −b), and we define a quadratic form QOs , 
of signature (4, 4), by QOs (x) = xx = xx; or equivalently QOs ((a, b)) = QH(a) − QH(b). We will 
write

e0 := (1,0) e1 := (i,0) e2 := ( j,0) e3 := (k,0)

e4 := (0,1) e5 := (0, i) e6 := (0, j) e7 := (0,k).

Let OIm = {x ∈ Os | x̄ = −x} = span{e1, . . . e7} denote the imaginary split octonions. On OIm we can 
define a cross product given by the commutator:
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x × y := 1

2
(xy − yx),

and a triple product T :OIm ×OIm ×OIm →R, given by

T (x, y, z) := 〈x, y × z〉,
where 〈·, ·〉 is the bilinear form coming from QOs . This triple product is an alternating trilinear form, 
and hence can be identified with an element ω ∈ ∧3 V ∗ , where V =OIm. Explicitly, writing e∗

i ∈ V ∗
for the dual vector to ei , we have

ω =e∗
1 ∧ e∗

2 ∧ e∗
3 + e∗

1 ∧ e∗
4 ∧ e∗

5 + e∗
1 ∧ e∗

6 ∧ e∗
7 + e∗

2 ∧ e∗
4 ∧ e∗

6

− e∗
2 ∧ e∗

5 ∧ e∗
7 + e∗

3 ∧ e∗
4 ∧ e∗

7 + e∗
3 ∧ e∗

5 ∧ e∗
6.

Note that the terms in ω correspond to the lines in the Fano plane:

4
21

7

36 5

This ω agrees with ω7 up to a change of basis. Explicitly, if we substitute

e0 �→ e∗
4√
2
, e1 �→ e∗

1 + e∗
5√

2
, e2 �→ e∗

2 + e∗
6√

2
, e3 �→ e∗

3 + e∗
7√

2
,

e−1 �→ e∗
1 − e∗

5√
2

, e−2 �→ e∗
2 − e∗

6√
2

, e−3 �→ e∗
3 − e∗

7√
2

into ω7, we recover ω (up to scaling).

5.2. Counterexample in dimension 8

Let V be an 8-dimensional vector space with basis {e1, e2, e3, e4, e−1, e−2, e−3, e−4}, and quadratic 
form given by the matrix

J =
(

0 I4
I4 0

)
.

Choose

ω8 :=2e1 ∧ e2 ∧ e3 ∧ e4 + 2e−1 ∧ e−2 ∧ e−3 ∧ e−4

+ e1 ∧ e2 ∧ e−1 ∧ e−2 + e1 ∧ e3 ∧ e−1 ∧ e−3 + e1 ∧ e4 ∧ e−1 ∧ e−4 (5.1)

+ e2 ∧ e3 ∧ e−2 ∧ e−3 + e2 ∧ e4 ∧ e−2 ∧ e−4 + e3 ∧ e4 ∧ e−3 ∧ e−4.

One can verify that ω8 /∈ Ĝr(4, V ), so in particular ω8 /∈ Ĝriso(4, V ). As before, we consider the alge-
braic group

S O (V ) ={φ ∈ S L(V ) | 〈φ(x),φ(y)〉 = 〈x, y〉 ∀x, y ∈ V }
={A ∈ S L(8,K) | AT J A = J }
20
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and its subgroup

G := stab(ω8) = {φ ∈ S O (V ) | φ · ω8 = ω8}.

Claim 5.5. The action of G on V iso is transitive.

Proof. Take any v0 ∈ V iso; we want to show that its orbit G · v0 has dimension equal to dim V iso = 7. 
The Lie algebra of S O (V ) is given by

so(V ) ={X ∈ sl(8,K) | X T J + J X = 0}

=
{(

a b
c −aT

)
a,b, c ∈K4×4,b + bT = c + cT = 0

}
.

We introduce the following notation

for b =

⎛⎜⎜⎝
0 b12 b13 b14

−b12 0 b23 b24
−b13 −b23 0 b34
−b14 −b24 −b34 0

⎞⎟⎟⎠ write b̃ :=

⎛⎜⎜⎝
0 −b34 b24 −b23

b34 0 −b14 b13
−b24 b14 0 −b12
b23 −b13 b12 0

⎞⎟⎟⎠ .

We can compute the Lie algebra g ⊂ so(V ) of G as follows:

g={X ∈ so(V ) | X · ω8 = 0}

=
{(

a b
b̃ −aT

)
| a ∈ sl(4,K),b + bT = 0

}
.

As before dim G = dimg = 21. For the stabilizer, if we take v0 = e−4 ∈ V iso, we see that

stabg(v0) ={X ∈ g | X · e−4 = 0}
is the set of matrices in g whose final column is zero, which has dimension 14. So dim(G · v0) =
21 − 14 = 7 = dim V iso, as desired. �

As before, we conclude the following claim.

Claim 5.6. For every v ∈ V iso , it holds that �v(ω8) ∈ Ĝriso(3, V v).

Proof. As in Claim 5.2, it suffices to prove the claim for one fixed v ∈ V iso. Taking v = e−1, we 
compute that

�v(ω8) = 2ē2 ∧ ē3 ∧ ē4 ∈ Ĝriso(3, e⊥−1/〈e−1〉). �
In summary, this shows how the Main Theorem 4.1 fails for Ĝriso(4, 8). As before, this means that 

Ĝriso(4, 8) cannot be defined by pulling back the equations of Ĝr iso(3, 6) along IGCP maps of the form 
�v .

Remark 5.7. The Lie algebra g defined above is in fact isomorphic to so(7). An explicit isomorphism 
so(7) → g can be given by
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⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −2y1 −2y2 −2y3 −2x1 −2x2 −2x3
x1 a11 a12 a13 0 b12 b13
x2 a21 a22 a23 −b12 0 b23
x3 a31 a32 a33 −b13 −b23 0
y1 0 c12 c13 −a11 −a21 −a31
y2 −c12 0 c23 −a12 −a22 −a32
y3 −c13 −c23 0 −a13 −a23 −a33

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d11 a12 a13 −c23 0 −y3 y2 x1
a21 d22 a23 c13 y3 0 −y1 x2
a31 a32 d33 −c12 −y2 y1 0 x3
b23 −b13 b12 d44 −x1 −x2 −x3 0
0 −x3 x2 y1 −d11 −a21 −a31 −b23
x3 0 −x1 y2 −a12 −d22 −a32 b13

−x2 x1 0 y3 −a13 −a23 −d33 −b12
−y1 −y2 −y3 0 c23 −c13 c12 −d44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where for the left hand side we used the notation from Section 5.1, and in the right hand side we 
have

d11 := a11 − a22 − a33

2
, d22 := −a11 + a22 − a33

2
, d33 := −a11 − a22 + a33

2
, d44 := a11 + a22 + a33

2
.
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Appendix A. Ranks of defining quadrics

In Section A.1, we will finish the proof of Corollary 4.3, by verifying the following fact:

Claim A.8. Ĝriso(3, 7), as well as both irreducible components of Ĝriso(4, 8), can be set-theoretically defined 
by quadrics of rank at most 4.

In Section A.2, we explain how Corollary 4.3 follows from the literature on isotropic Grassmanni-
ans, in particular the Cartan embedding.

A.1. Computational approach

Our verification is based on an algorithm, which we implemented in Macaulay2 Grayson and 
Stillman. We sketch the steps of the algorithm below. Let X be either Ĝriso(3, 7), or one of the com-
ponents of Ĝriso(4, 8).

(1) Compute the ideal I defining X by parametrizing an open subset and performing a Gröbner basis 
computation. The ideal I is generated by linear equations and quadrics.

(2) Get rid of the linear equations by substituting variables.
(3) View the space I2 of quadrics in I as a representation of S O (V ), and decompose it into weight 

spaces.
(4) Find a highest weight vector p ∈ I2 of minimal rank.
(5) Compute the subrepresentation generated by p, using the lowering operators in so(V ).
(6) If we generated all of I2, we are done.
(7) Otherwise, find the highest weight space we did not yet generate, let p be a quadric of minimal 

rank in it, and return to step (5).

By construction, the S O (V )-orbits of the quadrics p we found give sufficiently many equations to 
define X . Since acting with S O (V ) does not change the rank of a quadric, it follows that if each of 
our quadrics has rank at most 4, then X can be defined by quadrics of rank at most 4. For Ĝriso(3, 7), 
our algorithm returned the following quadrics:
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x2
0,1,2 + 2x1,2,3x1,2,−3,

x0,1,2(x1,2,−2 + x1,3,−3) + 2x1,2,3x0,1,−3,

x0,1,3x0,1,−3 + x0,1,2x0,1,−2,

x1,2,3(x0,1,−1 + x0,2,−2 − x0,3,−3) + x0,1,2(x2,3,−2 + x1,3,−1),

x2
0,1,−1 − (x0,2,−2 + x0,3,−3)

2 + 2(x1,3,−3 + x1,2,−2)(x3,−1,−3 + x2,−1,−2).

For one of the components of Ĝriso(4, 8), we found the following quadrics:

x2
1,2,3,−3 − x1,2,3,4x1,2,−3,−4,

2x1,2,3,−3x1,3,4,−1 − x1,2,3,4(x1,2,−1,−2 − x1,3,−1,−3 − x1,4,−1,−4),

(x1,4,−1,−4 + x2,4,−2,−4 − x3,4,−3,−4)
2 − 4x3,4,−1,−2x1,2,−3,−4.

Since all quadrics listed above have rank at most 4, and since both components of Ĝriso(4, 8) are 
isomorphic, our verification is now complete.

A.2. Rank 4 quadrics via the Cartan embedding

In this section we will sketch an alternative proof that Griso(p, 2p + 1) and the connected com-
ponents of Griso(p, 2p), in their Plücker embedding, are defined by linear equations and quadrics of 
rank at most 4, using the Cartan embedding (sometimes called spinor embedding), cf. Cartan (1981)
or Harnad and Balogh (2021, Appendix E). The proof follows by combining the following facts:

• The image of the Cartan embedding is defined by quadrics (Cartan, 1981).
• The Plücker embedding factors as the Cartan embedding followed by a degree two Veronese 

embedding (Balogh et al. (2021, Theorem 2.1) and Cardinali and Pasini (2013, Theorem 1)).
• The image of a degree two Veronese embedding is defined by quadrics of rank 3 and 4.

The idea is that the Veronese embedding turns the quadratic equations of the Cartan embedding into 
linear equations, so the only quadrics we need are the ones coming from the Veronese embedding.
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