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Abstract
Traditional blockchains grant the miner of a block full control not only over which transactions but
also their order. This constitutes a major flaw discovered with the introduction of decentralized
finance and allows miners to perform MEV attacks. In this paper, we address the issue of sandwich
attacks by providing a construction that takes as input a blockchain protocol and outputs a
new blockchain protocol with the same security but in which sandwich attacks are not profitable.
Furthermore, our protocol is fully decentralized with no trusted third parties or heavy cryptography
primitives and carries a linear increase in latency and minimum computation overhead.
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1 Introduction

The field of blockchain protocols has proved to be extremely robust. Since its creation with
Bitcoin [45], it had gone through several enhancements such as Ethereum [2] and has seen
the appearance of decentralized finance (DeFi). With this, some design flaws started to
show up. Blockchains would ideally allow users to trade tokens with each other in a secure
manner. However, existing designs do not consider users trading tokens of one platform
for FIAT currency or tokens of a different platform, arguably one of the major flaws of
today’s blockchain platforms, maximal extractable value (MEV) [26]. Current estimates show
that the total volume of MEV since 2020 is around 675M USD [3]. From a social welfare
perspective, while MEV is profitable to miners, it presents a serious invisible tax on the users
on the blockchain. Indeed the financial losses built up over time could potentially shy away
users from the blockchain, and consequently impact the security of the chain.

Sandwich attacks are one of the most common types of MEV [38] accounting for a loss
of 174M USD over the span of 33 months [48] for users of Ethereum. Sandwich attacks
leverage the miner’s ability to select and position transactions within a block. Consider the
simple example of a sequence of transactions that swap one asset X for another asset Y in a
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12:2 Eating Sandwiches

decentralized exchange where exchange rates are computed automatically based on some
function of the number of underlying assets in the pool (e.g., a constant product market
maker [7]). Now suppose there is a miner that also wants to swap some units of X for Y .
The most favorable position for the miner would be to place their transaction at the start of
the sequence, so as to benefit from a lower X-to- Y exchange rate. This approach achieves a
simple arbitrage strategy for any sequence of X-to-Y swaps: the miner can insert an X-to-Y
exchange at the start of the sequence and use the computed exchange rate to sell, say, k

units of X to get units of Y . The miner then front-runs the sequence of X-to-Y swaps, i.e.,
it inserts its own transaction at the start. To finish off the attack, the miner back-runs the
sequence with another transaction of its own that swaps some units of Y to X, i.e., inserts
this transaction at the end, and will often obtain more than k units of X. In this way, the
miner profits from its insider knowledge and its power to order transactions. Refer to the
full version [6] for a detailed description of exchange rate computation and sandwich attacks.

Since any miner of a given block has full control over the transactions added to the block,
as well as over the way transactions are ordered, it is straightforward for the miner to launch
the above attack. Consequently, this gives miners a lot of power as they control precisely
the selection and positioning of transactions with every block they mine. This problem has
received broad attention in the practice of DeFi and in the scientific literature.

A classic technique to mitigate this attack is thus to remove the control over the positioning
of the transactions in the block from the adversary, whether by using a trusted third party to
bundle and order the transactions as in flashbots1, Eden2, or OpenMEV3. Another method
works by imposing a fair ordering of the transactions using a consensus algorithm that respects
the order in which miners and validators first received the transactions [34]. The classical
solutions make the protocol dependent of external factors, besides, affecting efficiency.

In this work, we introduce the Partitioned and Permuted Protocol, abbreviated Π3, an
efficient decentralized algorithm that does not rely on external resources to counter front-
running. It renders sandwich attacks unprofitable and can easily be implemented on top of
an existing blockchain protocol Π.

Protocol Π3 determines the final order of transactions in a block Bi, created by a miner Mi,
through a uniformly randomly chosen permutation Σi. To explain the method, let us focus on
three transactions in Bi, a victim transaction tx∗ submitted by a client, and the front-running
and back-running transactions, tx1 and tx2, respectively, created by the miner. Since any
relative ordering of these three transactions is equally probable, tx1 will be ordered before
tx2 with the same probability as tx2 before tx1, hence the miner will profit or make a loss
with the same probability. Protocol Π3 uses a fresh permutation for each block; it is chosen
by a set of leaders, which are recent miners in the blockchain. We recognize and overcome
the following challenges.

First, Σi must not be known before creating Bi, otherwise Mi would have the option to
use Σ−1

i , the inverse of Σi, to initially order the transactions in Bi, so that the final order is
the one that benefits Mi. We overcome this by making Σi known only after Mi has been
mined. On the other hand, if Σi is chosen after creating Bi, a coalition of leaders would be
able to try multiple different permutations and choose the most profitable one – the number
of permutations a party can try is only limited by their processing power. For these reasons,
we have the leaders commit to their contributions to Σi before Bi becomes known, producing

1 https://www.flashbots.net
2 https://www.edennetwork.io
3 https://openmev.xyz/
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unbiased randomness. To incentivize leaders to open their commitments, our protocol Π3

employs a delayed reward release mechanism that only releases the payment to leaders when
they have generated and opened all commitments.

In some cases, however, performing a sandwich attack might still be more profitable than
the block reward, and hence a leader might still choose to not reveal their commitment to
bias the resulting permutation. In general, a coalition of k leaders can choose among 2k

permutations out of the nt! possible ones, where nt denotes the number of transactions in
the block. It turns out that the probability that tx1, tx∗, and tx2 appear in that order in
one of the 2k permutations can be significant for realistic values. Protocol Π3 mitigates
this by dividing each transaction into m chunks, which lowers the probability of a profitable
permutation in two ways. First, the number of possible permutations is much larger, (ntm)!
instead of nt!. Second, a permutation is now profitable if the majority of chunks of tx1 appear
before the chunks of tx∗, and vice versa for the chunks of tx2. As we discuss, the probability
of a profitable permutation approaches zero rapidly as the number of chunks m increases.
We discuss how to implement the chunking mechanism while preserving transaction integrity
and atomicity.

Organization. In this paper, we introduce a construction that takes as input a blockchain
protocol Π and produces a new blockchain protocol Π3 in which sandwich attacks are no
longer profitable. We begin by revisiting the concept of atomic broadcast [17] and setting
the model for the analysis. Secondly, we introduce our construction justifying how miners
are incentivized to follow the protocol before moving on to analyzing the construction in
detail. Thirdly, we guarantee that the construction does not include any vulnerability to the
protocol by showing that Π3 implements a variant of atomic broadcast if Π does. This part
of the analysis is performed in the traditional Byzantine model. Fourthly, we consider the
rational model to show that sandwich attacks are no longer profitable in Π3. We consider
the dual model of Byzantine for the security analysis and rational for the analysis of the
sandwich attacks because we considered it to be a perfect fit to show that the security of Π3

is not weakened even against an adversary that obtains nothing for breaking the protocol, as
well as, we can assume that any party attempts to extract value from any sandwich attack.
In other words, we consider both the security analysis and the analysis of the sandwich
attack in the worst scenario possible for the protocol. Lastly, we conclude the paper with an
empirical analysis of the protocol under real-life data, as well as an analysis of the additional
overhead introduced by our protocol.

2 Related work

The idea to randomize the transaction order within a block is folklore in the blockchain space.
It has been explored by Yanai [52] and also implemented in the wild [4]. To the best of our
knowledge, we are the first to implement the randomization using on-chain randomness and to
provide a security analysis for this model. Additionally, Randomspam [4] also acknowledges
that some spamming attacks can occur with randomized transactions, where the attacker
aims to insert several low-cost transactions to maximize the probability that some of these
transactions are positioned exactly at a profitable transaction. Our work reduces the success
probability of these attacks by first chunking each transaction into smaller parts and then
permuting all chunked transactions, rendering exact positioning attacks less profitable unless
more transactions are added, incurring larger gas costs.

OPODIS 2023



12:4 Eating Sandwiches

A recent line of work [34, 39, 32, 19, 33] formalizes the notion of fair ordering of
transactions. These protocols ensure, at consensus level, that the final order is consistent
with the local order in which transactions are observed by parties. Similarly, the Hashgraph [9]
consensus algorithm aims to achieve fairness by having each party locally build a graph with
the received transactions. As observed by Kelkar et al. [34], a transaction order consistent
with the order observed locally for any pair of transactions is not always possible, as Condorcet
cycles may be formed. As a result, fair-ordering protocols output a transaction order that is
consistent with the view of only some fraction of the parties, while some transactions may be
output in a batch, i.e., with no order defined among them. Moreover, although order-fairness
removes the miner’s control over the order of transactions, it does not eliminate front-running
and MEV-attacks: a rushing adversary that becomes aware of some tx early enough can
broadcast its own tx′ and make sure that sufficiently many nodes receive tx′ before tx.

Another common defense against front-running attacks is the commit and reveal technique.
The idea is to have a user first commit to a transaction, e.g., by announcing its hash or
its encryption, and, once the order is fixed, reveal the actual transaction. However, an
adversary can choose not to reveal the transaction, should the final order be non-optimal.
Doweck and Eyal [29] employ time-lock puzzle commitments [50], so that a transaction can
be brute-force revealed, and protocols such as Unicorn [40] and Bicorn [22] employ verifiable
delay functions [15] to mitigate front-running. Whereas they indeed manage to mitigate
front running, the main disadvantages of these solutions are threefold: firstly, transactions
may be executed much later than submitted, with no concrete upper bound on the revelation
time. Secondly, a delay for the time-lock puzzle has to be chosen which matches the network
delay and adversary’s computational power. Finally, it is unclear who should spend the
computational power to solve the time-lock puzzles, especially in proof of work blockchains
where this shifts computational power away from mining.

A different line of work [30, 43, 18, 49, 53] hides the transactions until they are ordered
with the help of a committee. For instance, transactions may be encrypted with the public
key of the committee, so that its members can collaboratively decrypt it. However, this
method uses threshold encryption [28] and requires a coordinated setup. Also multi-party
computation (MPC) has been used [12, 5, 41] to prevent front-running. MPC protocols used
in this setting must be tailor-made so that misbehaving is identified and punished [11, 36]. A
disadvantage of the aforementioned techniques is that the validity of a transaction can only be
checked after it is revealed. These techniques also rely on strong cryptographic assumptions
and coordination within the committee. The protocol presented in this work disincentivizes
sandwich attacks without requiring hidden transactions or employing computationally heavy
cryptography.

Another widely deployed solution against front-running involves a dedicated trusted third
party. Flashbots4, Eden5, and OpenMEV6 allow Ethereum users to submit transactions
to their services, then order received transactions, and forward them to Ethereum miners.
Chainlink’s Fair Sequencing Service [20], in a similar fashion, aims to collect encrypted
transactions from users, totally orders them, and then decrypts them. The third-party service
may again be run in a distributed way. The drawback with these solutions is that attacks
are not eliminated, but trust is delegated to a different set of parties.

4 www.flashbots.net
5 www.edennetwork.io
6 https://openmev.xyz/
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An orthogonal but complementary line of research is taken by Heimbach and Watten-
hofer [31]. Instead of eliminating sandwich attacks, they aim to improve the resilience of
ordinary transactions against sandwich attacks by strategically setting their slippage tolerance
to reduce the risk of both transaction failure as well as sandwich attacks.

Last but not least, Baum et al. [10] and Heimbach and Wattenhofer [31] survey the area
of front-running attacks.

3 Model

Notation. For a set X, we denote the set of probability distributions on X by µ(X). For a
probability distribution ν ∈ µ(X), we denote sampling x from X according to ν by x← ν.

3.1 Block-based atomic broadcast
Parties broadcast transactions and deliver blocks using the events bab-broadcast(tx) and
bab-deliver(b), respectively, where block b contains a sequence of transactions [tx1, . . . , txnt ].
The protocol outputs an additional event bab-mined(b, P ), which signals that block b has
been mined by party P , where P is defined as the miner of b. Notice that bab-mined(b, P )
signals only the creation of a block and not its delivery. In addition to predicate VT(), we
also equip our protocol with a predicate VB() to determine the validity of a block. Moreover,
we define a function FB(), which describes how to fill a block: it gets as input a sequence
of transactions and any other data required by the protocol and outputs a block. These
predicates and function are determined by the higher-level application or protocol.

▶ Definition 1. A protocol implements block-based atomic broadcast with validity predicates
VT() and VB() and block-creation function FB() if it satisfies the following properties, except
with negligible probability:
Validity: If a correct party invokes a bab-broadcast(tx), then every correct party eventually

outputs bab-deliver(b), for some block b that contains tx.
No duplication: No correct party outputs bab-deliver(b) for a block b more than once.
Integrity: If a correct party outputs bab-deliver(b), then it has previously output the event

bab-mined(b, ·) exactly once.
Agreement: If some correct party outputs bab-deliver(b), then eventually every correct party

outputs bab-deliver(b).
Total order: Let b and b′ be blocks, and Pi and Pj correct parties that output bab-deliver(b)

and bab-deliver(b′). If Pi delivers b before b′, then Pj also delivers b before b′.
External validity: If a correct party outputs bab-deliver(b), such that b = [tx1, . . . , txnt

], then
VB(b) = true and VT(txi) = true, for i ∈ 1, . . . , nt. Moreover, if FB(tx1, . . . , txnt)
returns b, then VB(b) = true.

Fairness: There exists C ∈ N and µ ∈ R>0, such that for all N ≥ C consecutive delivered
blocks, the fraction of the blocks whose miner is correct is at least µ.

Observe that the properties assure that bab-mined(b, P ) is triggered exactly once for each
block b, hence each block has a unique miner. For ease of notation, we define on a block b
the fields b.txs, which contains its transactions, and b.miner, which contains its miner. Since
blocks are delivered in total order, we can assign them a height, a sequence number in their
order of delivery, accessible by b.height. Finally, for simplicity we assume that a delivered
block allows access to all blocks with smaller height, through an array b.chain. That is, if
b.height = i then b.chain[i′] returns b′, such that b′.height = i′, for all i′ ≤ i.

OPODIS 2023
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3.2 Blockchain and network
Blockchain protocols derive their security from different techniques such as proof of work
(PoW ) [45], proof of stake (PoS) [27], proof of space-time (PoST) [24], or proof of elapsed
time (PoET ) [16]. In the remainder of the work, we consider a generic protocol Π that has a
probabilistic termination condition, capturing all the model above. Furthermore, we model
Π as block-based atomic broadcast.

Parties. Similar to previous works, our protocol does not make explicit use of the number of
parties or their identities, and does not require the parties themselves to know this number.
We assume an static network of np parties. We consider the Byzantine model, where f parties
may behave arbitrarily, as well as, the rational model where all parties behave maximizing
their utilities.

Transactions & Blocks. A transaction tx contains a set of inputs, a set of outputs, and
a number of digital signatures. Transactions are batched into blocks. A block contains a
number of transactions, nt, for simplicity we assume nt to be constant. A block b may contain
parameters specific to protocol Π such as references to previous blocks, but we abstract the
logic of accessing them in a field b.chain, as explained in the context of Definition 1. We
allow conditional execution of transactions across blocks, i.e., a transaction can be executed
conditioned on the existence of another transaction in a previous block.

Network. A diffusion functionality implements communication among the parties, which is
structured into synchronous rounds. The functionality keeps a RECEIVEi string for each
party Pi and makes it available to Pi at the start of every round. String RECEIVEi is used
to store all messages Pi receives. When a party Pi instructs the diffusion functionality to
broadcast a message, we say that Pi has finished its round and the functionality tags Pi as
finished for this round. The adversary, detailed in Section 5, is allowed to read the string of
any party at any moment during the execution and to see any messages broadcast by any
party immediately. Furthermore, the adversary can write messages directly and selectively
into RECEIVEi for any Pi, so that only Pi receives the message at the beginning of the next
round. This models a rushing adversary.

When all non-corrupted parties have finished their round, the diffusion functionality
takes all messages that were broadcast by non-corrupted parties in the round and adds them
to RECEIVEi for all parties, this is the reason of the name synchronous rounds. Every
non-corrupted party communicates changes to its local view at the end of each round. If a
non-corrupted party creates a block in round r, the new block is received by all parties by
round r + 1. Furthermore, even if the adversary causes a block to be received selectively
by only some non-corrupted parties in round r, the block is received by all non-corrupted
parties by round r + 2. The update of the local view also includes the delivery of transactions
contained in the blocks that satisfy the conditions to be accepted.

4 Protocol

Our proposed protocol Π3 (“Partitioned and Permuted Protocol”) contains two modifications
to a given underlying blockchain protocol Π in order to prevent sandwich MEV attacks.

Our first modification involves randomly permuting the transactions in any given block.
Note that a naive way of doing so is to use an external oracle (e.g., DRAND [1] or NIST
beacon [35]) to generate the randomness which will be applied to a given block. However,
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using an external source of randomness relies on strong trust assumptions on the owners
of the source, leaves our protocol vulnerable to a single point of failure and it introduces
incentive issues between miners of the chain and owners of the external source. To avoid this,
our protocol uses miners of the immediately preceding blocks to generate the randomness.
These miners, which we refer to as leaders for the given block, are in charge of generating
random partial seeds. These partial seeds are then combined to form a seed which will be
the input into a PRG to produce a random permutation that is applied to the transactions
in the block. To ensure that the permutation is random, we need first to achieve that leaders
participate in the generation of random partial seeds and secondly to ensure the partial seeds
generated by the leaders are random. That is, the leaders should not commit to the same
partial seed each time or collude with other leaders to generate biased partial seeds. To
incentivize each leader to participate in the generation of the seed, Π3 stipulates that they
commit to their partial seed and present a valid opening during the commitment opening
period, otherwise their reward will be burned. In typical blockchain protocols, the miner of
a block receives the block reward immediately. In Π3, the miner does not receive the reward
until a certain number of additional blocks has been mined. We refer to this as a waiting
phase and stress that the precise length of the waiting phase is a parameter in our protocol
that can be tweaked.

Our second modification is to divide the transfers of each transaction into smaller chunks
before permuting the chunked transactions of a block. This modification increases the
cardinality of the permutation group in order to reduce the effectiveness of any attack aiming
to selectively open partial seeds in order to bias the final permutation.

We stress that our proposed modifications incur minimal computational overhead, since the
only possible overhead corresponds to transaction delivery and this aspect is computationally
cheap. Thus, the only noticeable impact of our protocol is latency. In the full version [6] we
provide an in-depth analysis of the efficiency impact of our proposed modifications.

4.1 Permuting transactions
Protocol Π3 consists of the following four components (see Figure 1): block mining, generation
of the random permutation, reward (re)-distribution, and chunking the transactions.

Appending the partial seeds. Let nℓ be the size of the leader set for each block. The
miner Mi of block Bi is part of the leader set of blocks Bi+j , for j ∈ [nℓ]. Mi must therefore
contribute a partial seed σi,j for each of these nℓ blocks following Bi. Hence, Mi needs to
create nℓ random seeds σi,1, . . . , σi,nℓ

and commitments to them, C(σi,1), . . . , C(σi,nℓ
). The

commitments C(σi,j), for j ∈ [nℓ], are appended to block Bi, while the seeds σi,j are stored
locally by Mi. A block that does not contain nℓ commitments is considered invalid.

Looking ahead, we want that any party knowing the committed value can demonstrate
it to any other party. Thus, the more standard commitments schemes such as Pedersen
commitment [47] are ill-suited. Instead, Π3 uses a deterministic commitment scheme for
committing to permutations, in particular, a collision-resistant cryptographic hash function.
When the entropy of the committed values is high enough, then a hash function constitutes
a secure commitment scheme. Since the parties commit to a random partial seed, hash
functions suffice and yield a cheap commitment scheme.

Opening the commitments. Let τ1, τ2 ∈ N>0. Between τ1 and τ1 + τ2 blocks after the
creation of some block Bi, the commitments of the partial permutation to be applied on
block Bi must be opened. The miners of these blocks also need to append the openings

OPODIS 2023
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Figure 1 We illustrate the routine for the creation of the random permutation σ0 created by the
leader set L0 and to be applied on block B0 in Bitcoin. The leaders L0 for block B0 is formed by
the miners of the nℓ blocks before B, marked with the green box. When party Mi mined block
Bi, the party generated some random seed σ−i,i and included its commitment h−i,i as part of the
newly mined block. After block B0 is mined, the leaders wait for τ1 blocks before opening the
commitments. The commitments must be included in the following τ2 blocks. Finally the parties
wait until every block containing openings are confirmed before delivering block B0.

to their blocks, unless a previous block in the chain already contains them (see below for
more details). The parameter τ1 controls the probability of rewriting block Bi after the
commitments have been opened. Whereas, parameter τ2 guarantees that there is enough
time for all the honest commitments to be opened and added to some block. Any opening
appended a block Bj for j > i + τ1 + τ2 is ignored. We note that specific values of τ1 and τ2
might cause our protocol to suffer an increase in latency. We leave these parameters to be
specified by the users of our protocol. For the interested reader, we discuss latency-security
trade-offs in the full version [6]. The τ1 blocks created until opening the commitments takes
place is known as silent phase, whereas the following τ2 blocks is known as loud phase.

A possible way to record the opening of commitments is for the miners that own the
commitments to deploy a smart contract that provides a method open(i, j, σi,j), where σi,j is
a (claimed) opening of the j-th commitment hi,j published in the i-th block Bi. We remark,
that the smart contract serves only as proof that an opening to a commitment has been
provided, and does not add any functionality to the protocol, so other proof mechanisms
can also be considered. The protocol monitors the blockchain for calls to this method. The
arguments to each call, as well as the calling party and the block it appears on, are used to
determine the final permutations of the blocks and the distribution of the rewards, which we
will detail below. We stress that not opening a commitment does not impact the progress of
protocol, as unopened commitments are ignored.

Deriving the permutation from partial seeds. Let the seed σi for block Bi be defined as
σi−1,1⊕σi−2,2⊕ . . .⊕σi−nℓ,nℓ

. Given the seed σi, let ri := G(σi), where G : {0, 1}λ → {0, 1}ℓ

is a pseudorandom generator. If at least one of the partial seeds σi,j , for j ∈ [nℓ], is
chosen at random, then σi is random as well, and ri is indistinguishable from a random
number [14] without the knowledge of σi,j . There are standard algorithms to produce a
random permutation from a polynomial number of bits [25].

Incentivizing the behavior. A crucial factor in the security of Π3 against sandwich MEV
attacks is that the permutation used to order transactions within a block should be truly
random. Thus, the miners should generate all partial seeds uniformly at random. To
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Figure 2 We illustrate the process followed by party M to deliver a block B. We denote by
tx1, .., txn the n transaction that constitute B. In the first step, party M breaks each transaction
txi into m transactions tx1

i , .., txm
i involving a smaller amount. These smaller transactions are later

permuted according to the random permutation Σ. Lastly, party M delivers these small transactions
in this new order.

incentivize them to do so, we exploit the fact that all leaders remain in the waiting phase for
a period of time, which means that they have not yet received the block rewards and fees
for mining their block on the blockchain. Note that the waiting phase is nℓ + τ1 + τ2 + d

blocks long. This implies that their rewards can be claimed by other miners or burned if a
party diverges from the proper execution, according to the rules described below. Consider a
partial permutation σi,j committed by miner Mi of block Bi. Recall that σi,j will be applied
on block Bi+j and that miners can be uniquely identified due to the bab-mined() event.

1. Before τ1 blocks have been appended after block Bi+j any other leader of the leader set
Li+j who can append a pre-image of hi,j to the chain can receive the reward and fees
corresponding to Mi. This mechanism prevents party Mi from disclosing its commitment
before every other leader committed its randomness, thus preventing colluding. A miner
whose commitment has been discovered by another leader is excluded from all the leader
sets.

2. If the opening of σi,j is not appended to any block, miner Mi loses its reward and fees.
This mechanism prevents miners from not opening their commitments. Note that miners
are incentivized to include all the valid openings, as discussed below.

3. If any of the previous conditions do not apply, party Mi receives an α fraction of the
block reward and feed for α ∈ (0, 1), which would be paid out the moment Mi leaves the
waiting phase. Each miner that appends the opening of Mi’s commitments gets (1−α)·w

nℓ

for each commitment appended.
In the remainder of this work we refer to the block reward and fees as simply block reward.

4.2 Chunking transactions
In all commit-and-open schemes, there exists the vulnerability that malicious parties decide
to not open their commitments so as to bias the outcome. In our protocol, any coalition of
k leaders can choose between 2k ways to bias the final permutation. If one miner manages
to create multiple blocks out of Bi−1, . . . , Bi−nℓ

, this does not even require collusion with
others.

The adaptive attacks mounted through withholding can be countered with a simultaneous
broadcast abstraction [23], but realizing this is almost impossible in practice [37], especially
in the blockchain domain. Alternatively, time-lock puzzles may negate the effect of the

OPODIS 2023
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delay. But this technique costs computational effort, which may have a negative impact on
the environment and possibly also on the protocol. In the particular case of generating a
permutation, there is an alternative.

Chunking transfers in transactions. Let us assume that a block contains ntx transactions,
this means there exist ntx! possible permutations of them. A coalition of k leaders can
choose between 2k possible permutations among the ntx! total permutations. Furthermore,
in the simplest case the coalition only aims to order the three transactions that constitute
the sandwich attack, thus the fraction of advantageous permutations is 1

6 , the fraction of
disadvantageous permutations is 1

6 and the remaining ones are neutral. If k is big enough,
the coalition could still extract enough value to compensate for the lost block rewards of
those parties that do not open their commitment.

Therefore we want to increase the size of the permuted space. We assume here that every
transaction consists of arbitrary code and a few specialized instructions that are transfers of
coins or tokens. These may be the native payment operation of the blockchain or operations
that involve a well-known standard format for tokens, which are emulated by smart contracts
(such as the ERC-20 standard in Ethereum). We now divide every transfer generated by
some transaction into m chunks.

For instance, suppose transaction txi consists of Alice paying Bob 1 ETH. In our protocol,
each party would locally split txi into m chunks tx1

i , . . . txm
i , consisting of Alice transferring

1/m ETH to Bob each. After all transactions are chunked, the permutation will be applied
to the larger set of transactions. There exist (ntxm)! permutations and the coalition would
need to order the 3m chunks that constitute the involved transactions. Furthermore, for a
given permutation with some chunks ordered beneficially, there will exist chunks ordered in
a disadvantageous way, with overwhelming probability. The coalition needs to optimize the
good ordering of some chunks while keeping the bad ordering under control. Obtaining a
favorable ordering becomes extremely unlikely as number of chunks m grows (Section 5.2).

Execution of transactions and chunks. Transactions contain arbitrary code whose execution
produces an ordered list of transfers, as introduced before. The process of chunking proceeds
in two stages.

In the first stage, the party executes the code of all transactions contained in the block
serially, in the order determined by the miner; this produces a list of transfers and the
corresponding amounts for each transaction. Some transactions may turn out to be invalid,
they are removed from the further processing of the block.

In the second stage, for each valid transaction tx a list of m transfer chunks tx1, . . . txm is
produced such that tx1 contains the code executed by tx, and its transfers have their amount
set to 1/m of the number computed by the code. The transaction chunks tx2, . . . txm contain
only the transfers, with their numbers set to 1/m of original amounts, but these transactions
do not execute further code. If the code executed by tx1 produces different transfers than in
the first stage, the execution of tx1 is aborted, also the execution of tx2, . . . txm. We consider
two transfers to be the same if they transfer the same amount of coins or tokens from the
same source address to the same destination address. Note the blockchain state produced by
a transaction in the first stage can differ from the state produced by the same transaction
in the actual execution according to the second stage execute; this is the case, for instance,
when it interacts with a smart contract.

The block being permuted now contains up to m times as many chunks as the original
block contained transactions, each of them transferring 1/m the value.
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Notice that the permutation is not uniformly random across all choices, but needs to
respect that tx1 appears first within the set of chunks resulting from tx. However, this
restriction in the permutation does not constitute any loss of generality since every chunk
performs an identical transfer. An adversarial miner can utilize fine-grained conditions such
as slippage to additionally control the conditional execution of transactions – and in our
case transaction chunks – in a given block. The execution of transactions explained above
guarantees atomicity: all chunks are executed or no chunk is executed. In the full version [6]
we present an in-depth analysis of how slippage could lead to higher expected revenue, which
may also be of independent interest.

4.3 Details
In Algorithm 1 we show the pseudocode for protocol Π3, which implements a block-based
atomic broadcast (bab) primitive. The pseudocode assumes an underlying protocol Π, which
is also modeled as a block-based atomic broadcast (bab) primitive, as defined in Section 3.
The user or high-level application interacts with Π3 by invoking Π3-broadcast(tx) events.
These are handled by invoking the corresponding Π-broadcast(tx) event on the underlying
protocol Π (L3-4).

Protocol Π outputs an event bab-mined(b, Q) whenever some party Q mines a new block
b (L5). For Π3, the mining of a new block at height i starts the opening phase for the block
at height iopen = i− τ1 − 1 (L6). Hence, party P loops through the nℓ blocks before iopen
and checks whether it is the miner of each of them (L7-9). If this is the case, P must provide
a valid opening to the commitment related to block at height iopen. The opening is achieved
by a specific type of transaction, for example through a call to a smart contract. In the
pseudocode we abstract this into a function Open().

Protocol Π outputs an event Π-deliver(b) whenever a block b is delivered (L10). According
to the analysis of our protocol, this will allow Π3 to deliver the block τ1 + τ2 positions higher
than b, i.e., the block bdel at height idel = b.height− τ1 − τ2. To this goal, Π3 first reads the
commitments related to bdel (L12-13). By construction of Π3, a commitment ci,j , written on
block bi, is used to order the transactions in block bi+j . Hence, the commitments related to
bdel have been written on the nℓ blocks before bdel. Protocol Π3 then reads the openings to
these commitments (L14-17). Again by construction of Π3, the openings of the commitments
related to bdel have been written on the blocks with height idel + τ1 + 1 to idel + τ1 + τ2. For
each of these blocks, Π3 loops through its transactions that contain an opening. L16 then
checks whether the opening is for a commitment related to block bdel and whether the opening
is valid. Protocol Π3 then calculates the final permutation Σ to be applied to block b (L18-22).
As presented in Section 4.1, Σ = PermFromRandBits(G(seed)), where seed is the XOR of
all valid openings for block b, G is a pseudorandom generator, and PermFromRandBits an
algorithm that derives a permutation from random bits. The remaining of this block chunks
the transactions contained in b (L23-25), applies Σ on the chunked transactions (L26), and
swaps the first permuted chunk of each of each transaction with the chunk containing the
code (L28). The function Chunk() is explained in Section 4.2. Finally, Π3 delivers block b
containing the chunked and permuted transactions through the Π3-deliver(b) event (L30).

The function FB() is an upcall from block-based atomic broadcast. It specifies how a
block is filled with transactions and additional data. For simplicity, the pseudocode omits any
detail specific to bab. It first writes all given transactions on the block, then picks uniformly
at random nℓ bit-strings of length λ. These are the partial random seeds to be used in the
permutation of the following nℓ blocks, if the block that is currently being built gets mined
and delivered by bab. The commitments to these partial seeds are appended on the block.
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Algorithm 1 Protocol Π3. Code for party P .

Implements: Protocol Π3

Uses: block-based atomic broadcast Π

State:
1: σ[i, j]← ⊥, for all i ≥ 1, j ∈ [nℓ]
2: c[i, j]← ⊥, for all i ≥ 1, j ∈ [nℓ]

3: upon event ⟨Π3-broadcast, tx⟩ do
4: invoke ⟨Π-broadcast, tx⟩

5: upon event ⟨Π−mined, b, Q⟩ do
6: iopen ← b.height− τ1 − 1
7: for i′ ∈ [iopen − nℓ − 1, iopen − 1] do
8: if b.chain[i′].miner = P then
9: Open(b.chain[i′].commitments[iopen − i′])

10: upon event ⟨Π-deliver, b⟩ do
11: idel ← b.height− τ1 − τ2

12: for j ∈ [nℓ] do // Read commitments for block b
13: c[idel, j]← b.chain[idel − j].commitments[j]
14: for i′ ∈ [idel + τ1 + 1, idel + τ1 + τ2] do // Read the openings for block b
15: for tx ∈ b.chain[i′].txs such that tx = open(k, l, σ) do
16: if k + l = idel and H(σ) = c[idel, l] then
17: σ[idel, l]← σ

18: seed← 0λ

19: for j ∈ [nℓ] do // Compute final permutation for block b
20: if σ[idel, j] ̸= ⊥ then
21: seed← seed⊕ σ[idel, j]
22: Σ← PermFromRandBits(G(seed))
23: chunked_txs← [ ]
24: for tx ∈ b.txs do // Chunk and permute transactions in block b
25: chunked_txs← chunked_txs∥Chunk(tx, m)
27: chunks← Permute(Σ, chunked_txs)
28: chunks← SwapChunks(chunks) // For each tx, swap the first chunk in chunks with tx1

29: b.txs← chunks
30: invoke ⟨Π3-deliver, b⟩

31: function FB(txs) :
32: data← [ ]
33: for tx ∈ txs do
34: data← data∥tx
35: for j ∈ [nℓ] do
36: σ

$← {0, 1}λ

37: c← H(σ)
38: data← data∥c
39: return data

40: function VB(b) :
41: if

(
∃tx ∈ b.txs : ¬VT(tx)

)
∨

(
∃j ∈ [nℓ] : b.commitments[j] = ⊥

)
then

42: return false
43: return true
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Finally, the predicate VB() specifies that a block is valid if all its transactions are valid,
as specified by VT(), and if it contains nℓ commitments. The predicate VT() is omitted, as
its implementation does not affect Π3.

5 Analysis

5.1 Security analysis
We model the adversary as an interactive Turing machine (ITM) that corrupts up to t parties
at the beginning of the execution. Corrupted parties follow the instructions of the adversary
and may diverge arbitrarily from the execution of the protocol. The adversary also has
control over the diffusion functionality. That is, she can schedule the delivery of messages
(within the ∆ rounds), as well as read the RECEIVEi of every party at any moment of the
execution and directly write in the RECEIVEi of any party.

We first show that the security of our construction is derived from the security of the
original protocol. Given an execution of protocol Π3, we define the equivalent execution in
protocol Π as the execution in which every party follows the same steps but the commitment,
opening, and randomization of transactions are omitted. We also recall the parameters τ1
and τ2 that denote the length (in blocks) of the silent and loud phase respectively.

▶ Lemma 2. The probability that an adversary can rewrite a block after any honest partial
permutations have been opened is negligible in τ1.

Proof. Assume an adversary controlling up to t parties and a block B. We know that if
τ1 > d, protocol Π would deliver block B, thus an adversary cannot revert the chain to
modify the order of the transactions stored in B but with negligible probability. ◀

▶ Lemma 3. The probability that an adversary can rewrite a chain omitting the opening of
some honest partial permutation is negligible in τ2.

Proof. The fairness quality of protocol Π states that for any consecutive N blocks, if N ≥ N0
the fraction of honest blocks is at least µ. Thus, if τ2 ≥ max{N0, 1

µ}, there exists at least one
honest block containing every opening that is not previously included in the chain. Since ◀

Our construction aims to turn any protocol into a protocol robust against sandwich
attacks. However, there might be new vulnerabilities. Intuitively, our construction should
not introduce any vulnerability because the only modified aspect is the order in which
transactions are delivered. Theorem 5 formalizes this intuition.
▶ Remark 4. Note that every Π-delivered block is also Π3-delivered some block after (Line10–
30). Note also that every Π3-delivered is also Πdelivered. Furthermore, the blocks are
delivered in the same order.

▶ Theorem 5. If protocol Π implements block-based atomic broadcast, then the Partitioned
and Permuted Protocol Π3 implements block-based atomic broadcast.

Proof. According to Remark 4, the set of Π3-delivered blocks is the same as the set of
Π-delivered blocks.
Validity. Assume that an honest party Π3-broadcasts(tx) transaction tx. The party first

Π-broadcasts(tx) (L3–4). The validity property of protocol Π guarantees that eventually
a block b containing transaction tx is Π-delivered. According to Remark 4, the honest
party eventually Π3-delivers a block containing tx and Π3 satisfies the validity property
of block-based atomic broadcast.
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No-duplication. Note that Π3 delivers the same set of blocks as protocol Π, Remark 4. Thus,
the no-duplication property of protocol Π3 is inherited directly from the no-duplication
of protocol Π.

Agreement. Consider two honest parties P and Q such that party P Π3-delivers block b.
Remark 4 guarantees that P alsoΠ-delivers block b. The agreement property of protocol
Π ensure that Q eventually Π-delivers block b. Remark 4 guarantees that Q eventually
Π3-delivers block b. Note that the block b delivered by both P and Q may differ in how
the transactions are chunked and permuted. However, Lemmas 2 and 3 guarantee all
correct parties agree on the same permutation with all but negligible probability. Hence,
we conclude that protocol Π3 satisfies the agreement property.

Total order. Remark 4 guarantees that the order in which any honest party Π3-delivers two
block b1 and b2 is the same as it Π-delivers them. Thus, the total order property of
protocol Π guarantees the total order property of protocol Π3.

External validity. This follows from the external validity of Π.
Fairness. According to Remark 4 the same blocks and in the same order are both Π3-delivered

and Π-delivered. Hence, the fairness property of Π3 is inherited from the fairness property
of protocol Π. ◀

After showing that Π3 is as secure as the original protocol Π. We turn our attention to
analyzing the behavior of Π3 under sandwich attacks, in the upcoming section.

5.2 Game-theoretic analysis
Here, we aim to show that if we assume all miners are rational, i.e., they prioritize maximizing
their own payoff, behaving honestly as according to our protocol Π3 is a stable strategy.

Strategic games. For N ∈ N, let Γ = (N, (Si), (ui)) be an N party game where Si is a finite
set of strategies for each party i ∈ [N ]. Let S := S1 × · · · × SN denote the set of outcomes of
the game. The utility function of each party i, ui : S → R, gives the payoff of party i given an
outcome of Γ. For any party i, a mixed strategy si is a distribution in µ(Si). A strategy profile
of Γ is s := s1×· · ·×sN where si is a mixed strategy of party i. The expected utility of a party
i given a mixed strategy profile s is defined as ui(s) = Ea1←s1,··· ,aN←sN

[ui(a1), · · · , ui(aN )].
Finally, we note that if si is a Dirac distribution over a single strategy ai ∈ Si, we say si is a
pure strategy for party i.

Notation. Let w denote the total reward for mining a block and q the negligible probability
that a PPT adversary guesses a correct opening. Recall in Section 4.1 that the total block
reward w is split between the miner of the block who gets α · w and the miners that append
the correct openings who get (1−α)·w

nℓ
for each correct opening they append. For a given

block, we denote by m the number of chunks for each transaction in the block, and by λ the
utility of the sandwich attack on the block. Specifically, λ refers to the utility of a sandwich
attack performed on the original transactions in the order they are in before chunking and
permuting them. We also denote the optimal sandwich utility by Λ, which is the maximum
utility one can get by performing a sandwich attack. Finally, we denote by λ̂i the average
utility of the sandwich attack taken over all blocks on the chain for a specific miner Mi. This
can be computed easily as the transaction mempool is public. We stress that it is important
to look at the average sandwich utility for each miner separately and not the average over all
miners as the utility a miner can derive from a sandwich attack depends on their available
liquidity (i.e., how much assets they can spare to front-run and back-run the transactions).
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Quasi-strong ε-Nash Equilibrium. In terms of game theoretic security, we want our protocols
to be resilient to deviations of any subset of miners that form a coalition and deviate jointly.
The security notion we want to achieve is that of an quasi-strong ε-Nash Equilibrium [8, 13, 21].
Let C denote the coalition of players. For any strategy profile s, we denote by uC(s) the
expected utility of the coalition under s. We denote by uC(s′C , s−C) the expected utility
of the coalition when playing according to some other strategy profile s′C given the other
players that are not part of the coalition play according to s.

▶ Definition 6 (Quasi-strong ε-Nash Equilibrium). A quasi-strong ε-Nash Equilibrium is a
mixed strategy profile s such that for any other strategy profile s′C , uC(s) ≥ uC(s′C , s−C)− ε

for some ε > 0.

The notion of a quasi-strong Nash Equilibrium is particularly useful in the context of
blockchains as the coalition could potentially be controlled by a single miner with sufficient
resources [21]. The notion of an ε-equilibrium is also important in cases where there could be
a small incentive (captured by the ε parameter) to deviate from the protocol, and of course
the smaller one can make ε, the more meaningful the equilibrium.

Subgame perfection. We also consider games that span several rounds and we model them
as extensive-form games (see, e.g., [46] for a formal definition). Extensive form games can be
represented as a game tree tx where the non-leaf vertices of the tree are partitioned to sets
corresponding to the players. The vertices belonging to each player are further partitioned
into information sets I which capture the idea that a player making a move at vertex x ∈ I is
uncertain whether they are making the move from x or some other vertex x′ ∈ I. A subgame
of an extensive-form game corresponds to a subtree in tx rooted at any non-leaf vertex x that
belongs to its own information set, i.e., there are no other vertices that are the set except for
x. A strategy profile is a quasi-strong subgame perfect ε-equilibrium if it is a quasi-strong
ε-Nash equilibrium for all subgames in the extensive-form game.

The induced game. Let us divide our protocol into epochs: each epoch is designed around
a given block say Bi and begins with the generation of random seeds for Bi and ends
with appending the openings for the committed random seeds for Bi (i.e., block Bi+τ1+τ2).
We define the underlying game Γ induced by any given epoch of our protocol Π3. Γ is a
(τ2 + 1)-round extensive form game played by nℓ + τ2 parties (nℓ leaders comprising the
leader set Li for any block Bi and the τ2 miners that mine the blocks Bi+τ1+1 . . . Bi+τ1+τ2).
Note that although we have

(
N
τ2

)
sets of τ2 miners to choose from (where N is the total

number of miners in the chain) to be the miners of the blocks Bi+τ1+1 . . . Bi+τ1+τ2 , we can
simply fix any set of τ2 miners together with Li to be the parties of Γ as we assume all
miners are rational and so the analysis of the utilities of any set of τ2 miners will be the
same in expectation. We use A to denote the set of all miners in τ2. In what follows, we
assume an arbitrary but fixed ordering of the miners in A. Round 1 of Γ consists of only the
parties in Li performing actions, namely picking a random seed and committing to it. In
rounds 2, . . . , τ2 + 1 of Γ, each member of Li can act by choosing to open their commitment
or not. However, the moment a member of Li opens its commitment in a given round, they
lose the chance to open their commitment in any subsequent round. Only one miner from A

and according to the imposed ordering acts in each round from round 2 to τ2 + 1 of Γ. The
choice of actions of the miner in any of these rounds are the subsets of the set of existing
commitment openings (from members of Li) to append to their block. Finally we note that
the Li ∩A is not necessarily empty and thus miners in the intersection can choose to open
and append their commitment in the same round.
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Let us define the honest strategy profile as the profile in which all members of Li choose
to generate a random seed in round 1 of Γ, all members of Li open their commitments at
round τ2 (i.e., at block Bi+τ1+τ2−1), and each member of A appends all existing opened
commitments that appear in the previous round. We denote the honest strategy profile by s.
The security notion we want to achieve for our protocol is a quasi-strong subgame perfect
ε-equilibrium (refer to Definition 6). Looking ahead, we will also prove that ε can be made
arbitrarily small by increasing the number m of chunks.

▶ Lemma 7. The expected utility of an honest leader is at least (1− q)nℓαw.

Proof. The expected utility for a user following the honest strategy comes from the sum
of the block reward, the expected utility from the ordering of any of their transactions
within the block, and appending valid openings of committed seeds (if any) to their blocks.
The expected utility from the ordering of transactions is 0 due to symmetry: each possible
order is equally likely, for each order that gives some positive utility, there exists a different
order producing the same negative utility. The expected utility from the block reward is
(1− q)nℓαw. Thus, the total expected utility of an honest miner is at least (1− q)nℓαw. ◀

We outline and analyze two broad classes of deviations or attacks any coalition can
attempt in this setting. The first class happens at round 1 of Γ where the members of
the coalition commit to previously agreed seeds to produce a specific permutation of the
transactions. The coalition then behaves honestly from round 2 to τ2 + 1 of Γ. We call this
attack the chosen permutation attack and denote this attack strategy by sCP . In the second
class, the coalition behaves honestly at round 1 of Γ, but deviates from round 2 onwards
where some members selectively withhold opening or appending commitments to bias the
final permutation. We call this attack the biased permutation attack, and denote it by sBP .

Chosen permutation attack. Before we describe and analyze the chosen permutation attack
(for say a block Bi), we first show that a necessary condition for the attack to be successful,
that is, the coalition’s desired permutation happens almost surely, is that at least all nℓ

leaders in Li have to be involved in the coalition (members of A can also be involved in the
coalition, however as we will show this will simply increase the cost). To do so, we let S

denote the set of permutations over the list of transactions and their chunks, and we define
what we mean by a protocol Πperm (involving n parties) outputs random a permutation in
S by the following indistinguishability game called random permutation indistinguishability
played between a PPT adversary, a challenger, and a protocol Πperm. First, the adversary
corrupts up to n− 1 parties. The adversary has access to the corrupted parties’ transcripts.
Then, the challenger samples σ0 uniformly at random from S, and sets σ1 to be the output
of Πperm. After that, the challenger flips a random bit b and sends σb to the adversary. The
game ends with the adversary outputting a bit b′. If b′ = b, the adversary wins the game.
We say a protocol Πperm outputs a random permutation if the the adversary wins the above
game with probability 1

2 + ε for some negligible ε. Let us define the output of a single round
of Π3 as the random permutation that is generated from the seeds generated from all leaders
in the round according to the algorithm described in Section 4.1. The following lemma states
that as long as a single leader is honest, the output of Π3 is pseudorandom.

▶ Lemma 8. An adversary that corrupts at most nℓ − 1 leaders in a single round of Π3 can
only win the random permutation indistinguishability game with negligible probability.

Proof. The proof follows in the same way as introduced by M. Blum [14], with the addition
of the PRG. ◀
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Lemma 8 implies that launching the chosen permutation attack and thus choosing to
deviate at round 1 of Γ comes with an implicit cost: either a single miner has to mine nℓ

blocks in a row so the miner single-handedly forms the coalition, or all leaders in Li have to
be coordinated into playing according to a predefined strategy.

▶ Lemma 9. Given the underlying blockchain is secure, the expected utility of the single
miner when playing according to sCP is at most λ

2nℓ
more than the expected utility of following

the honest strategy.

Proof. Since the underlying blockchain is secure, a necessary condition is that a single miner
cannot own more than 1

2 of the total amount of resources owned by all miners of the protocol.
Thus, the probability of mining nℓ blocks in a row is strictly less than 1

2nℓ
. This means that

the expected utility under the attack strategy uC(sCP ) < λ
2nℓ

+ nℓαw, which is at most λ
2nℓ

larger than the expected utility under the honest strategy which is uC(s) = nℓαw. ◀

The attack strategy of a coalition composed by more than one miner is more complex
compared to the case where there is a single miner, as the coalition needs to ensure its
members coordinate strategies. First, the coalition works with the miner of block Bi to
select and fix a permutation generated by a specific PRG seed σi. Then, the coalition secret
shares σi among its members7. After that, the coalition sets up some punishment scheme to
penalize members that do not reveal their partial seeds8. Finally, the coalition commits and
reveals these partial seeds in accordance to the protocol Π3. Let C denote the expected cost
of coordinating the whole chosen permutation attack for the coalition. For this attack to
succeed, the expected coordination cost has to be smaller than the expected profit λ.

▶ Lemma 10. The chosen permutation attack fails to be profitable compared to the honest
strategy if C > λ.

Proof. From Lemma 7, the expected revenue of an honest miner is (1− q)nℓαw, thus the
expected revenue of the coalition when following the honest strategy is uC(s) = nℓ ·(1−q)nℓαw.
The expected revenue for the chosen permutation attack strategy is uC(sCP ) = nℓ · (1 −
q)nℓαw +λ−C. Thus, assuming C > λ, and since the expected revenue from a mixed strategy
is a convex combination of the revenues of the honest and attack strategies, the pure honest
strategy gives a strictly larger expected payoff compared to any mixed strategy. ◀

▶ Remark 11. Computing, or even estimating, the coordination cost is non-trivial as it
consists of several dimensions and also depends on a myriad of factors and assumptions. A
few notable costs are, firstly, timing costs. The coalition has to convince and coordinate
all the leaders to agree on a permutation and also commit and reveal them during a short
interval of d blocks. This involves the cost of securely communicating with all the leaders
and also the computational cost involved in setting up the secret sharing scheme. A second
factor is the choice of the initial order of transactions, which the coalition would have to also
agree on with the miner of the attacked block. Picking transactions greedily would be the
simplest choice as finding the optimal set of transactions from the mempool is NP-hard [42].
Finally, the coalition has to set up a punishment scheme to penalize members that do not

7 This not only prevents members from knowing the partial seeds of other members and hence stealing
their block reward, but also additionally safeguards the partial seeds of the members against the miner
of block Bi who cannot generate a partial seed of their block and hence has nothing to lose.

8 This ensures that every member will reveal reveal their partial seeds and the permutation will be
generated properly.
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reveal their permutations. If we ignore the cost of setting up such a scheme, this can be
implemented using a deposit scheme with the size of the deposit at least the value of the
expected additional per user profit from the sandwich attack [51]. This implies an opportunity
cost at least linear in λ

nℓ
, as well as the assumption that each member has at least λ

nℓ
to

spare to participate in the attack. Additionally, we note that the coalition could extend
to miners from A which are outside the leader set Li. However, since these miners do not
contribute to generating the random seeds, they simply add to the communication cost of
the coalition. Finally, we note that the coordination cannot be planned in advance due to
the unpredictability of the block mining procedure.

Biased permutation attack. The intuition behind this attack is that any coalition that
controls k ≤ nℓ commitments can choose to select the ones to open or append, which allows
the coalition to chose among 2k possible permutations in order to bias the final ordering.
This can be achieved in two situations: either k out of nℓ leaders of Li form a coalition and
decide which of their commitments to open, or some subset of miners in the loud phase (of
size say k̃) form a coalition and end up controlling k openings, let κ := min{k, k̃}. Unlike
in the case of the chosen permutation attack, it suffices consider the case where we have a
single miner that happens to either occupy k leader positions among the group of leaders
Li or mine the k̃ blocks that belong to the coalition in the loud phase. This is because the
case where a coalition of distinct miners that collude only adds additional coordination cost.
The probability that any such coalition gains any additional utility by performing the biased
permutation attack compared to the honest strategy can be upper-bounded. Let revenue
denote the utility the coalition would gain from performing the biased permutation attack.

▶ Lemma 12. The probability that a coalition of κ members performing the biased permutation
attack achieves utility of at least κw > 0 is P[revenue ≥ κw] ≤ 1− (1− e−

2mκw
λ )2k

.

Proof. Given a random permutation and a sandwich attack with original utility λ (utility if
the order of the transactions were not randomized), denote by {Xi(σ)}m

i=1 the utility produced
by chunk i. The sum of these random variables X(σ) =

∑n
i=1 Xi(σ) represents the total

utility of a sandwich attack (after chunking and permuting). X takes values in [−λ, λ], thus
the variables {Xi(σ)} take values in [− λ

m , λ
m ], are equally distributed and are independent.

We define the random variables Yi(σ) = Xi(σ)+ λ
m ∈ [0, 2λ

m ], and Y (σ) =
∑n

i=1 Yi(σ) ∈ [0, 2λ].
Using lemma 7, E[Yi(σ)] = λ

m and E[Y (σ)] = λ. Applying Chernoff’s bound [44] to Y ,

P[Y (σ) ≥ (1 + δ)E[Y (σ)]] ≤ e
−2δ2E[Y (σ)]2

m( λ
m

)2 = e−2mδ2
(1)

for δ > 0. We can rewrite Equation 1 as follows:

P[revenue(σ) ≥ δλ] = P[revenue(σ)+λ ≥ (1+ δ)λ] = P[Y (σ) ≥ (1+ δ)E[Y (σ)]] ≤ e−2mδ2
.

Using the law of total probability we obtain that P[revenue(σ) ≤ δλ] ≥ 1− e−2mδ2
. Consid-

ering the maximum over the 2k possible permutations σ and δ = κω
λ we conclude that

P[revenue ≥ κw] = 1−P[revenue ≤ κw] = 1−P[revenue(σ) ≤ κw] ≤ 1− (1−e−
2mκw

λ )2k

.◀

▶ Lemma 13. The probability that a coalition of κ members has positive additional utility is:
P[revenue ≥ 0] ≤ maxk′≤κ

{
1− (1− e−

2mk′w
λ )2k

}
.

Proof. Lemma 12 states a bound for the probability that a coalition of κ parties has a utility
of at least κw > 0, the penalty for not opening κ commitments. Thus, the general case for a
coalition aiming to maximize profit is the maximum over k′ ≤ κ. ◀
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Recall that Λ is the maximal utility and let pk,λ denote maxk′≤κ{1−(1−e−
2m(1−q)nℓ k′w

λ )2k}.
Then, the expected additional utility from the biased permutation attack of a single miner
controlling k leaders is no greater than pk,λΛ.

Lemmas 10,12 and 13 allow us to prove our main theorem.

▶ Theorem 14. Suppose C > λ, then the honest strategy s = ((random seed)nℓ
i=1, (open)nℓ

i=1)
is a quasi-strong subgame perfect ε-equilibrium in Γ for ε = max{ λ

2nℓ
, pk,λΛ}.

Proof. We first observe that the expected utility of a coalition that mixes both the chosen and
biased permutation attack strategies is no greater than the expected utility of a coalition that
performs the chosen permutation attack with a different chosen permutation that accounts
for the biasing of the permutation in the second round of Γ. Hence, it suffices to analyze the
expected utility of the coalition when implementing either of these strategies, i.e., deviating
at round 1 of Γ or from rounds 2 onwards.

We first analyze the expected utility of a coalition when implementing the chosen permu-
tation attack, which occurs at round 1 or Γ. Since we assume C > λ, from Lemma 9 and
Lemma 10, we see that any additional expected payoff of any coalition that deviates only
at round 1 of Γ by implementing the chosen permutation attack compared to the expected
revenue of behaving honestly is at most λ

2nℓ
.

Now we analyze the expected utility of a coalition when implementing the biased permu-
tation attack. From Lemmas 12 and 13, we see that the strategy that implements the biased
permutation attack across all of rounds 2 to τ2 + 1 of Γ only gives at most pk,λΛ more payoff
in expectation compared to following the honest strategy s in these rounds.

As such, if we set ε = max{ λ
2nℓ

, pk,λΛ} to be the largest difference in additional expected
revenues between both strategies, we see that s = ((random seed)nℓ

i=1, (open)nℓ
i=1) is a quasi-

strong ε-subgame perfect equilibrium of Γ. ◀

▶ Remark 15. Recall that ε bounds the additional expected utility an adversary can gain
by deviating from the honest strategy profile s. The security of our protocol therefore
improves as ε = max{ λ

2nℓ
, pk,λΛ} decreases. We observe that the first component λ

2nℓ
goes

to 0 exponentially as the size of the leader set nℓ increases. As for the second component
pk,λ, we conduct an empirical analysis of sandwich attacks on Ethereum, see full version [6],
to estimate pk,λ and we show that this value approaches zero as the number of chunks m

increases.

6 Conclusion

In this paper we introduced a new construction that can be implemented on top of any
blockchain protocol with three main properties. First, the construction does not add any
vulnerability to the old protocol, i.e., the security properties remain unchanged. Secondly,
performing sandwich attacks in the new protocol is no longer profitable. Thirdly, the
construction incurs in minimal overhead with the exception of a minor increase in the latency
of the protocol. Our empirical study of sandwich attacks on the Ethereum blockchain also
validates the design principles behind our protocol, demonstrating that our protocol can be
easily implemented to mitigate sandwich MEV attacks on the Ethereum blockchain.
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