
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
9
4
6
9
4

|

d
o
w
n
l
o
a
d
e
d
:

9
.
5
.
2
0
2
4

An Analysis of Avalanche Consensus
∗

Ignacio Amores-Sesar
1,2
, Christian Cachin

1,3
, and Philipp Schneider

1,4

1
University of Bern

2
ignacio.amores@unibe.ch

3
christian.cachin@unibe.ch

4
philipp.schneider2@unibe.ch

Abstract

A family of leaderless, decentralized consensus protocols, called Snow consensus was introduced

in a recent whitepaper by Yin et al. These protocols address limitations of existing consensus meth-

ods, such as those using proof-of-work or quorums, by utilizing randomization and maintaining some

level of resilience against Byzantine participants. Crucially, Snow consensus underpins the Avalanche

blockchain, which provides a popular cryptocurrency and a platform for running smart contracts.

Snow consensus algorithms are built on a natural, randomized routine, whereby participants con-

tinuously sample subsets of others and adopt an observed majority value until consensus is achieved.

Additionally, Snow consensus defines conditions based on participants’ local views and security param-

eters. These conditions indicate when a party can confidently finalize its local value, knowing it will be

adopted by honest participants.

Although Snow consensus algorithms can be formulated concisely, there is a complex interaction

between randomization, adversarial influence, and security parameters, which requires a formal analy-

sis of their security and liveness. Snow protocols form the foundation for Avalanche-type blockchains,

and this work aims to increase our understanding of such protocols by providing insights into their

liveness and safety characteristics. First, we analyze these Snow protocols in terms of latency and se-

curity. Second, we expose a design issue where the trade-off between these two is unfavorable. Third,

we propose a modification of the original protocol where this trade-off is much more favorable.

1 Introduction

Establishing consensus is one of the most fundamental tasks in distributed computing, for instance to

implement atomic broadcast, to synchronize processes, or to elect leaders. Distributed blockchains and

in particular cryptocurrencies rely on consensus to ensure proper operation, and therefore trust in these

systems, which has put increased focus on new kinds of consensus algorithms. In the consensus problem

we consider 𝑛 parties of which some are potentially faulty. Every party has some input value, which we

often refer to as opinion in this article. We say that a protocol that coordinates communication and local

computations of all parties solves consensus when everyone agrees on a single opinion, which was also

the input of at least one party.

The consensus problem becomes challenging in the presence of Byzantine faults, i.e., parties that can devi-

ate from the protocol. In particular, reaching consensus is impossible deterministically in the asynchronous

setting with even one fault [12] and in the synchronous setting with one third or more Byzantine faults [11],

∗
Ignacio Amores-Sesar has been supported by the Swiss National Science Foundation (SNSF) under grant agreement

Nr. 200021_188443 (Advanced Consensus Protocols). Philipp Schneider has been supported by a grant from Avalanche, Inc. to

the University of Bern.

1

ar
X

iv
:2

40
1.

02
81

1v
1

 [
cs

.D
C

]
 5

 J
an

 2
02

4

ignacio.amores@unibe.ch
christian.cachin@unibe.ch
philipp.schneider2@unibe.ch

except if one would use cryptographic signatures. Real protocols that solve consensus in the context

of blockchains have to navigate around these impossibility results, while also optimizing other criteria;

chief among them are the latency until a transaction is finalized, the throughput of transactions, resource

consumption, scalability, and resiliency against adversarial parties, which often necessitates trade-offs [5,

14].

One particularly simple consensus design sacrifices determinism and works along the following princi-

ple. Each party continually samples random subsets of other parties and adjusts its opinion based on the

observed sample according to certain rules. There has been extensive research that explores such mecha-

nisms, see the recent survey [2]. It has been shown for a subset of protocols of this type that they can be

expected to converge very rapidly to a state of stable consensus (with a limited adversary, a bounded num-

ber of opinions, and in a synchronous network) [3, 4, 9, 10, 13]. Additionally, such mechanisms have the

advantage that parties need only few such samplings to be relatively certain what the consensus opinion

will be, resulting in near-linear message complexity.

A whitepaper [16] released in 2019 exploits this design and introduces the Avalanche protocol, which

forms the basis of the Avalanche blockchain infrastructure and its services. Avalanche gained popularity

and reach due to competitive characteristics in the performance spectrum of latency, throughput, scala-

bility, and resource consumption [15].
1
In particular, [16] introduces the Snow family of binary consensus

protocols that build on this principle of random samplings, which can be adapted to maintain consistency

of the corresponding Avalanche blockchain network.

The simplest protocol of this family, known as Slush, works as follows. Each party continuously samples the

opinion of 𝑘 ≥ 2 others; if such a sampling contains an opinion different from its own at least 𝛼 times (for

some 𝛼 > 𝑘/2) then the party adopts this opinion as its own. Slush can be considered as a self-organizing

mechanism that it is likely to converge to a stable consensus relatively quickly and remain there, even in

the presence of a limited number of parties that deviate from the protocol. The whitepaper also introduces

the Snowflake and Snowball protocols, which add mechanisms to finalize an opinion of a node based on past

queries which reflects how stable the observed majority is. The level of confidence in a majority can be

controlled with a security parameter 𝛽 .

The complex interaction between performance characteristics, security level, and the involved parameters

𝑘 , 𝛼 , and 𝛽 makes the analysis of Snow-type consensus protocols challenging. The whitepaper [16] relies

primarily on empirical observations and informal explanations to motivate its design choices. Currently, a

formal understanding of the performance and security characteristics of Snow protocols is lacking.

Overview and Contributions. We focus on bridging the gap in understanding of Snow consensus pro-

tocols, which we consider as a necessary first step for an encompassing analysis of the complete Avalanche

blockchain protocol, which builds upon Snow consensus (although the Avalanche protocol itself is beyond

the scope of this work). First we explore the performance of Snow protocols, beginning with the self-

organizing, binary consensus mechanism of Slush. In Section 3, we express the progress toward a stable

consensus per round depending on the distribution of opinions and parameters 𝑘 ≥ 2 and 𝛼 > 𝑘
2
, which

gives insights into the evolution of the system (cf. Figure 1 for a visualization).

In Section 4, we show that coming close to a consensus already requires a minimum of Ω
(
log𝑛

log𝑘

)
rounds,

even in the absence of adversarial influence (see Theorem 1, a simpler, weaker form is given in Corol-

lary 4.4). Furthermore, we generalize upper bounds from the so-called Median and 3-Majority consensus

protocols [3, 9] in the Gossip model (discussed in Section 4) and establish that Slush reaches a stable con-

sensus in𝑂 (log𝑛) rounds (see Theorem 2), which holds even when an adversary can influence up to𝑂
(√
𝑛
)

1
For instance, through its AVAX token, Avalanche ranks in the top 10 among the “Layer-1” blockchains bymarket capitalization

(as of December 2023).

2

parties.

We interpret these results in the following way. Even assuming that the performance of Slush matches

the lower bound, increasing the parameter 𝑘 yields only a limited speed-up of 𝑂 (log𝑘) (usually 𝑘 ≪ 𝑛).

Furthermore, since the message complexity per round is Θ(𝑘𝑛) Slush has the advantage of near-linear

message complexity for small 𝑘 , which is negated if 𝑘 increases significantly (e.g., sampling sizes close to

𝑛). We conclude that values higher than 𝑘 = 20 as suggested originally [16] have diminishing benefit and an

unfavorable trade-off in terms of message complexity. In Section 5 we show that the lower bound Ω
(
log𝑛

log𝑘

)
rounds extends to Snowflake and Snowball.

In Section 6 we analyze the security mechanisms of the Snow protocols, that deal with the possibility of

failing to achieve consensus due to the randomized nature of the algorithm or adversarial influence. The

protocol provides a security parameter 𝛽 to control the probability of such a failure. This has an unfavorable

trade-off as we show in Section 6, specifically, a negligible probability of failure (w.r.t. 𝛽) and a latency to

finalize a value that is at most polynomial in 𝛽 are mutually exclusive (see Theorem 3). In Section 7 we

propose a solution for this issue by introducing an alternative protocol. It replaces the security mechanism

of Snowball with a simple mechanism that achieves security with all but negligible probability (w.r.t. 𝛽) in

𝑂 (𝛽 + log𝑛) rounds (see Theorem 4 and Corollary 7.4).

2 Preliminaries

Beforemoving to the technical parts of the analysis, we introduce the definitions andmodeling assumptions

that we use throughout the paper. In part, this work aims to be a supplementary of the whitepaper [16] in

the style of other theoretical works that study randomized, self-stabilizing consensus protocols [3, 4, 9, 10,

13]. Therefore our nomenclature, definitions and modeling assumptions are a composition of those.

2.1 Model

Communication. We consider a fully connected network of 𝑛 parties with identifiers N = {1, . . . , 𝑛}.
Parties communicate by sending point to point messages. For the message transfer we assume the syn-

chronous message passing model, where there is a fixed period of time until any givenmessage is delivered.

In fact, the synchronous setting allows to assume that time is slotted into discrete rounds and all messages

sent in the previous round have arrived by the next round. This also allows us to use the number of rounds

as a proxy for algorithm running time.

Consensus. In the general problem setup there are 𝑚 opinions in the network and each party has an

initial opinion, however note that in the context of Snow protocols we typically have𝑚 = 2. Snow protocols

can be seen as self-stabilizing protocols and we define a stable state where almost all parties have the same

opinion and the likelihood to revert from this state is low (see Section 7 for some properties of this stable

state).

Definition 2.1 (State of Stable Consensus). The system is in a state of stable consensus if at least 𝑛−𝑜 (𝑛)
parties have the same opinion.

Randomization or the presence of an adversary implies that at any point in time there is a non-zero chance

that a stable consensus is reverted. Therefore, in the context of blockchain applications, parties need to

eventually finalize or decide on an opinion. In that sense we define the consensus problem as follows.

Definition 2.2 (Consensus Problem). A protocol solves this problem if the following conditions are satisfied.

Termination: Every party eventually decides on some opinion.

Validity: If all parties propose the same value, then all parties decide on that value.

3

Integrity: No party decides twice.

Agreement: No two parties decide differently.

We consider this consensus problem under the influence of the following adversary.

Definition 2.3 (𝐹 -Bounded Adversary). An 𝐹 -bounded adversary can set the opinion of up to 𝐹 (undecided)
parties at the beginning of each round to one of the𝑚 opinions.

Randomization, Security and Latency. The consensus protocols we consider in this work are random-

ized, and we work with some standard definitions that we summarize in Appendix A. In particular we also

consider an 𝐹 -bounded adversary, which introduces a non-zero chance to delay a consensus for any fixed

period of time. Hence, we can only hope to make the probability of failure of such a protocol negligibly

small, while at the same time maintaining a reasonable latency (i.e., number of rounds until consensus). To

connect the notions of failure probability and latency we make the following provisions.

Let 𝐸 be an event or condition during the execution of some protocol P, e.g., 𝐸 describes the event that P
successfully establishes consensus, see Definition 2.2. The protocols we are investigating typically depend

on so called security parameters. Increasing the security parameter increases the likelihood of success but

typically has detrimental effects on the running time. To quantify this, we formally define further below

what it means that 𝐸 holds with all but negligible probability with respect to protocol P. Roughly speaking,
as we increase the running time of a protocol measured in the security parameter 𝜆, the probability that

some condition 𝐸 (e.g., consensus) has not been established yet, decreases super-polynomially in 𝜆.

Definition 2.4 (Negligible Probability, Security Parameter). An event 𝐸 holds with all but negligible proba-
bility or equivalently its complement 𝐸 has negligible probability in a protocol P, if the following holds. There
exists a polynomial 𝜌 such that for any polynomial 𝜋 there exists a value 𝜆0 ≥ 0, such that for all 𝜆 ≥ 𝜆0 the
following holds. If P is executed for at least 𝜌 (𝜆) rounds it holds that P(𝐸) ≤ 1/𝜋 (𝜆), i.e., P(𝐸) > 1− 1/𝜋 (𝜆).
We call the value 𝜆 ≥ 𝜆0 a security parameter.

In this article, we often talk about randomly sampling a set of𝑘 parties, whichmeans that we take a uniform

random sample of size 𝑘 from the set of all𝑛 partieswith repetition, which is modeled by the binomial distri-

bution. Note that samplingwithout repetition, represented by the hyper-geometric distribution, approaches

the binomial distribution as the ratio 𝑛/𝑘 becomes larger. Therefore, our results approximate the case with-

out repetition well for 𝑛 ≫ 𝑘 (the usual case). The assumption of uniform sampling with repetition makes

our analysis much more feasible, in particular it removes undesirable marginal cases (e.g. 𝑘-samples for

𝑛 < 𝑘) allowing use to use continuous functions to describe certain aspects of the system.

2.2 The Snow Family

The Snow family consists of three consensus protocols based on random sampling instead of the traditional

quorum intersection. This approach allows the snow family to reduce the message complexity by sending

messages to a constant number of parties each round. Here, we provide an informal description of each

protocol, whereas a more detailed pseudocode can be found in Appendix C.

Slush. The first protocol in the Snow family is Slush (Algorithm 2). An honest party 𝑗 runs the Slush

protocol in local rounds, however in the general protocol every party may have a different round value.

Party 𝑗 starts the round by randomly sampling 𝑘 parties for their opinion, with 𝑘 a constant value. If at

least 𝛼 parties respond with the same opinion 𝑏, party 𝑗 adopts it as its own opinion and starts a new round.

The value 𝛼 must be strictly larger than
𝑘
2
. If there is no 𝛼-majority, party 𝑗 keeps its opinion and starts

a new round. The Slush algorithm has a hard-coded number of rounds defining the protocol’s end. When

party 𝑗 reaches the maximum round, it decides(𝑏) its candidate value 𝑏. Note that in our analysis in Section

4

3 and 4 we analyze the time until Slush reaches a state of stable consensus (Definition 2.1) and assume that

this hard coded maximum round does not exist or is sufficiently large to not play a role.

Snowflake. The main limitation of the Slush algorithm is the hard-coded number of rounds. The num-

ber of rounds needs to be relatively high to guarantee consensus even in the worst case (which the case

when the network starts in a bivalent state: half of the parties proposes(0) and the other half proposes(1)).
Snowflake aims to address this issue by modifying the termination condition of Slush.

In the Snowflake protocol (Algorithm 3), party 𝑗 counts the number of consecutive queries with an 𝛼-

majority for opinion 𝑏. If 𝑗 observes 𝛽 consecutive rounds with 𝛼-majority for 𝑏, party 𝑗 decides(𝑏). The in-
tuition behind this termination rule is the following: the probability of obtaining 𝛽 consecutive 𝛼-majorities

for opinion 𝑏 is small when expressed as a function of 𝛽 , unless almost every party has 𝑏 as candidate value

in the network. This termination rule allows for an adaptive running time based on the state of the net-

work. Looking ahead, we show how this termination rule forces the Snowflake protocol to choose between

a high confidence in the agreement property and polynomial running time (Theorem 3).

Snowball. The Snowball protocol (Algorithm 4) introduces another modification how parties change

their opinion. In Snowflake, the change of opinion is only based on the outcome of the last query, i.e.,

it is stateless. By contrast, in Snowball, party 𝑗 considers the past queries in order to decide whether to

change its opinion or not. Party 𝑗 changes its opinion value from 𝑏 to 𝑏′ when the number of 𝛼-majorities

for 𝑏′ surpasses the number of 𝛼-majorities for value 𝑏 since the beginning of the execution. The idea

behind considering the whole history of the protocol is to make it less likely for a party with opinion 𝑏 to

switch to 𝑏′ when the prevalent opinion in the network is 𝑏, thus possibly reducing the number of rounds

until termination. Looking ahead, we show that this routine does not reduce the number of rounds until

termination in expectation (Lemma 5.5).

Avalanche. The Snow consensus protocols serve as foundation for the Avalanche consensus [1, 16].

Avalanche employs a classification system to group transactions into conflicting sets and subsequently

applies a tailored adaptation of the Snowball algorithm to each of these conflict sets. To optimize com-

munication efficiency, Avalanche establishes connections between distinct instances of the Snowball con-

sensus, enabling the reuse of messages and, consequently, reducing message complexity. However, due to

these interdependencies, Avalanche is unable to inherit the liveness properties from the Snow family [1].

Nevertheless, it is noteworthy that the security of Avalanche remains equivalent to that of the Snowball

protocol [16].

2.3 Related Work

The Avalanche protocol was introduced fairly recently thus research into this protocol is limited. The

whitepaper [16] gives an iterative presentation of its algorithms and concepts, in particular the Snow pro-

tocols for binary consensus on which it then builds its Avalanche protocol in the UTXO model. This is

supplemented with explanations about the design decisions and empiric data that highlights the protocols’

performance in terms of latency, throughput and Byzantine resilience. Subsequently, the article [1] pro-

vided a formal description of the Avalanche protocol. They also showcase a vulnerability (that has since

been addressed by subsequent versions of Avalanche) that is specific to the Avalanche protocol, where a

single malicious party can delay acceptance of a transaction and proposes a modification that prohibits this

attack. Part of the reason that an encompassing analysis of Avalanche is outside the scope for this work,

is that it is currently still evolving, for instance recently transitioning from a directed acyclic graph (DAG)

to a chain, providing a total order for transactions as opposed to a partial order.

5

Self-stabilizing consensus protocols based on random samplings have been investigated much earlier in

message passing models, motivated by the so called GOSSIP model.
2
A particular strain of such protocols

that attained some focus in the past are the so called 3-Majority, the 2-choices and the Median protocols

[2]. In the 3-Majority protocol parties sample 3 random others and adopt the majority opinion using the

first sampled parties’ opinion in case of a tie. The 2-Choices protocol works similar, but only 2 parties

are sampled with the third being the party itself which also provides the default opinion. In the Median

protocol a party samples 2 others and adopts the median value among theirs and their own (which requires

a total order on the opinions). There has been a plethora of work on the analysis of these and similar light

weight protocols based on random sampling, a selection of those are [3, 4, 6, 8, 9, 13], see also the survey

[2] for an overview. These works usually focus on analyzing the time to consensus with respect to the

initial number of opinions in the network, sometimes also on the required initial bias of the network in

case a consensus on the initial majority is desired (plurality consensus).

In contrast to this work, these articles focus on samplings of size at most 3, analysis of the dynamics for the

whole spectrum of 𝑘, 𝛼 have, to the best of our knowledge, so far not been attempted.
3
Crucially, in case the

number of opinions is constant, all these works arrive at 𝑂 (log𝑛) rounds until a state of stable consensus
is attained with high probability. Interestingly, in the binary case the 3-Majority, the 2-choices and the

Median protocols can be all be related to special cases of Slush. Besides analyzing security aspects of snow

protocols, one of the main contributions of this work is to show how the dynamics of such sampling based

protocols behave in the size 𝑘 of those samplings.

3 Dynamics of Slush

The whitepaper [16] observes that the Slush consensus protocol converges to a stable consensus very fast

in practice. Concrete claims are made pertaining to the time to consensus, but no conclusive proof is given.

In this section we analyze the the rate of convergence of Slush towards a consensus, which will later also

inform the rate of convergence of Snowflake and Snowflake (Section 5).

3.1 Expected Rate of Progress of Slush

We start by investigating the expected rate of progress of Slush, which characterizes the dynamics of Slush

and how it depends on the parameters 𝛼 and 𝑘 . We will later show that other Snow protocols (Snowflake,

Snowball) behave similar in terms of the required number of rounds to consensus.

We make the following definitions and assumptions. First we assume that all parties have an initial opinion

0 or 1, so no party has initially the opinion ⊥ (the case where there exist parties with opinion ⊥ can be

disregarded for the lower bound and is handled separately for the upper bound). Recall that the set of

parties N is numbered from 1 to 𝑛 and assume rounds are numbered 0, 1, 2,

• Let 𝑋𝑖 𝑗 ∈ {0, 1} be the current opinion of party 𝑗 after round 𝑖 of the Slush protocol was executed

(𝑋0, 𝑗 describes the initial opinion of party 𝑗).

• Let 𝑌𝑖 𝑗 be the number of replies with opinion 1 that party 𝑗 obtains in its sample of 𝑘 parties in round

𝑖 . Note that 𝑌𝑖 𝑗 ∼ Bin(𝑘, 𝑝𝑖).
• Let the state of the network be 𝑆𝑖 :=

∑𝑛
𝑗=1𝑋𝑖 𝑗 , which describes the total number of parties whose

current opinion is 1.

• Let 𝑝𝑖 := 𝑆𝑖/𝑛 be the relative share of parties with opinion 1 in round 𝑖 , which corresponds the

probability that a sampled party has state 1.

2
In the GOSSIP model, nodes can contact a few random neighbors in a graph.

3
Metrics other than the round complexity have been considered for the binary 𝑘-Majority protocol which relates to Slush [7].

6

• For 𝑖 ≥ 1, we define as Δ𝑖 := 𝑆𝑖 − 𝑆𝑖−1, i.e., the absolute progress to 1-consensus (or 0-consensus for

negative values).

• Let 𝛿𝑖 := E(Δ𝑖)/𝑛 be the expected relative progress in round 𝑖 . We will later show that 𝛿𝑖 can also

be expressed as a function 𝛿 : [0, 1] → R that only depends on 𝑝𝑖 (when viewing 𝑘, 𝛼 as fixed

values), such that 𝛿𝑖 = 𝛿 (𝑝𝑖). Subsequently, we establish a relation between the 𝛿 (𝑝𝑖) for varying
parameters 𝑘, 𝛼 , in which case we denote it as 𝛿𝑘,𝛼 (𝑝𝑖) (however, for conciseness we will refrain using
this superscript whenever possible, in particular when only single values for 𝑘 and 𝛼 are involved).

Note that for 𝑖 ≥ 1, the quantities 𝑋𝑖 𝑗 , 𝑌𝑖 𝑗 , 𝑆𝑖 ,Δ𝑖 , are random variables. This is not the case for the expected
relative progress 𝛿𝑖 , which, for fixed 𝛼, 𝑘 , can be expressed only in terms of 𝑝𝑖 , i.e., 𝛿𝑖 can be expressed as a

function 𝛿 (𝑝𝑖) that depends only on 𝑝𝑖 .

Lemma 3.1. Let 𝑘/2 < 𝛼 ≤ 𝑘 . Then

𝛿𝑖 = 𝛿 (𝑝𝑖) :=
𝑘∑︁

ℓ=𝛼

(
𝑘

ℓ

) [
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ+1 − (1−𝑝𝑖)ℓ𝑝𝑘−ℓ+1𝑖

]
.

Proof. In a given round 𝑖 a party 𝑗 with can observe at least 𝛼 times the opposite opinion in its query, in

which case it switches, or not (observing at least 𝛼 of both opinions is precluded due to 𝛼 > 𝑘/2). Note that
for 𝛿𝑖 only events where parties switch their opinion are relevant. For some party 𝑗 we have

P
(
𝑋𝑖 𝑗 = 1 | 𝑋𝑖−1, 𝑗 = 0

)
= P

(
𝑌𝑖 𝑗 ≥ 𝛼

)
=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ ,

P
(
𝑋𝑖 𝑗 = 0 | 𝑋𝑖−1, 𝑗 = 1

)
= P

(
𝑌𝑖 𝑗 ≤ 𝑘 − 𝛼

)
=

𝑘−𝛼∑︁
ℓ=0

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ =

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
(1−𝑝𝑖)ℓ𝑝𝑘−ℓ𝑖 ,

where the last step is due to symmetry (see also Appendix B). Let 𝛿0𝑖 be the probability that a randomly

selected party switches to from 1 to 0 and let 𝛿1𝑖 be analogous probability for switching from 0 to 1. These

can also be interpreted as expected portions of parties switching from 1 to 0 and vice versa. We obtain

𝛿0𝑖 = P
(
𝑋𝑖 𝑗 =0 ∩ 𝑋𝑖−1, 𝑗 =1

)
= (1−𝑝𝑖)P

(
𝑋𝑖 𝑗 =0 | 𝑋𝑖−1, 𝑗 =1

)
=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ+1,

𝛿1𝑖 = P
(
𝑋𝑖 𝑗 =1 ∩ 𝑋𝑖−1, 𝑗 =0

)
= 𝑝𝑖 · P

(
𝑋𝑖 𝑗 =1 | 𝑋𝑖−1, 𝑗 =0

)
=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
(1−𝑝𝑖)ℓ𝑝𝑘−ℓ+1𝑖 .

The random variable Δ𝑖 is determined by the number of parties that switch from 0 to 1 minus those that

switch from 1 to 0. Since the events 𝑋𝑖 𝑗 = 0 ∩ 𝑋𝑖−1, 𝑗 = 1 and 𝑋𝑖 𝑗 = 1 ∩ 𝑋𝑖−1, 𝑗 = 0 are disjoint, we have that

𝐸 (Δ𝑖) = 𝑛𝛿1𝑖 − 𝑛𝛿0𝑖 . Thus 𝛿𝑖 = 𝑛𝐸 (Δ𝑖) = 𝛿1𝑖 − 𝛿0𝑖 and the claim follows. □

3.2 Mapping out the Dependency of 𝜹 𝒊 on 𝒌 and 𝜶

Recall that we define 𝛿𝑘,𝛼 (𝑝𝑖) as the function defining the rate of progress for parameters 𝛼, 𝑘 depending on

𝑝𝑖 . It is interesting that for 𝑘 = 2𝛼 − 1 we have 𝛿𝑘,𝛼 = 𝛿𝑘,𝛼+1 as the first summand in the expression 𝛿𝑘,𝛼 (𝑝𝑖)
from Lemma 3.1 is zero. Another interesting observation is that in the marginal case 𝑘 = 𝛼 = 1, we have

𝛿𝑘,𝛼 = 0 (see Figure 1a), i.e., there is no expected progress and Slush essentially degenerates into a random

walk, and it is not too hard to show that in this case Slush takes Ω(𝑛2) rounds in expectation.

7

(a) 𝑘 = 2𝛼−1 with various values 𝛼 (b) 𝑘 = 20 with various values 𝛼

Figure 1: Plots of 𝛿 (𝑝𝑖) for different parameters 𝑘 and 𝛼 . For 𝑘 = 2𝛼−1 the expected progress for larger 𝛼

dominates those for smaller (note that in the extreme case 𝑘 = 𝛼 = 1 there is no expected progress). For

fixed 𝑘 the opposite is true. The combination 𝑘 = 20, 𝛼 = 15 was suggested by the whitepaper [16]. Note

that 𝛿 (𝑝𝑖) is point-symmetric with respect to the point (1
2
, 0).

In this section we establish non-trivial relations and claims for 𝛿𝑘,𝛼 (𝑝𝑖). First, we show that 𝛿𝑘,𝛼 (𝑝𝑖) is
always larger (in absolute value) than 𝛿𝑘,𝛼

′ (𝑝𝑖) for 𝛼 ′ > 𝛼 (see Figure 1b for a visualized example of this

claim). Thismeans that choosing the smallest𝛼 with𝛼 > 𝑘/2 (i.e., 𝛼 = ⌈𝑘+1
2
⌉) is best in terms of the expected

rate of progress 𝛿𝑘,𝛼 (𝑝𝑖). While this is useful on its own regarding the choice of 𝛼 in practice, we utilize

this later to essentially eliminate 𝛼 from the of analysis for the lower bound of the rate of convergence to

consensus.

Lemma3.2. For fixed𝑘 , let𝑘/2 < 𝛼 ≤ 𝑘 and consider𝛼 ′ > 𝛼 . Then for any 𝑝𝑖 we have |𝛿𝑘,𝛼 (𝑝𝑖) | ≥ |𝛿𝑘,𝛼
′ (𝑝𝑖) |.

Proof. The lemma is a corollary of Lemma 3.1, where we notice that all summands of 𝛿 (𝑝𝑖) = 𝛿𝑘,𝛼 (𝑝𝑖) are
either positive for 𝑝𝑖 > 1/2 or negative for 𝑝𝑖 < 1/2 or 0 for 𝑝𝑖 = 1/2. Since all summands of 𝛿𝑘,𝛼

′ (𝑝𝑖) occur
in 𝛿𝑘,𝛼 (𝑝𝑖) and all have the same sign for some fixed 𝑝𝑖 , we have the claim. □

In particular, for 𝛼 = ⌈𝑘+1
2
⌉ we can express 𝛿𝑘,𝛼 (𝑝𝑖) in a different form, which we will use frequently in

subsequent lemmas to simplify (or enable) subsequent proofs.

Lemma 3.3. Let 𝛼 = ⌈𝑘+1
2
⌉. Then{

𝛿𝑘,𝛼 (𝑝𝑖) =
[∑𝑘

ℓ=𝛼

(
𝑘
ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ

]
− 𝑝𝑖 , 𝑘 odd

𝛿𝑘,𝛼 (𝑝𝑖) =
[∑𝑘

ℓ=𝛼

(
𝑘
ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ

]
− 𝑝𝑖 +

(
𝑘

𝛼−1
)
𝑝𝛼
𝑖
(1−𝑝𝑖)𝛼−1, 𝑘 even.

8

Proof. We start out with the expression from Lemma 3.1.

𝛿𝑘,𝛼 (𝑝𝑖) =
𝑘∑︁

ℓ=𝛼

(
𝑘

ℓ

) [
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ+1 − (1−𝑝𝑖)ℓ𝑝𝑘−ℓ+1𝑖

]
=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ+1 −

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
(1−𝑝𝑖)ℓ𝑝𝑘−ℓ+1𝑖

=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

) [
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ − 𝑝ℓ+1𝑖 (1−𝑝𝑖)𝑘−ℓ

]
−

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
(1−𝑝𝑖)ℓ𝑝𝑘−ℓ+1𝑖

=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ −

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ+1𝑖 (1−𝑝𝑖)𝑘−ℓ −

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
(1−𝑝𝑖)ℓ𝑝𝑘−ℓ+1𝑖

The proof forks into cases by the parity of 𝑘 . Consider the case that 𝑘 is odd. Then we have 𝑘 = 2𝛼 − 1.

Continuing from above, we substitute ℓ ′ := 𝑘 − ℓ in the middle sum, i.e., ℓ ′ goes from 0 to 𝑘 − 𝛼 = 𝛼 − 1.

=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ −

𝛼−1∑︁
ℓ ′=0

(
𝑘

𝑘 − ℓ ′

)
𝑝𝑘−ℓ

′+1
𝑖 (1−𝑝𝑖)ℓ

′ −
𝑘∑︁

ℓ=𝛼

(
𝑘

ℓ

)
(1−𝑝𝑖)ℓ𝑝𝑘−ℓ+1𝑖

=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ −

𝛼−1∑︁
ℓ ′=0

(
𝑘

ℓ ′

)
𝑝𝑘−ℓ

′+1
𝑖 (1−𝑝𝑖)ℓ

′ −
𝑘∑︁

ℓ=𝛼

(
𝑘

ℓ

)
(1−𝑝𝑖)ℓ𝑝𝑘−ℓ+1𝑖

=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ − 𝑝𝑖

𝑘∑︁
ℓ=0

(
𝑘

ℓ

)
(1−𝑝𝑖)ℓ𝑝𝑘−ℓ𝑖︸ ︷︷ ︸
=1

=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ − 𝑝𝑖 .

In the case that 𝑘 is even we have 𝑘 = 2𝛼 − 2. Again we substitute ℓ ′ := 𝑘 − ℓ in the middle sum, that is, ℓ ′

goes from 0 to 𝑘 − 𝛼 = 𝛼 − 2.

=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ −

𝛼−2∑︁
ℓ ′=0

(
𝑘

𝑘 − ℓ ′

)
𝑝𝑘−ℓ

′+1
𝑖 (1−𝑝𝑖)ℓ

′ −
𝑘∑︁

ℓ=𝛼

(
𝑘

ℓ

)
(1−𝑝𝑖)ℓ𝑝𝑘−ℓ+1𝑖

=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ −

𝛼−2∑︁
ℓ ′=0

(
𝑘

ℓ ′

)
𝑝𝑘−ℓ

′+1
𝑖 (1−𝑝𝑖)ℓ

′ −
𝑘∑︁

ℓ=𝛼

(
𝑘

ℓ

)
(1−𝑝𝑖)ℓ𝑝𝑘−ℓ+1𝑖

=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ − 𝑝𝑖

𝑘∑︁
ℓ=0

(
𝑘

ℓ

)
(1−𝑝𝑖)ℓ𝑝𝑘−ℓ𝑖 +

(
𝑘

𝛼−1

)
𝑝𝛼𝑖 (1−𝑝𝑖)𝛼−1

=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ − 𝑝𝑖 +

(
𝑘

𝛼−1

)
𝑝𝛼𝑖 (1−𝑝𝑖)𝛼−1. □

The next two lemmas show, perhaps surprisingly, that for odd 𝑘 = 2𝛼−1 the expected progress functions

𝛿𝑘,𝛼 (𝑝𝑖) and 𝛿𝑘−1,𝛼 (𝑝𝑖) coincide. When combined with Lemma 3.2, this will later, when we cover lower

bounds, allow us to focus our analysis solely on odd values of the form 𝑘 = 2𝛼 − 1 as the corresponding

claim for even 𝑘 = 2𝛼 − 2 is implied.

Lemma 3.4. For 𝑘 > 𝛼 ≥ 1 the following equation holds

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ =

[𝑘−1∑︁
ℓ=𝛼

(
𝑘−1
ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ−1

]
+
(
𝑘−1
𝛼−1

)
𝑝𝛼𝑖 (1−𝑝𝑖)𝑘−𝛼 .

9

Proof.

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ

=

[𝑘−1∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ

]
+ 𝑝𝑘𝑖

=

[𝑘−1∑︁
ℓ=𝛼

{(𝑘−1
ℓ

)
+
(
𝑘−1
ℓ−1

)}
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ

]
+ 𝑝𝑘𝑖

=

[𝑘−1∑︁
ℓ=𝛼

{(𝑘−1
ℓ

)
+
(
𝑘−1
ℓ−1

)}
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ

]
+ 𝑝𝑘𝑖

=

[𝑘−1∑︁
ℓ=𝛼

(
𝑘−1
ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ

]
+
[𝑘−1∑︁
ℓ=𝛼

(
𝑘−1
ℓ−1

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ

]
+ 𝑝𝑘𝑖

=

[𝑘−1∑︁
ℓ=𝛼

(
𝑘−1
ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ

]
+
[𝑘−2∑︁
ℓ=𝛼−1

(
𝑘−1
ℓ

)
𝑝ℓ+1𝑖 (1−𝑝𝑖)𝑘−ℓ−1

]
+ 𝑝𝑘𝑖

=

[𝑘−1∑︁
ℓ=𝛼

(
𝑘−1
ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ−1

]
−
[𝑘−1∑︁
ℓ=𝛼

(
𝑘−1
ℓ

)
𝑝ℓ+1𝑖 (1−𝑝𝑖)𝑘−ℓ−1

]
+
[𝑘−2∑︁
ℓ=𝛼−1

(
𝑘−1
ℓ

)
𝑝ℓ+1𝑖 (1−𝑝𝑖)𝑘−ℓ−1

]
+ 𝑝𝑘𝑖

=

[𝑘−1∑︁
ℓ=𝛼

(
𝑘−1
ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ−1

]
+
(
𝑘−1
𝛼−1

)
𝑝𝛼𝑖 (1−𝑝𝑖)𝑘−𝛼 − 𝑝𝑘𝑖 + 𝑝𝑘𝑖 □

Lemma 3.5. Let 𝑘 = 2𝛼−1 and 𝛼 ≥ 2. Then 𝛿𝑘,𝛼 = 𝛿𝑘−1,𝛼 .

Proof. The proof is implied by combining Lemma 3.3 and Lemma 3.4. We start with the expression of

𝛿𝑘,𝛼 (𝑝𝑖) derived in Lemma 3.3.

𝛿𝑘,𝛼 (𝑝𝑖)
Lem.3.3

=

[𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ

]
− 𝑝𝑖

Lem.3.4

=

[𝑘−1∑︁
ℓ=𝛼

(
𝑘−1
ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ−1

]
+
(
𝑘−1
𝛼−1

)
𝑝𝛼𝑖 (1−𝑝𝑖)𝛼−1 − 𝑝𝑖

Lem.3.3

= 𝛿𝑘−1,𝛼 (𝑝𝑖) □

As our final structural claim in this subsection, we show that for 𝑘 = 2𝛼−1 or 𝑘 = 2𝛼 , the expected progress

towards consensus |𝛿𝑘,𝛼 (𝑝𝑖) | does not decrease as 𝛼 (and thereby 𝑘) increases, an example is given in Figure

1a. We will use the this lemma later to extend an upper bound for the number of rounds to a consensus

from small values of 𝛼 to large (where 𝑘 = 2𝛼 or 𝑘 = 2𝛼−1).
Lemma 3.6. Let 𝑘 = 2𝛼−1 and 𝑘 ′ = 2𝛼 ′−1 for 𝛼 > 𝛼 ′ > 1. Then for any 𝑝𝑖 we have |𝛿𝑘,𝛼 (𝑝𝑖) | ≥ |𝛿𝑘

′,𝛼 ′ (𝑝𝑖) |.
The same holds for even 𝑘 = 2(𝛼−1) and 𝑘 ′ = 2(𝛼 ′−1)′.

Proof. We show the bound for 𝑝𝑖 ≥ 1

2
, the claim for 𝑝𝑖 ≤ 1

2
holds by symmetry. Let 𝑘 = 2𝛼−1. We show

that 𝛿𝑘,𝛼 (𝑝𝑖) = 𝛿𝑘−1,𝛼 (𝑝𝑖) ≥ 𝛿𝑘−2,𝛼−1(𝑝𝑖) ≥ 𝛿𝑘−3,𝛼−1(𝑝𝑖), which implies the lemma for 𝛼 ′ = 𝛼 − 1 and the

10

rest follows by induction.

𝛿𝑘,𝛼 (𝑝𝑖)
Lem.3.5

= 𝛿𝑘−1,𝛼 (𝑝𝑖)

Lem.3.4

=

[𝑘−2∑︁
ℓ=𝛼

(
𝑘−2
ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ−2

]
+
(
𝑘−2
𝛼−1

)
𝑝𝛼𝑖 (1−𝑝𝑖)𝑘−𝛼 − 𝑝𝑖

𝑝𝑖≥1/2
≥

[𝑘−2∑︁
ℓ=𝛼

(
𝑘−2
ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ−2

]
+
(
𝑘−2
𝛼−1

)
𝑝𝛼−1𝑖 (1−𝑝𝑖)𝑘−𝛼+1 − 𝑝𝑖

=

[𝑘−2∑︁
ℓ=𝛼−1

(
𝑘−2
ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ−2

]
− 𝑝𝑖

Lem.3.3

= 𝛿𝑘−2,𝛼−1(𝑝𝑖)
Lem.3.5

= 𝛿𝑘−3,𝛼−1(𝑝𝑖) . □

Note that while increasing 𝛼 with 𝑘 = 2𝛼−1 or 𝑘 = 2𝛼 does in fact strictly increase |𝛿𝛼,𝑘 (𝑝𝑖) | thereby speed-
ing up the expected time to consensus, this effect is rather limited, as we shall see in the next section.

4 Bounding the Time to Consensus for Slush

Wewill now show how the expected progress 𝛿 (𝑝𝑖) can be used to obtain bounds for the number of rounds

required to obtain consensus.

4.1 Lower Bound

As the system converges to consensus, arguably the most critical phase is when the network is roughly in

balanced state, i.e., where fractions of parties with opinion 0 and 1 are roughly equal (𝑝𝑖 ≈ 1/2) and where
progress 𝛿 (𝑝𝑖) towards consensus is close to 0, see Figure 1.

To lead us out of a potential perfect balance, the system can only rely pure randomness to gain some small

initial imbalance, as the expected progress is 0. (The best one can hope for is a deviation of 𝑝𝑖 ≈ 1/2+𝑐/
√
𝑛

for some constant 𝑐 within reasonable time bounds, due to the central limit theorem). After that initial

perturbation the convergence to consensus crucially depends on how fast the expected progress for the

next round grows in parameter 𝑝𝑖 .

Indicative for the change in progress is the derivative of 𝛿 (𝑝𝑖), whose upper bound is useful to analyze

the case where the system moves to a 1-consensus (w.l.o.g., due to a symmetry argument). Intuitively,

this limits how fast the expected progress increases from an almost balanced state. We will first restrict

ourselves to the case 𝑘 = 2𝛼−1, as the previous section gives us all tools to extend this result to general 𝑘

and 𝛼 , as will be shown formally afterwards.

Lemma 4.1. Let 𝑘 = 2𝛼 − 1. For 𝑝𝑖 ≥ 1/2 it holds that 𝜕𝛿 (𝑝𝑖)
𝜕𝑝𝑖
≤ 𝑘 − 1.

Proof. We use the expression from Lemma 3.3 and obtain the following derivative.

𝜕𝛿 (𝑝𝑖)
𝜕𝑝𝑖

=
𝜕

𝜕𝑝𝑖

([𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ

]
− 𝑝𝑖

)
=

[𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

) (
ℓ · 𝑝ℓ−1𝑖 (1−𝑝𝑖)𝑘−ℓ − (𝑘−ℓ) · 𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ−1

)]
− 1

11

We evaluate at 𝑝𝑖 = 1/2, then

𝜕𝛿 (1
2
)

𝜕𝑝𝑖
=

1

2
𝑘−1

[𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
(2ℓ − 𝑘)

]
− 1 ≤ 1

2
𝑘−1

[𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
(2ℓ − 𝑘)

]
− 1

=
1

2
𝑘−1

[
2

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
ℓ − 𝑘

2

𝑘∑︁
ℓ=0

(
𝑘

ℓ

)]
− 1 due to 𝑘 = 2𝛼−1 and

(
𝑘
ℓ

)
=
(
𝑘

𝑘−ℓ
)

≤ 1

2
𝑘−1

[
2

𝑘∑︁
ℓ=0

(
𝑘

ℓ

)
ℓ − 𝑘

2

𝑘∑︁
ℓ=0

(
𝑘

ℓ

)]
− 1

=
1

2
𝑘−1

[
2𝑘 · 2𝑘−1 − 𝑘

2

· 2𝑘
]
− 1 = 𝑘−1.

In the following we will also show that the second derivative
𝜕𝛿 (𝑝𝑖)
𝜕2𝑝𝑖

is at most 0 for 𝑝𝑖 ≥ 1

2
. Combined with

the above, this implies that the first derivative is
𝜕𝛿 (𝑝𝑖)
𝜕𝑝𝑖
≤ 𝑘−1 for any 𝑝𝑖 ≥ 1

2
. It remains to prove the claim

about
𝜕𝛿 (𝑝𝑖)
𝜕2𝑝𝑖

. This is a bit tedious and involves modifying binomial coefficients on the level of the definition

12

(
𝑘
ℓ

)
= 𝑛!

𝑘!(𝑛−𝑘)! (third step) and then shifting sum indices (fourth step).

𝜕𝛿 (𝑝𝑖)
𝜕2𝑝𝑖

=
𝜕

𝜕𝑝𝑖

[𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

) (
ℓ · 𝑝ℓ−1𝑖 (1−𝑝𝑖)𝑘−ℓ − (𝑘−ℓ) · 𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ−1

)]
=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ−2𝑖 (1−𝑝𝑖)𝑘−ℓ−2

·
(
ℓ (ℓ−1) (1−𝑝𝑖)2 − 2ℓ (𝑘−ℓ)𝑝𝑖 (1−𝑝𝑖) + (𝑘−ℓ) (𝑘−ℓ−1)𝑝2𝑖

)
=

[𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ−2𝑖 (1−𝑝𝑖)𝑘−ℓℓ (ℓ−1)

]
+
[𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ−2(𝑘−ℓ) (𝑘−ℓ−1)

]
− 2 ·

[𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ−1𝑖 (1−𝑝𝑖)𝑘−ℓ−1ℓ (𝑘−ℓ)

]
=

[𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ−1

)
𝑝ℓ−2𝑖 (1−𝑝𝑖)𝑘−ℓ (ℓ−1) (𝑘−ℓ+1)

]
+
[𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ+1

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ−2(ℓ+1) (𝑘−ℓ−1)

]
− 2 ·

[𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ−1𝑖 (1−𝑝𝑖)𝑘−ℓ−1ℓ (𝑘−ℓ)

]
=

[𝑘∑︁
ℓ=𝛼−1

(
𝑘

ℓ

)
𝑝ℓ−1𝑖 (1−𝑝𝑖)𝑘−ℓ−1ℓ (𝑘−ℓ)

]
+
[𝑘∑︁
ℓ=𝛼+1

(
𝑘

ℓ

)
𝑝ℓ−1𝑖 (1−𝑝𝑖)𝑘−ℓ−1ℓ (𝑘−ℓ)

]
− 2 ·

[𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ−1𝑖 (1−𝑝𝑖)𝑘−ℓ−1ℓ (𝑘−ℓ)

]
=

(
𝑘

𝛼−1

)
𝑝𝛼−2𝑖 (1−𝑝𝑖)𝛼−1(𝛼−1)𝛼 −

(
𝑘

𝛼

)
𝑝𝛼−1𝑖 (1−𝑝𝑖)𝛼−2(𝛼−1)𝛼

=

(
𝑘

𝛼

)
𝑝𝛼−2𝑖 (1−𝑝𝑖)𝛼−2(𝛼−1)𝛼 · (1 − 2𝑝𝑖) since

(
𝑘
𝛼

)
=
(
𝑘
𝛼−1

)
≤ 0 for 𝑝𝑖 ≥ 1

2
. □

Next, we show that the progress towards consensus in a single round is limited, in particular around the

balanced state. Here we utilize two tools. First of all, we employ Lemma 4.1 that bounds the progress

around an almost balanced state but only for the "well behaved" case 𝑘 = 2𝛼−1. Second, we use Lemma 3.5

to extend this to even Lemma 3.2 to extend it to any 𝑘 and 𝛼 for which
𝑘
2
< 𝛼 ≤ 𝑘 .

Lemma 4.2. Let 𝑘 ≥ 2 and 𝑘
2
< 𝛼 ≤ 𝑘 and 𝑆𝑖 ≥ 𝑛

2
(w.l.o.g.). Then Δ𝑖+1 > (𝑘−1)

(
𝑆𝑖−𝑛

2

)
+ 𝑡
√
𝑛 with probability

at most 1

𝑡2
, for any 𝑡 ≥ 1.

Proof. We prove the claim for 𝑘 = 2𝛼 − 1 for 𝛼 ≥ 2, and generalize it further below. Since 𝛿 (𝑝𝑖) (1
2
) = 0 (cf.

13

Lemma 3.1 or Figure 1and
𝜕𝛿 (𝑝𝑖)
𝜕𝑝𝑖
≤ 𝑘 by Lemma 4.1 we obtain E(Δ𝑖+1) = 𝛿 (𝑝𝑖) (𝑝𝑖) · 𝑛 ≤ (𝑘−1)𝑛(𝑝𝑖− 1

2
).

To also obtain the claimwith the stated probability, let us look at the variance𝜎2
:= Var(𝑆𝑖+1) = Var(∑𝑛

𝑗=1𝑋𝑖+1, 𝑗).
After round 𝑖 before round 𝑖+1 we have Var(Δ𝑖+1) = Var(𝑆𝑖+1−𝑆𝑖) = Var(𝑆𝑖+1) = 𝜎2

, since 𝑆𝑖 is a constant

offset.

The 𝑋𝑖+1, 𝑗 ∈ {0, 1} are independent and identically distributed with Var(𝑋𝑖+1, 𝑗) ≤ 1, thus 𝜎2 = 𝑛 ·
Var(𝑋𝑖+1, 𝑗) ≤ 𝑛. Using the Chebyshev inequality we obtain

P
(
Δ𝑖+1 ≥ (𝑘−1)𝑛(𝑝𝑖 − 1

2
) + 𝑡
√
𝑛

)
≤ P

(
Δ𝑖+1 ≥ E(Δ𝑖+1) + 𝑡𝜎

)
≤ P

(
|Δ𝑖+1 − E(Δ𝑖+1) | ≥ 𝑡𝜎

)
≤ 1

𝑡2
.

It remains to generalize the claim for 𝑘, 𝛼 . Let Δ𝑘,𝛼
𝑖

and 𝛿
𝑘,𝛼
𝑖

denote the absolute and relative expected

progress in round 𝑖 for these specific parameters. Let 𝑘 = 2𝛼 − 1, 𝛼 ≥ 2 as before. By Lemma 3.5 we have

E(Δ𝑘,𝛼
𝑖
) = 𝑛 · 𝛿𝑘,𝛼 (𝑝𝑖) = 𝑛 · 𝛿𝑘−1,𝛼 (𝑝𝑖) = E(Δ𝑘−1,𝛼

𝑖
), hence

P
(
Δ𝑘−1,𝛼
𝑖+1 ≥ (𝑘−1)𝑛(𝑝𝑖 − 1

2
) + 𝑡
√
𝑛

)
≤ P

(
Δ𝑘−1,𝛼
𝑖+1 ≥ E(Δ𝒌,𝛼)

𝑖+1 + 𝑡𝜎
)

=P
(
Δ𝑘−1,𝛼
𝑖+1 ≥ E(Δ𝒌−1,𝛼)

𝑖+1 + 𝑡𝜎
)
≤ 1

𝑡2
.

Note that this extends the claim from 𝑘 = 2𝛼−1 (odd) to the case 𝑘 = 2𝛼−2 (even).
Let now 𝑘 be arbitrary (odd or even) and

𝑘
2
< 𝛼 ′ ≤ 𝑘 . By Lemma 3.2 we have that

E(Δ𝑘,𝛼 ′

𝑖
) = 𝑛 · 𝛿 (𝑝𝑖)𝑘,𝛼

′ ≤ 𝑛 · 𝛿𝑘,𝛼 (𝑝𝑖) = E(Δ𝑘,𝛼
𝑖
) .

Applying the Chebyshev bound once more gives us

P
(
Δ𝑘,𝛼 ′

𝑖+1 ≥ (𝑘−1)𝑛(𝑝𝑖 −
1

2
) + 𝑡
√
𝑛

)
≤ P

(
Δ𝑘,𝛼 ′

𝑖+1 ≥ E(Δ
𝑘,𝜶
𝑖+1) + 𝑡𝜎

)
≤ P

(
Δ𝑘,𝛼 ′

𝑖+1 ≥ E(Δ
𝑘,𝜶 ′

𝑖+1) + 𝑡𝜎
)
≤ 1

𝑡2
. □

Building on the previous lemma, we can give the following probabilistic bound for the number of parties

that have opinion 1 after 𝑖 rounds.

Lemma 4.3. Let 𝑘 ≥ 2, 𝑘
2
< 𝛼 ≤ 𝑘 . Assume the system is in a roughly balanced state with 𝑆0 ≤ 𝑛

2
+ 𝑓 (𝑛)

for 𝑓 (𝑛) =
√︁
𝑛 log𝑛. Then for any 𝑖 ≤ log𝑛

𝑐
it holds 𝑆𝑖 > 𝑛

2
+ (𝑘+1)𝑖 𝑓 (𝑛) with probability at most 1/𝑐 for any

𝑐 ≥ 1.

Proof. Let us first assume that each round the statement Δ𝑖+1 ≤ (𝑘−1)
(
𝑆𝑖−𝑛

2

)
+ 𝑓 (𝑛) is true and assess the

overall progress we make at most towards a 1 consensus starting from 𝑆0.

𝑆1 = Δ1 + 𝑆0 ≤ (𝑘−1)
(
𝑆0− 𝑛

2

)
+ 𝑓 (𝑛) + 𝑆0 ≤ 𝑛

2
+ (𝑘−1) 𝑓 (𝑛) + 2𝑓 (𝑛) = 𝑛

2
+ 𝑓 (𝑛) (𝑘+1).

This satisfies the lemma for the first round and serves as our induction base. For the induction step we

obtain

𝑆𝑖+1 =Δ𝑖+1 + 𝑆𝑖 ≤ (𝑘−1)
(
𝑆𝑖− 𝑛

2

)
+ 𝑓 (𝑛) + 𝑆𝑖 (Lemma 4.2)

≤ (𝑘−1) (𝑘+1)𝑖 𝑓 (𝑛) + 𝑓 (𝑛) + 𝑛
2
+ (𝑘+1)𝑖 𝑓 (𝑛) (induction hypothesis)

= 𝑛
2
+ 𝑘 (𝑘+1)𝑖 𝑓 (𝑛) + 𝑓 (𝑛)

≤ 𝑛
2
+ (𝑘+1)𝑖+1 𝑓 (𝑛)

14

To conclude the proof, we compute the probability that the claim is true. By Lemma 4.2 we have that

Δ𝑖 > (𝑘−1)
(
𝑆𝑖− 𝑛

2

)
+
√︁
𝑛 log𝑛 with probability at most

1

log𝑛
. Union bounding this for at most

log𝑛

𝑐
rounds,

we obtain that the claim is true with probability at most
log𝑛

𝑐
1

log𝑛
= 1

𝑐
. □

We have all tools to deduce the lower bound for the number of rounds of Slush that is required even to get

moderately close to a consensus state with some moderate probability.

Theorem 1. For 𝑘 ≥ 2 and any 𝑘
2
< 𝛼 ≤ 𝑘 and sufficiently large 𝑛, running Slush for at most log𝑛

3 log(𝑘+1) log𝛾
rounds there is a majority opinion with at least 𝑛

2
+ 𝑛

𝛾
parties with probability at most 1

log(𝑘+1) log𝛾 for any
constant 𝛾 ≥ 2.

Proof. We will assume that there are initially no parties with opinion ⊥ (cf. the explanation of Slush in

Section 2.2), which only strengthens the lower bound. Furthermore, we restrict ourselves to bound the

probability of a 1-majority, since the same claim for a 0-majority holds by symmetry (and then we apply a

union bound for the probability of one of either consensus happening).

The scenario for our lower bound for a 1 majority is the start state 𝑆0 ≤ 𝑛
2
+ 𝑓 (𝑛) for 𝑓 (𝑛) =

√︁
𝑛 log𝑛 with

𝑛 > 16, which conforms to the preconditions of Lemma 4.3. We choose the parameter 𝑐 from Lemma 4.3

as 𝑐 = 3 log(𝑘+1) log𝛾 . Then, by Lemma 4.3, after at most 𝑖 ≤ log𝑛

𝑐
rounds it is 𝑆𝑖 >

𝑛
2
+ (𝑘+1)𝑖 𝑓 (𝑛) with

probability at most
1

𝑐
. Furthermore we have

(𝑘+1)𝑖 𝑓 (𝑛) ≤ 𝑓 (𝑛) · (𝑘+1)
log𝑛

3 log(𝑘+1) log𝛾 = 𝑓 (𝑛) · (𝑛/𝛾)1/3 ≤ 𝑛

𝛾
.

In the last step we use that 𝑓 (𝑛) ≤ (𝑛/𝛾)2/3 for sufficiently large 𝑛. Note that the same holds for obtaining

a majority in the opinion 0 by starting in a state
𝑛
2
− 𝑓 (𝑛) ≤ 𝑆0 ≤ 𝑛

2
+ 𝑓 (𝑛) due to symmetry. We obtain

the claim of the theorem (for 𝑘 = 2𝛼 − 1) through a union bound on the number of rounds to either a

0-consensus or a 1-consensus with
2

𝑐
≤ 1

log(𝑘+1) log𝛾 . □

We express the theorem above in a simpler, albeit weaker form.

Corollary 4.4. For 𝑘 ≥ 2 and any 𝑘
2
< 𝛼 ≤ 𝑘 , Slush takes Ω

(
log𝑛

log𝑘

)
rounds in expectation to reach a stable

consensus (as defined in Definition 2.1).

4.2 Upper Bound

We show how to use the structural insights about Slushwith respect to parameters𝑘 and𝛼 to extend known

upper bounds for the so called Median protocol, the 3-Majority protocol and the 2-Choices protocol. These

are usually conceptualized for the case of multiple (> 2) opinions and are defined as follows.

Definition 4.5 (cf. [2]). The Median protocol assumes some globally known total order among opinions. In
each round, each party samples the opinion of two others and adopts the median among those two and its own.

In the 3-Majority protocol, in each round, each party samples the opinion of three others and adopts themajority
opinion, or picking a random opinion among the three in case of a tie.

In the 2-Choices protocol, in each round, each party samples the opinion of two others and then applies the
3-Majority rule, defaulting to its own opinion in case of a tie.

We make the following observation.

Remark 4.6. Assume that all parties have initially only one of two opinions (i.e., the binary case, in particular,
there are no parties with opinion ⊥). Then the Median protocol, 2-choices protocol and Slush for 𝑘 = 2 and
𝛼 = 2 are all equivalent. This is because in the binary case, in all three protocols a given party will switch its
own opinion if and only if it samples two parties that both have a different opinion from its own. Under the
same circumstances and for the same reason, the 3-Majority protocol is equivalent to Slush for 𝑘 = 3 and 𝛼 = 2

(exploiting that there can never be a tie in the binary case).

15

There has been extensive research on the dynamics of the Median, 2-Choices and 3-Majority protocol

(Definition 4.5) and the techniques are for the most part analogous or at least quite similar if the number

of opinions is kept constant. We have already established the lower bound of Ω
(
log𝑛

log𝑘

)
, i.e., the additional

speed-up one can gain by increasing the query size 𝑘 diminishes very fast. Therefore, we do not deem

it particularly worthwhile to show an upper bound that strictly improves on the 𝑂 (log𝑛) bound for the

aforementioned cases.

Furthermore, it is not the scope of this paper to give detailed proofs of slight generalizations of those for

the protocols from Definition 4.5. To keep this paper reasonably self-contained we showcase how these

proofs generalize to Slush with arbitrary 𝑘 ≥ 2 and 𝛼 = ⌈𝑘+1
2
⌉. We will give an extended proof sketch that

shows how the existing proof techniques generalize to obtain the following theorem. For more details we

refer to the according sources (in particular [3, 9]).

Theorem 2. Let 𝑘 ≥ 2 and 𝛼 = ⌈𝑘+1
2
⌉. Then Slush reaches a state where all but 𝑛 − 𝑂 (

√
𝑛) have the same

opinion in 𝑂 (log𝑛) rounds with high probability, even in the presence of a
√
𝑛-bounded adversary.

Proof Sketch. Our proof rests on the structure of the according proof for the 𝑘 = 𝛼 = 2 and (𝑘, 𝛼) = (3, 2)
from [3, 9] for the binary case. The proof is divided into a constant number of phases. The phases range

from the worst case where the distribution of opinions is roughly in an equilibrium, to the state of a stable

consensus. We will show that it always takes at most 𝑂 (log𝑛) rounds to arrive in the corresponding next

phase, even when starting from the worst case of an equilibrium. Due to symmetry we assume 𝑆𝑖 ≥ 0

w.l.o.g. We will at first make the main argument without considering the

√
𝑛-bounded adversary and the

opinion ⊥ (see Section 2.2) and argue why the proof holds for these cases at the end.

Phase 1: 𝒏
2 ≤ 𝑺𝒊 ≤

𝒏
2 + 𝒄1

√︁

𝒏 log 𝒏. To lift 𝑆𝑖 over the threshold of
𝑛
2
+ 𝑐1

√︁
𝑛 log𝑛 to the next phase, anti-

concentration bounds are used. In particular, because 𝛼 = ⌈𝑘+1
2
⌉ there is always a majority for either 0 or

1 in each query, thus we have that 𝑋𝑖 𝑗 ∼ B(𝑞𝑖) is Bernoulli distributed with probability 𝑞𝑖 ≈ 𝑝𝑖 ≈ 1

2
(since

the system is close to balanced state). Hence, 𝑆𝑖 =
∑𝑛

𝑗=1𝑋𝑖 𝑗 is a sum of independent, identically distributed

Bernoulli variables. By the Central Limit Theorem, for sufficiently large 𝑛 the variable 𝑆𝑖 approximates a

normal distribution with deviation of Ω
(√
𝑛
)
around the expectation E(𝑆𝑖) ≈ 𝑛

2
. The property of the normal

distribution implies that there is a constant probability for |𝑆𝑖 − 𝑛
2
| ≥ 𝑐

√
𝑛 in a single round. Applying

concentration (Chernoff) bounds and considering that by symmetry we are allowed to escape Phase 1 in

either direction, one can ensure |𝑆𝑖 − 𝑛
2
| > 𝑐1

√︁
𝑛 log𝑛 after𝑂 (log𝑛) rounds w.h.p. (cf. [9] for more details).

Phase 2: 𝒏
2 + 𝒄1

√︁

𝒏 log 𝒏 < 𝑺𝒊 ≤
𝒏
2 + 𝒏

𝒄2
. We explain the idea in a style that is akin to the proof by [3],

which shows the argument for (𝑘, 𝛼) = (3, 2) and then extend it to the general case. Note that expected

progress is E(Δ𝑖) = 𝑛 · 𝛿3,2(𝑝𝑖). The next step is to show that in the Phase 2 interval of 𝑆𝑖 (here 𝑐2 = 3

in general, 𝑐2 depends on 𝑘, 𝛼) the function 𝛿3,2(𝑝𝑖) can be lower bounded by a linear function of constant

positive gradient through the point (1
2
, 0) (see Figure 1a for a visual representation). This implies that in

each round the expected progress increases linearly in the progress that was made in the previous round.

Intuitively, this corresponds to a situation of “compounding interest” in expected progress E(Δ𝑖) with each

round 𝑖 , i.e., exponential growth in 𝑖 . Hence, it takes at most 𝑂 (log𝑛) rounds until Ψ𝑖 > 𝑛
𝑐2
.

The caveat is, that this only works if we can guarantee that the system makes progress that is at least some

constant fraction of the expected progress. Due to randomness the expected progress could be undershot

or the system could even backslide towards the equilibrium. To show that this does not happen w.h.p., we

exploit the intuition that in Phase 2 the system is already relatively far advanced into a majority, such that,

the expected progress E(Δ𝑖) exceeds the standard deviation of Δ𝑖 . Concretely, one can use concentration

bounds and union bounds, to guarantee a constant fraction of the expected progress E(Δ𝑖) w.h.p. for each
round in this phase.

By Lemma 3.5 we have that 𝛿3,2(𝑝𝑖) = 𝛿2,2(𝑝𝑖), so the argument also extends to the 2-Choices protocol.

Finally, Lemma 3.6 shows that the expected progress 𝛿𝑘,𝛼 for 𝑘 ≥ 4 and 𝛼 = ⌈𝑘+1
2
⌉ dominates that for

16

𝑘 ∈ {2, 3}, and consequently the argument above applies for Slush in general.

Phase 3: 𝒏
2 + 𝒏

𝒄2
< 𝑺𝒊 ≤

𝒏
2 + 𝒏

𝒄3
. This is arguably the simplest phase, since the system is a constant fraction

of parties from both the equilibrium state and the consensus state. This implies that 𝛿2,2(𝑝𝑖) (= 𝛿3,2(𝑝𝑖) by
Lemma 3.5) can be lower bounded by a constant (cf. Figure 1a), therefore a constant fraction of all parties

will switch to the majority opinion in expectation. It is not hard to show that this also holds w.h.p. and by

Lemma 3.6, also for any 𝑘 ≥ 4 and 𝛼 = ⌈𝑘+1
2
⌉.

Phase 4: 𝒏
2 + 𝒏

𝒄3
< 𝑺𝒊 ≤ 𝒏 − 𝒄4

√
𝒏. Although the expected progress 𝛿2,2(𝑝𝑖) tends to 0 as 𝑝𝑖 approaches

1 (see Figure 1a), one can apply a similar argument as in Phase 2 but “backwards”. In particular, in the

corresponding interval of 𝑆𝑖 the expected progress given by 𝛿2,2(𝑝𝑖) can be lower bounded by a linear

function with constant negative slope through the point (1, 0) (see Figure 1a for a visual confirmation). This

implies that the expected number of parties holding the minority opinion shrinks by a constant fraction

in each round (cf. [3]). Thus it takes at most 𝑂 (log𝑛) rounds until 𝑆𝑖 passes the threshold 𝑛 − 𝑐4
√
𝑛 given

that the progress is at least a constant fraction of the expected progress. As in Phase 2, the latter can

be guaranteed w.h.p. using concentration bounds. The argument generalizes to 𝑘 ≥ 3 and 𝛼 = ⌈𝑘+1
2
⌉ by

Lemmas 3.5 and 3.6.

√
𝒏-Bounded Adversary: The optimal strategy of the adversary to avoid a consensus is to flip

√
𝑛 parties

of the majority to the minority opinion. The main argument is that the ability of adversary to influence

𝑆𝑖 is asymptotically not more than the standard deviation of 𝑆𝑖 . In Phase 1 the random deviation from the

expectation is a desired effect to lift the system out of an equilibrium and one can show that w.h.p., the

given adversary can not inhibit this. In the subsequent phases, the random deviation is undesired as it

may reduce the progress below its expectation. The intuition is that since the influence of the adversary

is actually less than the standard deviation, we can deal with both the standard deviation and the effect of

the adversary as before, by adjusting constants in the running time.

Dealing with parties with opinion ⊥: It remains to argue that the asymptotic running time does not

change if we introduce the special opinion ⊥, which is relatively straight forward. Whenever a party 𝑗1
with opinion ⊥ receives a query for an opinion by another party 𝑗2 then 𝑗1 adopts 𝑏 (see Algorithm 2). Let

𝑛0,1 and 𝑛⊥ be the number of parties that have opinion 0, 1 or ⊥ respectively (𝑛 = 𝑛0,1 + 𝑛⊥). As long as

𝑛0,1 ≤ 𝑛⊥ it can be shown that 𝑛0,1 doubles every 𝑂 (1) rounds w.h.p. Similarly, if 𝑛0,1 ≥ 𝑛⊥, the number

of parties halves every 𝑂 (1) rounds w.h.p. Ultimately, this implies that the opinion ⊥ will die out after

𝑂 (log𝑛) rounds. □

We can translate the above result into the notion of concentration with all but negligible probability (Defi-

nition A.3) by adding a factor of 𝛽 to the running time that gives more control over the level of security in in

particular for small 𝑛 (see Lemma A.5 and Remark A.6 for the details). Specifically, the corollary conforms

to Definition 2.4, as the runtime is polynomial in 𝛽 .

Corollary 4.7. Let 𝑘 ≥ 2 and 𝛼 = ⌈𝑘+1
2
⌉. Then Slush reaches a stable consensus in 𝑂 (log𝑛 + 𝛽) rounds with

all but negligible probability (with respect to 𝛽), even in the presence of a
√
𝑛-bounded adversary.

5 Dynamics of Snowflake and Snowball

In this section we are going to extend the lower bound for Slush derived in Section 4 to the Snowflake and

Snowball protocols. Note that the quantities 𝑆𝑖 , 𝑝𝑖 ,Δ𝑖 , 𝛿𝑖 can be defined the same as in Slush, see Section 3,

since the variables only depend on the opinion attribute of parties, which is present in all three protocols.

However, the actual (expected) changes of these quantities in this section can and will differ from those

in Slush. We will denote these quantities with superscripts (slush, flake, ball) in case we compare them

over protocols (but avoid this whenever possible). Moreover, we condition the results of this section on the

assumption that no node decides (finalizes) their opinion, before the system reaches a stable majority and

17

consider the repercussions at the end.

Snowball, as explained in Section 2.2, augments the consensus mechanism from Slush with the concept of

confidence associated to the current value, which influences the decision of a party to change its opinion.

In a nutshell, a node changes opinion in the Snowball protocol when the cumulative number of queries

with majority for the new opinion exceeds that for the old opinion. In the Slush protocol, the variable 𝑆𝑖
was sufficient to describe the expected progress required to predict the evolution of the system, which is

not the case in Snowball anymore, since aforementioned confidence levels play a crucial role.

Definition 5.1. Define the set 𝐿𝑐𝑖 to be the set of parties in round 𝑖 such that cnt(1) − cnt(0) = 𝑐 (where cnt(𝑏)
is the number of queries of a given party that had a majority of opinion 𝑏). We further divide the set 𝐿0𝑖 in two
subsets 𝐿0,0

𝑖
and 𝐿0,1

𝑖
. Parties in 𝐿0𝑖 (𝐿

0,1
𝑖
) that have opinion 0 (1) belong to 𝐿0,0

𝑖
(𝐿0,1

𝑖
).

The variable 𝑆𝑖 can be reconstructed as follows: 𝑆𝑖 = |𝐿0,1𝑖
|+∑𝑐>0 |𝐿𝑐𝑖 |. Given a round 𝑖 > 0, the set of parties

N is contained in

⋃𝑖
𝑐=−𝑖 𝐿

𝑐
𝑖 as the end of round 𝑖 , since every party performed 𝑖 queries by the end of round

𝑖 , thus the difference in counts 𝑐 is bounded between −𝑖 and 𝑖 .
Remark 5.2. Consider the collection L𝑖 := {𝐿𝑐𝑖 }𝑖𝑐=−𝑖 ∪ {𝐿

0,0
𝑖
, 𝐿

0,1
𝑖
} of disjoint sets. The evolution of the system

in the next round 𝑖 + 1 can now be described using this set L𝑖 . After a query is performed a party in 𝐿𝑐𝑖 moves
to set 𝐿𝑐+1𝑖 if the query had a majority for 1, to 𝐿𝑐−1𝑖 if the query had a majority for 0, or 𝐿𝑐𝑖 if the query had
no majority. The only parties that can change value after round 𝑖 are the parties contained in 𝐿0𝑖 .

Definition 5.3. For 𝑖 ≥ 1, we define the absolute progress asΔ𝑖 := 𝑆𝑖−𝑆𝑖−1 = |𝐿0,1𝑖
|−|𝐿0,1

𝑖−1 |+
∑𝑖

𝑐=1(|𝐿𝑐𝑖 |−|𝐿𝑐𝑖−1 |),
i.e., the number of parties with 1 in their view in round 𝑖 minus the number of parties with 1 in their view in
round 𝑖 − 1. As before, we define the expected relative progress as 𝛿𝑖 := E(Δ𝑖)/𝑛.
The following Lemma shows that in Snowball, Δ𝑖 is only affected by parties migrating from 𝐿

0,1
𝑖−1 or 𝐿

0,0
𝑖−1 in

round 𝑖−1 to 𝐿−1𝑖 or 𝐿1𝑖 in round 𝑖 , respectively.

Lemma 5.4. The absolute progress can be expressed as Δ𝑖 = |Λ1

𝑖 | − |Λ0

𝑖 |, where Λ0

𝑖 := 𝐿−1𝑖 ∩ 𝐿
0,1
𝑖−1 and Λ1

𝑖 :=

𝐿1𝑖 ∩ 𝐿
0,0
𝑖−1.

Proof. Recall Δ𝑖 = |𝐿0,1𝑖
| − |𝐿0,1

𝑖−1 | +
∑𝑖

𝑐=1(|𝐿𝑐𝑖 | − |𝐿𝑐𝑖−1 |) and consider a party 𝑗 . We distinguish the following

cases:

• If 𝑗 ∈ 𝐿𝑐𝑖−1 for 𝑐 < 0, then Remark 5.2 guarantees that 𝑗 ∈ 𝐿𝑐−1𝑖 ∪𝐿𝑐𝑖 ∪𝐿𝑐+1𝑖 ∪𝐿
0,0
𝑖
. None of the previous

sets are involved in the definition of Δ𝑖 , thus the value of Δ𝑖 is independent from party 𝑗 .

• If 𝑗 ∈ 𝐿𝑐𝑖−1 for 𝑐 > 0, then Remark 5.2 guarantees that 𝑗 ∈ 𝐿𝑐−1𝑖 ∪ 𝐿𝑐𝑖 ∪ 𝐿𝑐+1𝑖 ∪ 𝐿
0,1
𝑖
. In the definition

of Δ𝑖 , the terms |𝐿𝑐′𝑖 | for 𝑐′ ∈ {𝑐 − 1, 𝑐, 𝑐 + 1, {0, 1}} and |𝐿𝑐𝑖−1 | appear with opposite signs. Thus, the

contribution of party 𝑗 cancels out.

• If 𝑗 ∈ 𝐿0,0
𝑖−1, then Remark 5.2 guarantees that 𝑗 ∈ 𝐿−1𝑖 ∪𝐿

0,0
𝑖
∪𝐿1𝑖 . If 𝑗 ∈ 𝐿−1𝑖 or 𝑗 ∈ 𝐿0,0

𝑖
, the terms terms

𝐿
0,0
𝑖−1, 𝑗 ∈ 𝐿

0,0
𝑖
, and 𝐿−1𝑖 do not appear in the definition of Δ𝑖 . If 𝑗 ∈ 𝐿1𝑖 , then 𝑗 ∈ 𝐿0,0

𝑖−1 ∩ 𝐿1𝑖 = Λ1

𝑖 and 𝑗

contributes with +1 to Δ𝑖 .

• If 𝑗 ∈ 𝐿0,1
𝑖−1, then Remark 5.2 guarantees that 𝑗 ∈ 𝐿−1𝑖 ∪ 𝐿

0,0
𝑖
∪ 𝐿1𝑖 . If 𝑗 ∈ 𝐿1𝑖 or 𝑗 ∈ 𝐿0,1

𝑖
, the term 𝐿

0,1
𝑖−1

appears with coefficient −1, whereas the terms 𝑗 ∈ 𝐿1𝑖 and 𝑗 ∈ 𝐿0,1
𝑖

appear with coefficient 1. Thus,

their contribution cancel out. If 𝑗 ∈ 𝐿−1𝑖 , then 𝑗 ∈ 𝐿
0,1
𝑖−1 ∩ 𝐿−1𝑖 = Λ0

𝑖 the term 𝑗 ∈ 𝐿
0,1
𝑖−1 appears with

coefficient −1, whereas the term 𝑗 ∈ 𝐿−1𝑖 does not appear.

We conclude that Δ𝑖 = |Λ1

𝑖 | − |Λ0

𝑖 |. □

An interesting interpretation of Lemma 5.4 if the following. Since the parties contained in the set 𝐿0𝑖 are

the only parties that can change their opinion, the expected progress of Snowball in a given round is the

same as the expected progress of Slush restricted to the parties in 𝐿0𝑖 . We formalize this intuition in the

following lemma.

18

Lemma 5.5. The expected absolute progress of Snowball is at most as high as in Slush, i.e., 𝛿ball𝑖 ≤ 𝛿 slush𝑖 .

Proof. Lemma 5.4 states that only parties in 𝐿0
𝑖−1 canmodify the state 𝑆𝑖 . Given a party 𝑗 ∈ 𝐿0,0

𝑖−1 (respectively
𝑗 ∈ 𝐿0,1

𝑖−1) The probability that 𝑗 changes to value 1 (respectively 0) is given by

P
(
𝑋𝑖 𝑗 = 1 | 𝑗 ∈ 𝐿0,0

𝑖−1
)
= P

(
𝑌𝑖 𝑗 ≥ 𝛼

)
=

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ .

P
(
𝑋𝑖 𝑗 = 0 | 𝑗 ∈ 𝐿0,1

𝑖−1
)
= P

(
𝑌𝑖 𝑗 ≤ 𝑘 − 𝛼

)
=

𝑘−𝛼∑︁
ℓ=0

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ ,

where the quantities 𝑋𝑖 𝑗 , 𝑌𝑖 𝑗 are defined the same as in Section 3, i.e., we deal with exactly the same prob-

abilities as in Lemma 3.1. Consequently, we are able to apply Lemma 3.1 and conclude that the expected

rate of progress is 𝛿ball𝑖 = 𝛿 (𝑝𝑖) when restricted to 𝐿0
𝑖−1.

The latter is an important caveat, since what changes in Snowball is the set of parties on which the expected

rate of progress is applied. Then the way the expected absolute progress of Snowball and Snowflake relate

to each other is given as follows

E(Δball

𝑖) = |𝐿0𝑖 | · 𝛿ball𝑖 = |𝐿0𝑖 | · 𝛿 (𝑝𝑖) = |𝐿0𝑖 | · 𝛿slush𝑖 =
|𝐿0

𝑖
|

𝑛
· E(Δslush

𝑖)
|𝐿0

𝑖
| ≤𝑛
≤ E(Δslush

𝑖) .

Dividing by 𝑛 on both sides and using 𝛿ball𝑖 =
E(Δball

𝑖
)

𝑛
, 𝛿slush𝑖 =

E(Δslush

𝑖
)

𝑛
(see start of Section 3), yields the

desired result. □

Lemma 5.5 states that the expected progress of the Snowball protocol is upper-bounded by the expected

progress of the Slush protocol. We conclude that the expected number of rounds even to reach majority of a

constant fraction of nodes of one opinion of the Snowball protocol is lower-bounded by the Slush protocol,

if no node decides prematurely. Note that the same is clearly true for as Snowflake which is essentially

equal to Slush if no node decides prematurely.

Corollary 5.6 (cf. Corollary 4.4). For 𝑘 ≥ 2 and any 𝑘
2
< 𝛼 ≤ 𝑘 , Snowball and Snowball take Ω

(
log𝑛

log𝑘

)
rounds

in expectation to reach a state state of stable consensus for any constant 𝛾 ≥ 2, assuming that nodes do not
decide before such a state is reached.

Note that since the decision mechanism in Snowflake and Snowball implies that no node can decide before

𝛽 rounds have passed the corollary implies a lower bound of Ω
(
min

(
log𝑛

log𝑘
, 𝛽
))
rounds. Furthermore, we will

see in Section 6 that the dependence of the runtime on 𝛽 behaves much worse than Ω(𝛽) as the adversary
can exploit the decision mechanism to delay a decision super-polynomially in 𝛽 .

6 Security of Snowflake and Snowball

We show that in Snowflake and Snowball, has a vulnerability towards an adversary that intends to delay

consensus (as defined in Definition 2.2). In particular, there might is an unfavorable trade-off between con-

fidence of success with and latency. In particular, the mechanic that Snowflake and Snowball protocols use

introduces a security parameter 𝛽 to control the probability of failure of obtaining a consensus (according to

Definition 2.2). We show that this mechanism to make decision allows an adversary to delay the decision of

any given party when using the consensus mechanisms of Snowflake and Snowball for a super-polynomial

number of rounds in 𝛽 . This is independent of the current state of the system, i.e., the claim is true even

if the system is in a state of a stable consensus (see Definition 2.1) and is true for a weaker notion of the

𝐹 -bounded adversary from Definition 2.3 for a small 𝐹 .

19

Definition 6.1. A weak 𝐹 -bounded adversary controls up to 𝐹 undecided parties whose state (opinion) it can
set once each round. We call these influenced parties and in particular we assume that the adversary can reset
any decision on some opinion made by those.

We start by giving a lower bound for the probability that some party samples a majority of influenced

parties.

Lemma 6.2. The probability that a random sample of 𝑘 parties contains at least 𝛼 that are influenced by a
weak 𝐹 -bounded adversary is at least

(
𝐹
𝑛

)𝑘 .
Proof. Recall that we nodes are sampled uniformly at random with repetition. We can lower bound 𝑞 𝑗 with

the probability that 𝑗 samples at least 𝛼 Byzantine parties as follows

𝑞 𝑗 =

𝑘∑︁
ℓ=𝛼

(
𝑘

ℓ

) (𝐹
𝑛

) ℓ (𝑛 − 𝐹
𝑛

)𝑘−ℓ
≥

𝑘∑︁
ℓ=𝑘

(
𝑘

ℓ

) (𝐹
𝑛

) ℓ (𝑛 − 𝐹
𝑛

)𝑘−ℓ
=

(𝐹
𝑛

)𝑘
. □

Note that even though the probability above decreases with 𝑘 , the parameter 𝑘 is considered a small, con-

stant sized tuning parameter [16] and is not a proper security parameter, particularly since the message

complexity scales in Ω(𝑘𝑛).
Interestingly, the lemma shows that even in a stable consensus (according to Definition 2.1), i.e., where

almost all nodes share the same opinion, even aweak adversary can create a small but inherent “background

noise”, i.e., an expected fraction

(
𝐹
𝑛

)𝑘
of all parties can be reverted by the adversary to the minority opinion

each round, because it gains a majority in a sample.

This situation is what the securitymechanic of Snowflake and Snowball protocols is intended for as it makes

parties decide and finalize an opinion by introducing an according mechanism with a security parameter

𝛽 . One condition for some party to decide an opinion, is that it must have at least 𝛽 consecutive queries

with an 𝛼-majority of the same opinion, see Section 2.2 or Section C for detailed pseudocode. (Note that

Snowball imposes an additional condition for parties to decide based on the history of queries, which,

however, only delays the decision of a party down even further).

The idea behind this mechanism is to reduce the probability that an adversary can make some party accept

the minority opinion, since sampling the minority opinion 𝛽 times in a row has a probability that is negli-

gible with respect to 𝛽 . This mechanism is flawed in the sense that even an adversary that influences just

a single party can abuse it to introduce a delay to the decision of a party that scales badly in 𝛽 .

Lemma 6.3. In the Snowflake and Snowball protocols, there exists a value 𝑐 > 1 which is constant in 𝛽 , such
that a weak 𝐹 -bounded adversary (Def. 6.1, for any 𝐹 ≥ 2) can ensure that the probability that a given party
decides within 𝑐𝛽−1/2 queries (rounds) is at most 4/𝑐2(𝛽−1) . To enforce this, the adversary needs no information
on the current state of the network.

Proof. In the Snowflake and Snowball protocols, a variable 𝑐𝑛𝑡 ≥ 1 maintains the length of the most recent

sequence of consecutive queries which all had a majority of the same opinion 𝑏 (see Section C). To decide

on some opinion 𝑏 (which we call “success” in the following), it is necessary that 𝑐𝑛𝑡 ≥ 𝛽 .

Consider the following adversary strategy, where it splits its influenced parties into two roughly equally

sized groups whose opinions it sets to 0 and 1, respectively (here we need 𝐹 ≥ 2, round group sizes if

necessary). We will now compute the probability 𝑞𝛽 of the event 𝐸𝛽 (failure in the sequence of length 𝛽)

that some given sequence of 𝛽 queries of some party 𝑗 contains either a query which had no opinion or at

least one of each opinion, 0 or 1.

Assume, that the first opinion in such a sequence had a majority of 1. This is w.l.o.g., firstly, since the

case of no majority in the first query already satisfies the condition above (by the law of total probability,

neglecting this case gives us a lower bound for 𝑞𝛽). Secondly, because the case where a sequence starts

20

with a 0 majority is analogous, if we treat the two groups of the adversary as two separate adversaries of

size at least 𝐹 ′ ≥ ⌊ 𝐹
2
⌋ ≥ 1.

This means 𝑞𝛽 is lower bounded by the probability that the next 𝛽 − 1 queries have a majority from the

𝐹 ′-bounded adversary. Thus 𝑞𝛽 ≥ (1 − 𝑞 𝑗)𝛽−1, where 𝑞 𝑗 is the lower bound of the probability that at least

𝛼 Byzantine parties are sampled in a given query from Lemma 6.2. Note that 𝑞 𝑗 is lower bounded by a

non-zero value that is independent of 𝛽 .

The number of queries crucially depends on the probability 𝑞𝛽 of failure of deciding in a sequence of length

𝛽 . To measure the number of queries until success we introduce a r.v. 𝑍 𝑗 that lower bounds the number

counter resets because event 𝐸𝛽 occurs (with probability 𝑞𝛽). This means that 𝑍 𝑗 follows a geometric

distribution 𝑍 𝑗 ∼ G(𝑞𝛽), describing the number of failures (i.e., counter resets) until success (deciding on

a value).

Note that 𝑍 𝑗 is a conservative lower bound for the overall number of queries that 𝑗 has to make. First, we

significantly underestimate the probability of failure 𝑞𝛽 . Second, we consider only counter resets caused by

sampling a Byzantine majority. Third, we do not account for queries (that increase the counter) in between

counter resets.

The expectation of 𝑍 𝑗 ∼ G(𝑞𝛽) is 𝜇 = 1/𝑞𝛽 and the variance is 𝜎 := (1 − 𝑞𝛽)/𝑞2𝛽 . Then the probability that

𝑋 is at most half its mean can be bounded with the Chebyshev inequality:

P(𝑋 ≤ 𝜇

2
) ≤ P(|𝑋 − 𝜇 | ≥ 𝜇

2
)

= P(|𝑋 − 𝜇 | ≥ 𝑘 · 𝜎) where 𝑘 :=
𝜇

2𝜎

≤ 1

𝑘2
=

4(1−𝑞𝛽)2
𝑞2
𝛽

≤ 4

𝑞2
𝛽

.

Let 𝑐 := (1 − 𝑝 𝑗)−1 (> 1), thus 𝑞𝛽 ≥ 𝑐−(𝛽−1) . The claim follows from the fact that 𝜇 = 1/𝑞𝛽 = 𝑐𝛽−1 and
P(𝑋 >

𝜇

2
) = 1 − P(𝑋 ≤ 𝜇

2
) ≥ 1 − 4/𝑐2(𝛽−1) . □

Using the lemma above, we show that Snowflake and Snowball cannot satisfy Definition 2.4, which states

the conditions for a mechanism that provides a decent trade-off between security and performance. Specif-

ically, the following theorem shows that having consensus with all but negligible probability w.r.t., 𝛽 and

a polynomial runtime in 𝛽 are mutually exclusive.

Theorem 3. In the Snowflake and Snowball protocol with a weak 𝐹 -bounded adversary (𝐹 ≥ 2) the following
properties are mutually exclusive

• The protocol ensures consensus with all but negligible probability with respect to 𝛽 (cf. Def. 2.2).

• Parties decide with less than 𝜋 (𝛽) queries with all but negligible probability with respect to 𝛽 , for any
fixed polynomial 𝜋 .

Note that this holds even when the definition of consensus is restricted to those parties which are not influenced
by the adversary.

Proof. By Lemma 6.3, the probability that at least 𝑐𝛽−1/2 queries are required is at least 1−4/𝑐2(𝛽−1) . Intu-
itively, this means that the Snow protocols are likely to fail if not enough queries are used, unless 𝛽 is small.

If, on the other hand, 𝛽 is indeed small, then there is a non-negligible chance that some party decides the

minority value, thus prohibiting agreement.

Formally, assume that 𝛽 is a security parameter as inDefinition 2.4. Consider the threshold value𝐵 := 2

log𝑐
+ 1

(constant in 𝛽). Consider the case that 𝛽 is small, i.e., 𝛽 ≤ 𝐵. By Lemma 6.2 there is a non zero probability

𝑞 𝑗 (which does not depend on 𝛽) that an adversary controls at least 𝛼 parties that have been queried by

some party 𝑗 . Then the probability that the adversary can make 𝑗 decide on the minority value is at least

𝑞𝐵𝑗 , which is constant in 𝛽 , i.e., non-negligible.

21

Now consider 𝛽 > 𝐵. Then the probability that the protocol fails is more than 3/4 if less than 𝑐𝛽−1/2 queries
are conducted because a party did not yet decide. To show the mutual exclusivity for 𝛽 above this threshold,

assume that the protocol decides with all but negligible probability. Then (much) more than 𝑐𝛽−1/2 queries
are required by Lemma 6.3, which is larger than 𝜋 (𝛽) for sufficiently large 𝛽 . □

7 Reconciling Security and Fast Consensus

Theorem 3 shows that the Snowflake and Snowball protocols cannot achieve consensus within a polyno-

mial number of rounds with all but negligible probability with respect to security parameter 𝛽 , due to the

termination condition. We propose in Algorithm 5 a modification of the Slush protocol that we call Blizzard
and which incorporates confidence levels as a termination criterion. Importantly, Blizzard leaves the ba-

sic dynamics of the Slush protocol intact, in particular Blizzard neglects the mechanic of Snowball, where

parties change their current opinion depending not only on the current but also on past queries, which is

in general detrimental for the time it takes to converge to a stable consensus as shown in Section 5.

This modification is arguably simpler than the corresponding mechanisms in Snowball and works as fol-

lows. Each party maintains two counters, which track the total number of queries that contained at least

𝛼 of opinion 0 or 1, respectively (an 𝛼-majority). A decision in favor of one opinion is made if the corre-

sponding counter has a decisive lead over the other. The lead that is required is of the order 𝑂 (log𝑛 + 𝛽)
and we show that this also corresponds to the number of rounds until consensus is established with all but

negligible probability (w.r.t. 𝛽).

The idea is that within the given time frame, the network will reach a state of a stable consensus, and it will

remain close to this state for a sufficiently long time such that each party can establish a lead in the counter

for the opinion which is in the majority. Furthermore, unanimity is ensured because the required lead is

large enough such that no party can accidentally make a “premature” decision, i.e., reaching the threshold

even when no stable majority has been established yet.

Note that as time progresses and given an adversary that controls at least 𝛼 parties, there is always a small

but non-zero chance that a system reverts from a state of stable consensus and even switches majorities.

However, we show that once the system is in a stable consensus, it will not “slide back” too far within a

given time frame, i.e., one opinion retains an overwhelming majority for a sufficient amount of time, even

in the presence of an adversary. We start with a lemma about the probabilities to sample an 𝛼-majority of

an opinion given that one opinion has a majority.

Lemma 7.1. Let 𝑆𝑖 ≥ 15𝑛
16

and 𝛼 = ⌈𝑘+1
2
⌉. Then P

(
𝑌𝑖 𝑗 ≥ 𝛼

)
≥ 𝑝𝑖 and P

(
𝑌𝑖 𝑗 ≤ 𝑘−𝛼

)
≤ 4(1−𝑝𝑖)2.

Proof. Note that 1−𝑝𝑖 ≤ 1

16
. From the choice of 𝛼 , it follows that there is always an 𝛼 majority for either 0 or

22

1. Thus, it suffices to show that P
(
𝑌𝑖 𝑗 ≤ 𝑘−𝛼

)
≤ 4(1−𝑝𝑖)2 the other inequality follows due to 4(1−𝑝𝑖)2 ≤ 1−𝑝𝑖 .

P
(
𝑌𝑖 𝑗 ≤ 𝑘−𝛼

)
=

𝑘−𝛼∑︁
ℓ=0

(
𝑘

ℓ

)
𝑝ℓ𝑖 (1−𝑝𝑖)𝑘−ℓ ≤

𝑘−𝛼∑︁
ℓ=0

(
𝑘

ℓ

)
(1−𝑝𝑖)𝑘−ℓ

≤
𝑘−𝛼∑︁
ℓ=0

(
𝑘

ℓ

)
(1−𝑝𝑖)𝛼 = (1−𝑝𝑖)𝛼

𝑘−𝛼∑︁
ℓ=0

(
𝑘

ℓ

)
≤ (1−𝑝𝑖)𝛼

⌊𝑘/2⌋∑︁
ℓ=0

(
𝑘

ℓ

)
≤ (1−𝑝𝑖)𝛼2𝑘−1

𝑘≤2𝛼−1
≤ (1−𝑝𝑖)𝛼22𝛼−2 = (1−𝑝𝑖)2(1−𝑝𝑖)𝛼−222𝛼−2

≤ (1−𝑝𝑖)2(1
16
)𝛼−222𝛼−2 = (1−𝑝𝑖)2(1

2
)4𝛼−822𝛼−2

= (1−𝑝𝑖)2(1
2
)2𝛼−6 = 4(1−𝑝𝑖)2(1

2
)2𝛼−4

𝛼≥2
≤ 4(1−𝑝𝑖)2 □

The next lemma shows that once the network is in a stable consensus state, it will very likely conserve a

majority for a certain time frame.

Lemma 7.2. Let 𝑠, 𝑡 ≥ 1 with 𝑠 ≤ 𝑡
2
and 𝑡 ≤

√
𝑛/16. Assume the number of parties with opinion 1 is currently

𝑆0 ≥ 𝑛 − 𝑠
√
𝑛. Then 𝑆𝑖 ≥ 𝑛 − 𝑡 ·

√
𝑛 for at least 𝑖 ≤ 𝑇 := min

(√𝑛
32𝑡

, 𝑡
4

)
rounds with probability at least 𝑒−𝑡

2

. This
holds even in the presence of a

√
𝑛-bounded adversary.

Proof. We assume that the condition 𝑝𝑖 ≥ 1 − 𝑡/
√
𝑛 is true and show for how long it can be maintained

starting from round 𝑖 = 0 in state 𝑆0. The claim is initially true due to 𝑠 ≤ 𝑡
2
. Since 𝑡 ≤

√
𝑛/16, this

assumption entails 𝑝𝑖 ≥ 15/16, which satisfies the precondition of Lemma 7.1.

Let 𝐵𝑖 𝑗 the indicator variable that some party changes its opinion from 1 to 0 in round 𝑖 , i.e., 𝐵𝑖 𝑗 = 1 if that

is the case, 𝐵𝑖 𝑗 = 0 else. Then 𝐵𝑖 :=
∑𝑛

𝑗=1 𝐵𝑖 𝑗 is the "backslide", i.e., the number of nodes that change opinion

from 1 to 0, which is a sum of independent, identically distributed Bernoulli variables. We obtain

E(𝐵𝑖) =
𝑛∑︁
𝑗=1

E(𝐵𝑖 𝑗) = 𝑛P(𝑋𝑖 𝑗 =0 | 𝑋𝑖−1, 𝑗 =1) ≤
𝑛∑︁
𝑗=1

P(𝑌𝑖 𝑗 ≥𝛼) =
𝑛∑︁
𝑗=1

(1−𝑝𝑖) = 𝑛(1−𝑝𝑖)
Lem.7.1
≤ 4𝑛

(𝑡
√
𝑛

)
2

= 4𝑡2.

We will assume that in each round 𝑖 ≤ 𝑇 the backslide is 𝐵𝑖 ≤ 2E(𝐵𝑖) = 8𝑡2 and show that this is the case

with high probability later. Considering this upper bound for the backslide, that the adversary can change

the opinion of at most

√
𝑛 parties in each round and exploiting the bounds for 𝑠 and𝑇 , then in round 𝑖 = 𝑇

we obtain

𝑆𝑇 ≥ 𝑛 − 𝑠 ·
√
𝑛 −𝑇 · 8𝑡2 −𝑇 ·

√
𝑛

≥ 𝑛 − 𝑡

2

·
√
𝑛 −
√
𝑛

32𝑡
· 8𝑡2 − 𝑡

4

·
√
𝑛

= 𝑛 − 𝑡

2

·
√
𝑛 − 𝑡

4

·
√
𝑛 − 𝑡

4

·
√
𝑛 = 𝑛 − 𝑡 ·

√
𝑛

In particular, this also implies 𝑆𝑖 ≥ 𝑛− 𝑡 ·
√
𝑛 thus 𝑝𝑖 ≥ 1− 𝑡/

√
𝑛 for all 𝑖 ≤ 𝑇 since 𝐵𝑖 ≤ 2E(𝐵𝑖) for all 𝑖 ≤ 𝑇 .

It remains to compute the probability for the latter. We apply a Chernoff Bound (given in Lemma A.9) and

23

obtain P
(
𝐵𝑖 > 2E(𝐵𝑖)

)
≤ exp

(
− 4𝑡2

3

)
. A union bound shows that this holds for all 𝑖 ≤ 𝑇 with probability

P
(⋃
𝑖≤𝑇

𝐵𝑖 ≤ 2E(𝐵𝑖)
)
= 1 − P

(⋂
𝑖≤𝑇

𝐵𝑖 > 2E(𝐵𝑖)
)
≥ 1 −

∑︁
𝑖≤𝑇
P
(
𝐵𝑖 > 2E(𝐵𝑖)

)
≥ 1 −𝑇 · exp

(
− 4𝑡2

3

)
≥ 1 − 𝑡

4

· exp
(
− 4𝑡2

3

)
≥ 1 − exp

(
𝑡
4

)
· exp

(
− 4𝑡2

3

)
= 1 − exp

(
𝑡
4
− 4𝑡2

3

) 𝑡≥1
≥ 1 − 𝑒−𝑡2 . □

While Lemma 7.2 captures the stability of a state of almost consensus in a more general way, we will use

it in the following form, by specifying some parameters.

Lemma 7.3. Let 𝑠 ≥ 1 be a constant and assume the number of parties with opinion 1 is 𝑆0 ≥ 𝑛 − 𝑠
√
𝑛. For an

arbitrary constant 𝛽 ≥ 𝑠/2, let𝑇 ≥ 𝛽 and𝑇 ∈ 𝑜 (𝑛1/4). Then 𝑆𝑖 ≥ 15𝑛
16

for at least𝑇 rounds with probability at
least 1 − 𝑒−𝛽2 . This holds for sufficiently large 𝑛 even with a

√
𝑛-bounded adversary.

Proof. Let 𝑡 := 4𝑇 , i.e., 𝑇 ≤ 𝑡
4
by definition. Since 𝑇 ∈ 𝑜 (𝑛1/4) we have 𝑡 ≤

√
𝑛/16 for large enough

𝑛. Moreover, we have

√
𝑛/32𝑡 ∈ Ω(

√
𝑛/𝑇) ⊆ Ω(𝑛1/4) and therefore 𝑇 ≤

√
𝑛/32𝑡 for sufficiently large 𝑛.

Furthermore, 𝑠 ≤ 2𝛽 ≤ 2𝑇 ≤ 𝑡
2
. This satisfies all the requirements for Lemma 7.2 and we conclude that

𝑆𝑖 ≥ 𝑛 − 𝑡
√
𝑛 ≥ 15𝑛/16 with probability at least 1 − 𝑒−𝑡2 = 1 − 𝑒−16𝑇 2 ≥ 1 − 𝑒−𝛽2 . □

Wewill now use the stability properties of a network that is in a state of stable consensus (Definition 2.1) to

show that Blizzard ensures consensus (Definition 2.2) with all but negligible probability after 𝑂 (𝛽 + log𝑛)
rounds. Recall that Blizzard essentially corresponds to running an instance of Slush, where each node

maintains counters that track how often an 𝛼-majority was observed for opinion 0 and 1, respectively. If

the difference in counters reaches a (sufficiently large) threshold 𝜏 , then a decision for the opinion with the

larger counter is made. In the following theorem we use a variable running time for Slush (due to the fact

that as speedups up to log𝑘 over our upper bound can not be excluded, see Theorems 1 and 2).

Theorem 4. Algorithm 5 (Blizzard) with a threshold 𝜏 := 2𝑇Slush ensures consensus with all but negligible
probability (w.r.t. 𝛽) after at most 7𝑇Slush rounds, assuming that 𝑇Slush is the number of rounds until Slush
reaches a state where at least 𝑛−𝑂 (

√
𝑛) parties have the same opinion and𝑇Slush is a sufficiently large multiple

of 𝛽 . This holds even with a
√
𝑛-bounded adversary.

Proof. Let 𝑠 ≥ 1 such that at least 𝑆0 ≥ 𝑛 − 𝑠
√
𝑛 parties have opinion 1 (w.l.o.g.) with all but negligible

probability after at most 𝑇Slush rounds. Note that we have 𝑇Slush ∈ 𝑂 (𝛽 + log𝑛) by Theorem 2.

Purely syntactically, we reinitialize the round counter to 𝑖 = 0 when we reach such a state 𝑆0 for the first

time. Starting from round 𝑖 = 0, by Lemma 7.3 we have 𝑝𝑖 ≥ 15

16
for at least 𝑇 ∈ 𝑜 (𝑛1/4) rounds, even with

a

√
𝑛-bounded adversary.

Let 𝑍 𝑗,0 and 𝑍 𝑗,1 be the number of times party 𝑗 observed an 𝛼-majority of 0 and 1 respectively in any query

made from round 𝑖 = 0 to round 𝑖 = 𝑇 . For the expectations we have.

E(𝑍 𝑗,0) = P
(
𝑌𝑖 𝑗 ≤ 𝑘 − 𝛼

)
·𝑇

Lem.7.1
≤ 4(1 − 𝑝𝑖)2 ·𝑇 ≤ 4 · 1

16
2
·𝑇 ≤ 𝑇

16
.

E(𝑍 𝑗,1) = P
(
𝑌𝑖 𝑗 ≥ 𝛼

)
·𝑇

Lem.7.1
≥ 𝑝𝑖 ·𝑇 ≥ 15𝑇

16
.

Note that the variables 𝑍 𝑗,0 and 𝑍 𝑗,1 can be seen as sums of independent Bernoulli variables, which allows

us to apply the following Chernoff bounds.

P
(
𝑍 𝑗,0 ≥ (1 + 1) · 𝑇

16

)
≤ exp

(
− 𝑇

3·16

) 𝑇 ≥48𝛽
≤ 𝑒−𝛽

P
(
𝑍 𝑗,1 ≤ (1 − 1

3
) · 15𝑇

16

)
≤ exp

(
− 15𝑇

9·16

) 𝑇 ≥48𝛽/5
≤ 𝑒−𝛽 .

24

This implies that 𝑍 𝑗,0 < 𝑇
8
and 𝑍 𝑗,1 > 5𝑇

8
with all but negligible probability given that 𝑇 ≥ 48𝛽 . Let

𝐷 𝑗 (𝑇) := 𝑍 𝑗,1 − 𝑍 𝑗,0 be the difference in the counters after 𝑇 rounds, then we have 𝐷 𝑗 (𝑇) ≥ 5𝑇
8
− 𝑇

8
= 𝑇

2

after 𝑇 rounds with all but negligible probability. We can now show that the properties of consensus in

Definition 2.2 are met after 7𝑇Slush +𝑂 (𝛽) rounds with all but negligible probability.

Termination. We have to show that for any given party 𝑗 the absolute value of the difference in the

counters 𝐷 ′𝑗 = 𝑐𝑛𝑡 [1] − 𝑐𝑛𝑡 [0] reaches the threshold 𝜏 eventually so that it decides (cf. Algorithm 5). We

assume that after 𝑇Slush rounds we reach a stable consensus where 𝑆0 parties have opinion 1, whereas

the opposite case with a stable consensus for opinion 0 is analogous. Note that in 𝑇Slush rounds we have

𝐷 ′𝑗 ≥ −𝑇Slush, as in each round the counter 𝑐𝑛𝑡 [0] increases by at most one. After 𝑇 = 6𝑇Slush additional

rounds starting from 𝑆0 we obtain 𝐷 ′𝑗 ≥ −𝑇Slush + 𝐷 𝑗 (𝑇) ≥ −𝑇Slush + 3𝑇Slush = 2𝑇Slush = 𝜏 . Therefore, any

given party decides and the algorithm terminates after 7𝑇Slush rounds, with all but negligible probability,

given that𝑇 ≥ 48𝛽 and𝑇 ∈ 𝑜 (𝑛1/4). The former means that we require𝑇Slush ≥ 8𝛽 . The latter is fulfilled as

𝑇Slush ∈ 𝑂 (log𝑛).
Validity. Suppose all parties propose 1 (w.l.o.g.). Then there is also a stable consensus for 1 even if we

assume that initially

√
𝑛 parties are flipped to 0 by an adversary. We showed above that from a stable

consensus state, for any given node, the threshold 𝑐𝑛𝑡 [1] −𝑐𝑛𝑡 [0] = 𝜏 will be reached with all but negligible

probability.

Integrity. Follows form the construction of the algorithm.

Agreement. The idea is that the threshold 𝜏 is so large that no party can decide before a stable consensus

is reached, and from there on every party must decide the same. Since in each round a counter of any party

𝑗 can increase by only one, no party can decide before 𝜏 = 2𝑇Slush rounds have passed. Already after 𝑇Slush
rounds we will reach a stable consensus with a 𝑆0 majority for opinion 1 (w.l.o.g.). When we arrive at the

state of stable consensus we have 𝐷 ′𝑗 ≥ −𝑇Slush, hence reaching the −𝜏 = −2𝑇Slush threshold for deciding 0

would require at least 𝑇Slush additional rounds. We already showed that starting from 𝑆0 the change in 𝐷 ′𝑗
is strictly positive with all but negligible probability (provided that 𝑇Slush is a sufficiently large multiple of

𝛽). Consequently for any party 𝑗 the probability to attain the threshold −𝜏 within the next 6𝑇Slush rounds

is negligible. □

The theorem above is given in a more general way, depending on the number of rounds until Slush reaches

a stable consensus. Given that we have already shown an upper bound of 𝑂 (log𝑛 + 𝛽) for this (Corollary
4.7), we can rephrase the theorem as follows.

Corollary 7.4. Algorithm 5 (Blizzard) ensures consensus with all but negligible probability after at most
𝑂 (log𝑛 + 𝛽) rounds. This holds even with a

√
𝑛-bounded adversary.

8 Conclusion

With the goal of improving latency in mind, we deduce two main recommendations for changes to Snow-

style consensus protocols as they are deployed in the Avalanche network today. First, for a given 𝑘 we

recommend to choose 𝛼 > 𝑘/2 as small as possible, i.e., 𝛼 = ⌈𝑘+1
2
⌉, as this promises a better performance

compared to 𝛼 closer to 𝑘 (see Lemma 3.2 or Figure 1b). Second, we propose to change the termination

condition of the Snowflake and Snowball protocols where we observe an unfavorable trade-off between

security and latency (see Corollary 3) to the simpler one of the Blizzard protocol (Algorithm 5). This modi-

fication will resolve the observed issue (see Theorem 4 and Corollary 7.4). We caveat our recommendations

by noting that there might be other considerations than the asymptotic performance aspects analyzed in

this paper.

From a theoretical point of view, we see our results on the performance of Slush (Theorem 1 and 2) as a

25

natural continuation of the corresponding analysis of the randomized, self-stabilizing consensus protocols

in the GOSSIP model where the sample size is at most 3 (such as the Median Protocol, the 2-Choices

Protocol and the 3-Majority Protocol, see Definition 4.5). These protocols have been analyzed with respect

to performance as a function of the initial number of opinions and it was shown that in “most” conditions

they converge quite fast (cf. related work Section 2.3). An interesting avenue of future research is the

adaptation of Slush to multiple opinions, a party adopts a new opinion if it has a simple majority in a

sampling of size 𝑘 , i.e., a “𝑘-Majority protocol”. We believe that our technical work on Slush gives insights

how such a 𝑘-Majority protocol would perform on multiple opinions.

References
[1] Ignacio Amores-Sesar, Christian Cachin, and Enrico Tedeschi. “When Is Spring Coming? A Security

Analysis of Avalanche Consensus”. In: 26th International Conference on Principles of Distributed Sys-
tems, OPODIS 2022, December 13-15, 2022, Brussels, Belgium. Ed. by Eshcar Hillel, Roberto Palmieri,

and Etienne Rivière. Vol. 253. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 10:1–

10:22. url: https://doi.org/10.4230/LIPIcs.OPODIS.2022.10.
[2] Luca Becchetti, Andrea E. F. Clementi, and Emanuele Natale. “Consensus Dynamics: An Overview”.

In: SIGACT News 51.1 (2020), pp. 58–104. url: https://doi.org/10.1145/3388392.3388403.
[3] Luca Becchetti et al. “Simple dynamics for plurality consensus”. In: Distributed Comput. 30.4 (2017),

pp. 293–306. url: https://doi.org/10.1007/s00446-016-0289-4.
[4] Luca Becchetti et al. “Stabilizing Consensus with Many Opinions”. In: Proceedings of the Twenty-

Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, Jan-
uary 10-12, 2016. Ed. by Robert Krauthgamer. SIAM, 2016, pp. 620–635. url: https://doi.org/10.
1137/1.9781611974331.ch46.

[5] Vitalik Buterin. The Scalability Trilemma — Why Sharding is Great: Demystifying the Technical Prop-
erties. Available online, https://vitalik.ca/general/2021/04/07/sharding.html. 2017.

[6] Colin Cooper, Robert Elsässer, and Tomasz Radzik. “The Power of Two Choices in Distributed Vot-

ing”. In: Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copen-
hagen, Denmark, July 8-11, 2014, Proceedings, Part II. Ed. by Javier Esparza et al. Vol. 8573. Lecture

Notes in Computer Science. Springer, 2014, pp. 435–446. url: https://doi.org/10.1007/978-3-
662-43951-7_37.

[7] Emilio Cruciani et al. “Phase Transitions of the k-Majority Dynamics in a Biased Communication

Model”. In: ICDCN ’21: International Conference on Distributed Computing and Networking, Virtual
Event, Nara, Japan, January 5-8, 2021. ACM, 2021, pp. 146–155. url: https://doi.org/10.1145/
3427796.3427811.

[8] James R. Cruise and Ayalvadi Ganesh. “Probabilistic consensus via polling and majority rules”. In:

Queueing Syst. Theory Appl. 78.2 (2014), pp. 99–120. url: https://doi.org/10.1007/s11134-014-
9397-7.

[9] Benjamin Doerr et al. “Stabilizing consensus with the power of two choices”. In: SPAA 2011: Proceed-
ings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA,
USA, June 4-6, 2011 (Co-located with FCRC 2011). Ed. by Rajmohan Rajaraman and Friedhelm Meyer

auf der Heide. ACM, 2011, pp. 149–158. url: https://doi.org/10.1145/1989493.1989516.
[10] Robert Elsässer et al. “Brief Announcement: Rapid Asynchronous Plurality Consensus”. In: Proceed-

ings of the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA,
July 25-27, 2017. Ed. by Elad Michael Schiller and Alexander A. Schwarzmann. ACM, 2017, pp. 363–

365. url: https://doi.org/10.1145/3087801.3087860.

26

https://doi.org/10.4230/LIPIcs.OPODIS.2022.10
https://doi.org/10.1145/3388392.3388403
https://doi.org/10.1007/s00446-016-0289-4
https://doi.org/10.1137/1.9781611974331.ch46
https://doi.org/10.1137/1.9781611974331.ch46
https://vitalik.ca/general/2021/04/07/sharding.html
https://doi.org/10.1007/978-3-662-43951-7_37
https://doi.org/10.1007/978-3-662-43951-7_37
https://doi.org/10.1145/3427796.3427811
https://doi.org/10.1145/3427796.3427811
https://doi.org/10.1007/s11134-014-9397-7
https://doi.org/10.1007/s11134-014-9397-7
https://doi.org/10.1145/1989493.1989516
https://doi.org/10.1145/3087801.3087860

[11] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. “Easy Impossibility Proofs for Distributed

Consensus Problems”. In: Distributed Comput. 1.1 (1986), pp. 26–39. url: https://doi.org/10.
1007/BF01843568.

[12] Michael J. Fischer, Nancy A. Lynch, andMike Paterson. “Impossibility of Distributed Consensus with

One Faulty Process”. In: J. ACM 32.2 (1985), pp. 374–382. url: https://doi.org/10.1145/3149.
214121.

[13] Mohsen Ghaffari and Johannes Lengler. “Nearly-Tight Analysis for 2-Choice and 3-Majority Consen-

sus Dynamics”. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
PODC 2018, Egham, United Kingdom, July 23-27, 2018. Ed. by Calvin Newport and Idit Keidar. ACM,

2018, pp. 305–313. url: https://dl.acm.org/citation.cfm?id=3212738.
[14] Seth Gilbert and Nancy A. Lynch. “Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services”. In: SIGACT News 33.2 (2002), pp. 51–59.
[15] Vincent Gramoli et al. “Diablo: A Benchmark Suite for Blockchains”. In: Proceedings of the Eighteenth

European Conference on Computer Systems, EuroSys 2023, Rome, Italy, May 8-12, 2023. Ed. by Giuseppe
Antonio Di Luna et al. ACM, 2023, pp. 540–556. url: https://doi.org/10.1145/3552326.
3567482.

[16] Team Rocket et al. “Scalable and Probabilistic Leaderless BFT Consensus through Metastability”. In:

CoRR abs/1906.08936 (2019). arXiv: 1906.08936. url: http://arxiv.org/abs/1906.08936.

A Probabilistic Concepts

We give a few basic definitions and principles pertaining the probabilistic security properties of some

protocol (used in Definition 2.4) that we use throughout the paper.

Definition A.1 (Negligible Function). A function 𝑓 is negligible if for any polynomial 𝜋 there is a constant
𝜆0 ≥ 0, s.t., for any 𝜆 ≥ 𝜆0 it is 𝑓 (𝜆) ≤ 𝜋 (𝜆).
Remark A.2. We often use that for any constant 𝑐 > 0, the function 𝑓 (𝜆) = 𝑒−𝑐 ·𝜆 is a negligible w.r.t. 𝜆.

We usually aim for a certain security threshold given by a variable 𝛾 .

Definition A.3 (All But Negligible Probability). An event is said to occur with all but negligible probability
with respect to some parameter 𝜆 if the probability of the event not happening is a function in 𝜆 that is negligible
w.r.t. 𝜆.

In the literature, randomized consensus protocols are often shown to be successful with high probability,
which expresses the probability of failure as a function that decreasing inversely with the input size 𝑛 of

the problem (here 𝑛 is the number of parties). This is often quite convenient as it eliminates any other

variable from the analysis, compared to defining some fixed failure threshold.

Definition A.4 (With High Probability). An event is said to hold with high probability (w.h.p.), if there exists
a constant 𝑐 ≥ 1 such that the event occurs with probability at least 1 − 𝑛−𝑐 for sufficiently large 𝑛.

The disadvantage of the notion w.h.p. is that it usually looks at the asymptotic behavior of a system (i.e., for

large 𝑛), which does not provide a fixed security level for small 𝑛, which can be a requirement in practice.

The following lemma provides an interface between the two notions.

Lemma A.5. Let 𝐸 be an event such that the probability that 𝐸 does not occur within any interval of 𝑇
consecutive rounds is at most 1

𝑛
(which is guaranteed if 𝐸 occurs w.h.p., see Definition A.4). Then 𝐸 occurs with

probability 1 − 𝑒−𝜆 (all but negligible, see Definition A.3) after 𝑇 ′ = 𝑇 (𝜆
ln𝑛
+1) rounds for security parameter

𝜆 > 0.

Proof. We consider the cases 𝜆 < ln𝑛 and 𝜆 ≥ ln𝑛 starting with the former. Note that 𝑇 ′ ≥ 𝑇 , thus the

27

https://doi.org/10.1007/BF01843568
https://doi.org/10.1007/BF01843568
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://dl.acm.org/citation.cfm?id=3212738
https://doi.org/10.1145/3552326.3567482
https://doi.org/10.1145/3552326.3567482
https://arxiv.org/abs/1906.08936
http://arxiv.org/abs/1906.08936

probability that 𝐸 does not occur is at most

1

𝑛
= 𝑒− ln𝑛 < 𝑒−𝜆 .

In the second case, we use that 𝑇 ′ ≥ 𝜆
ln𝑛

𝑇 . The probability that 𝐸 does not occur after
𝜆
ln𝑛

𝑇 rounds is at

most

1

𝑛
𝜆
ln𝑛

=
1

𝑒
𝜆 ln𝑛
ln𝑛

= 𝑒−𝜆 .

□

Remark A.6. In Lemma A.5, given that some event 𝐸 occurs w.h.p., within 𝑇 ∈ 𝑂 (log𝑛) rounds, then 𝑇 ′ =
𝑇 (𝜆

ln𝑛
+ 1) ∈ 𝑂 (𝜆 + log𝑛) rounds are sufficient that 𝐸 occurs with all but negligible probability.

LemmaA.7 (Closure of Negligible Functions). Let 𝜆 > 0 and 𝑘 ≤ 𝜌 (𝜆) for some polynomial 𝜌 . Let 𝐸1, . . . , 𝐸𝑘
be outcomes (events) of some algorithm A. Assume that any individual event 𝐸𝑖 takes place with all but
negligible probability (Def. 2.4). Then 𝐸 B

⋂𝑘
𝑖=1 𝐸𝑖 takes place with all but negligible probability.

Proof. There is a 𝜆0 ≥ 0 such that 𝜌 (𝜆) ≤ 𝑒𝜆/2 for all 𝜆 ≥ 𝜆0. Let 𝜆1, . . . , 𝜆𝑘 ∈ N such that for all 𝑖 ∈ {1, . . . , 𝑘}
we have P(𝐸𝑖) ≤ 𝑒−𝜆 for 𝜆 > 𝜆𝑖 . With Boole’s inequality (a.k.a. “Union Bound”) we have that

P
(
𝐸
)
= P

(𝑘⋃
𝑖=1

𝐸𝑖

)
≤

𝑘∑︁
𝑖=1

P(𝐸𝑖) ≤
𝑘∑︁
𝑖=1

𝑒−𝜆 ≤ 𝜌 (𝜆)𝑒−𝜆 ≤ 𝑒−𝜆/2 = 𝑒−𝜆
′

for 𝜆′ ≥ 2max(𝜆0, . . . , 𝜆𝑘). □

Remark A.8. Lemma A.7 implicitly shows that a series of events all occur with all but negligible probability
w.r.t. 𝜆, given that the number of events is not too large in 𝜆. In our proofs we often apply this mechanic
without specifically mentioning the lemma. Sometimes we also have a number of events that scales in 𝑛, for
this we (necessarily have to) assume that 𝑛 ≤ 𝜋 (𝜆) for some fixed but arbitrary polynomial 𝜋 , which allows
us to apply Lemma A.7 for such a number of events as well.

We use the following forms of Chernoff bounds in some of our proofs.

Lemma A.9 (Chernoff Bound). Let 𝑋 =
∑𝑛

𝑖=1𝑋𝑖 for i.i.d. random variables 𝑋𝑖 ∈ {0, 1} and E(𝑋) ≤ 𝜇𝐻 and
𝛿 ≥ 1, then

P
(
𝑋 ≥ (1+𝛿)𝜇𝐻

)
≤ exp

(
−𝛿𝜇𝐻

3

)
,

Similarly, for E(𝑋) ≥ 𝜇𝐿 and 0 ≤ 𝛿 ≤ 1 we have

P
(
𝑋 ≤ (1−𝛿)𝜇𝐿

)
≤ exp

(
−𝛿

2𝜇𝐿

2

)
.

B Sums over Binomial Coefficients

We will summarize a few equations for sums over binomial coefficients of the form

∑𝑗

ℓ=𝑖

(
𝑘
ℓ

)
that we use

throughout this paper.

Remark B.1 (Some Identities). Starting with the definition
(
𝑘
ℓ

)
:= 𝑘!

ℓ!(𝑘−ℓ)! , the first observation is that
(
𝑘
ℓ

)
=(

𝑘
𝑘−ℓ

)
by symmetry. By reordering summands we obtain

𝑚∑︁
ℓ=0

(
𝑘

ℓ

)
=

(
𝑘

0

)
+ · · · +

(
𝑘

𝑚

)
=

(
𝑘

𝑘

)
+ · · · +

(
𝑘

𝑘 −𝑚

)
=

(
𝑘

𝑘 −𝑚

)
+ · · · +

(
𝑘

𝑘

)
=

𝑘∑︁
ℓ=𝑘−𝑚

(
𝑘

ℓ

)
.

28

Note that a closed form for partial sums of the form

∑𝑗

ℓ=𝑖

(
𝑘
ℓ

)
is currently not known. In this article we make

use a few known special cases.

Remark B.2 (Closed Forms). The binomial theorem implies
∑𝑘

ℓ=0

(
𝑘
ℓ

)
= 2

𝑘 . Using the equality from the
previous remark, for uneven 𝑘 we obtain

⌊𝑘/2⌋∑︁
ℓ=0

(
𝑘

ℓ

)
=

𝑘∑︁
ℓ=⌈𝑘/2⌉

(
𝑘

ℓ

)
= 2

𝑘−1.

For any 𝑘 and any𝑚 < 𝑘/2 we have at least the following estimations

𝑚∑︁
ℓ=0

(
𝑘

ℓ

)
=

𝑘∑︁
ℓ=𝑘−𝑚

(
𝑘

ℓ

)
≤ 2

𝑘−1.

C Pseudocode

Algorithm 1 State

Global parameters and state
1:N // set of parties

2: newRound ∈ {false, true} // variable indicating when to start a round

3: decided ∈ {false, true} // variable indicating when to finish the protocol

4: 𝑏 ∈ { 0, 1,⊥} // current estimate for decision, initially ⊥
5: 𝑘 ∈ N // number of parties queried in each poll

6: 𝛼 ∈ N // majority threshold for queries

7: S : HashMap[T → N] // set of sampled parties to be queried

8: votes : HashMap[{0, 1} → N] // number of votes for a value

9: cnt ∈ N // counter for acceptance Snowflake and Snowball

10: cnt[0] ∈ N // counter for acceptance Blizzard

11: cnt[1] ∈ N // counter for acceptance Blizzard

12: 𝛽 ∈ N // threshold for acceptance

13: 𝑑 : HashMap[{0, 1} → N] // confidence value of a transaction

14: round ∈ N // current round

15:maxRound ∈ N // maximum round

29

Algorithm 2 Slush (party 𝑗)

16: upon propose(𝑏′) do
17: decided← false

18: newRound← true

19: 𝑏 ← 𝑏′

20: upon newRound ∧ ¬decided do // still not decided

21: newRound← false

22: votes[∗] ← 0

23: round← round + 1
24: if 𝑏 ≠⊥ then
25: S ← sample(N \ { 𝑗}, 𝑘) // sample 𝑘 parties

26: send message [Query, 𝑏] to all parties 𝑘 ∈ S

27: upon votes[𝑏′] ≥ 𝛼 do // 𝑏′ = 0 or 𝑏′ = 1

28: 𝑏 ← 𝑏′

29: newRound← true

30: upon 𝑛 = 𝑘 ∧ votes[0] < 𝛼 ∧ votes[1] < 𝛼 do // no majority

31: newRound← true

32: upon receiving message [Query, 𝑏′] from party 𝑘 do
33: if 𝑏 = ⊥ then
34: decided← false

35: 𝑏 ← 𝑏′

36: send message [Vote, 𝑏] to party 𝑘 // reply with the local value of 𝑏

37: upon receiving message [Vote, 𝑏′] from a party 𝑘 ∈ S do // collect the vote 𝑏′

38: votes[𝑏′] ← votes[𝑏′] + 1

39: upon round = maxRound ∧ ¬decided do // end of the protocol

40: decide(𝑏)
41: decided← true

30

Algorithm 3 Snowflake (party 𝑗)

42: upon propose(𝑏′) do
43: decided← false

44: newRound← true

45: 𝑏 ← 𝑏′

46: upon newRound ∧ ¬decided do // still not decided

47: newRound← false

48: votes[∗] ← 0

49: if 𝑏 ≠⊥ then
50: S ← sample(N \ { 𝑗}, 𝑘) // sample 𝑘 random parties

51: send message [Query, 𝑏] to all parties 𝑘 ∈ S

52: upon votes[𝑏′] ≥ 𝛼 do // 𝑏′ = 0 or 𝑏′ = 1

53: if 𝑏 = 𝑏′ then // majority for our proposal

54: cnt← cnt + 1
55: else
56: 𝑏 ← 𝑏′

57: cnt← 1

58: newRound← true

59: upon 𝑛 = 𝑘 ∧ votes[0] < 𝛼 ∧ votes[1] < 𝛼 do // no majority

60: cnt← 0

61: newRound← true

62: upon receiving message [Query, 𝑏′] from party 𝑘 do
63: if 𝑏 = ⊥ then
64: decided← false

65: 𝑏 ← 𝑏′

66: send message [Vote, 𝑏] to party 𝑘 // reply with the local value of 𝑏

67: upon receiving message [Vote, 𝑏′] from a party 𝑘 ∈ S do // collect the vote 𝑏′

68: votes[𝑏′] ← votes[𝑏′] + 1

69: upon cnt = 𝛽 ∧ ¬decided do // there is enough confidence for 𝐵

70: decide(𝑏)
71: decided← true

31

Algorithm 4 Snowball (party 𝑗)

72: upon propose(𝑏′) do
73: decided← false

74: newRound← true

75: 𝑏 ← 𝑏′

76: upon newRound ∧ ¬decided do // still not decided

77: newRound← false

78: votes[∗] ← 0

79: if 𝑏 ≠⊥ then
80: S ← sample(N \ { 𝑗}, 𝑘) // sample 𝑘 random parties

81: send message [Query, 𝑏] to all parties 𝑘 ∈ S

82: upon votes[𝑏′] ≥ 𝛼 do // 𝑏′ = 0 or 𝑏′ = 1

83: 𝑑 [𝑏′] ← 𝑑 [𝑏′] + 1
84: if 𝑏 = 𝑏′ then // majority for our proposal

85: cnt← cnt + 1
86: else
87: if 𝑑 [𝑏′] > 𝑑 [𝑏] then
88: 𝑏 ← 𝑏′

89: cnt← 1

90: newRound← true

91: upon 𝑛 = 𝑘 ∧ votes[0] < 𝛼 ∧ votes[1] < 𝛼 do // no majority

92: cnt← 0

93: newRound← true

94: upon receiving message [Query, 𝑏′] from party 𝑘 do
95: if 𝑏 = ⊥ then
96: decided← false

97: 𝑏 ← 𝑏′

98: send message [Vote, 𝑏] to party 𝑘 // reply with the local value of 𝑏

99: upon receiving message [Vote, 𝑏′] from a party 𝑘 ∈ S do // collect the vote 𝑏′

100: votes[𝑏′] ← votes[𝑏′] + 1

101: upon cnt = 𝛽 ∧ ¬decided do // there is enough confidence for 𝐵

102: decide(𝑏)
103: decided← true

32

Algorithm 5 Blizzard (party 𝑗)

104: upon propose(𝑏′) do
105: decided← false

106: newRound← true

107: 𝑏 ← 𝑏′

108: upon newRound ∧ ¬decided do // not yet decided

109: newRound← false

110: votes[∗] ← 0

111: if 𝑏 ≠⊥ then
112: S ← sample(N \ { 𝑗}, 𝑘) // sample 𝑘 parties

113: send message [Query, 𝑏] to all parties 𝑘 ∈ S

114: upon votes[𝑏′] ≥ 𝛼 do // 𝑏′ = 0 or 𝑏′ = 1

115: 𝑏 ← 𝑏′

116: cnt[𝑏] + +
117: newRound← true

118: upon 𝑛 = 𝑘 ∧ votes[0] < 𝛼 ∧ votes[1] < 𝛼 do // no majority

119: newRound← true

120: upon receiving message [Query, 𝑏′] from party 𝑘 do
121: if 𝑏 = ⊥ then
122: decided← false

123: 𝑏 ← 𝑏′

124: send message [Vote, 𝑏] to party 𝑘 // reply with the local value of 𝑏

125: upon receiving message [Vote, 𝑏′] from a party 𝑘 ∈ S do // collect the vote 𝑏′

126: votes[𝑏′] ← votes[𝑏′] + 1

127: upon cnt[1] − cnt[0] = 𝜏 ∧ ¬decided do // threshold 𝜏 ∈ 𝑂 (log𝑛 + 𝛽), see Thm. 4 and Cor. 7.4

128: decide(1)

upon cnt[0] − cnt[1] = 𝜏 ∧ ¬decided
129: decide(0)

33

	1
	Preliminaries
	Model
	The Snow Family
	Related Work

	Dynamics of Slush
	Expected Rate of Progress of Slush
	Mapping out the Dependency of normalnormali on normalnormalk and normalnormal

	Bounding the Time to Consensus for Slush
	Lower Bound
	Upper Bound

	Dynamics of Snowflake and Snowball
	Security of Snowflake and Snowball
	Reconciling Security and Fast Consensus
	Conclusion
	Probabilistic Concepts
	Sums over Binomial Coefficients
	Pseudocode

