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ABSTRACT  
Although both short and long sleep duration are associated with elevated hypertension risk, our 
understanding of their interplay with biological pathways governing blood pressure remains 
limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and 
long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and 
pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel 
gene-sleep duration interaction loci for blood pressure, mapped to genes involved in 
neurological, thyroidal, bone metabolism, and hematopoietic pathways. Non-overlap between 
short sleep (12) and long sleep (10) interactions underscores the plausibility of distinct influences 
of both sleep duration extremes in cardiovascular health. With several of our loci reflecting 
specificity towards population background or sex, our discovery sheds light on the importance of 
embracing granularity when addressing heterogeneity entangled in gene-environment 
interactions, and in therapeutic design approaches for blood pressure management.  
 
INTRODUCTION  
Abnormal sleep duration is detrimental to cardiovascular health – increasing the risk of incident 
cardiovascular disease (CVD) and mortality – and inherently complex, with suspected 
heterogeneous effects according to sex and race/ethnicity1,2. Deviation from healthy sleep can 
impact diurnal rhythms, hormone levels (e.g. ghrelin, cortisol), autonomous nervous system 
balance, and even remodel vascular structure - resulting in adverse consequences, such as 
reduced nocturnal blood pressure (BP) dipping and sustained daytime hypertension1,3.  
 
Yet the mechanistic pathways underlying the biomolecular connection between short and long 
sleep with cardiovascular health remain unclear. Evidence implicates heightened sympathetic 
tone and metabolic dysfunction in the mechanism of short sleep, but there remains a gap in 
clarity with the added complexity of interwoven pathways like oxidative stress and endothelial 
dysfunction1,4. The role of long sleep is more elusive, with recent work highlighting the 
pertinence of inflammatory markers, underlying comorbidity burden (i.e. dyslipidemia, 
depression) and arterial stiffness metrics5,6. This incomplete understanding of the intersection 
between habitual sleep duration and cardiovascular health necessitates further investigation. 
 
Hypertension is a major risk factor for CVD, with blood pressure traits known to have a strong 
genetic background. Recent genome-wide association analyses (GWASs) have discovered more 
than two thousand loci explaining ~40% of systolic or diastolic BP heritability among European 
descent individuals7. It is important to investigate the role of sleep health in such a polygenic 
landscape. This may both explain additional heritability of BP traits, as well as bring to the 
forefront novel genomic loci that inform perspective on sleep’s influence on biomolecular 
pathways underlying BP. Moreover, incorporating diverse population groups is essential – as this 
can reveal novel gene targets specific to particular subgroups or shared across – improving 
downstream therapeutic designs, and offering tangible insight to counter disparities in health. 
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Our prior work in the Cohorts for Heart and Aging Research in Genomic Epidemiology 
(CHARGE) Gene-Lifestyle Interactions Working Group highlighted novel non-overlapping 
gene-sleep interactions for BP, suggesting distinct roles of influence for short and long sleep 
duration8. Our current analysis advances the field by including a 12-fold larger sample size and 
additional sex-stratified analyses, yielding enhanced statistical power and granularity. 
  
Here we report findings from genome-wide gene-by-sleep duration interaction analyses for BP 
traits, across 811,405 individuals of diverse population backgrounds (African [AFR], East Asian 
[EAS], European [EUR], Hispanic/Latino [HIS], and South Asian [SAS]). Cognizant of 
subliminal disparities that can shape sleep and cardiovascular health, and to ensure heterogeneity 
in interaction effects is addressed, we report findings stratified by both population group and sex 
parallel to our primary cross-population meta-analysis.  
 
RESULTS 
Overview 
From an initial source of 37 studies, 59 population-group specific cohorts (derived from self-
reported ancestry) resulted in a pooled sample size of 811,405 individuals comprising of 5.9% 
AFR (12 cohorts), 6.0% EAS (5 cohorts), 83.4% EUR (34 cohorts), 3.7% HIS (7 cohorts), and 
0.9% SAS (1 cohort) [Supplementary Tables S1-S2]. Phenotypic and genetic data from each 
cohort were harmonized following a centralized protocol (see Methods). Population- and sex-
stratified interaction models (M1) were analyzed for three BP traits (systolic BP [SBP], diastolic 
BP [DBP], pulse pressure [PP]) and two dichotomous sleep duration exposure (E) interaction 
variables (long total sleep time [LTST], short total sleep time [STST]). Similar to prior work, 
STST and LTST were defined by cohort-specific 20% and 80% quantiles of age- and sex-
adjusted residuals of total sleep duration8. Marginal effect models for BP traits (M2) without 
interaction terms were also analyzed to screen for novel interactions. Covariate (C1 and C2) 
adjustment is described in the Methods. Genetic variants (G) were restricted to autosomal 
chromosomes with minor allele frequency³0.1%.  
 

M1:  Y = βM1_0 + βEE + βM1_GG + βM1_G´E G´E + βM1_C1C1 
M2:  Y = βM2_0 + βM2_GG + βM2_C2C2 

 
After quality-control of summary statistics, meta-analyses were performed both across 
population groups as cross-population meta-analysis (CPMA), and within specific population 
groups (AFR, EAS, EUR, HIS, SAS), stratified according to sex (combined sex, females only, 
males only) [Figure 1, Supplementary Figures S1-S2]. From these results, we identified evidence 
of gene-sleep duration interactions from the M1 model using the 1 degree of freedom (df) test of 
interaction effect (βM1_G´E), and the 2df joint test that simultaneously assesses the main effect 
(βM1_G) and the interaction effect (βM1_G´E)9. The marginal genetic effect in M2 (βM2_G) was 
utilized in a two-step protocol for detecting interactions.  
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Variants were prioritized if: (i) significant in the 1df interaction test (PM1_G´E<5´10-9, 
FDRM1_G´E<0.05); (ii) significant in the two-step method where z independent variants 
prioritized based on marginal genetic effect (PM2_G<10-5) are evaluated using the 1df interaction 
test (PM1_G´E<0.05/z); or (iii) novel for BP, significant in the 2df joint test (PM1_G,G´E<5´10-9, 
FDRM1_G,G´E<0.05), insignificant in the marginal effect (PM2_G>5´10-9, FDRM2_G>0.05), and 
driven by the interaction effect (PM1_G´E< PM1_G) (Figure 1). Secondarily, variants novel for BP, 
significant in the 2df joint test, insignificant in the marginal effect, but not driven by the 
interaction effect (PM1_G<PM1_G´E) were noted. Novelty with respect to BP was defined as non-
overlap with 1 Mb regions of prior reported BP GWAS associations (Supplementary Table S3). 
A full description of variant prioritization can be found in Methods. 
 
This resulted in the 1df test revealing seven loci and the 2-step method revealing 1 locus. The 2df 
joint test first identified 3629 significant loci, from which 18 were novel for BP with 
insignificant marginal effect – revealing 14 loci driven by the interaction effect, and four not 
driven. 
 
Thus in total we discovered 22 gene-sleep duration interaction loci, and 4 secondary loci – a total 
of 26 genetic variants of which 21 are novel for BP traits (Supplementary Table S4). Among the 
22 prioritized interaction loci, four loci exhibited cross-population effects – one locus identified 
in combined sex and three in female sex-stratified analyses (Table 1); and 18 interaction loci 
were identified specific to either one of the AFR, HIS, or EUR population groups (Table 2). 
 
Cross-Population Gene-Sleep Duration Interactions 
A total of four cross-population gene-sleep duration interaction loci were identified (Table 1). In 
combined sex, the 2df joint test revealed a locus driven by STST interaction for PP at 
rs76458410 (YWHAB; PGxE=6.4´10-7; PG,GxE =3.9x10-9) (Supplementary Figure S3). In female 
sex-specific analysis, the 2-step protocol revealed rs11314421 (WBP1L; PGxE=7.8´10-6; PG,GxE= 
3.5x10-11) interacting with STST for PP, the 1df test identified rs538479553 (FAM98A; 
PGxE=3.3´10-9) interacting with LTST for SBP, and the 2df test revealed rs1431999695 
(ALG10B; PGxE=2.5´10-5; PG,GxE =4.5´10-9) driven by LTST interaction for PP (Figure 2, 
Supplementary Figure S3).  
 
AFR-Specific Gene-Sleep Duration Interactions 
Specific to AFR, the 2df joint test identified a locus driven by LTST interaction at rs533724062 
(BRINP3; PGxE=1.9´10-4; PG,GxE =3.7´10-9) for PP (Table 2, Supplementary Figure S3). 
 
HIS-Specific Gene-Sleep Duration Interactions 
Specific to HIS, a total of 11 gene-sleep duration interaction loci were identified (Table 2). The 
1df interaction test identified four interaction loci: three loci exhibiting interaction with STST at 
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rs114831731 (AHCYL1; PGxE=1.6´10-9) for PP, rs144229676 (ZNF521; PG´E=8.1´10-10) for 
DBP, and rs112958007 (PAK5; PGxE=1.3´10-9) for PP; and one locus exhibiting interaction with 
LTST at rs372262693 (TG,SLA; PGxE=2.3´10-9) for PP (Figure 3). The 2df joint test identified 
four loci driven by STST interactions at rs143863772 (MROH7; PGxE=5.8´10-5; PG,GxE=1.8´10-

10) for SBP, rs141117715 (KCNJ3; PGxE=1.7´10-8; PG,GxE =2.4´10-9) for PP, rs17011282 
(ZNF385D; PGxE=5.9´10-7; PG,GxE =4.1´10-10) for PP, and rs542745170 (WWOX; PGxE=3.1´10-5; 
PG,GxE =5.0´10-9) for PP; and three loci driven by LTST interactions at rs138288695 (CRBN; 
PGxE=3.5´10-7; PG,GxE =1.3´10-9) for DBP, rs113952142 (SDK1; PGxE=1.8´10-6; PG,GxE =5.5´10-

10) for SBP, and rs111392401 (JMJD1C; PGxE=1.3´10-8; PG,GxE =2.3´10-10) for DBP 
(Supplementary Figure S3).  
 
EUR-Specific Gene-Sleep Duration Interactions 
Specific to EUR, six gene-sleep duration loci were identified – five loci in combined sex and one 
locus in male sex-stratified analysis (Table 2). The 1df interaction test identified rs752086677 
(KRTAP13-2; PGxE=1.5´10-12) showing interaction with STST for DBP (Supplementary Figure 
S3). The 2df joint test identified one locus driven by STST interaction for PP at rs764985249 
(EFNA5; PGxE=4.1´10-9; PG,GxE= 6.4x10-12); and three loci driven by LTST interactions at 
rs142966182 (ALCAM; PGxE=1.0´10-7; PG,GxE = 1.2x10-9) for DBP, rs540041583 (PAM; 
PGxE=8.9´10-5; PG,GxE =6.9x10-10) for PP, and rs772862932 (ATP8A2; PGxE=1.3´10-6; PG,GxE = 
1.3x10-9) for DBP (Supplementary Figure S3). The 1df interaction test in male-specific EUR 
meta-analysis uniquely revealed rs1035064 (ZNF682; PGxE=4.8´10-9) harboring interaction with 
STST for its effect on SBP (Table 2, Supplementary Figure S3). 
 
Sex Differences in Interactions 
Testing for sex differences (Psex_diff<0.002) revealed variants identified in combined sex meta-
analyses –  rs114831731 (AHCYL1), rs542745170 (WWOX), and rs533724062 (BRINP3) – 
showing evidence of heterogeneous effect by sex (Table 2).  
 
Prior Reported Gene-Sleep Interactions 
Our previous work identified two STST interaction loci (rs73493041 for DBP, rs10406644 for 
PP) and one LTST interaction locus (rs7955964 for mean arterial pressure) utilizing a smaller 
subset of cross-population samples (N=62,969)8. In our current cross-population meta-analysis, 
rs10406644 showed interaction evidence with STST (PG´E=2.0´10-4 for PP), and rs7955964 with 
LTST (PG´E=6.6´10-3 for SBP, PG´E=1.7´10-2 for DBP) with direction of association agreeing 
with prior work, and non-significance (PGxE>0.05) for the opposite sleep duration exposure 
(Supplementary Table S5).  
 
Functional Potential of Variants 
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Variants were assessed using FAVOR and RegulomeDB to annotate deleteriousness or 
functionality scores10,11 (Supplementary Table S6). Four variants (rs11483173, rs372262693, 
rs113952142, rs11314421) were marked by high transcription activity chromatin states and eight 
variants (rs114831731, rs372262693, rs143863772, rs533724062, rs11314421, rs1035064, 
rs538479553, rs13032423) were marked by accessible chromatin in heart tissue or blood. Six 
variants (rs114831731, rs542745170, rs533724062, rs11314421, rs1035064, rs538479553) 
reflected marked regulatory potential with RegulomeDB scores ³2c.  
 
Mapped Protein-Coding Genes 
All 26 variants were either intronic or intergenic, and mapped to a primary set of 27 protein 
coding genes as identified by: (1) direct overlap with genes (i.e. intronic), (2) shortest distance to 
transcription start site, or (3) shortest distance to gene start/end site (Supplementary Table S7). 
Cognizant of the complexity of genomic variation, a secondary extended list of genes was 
annotated for each locus by positional overlap, chromatin interaction (CI), or eQTL evidence 
accounting for linkage disequilibrium (LD) structure using FUMA SNP2GENE and 
RegulomeDB10,12 (Methods, Supplementary Tables S7-S9). This extended mapping revealed 292 
genes highlighted for the 12 STST interaction loci, 67 genes for the 10 LTST interaction loci, 
and 35 genes for the four joint 2df loci not driven by interaction. 
 
Expression Quantitative Trait Loci (eQTL)  
Tissue-specific (GTEXv8) eQTL associations were observed at rs11314421, rs1035064, and 
rs34761985 in tissues of the heart, vasculature, or blood (Supplementary Table S8)10. WBP1L-
rs11314421 and ZNF682-rs1035064 gene mappings were corroborated by eQTL evidence 
identified in venous blood or the tibial artery. Beyond these primary mapped genes, MFSD13A, 
BORCS7, CALHM2, RPARP-AS1, AS3MT, and SFXN2 expression were mapped to rs11314421 
by eQTL evidence in the ascending aorta, coronary artery, tibial artery, left ventricle 
myocardium, right atrium auricular region, venous blood, or lymphoblast. Similarly, ZNF56, 
ZNF253, ZNF93, ZNF90, and ZNF486 were mapped by coronary artery or venous blood eQTL 
evidence to rs1035064. UXS1 was mapped by rs34761985 eQTL data identified in the right 
atrium auricular region.  
 
Variant-Level Cross-Trait Associations 
Several variants show associations (P<5´10-8) with other traits (Supplementary Table S10). 
Querying Open Target Genetics (https://genetics.opentargets.org) identified rs11314421 
(WBP1L) to be associated with hypertension and testosterone levels, and rs13032423 (VRK2) 
with sleep duration and feeling miserable (Supplementary Table S11). Common Metabolic 
Diseases Knowledge Portal (https://hugeamp.org/) further identified rs13032423 (VRK2) to be 
associated with BMI and sleep duration (Supplementary Figure S4). Querying brain imaging 
phenotypes through the Oxford Brain Imaging Genetics Server (BIG40) revealed rs13032423’s 
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(VRK2) connection to brain functional connectivity by its association with rfMRI connectivity 
(ICA100 edge 965) (Supplementary Table S12, Supplementary Figure S5)13.  
 
Gene Functional Implications 
Reported evidence from gene knockout studies and genetic association analyses were 
synthesized to holistically understand functionality of the primary mapped genes (Supplementary 
Table S10). Mice knockout evidence from the International Mouse Phenotyping Consortium 
highlighted genes important for heart morphology (BRINP3, CRBN, ALG10B, PRMT6), and 
cardiac rhythm (TG, WBP1L).14 (Supplementary Table S13). Open Target Genetics, PheWeb, 
and PheGenI revealed genes implicated in genetic associations (p<5´10-8), with OMIM 
(https://omim.org/) identifying any linked Mendelian disorders (Supplementary Tables S14-
S17)15-17. Specifically, eight genes harbored links to the cardiovascular domain through 
association with traits identifying by genetic studies: WBP1L, EFNA5, ZNF521, WWOX, 
ZNF385D, FAM98A, PAM, and JMJD1C. ALG10B was identified to be implicated in the 
Mendelian disorder long QT syndrome. In the realm of sleep and circadian health, reported 
genetic associations corroborated the relevance of EFNA5, ZNF521, WWOX, ALG10B, PAM and 
SDK1 with insomnia, daytime napping, or chronotype traits. Genetic associations to other 
pertinent domains including kidney function, neurological health, liver function, thyroid 
function, metabolism, lifestyle choice, and inflammation, were also synthesized (Supplementary 
Table S10). 
 
Gene Set Enrichment Analysis 
To formally investigate distinction between STST and LTST pathways, we performed gene set 
enrichment analyses on the aforementioned extended gene sets in the FUMA GENE2FUNC 
platform and STRING database (Supplementary Tables S18-S19)12,18. STST-mapped genes 
highlighted pathways in antioxidant defense and neuron excitation, along with phenotypic 
connection to lipid levels, neurological health, cardiovascular health, metabolism and immune 
defense. LTST-mapped genes implicated traits involving inflammation, neurological health, and 
metabolism. A clearly distinctive pattern differentiating short and long sleep duration interaction 
loci was thus not observed. 
 
Druggability 
We investigated druggability of the primary mapped genes using an integrative approach to 
highlight drug repurposing potential (Supplementary Table S20)19. First, genes were queried in 
the Drug-Gene Interaction database revealing those marked as clinically actionable or members 
of the druggable genome20. These identified gene candidates revealed connections to 
serotonergic response (HTR1F, KCNJ3), proteasome-mediated ubiquitination (CRBN), thyroid 
hormone synthesis (TG), and axon guidance (PAK5, ALCAM) pathways. Of these, KCNJ3, 
CRBN, HTR1F, TG, PAK5, and ALCAM harbored links to reported drug interactions and active 
ligand interactions in the ChEMBL database. Drug-gene interactions with FDA-approved drugs 
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were queried for involvement in late-stage clinical trials using DrugBank and ClinicalTrials.gov 
(https://clinicaltrials.gov/)21,22. This identified the following genes displaying evidence of 
pharmacological targeting: KCNJ3 (by small molecule inhibitors Atomoxetine and 
Dronedarone); CRBN (by thalidomide analogs Pomalidomide and Lenalidomide); HTR1F (by 
selective serotonin receptor agonists like Lasmiditan); and ALCAM (by chemotherapy agent 
Fluorouracil).  
 
DISCUSSION:  
In this large-scale effort investigating the biomolecular mechanisms underpinning the 
intersecting roles of sleep health and blood pressure traits, we conducted genome-wide gene-by-
sleep duration (short and long sleep) interaction analyses in 811,405 individuals of diverse 
population backgrounds (AFR, EAS, EUR, HIS, SAS) for systolic blood pressure, diastolic 
blood pressure, and pulse pressure. We report novel discovery of 22 gene-sleep duration 
interaction loci for BP traits – 12 for short sleep, and 10 for long sleep. Several of the identified 
variants are rare with allele frequency <=1%, with four variants identified in sex-stratified meta-
analyses, and 18 variants specific to either the AFR(1), EUR(6), or HIS (11) population groups. 
In line with our previous research, the identified genomic loci exhibiting interactions with short 
and long sleep are non-overlapping (with non-significance in the opposing sleep duration 
exposure), suggesting distinct mechanisms influencing cardiovascular health. Nonetheless, we 
did not observe a clear differentiating pattern in the biological pathways implicated when 
comparing short sleep and long sleep. 
 
The functional annotation investigations of our prioritized genes point towards cardiovascular 
and neurological connections, along with revealing links to circadian rhythm, thyroid function, 
bone health, and hematopoiesis mechanisms. Our findings highlight potential pharmacological 
candidates and suggest pertinent pathways to consider when designing holistic therapeutic 
regimens for improving blood pressure control.  
 
Firstly, at a broad level, several identified genes are tied to neurological mechanisms. KCNJ3 
encodes Kir3.1 – the alpha subunit for the IKACh potassium channel – and is interestingly 
implicated in bradyarrhythmia by its missense variant inducing a gain of function of IKACh, as 
activation of this channel is tied to the negative chronotropic effect on heart rate exerted by the 
parasympathetic nervous system23. CRBN is linked to cognitive function 24, SDK1 promotes 
synaptic connectivity 25, ZNF521 regulates neuron cell fate 26, and ATP8A2 is involved in both 
neuron vesicle transport and cardiac conduction 27. Further, KRTAP13-2, WWOX, EFNA5, and 
ALCAM are linked to nervous system development with additional roles for WWOX in 
myelination 28 and EFNA5 in vascular sympathetic innervation 29. These functional connections 
may suggest a potential nervous system-heart connection that could be influenced by sleep or 
circadian disturbances.  
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In fact neurological pathway connections to circadian rhythm reveal themselves through two 
enzymes - PAK5 and PAM. Given that circadian rhythm and clock gene expression is intimately 
connected to blood pressure patterns, of note is PAK5 – a serine/threonine kinase protective of 
adult neurons from injury and ischemic stress30. PAK5 has both been shown to be targeted by 
clock gene-regulated miRNAs in the liver and identified to strongly bind to 14-3-3 proteins – a 
protein family connected to light-sensitive melatonin diurnal patterns and plausibly influential 
for sleep behavior31,32. This strong binding affinity to 14-3-3 proteins suggests an interesting 
connection, as YWHAB (one of this study’s primary genes mapped to a STST interaction locus), 
is part of this protein family. Another enzyme informing the neurological-sleep axis is PAM, 
encoding a copper-dependent enzyme important for synthesizing amidated neuropeptides like 
NPY – which regulates sleep through noradrenergic signals33,34.  
 
Further, TG and JMJD1C, both encoding proteins intrinsically tied to thyroid hormone function 
(thyroglobulin and thyroid receptor-interacting protein 8 respectively) – present suggestive ties 
to the intersection between thyroid function and circadian rhythms. TG mRNA and protein 
expression levels have shown to increase in response to melatonin, along with its genetic variants 
associated with autoimmune thyroid diseases35,36. Gene silencing of JMJD1C’s paralog has 
shown arrhythmicity and prolonged sleep in Drosophila37. Given that circadian clock and thyroid 
function are increasingly suggested to be interconnected, and sleep deprivation can disrupt 
temporal hormone profiles (e.g. increased morning plasma thyroid-stimulating hormone (TSH) 
levels), it may be valuable to investigate further the overlapping pathways between thyroid 
function, healthy sleep duration, and cardiovascular morbidity38.  
 
Beyond thyroidal pathways, hematopoiesis presents a possible comprehensive perspective on the 
interconnectedness between sleep health and nervous system response. WBP1L, one of the 
primary genes identified (mapped to a STST interaction locus identified in female-specific 
CPMA) has suggestive connection to regulating the CXCL12-CXCR4 signaling pathway by its 
inhibitory role on CXCR4, the receptor for ligand CXCL1239. This pathway is both influential for 
inflammation and hematopoietic state, reflects circadian control, and directly implicates the 
sympathetic nervous system response – pertinent as stressors are suspected to induce a more 
exacerbated response in females40,41. If stress factors (e.g. sleep loss) induce noradrenaline, this 
can downregulate CXCL12, with resultant increased cell proliferation of pro-inflammatory cells 
from the bone marrow, incurring vascular damage40. For instance, fragmented sleep has shown to 
promote myelopoiesis and lower hypocretin release by the hypothalamus, in turn accelerating 
atherosclerosis progression42. Thus perhaps WBP1L can offer insight into the intersections 
between sympathetic activation, neurological control, and unhealthy sleep impacting 
cardiovascular health, especially in women.  
 
On a similar note of addressing sex-specificity, of relevance is FAM98A, a gene identified in 
female-specific CPMA for interaction with long sleep. FAM98A, harboring multiple arginine 
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demethylation sites, is a substrate of PRMT1 - an enzyme which catalyzes the synthesis of 
asymmetric dimethylarginine (ADMA), a molecule associated with cardiovascular harm as it 
induces endothelial dysfunction43. Thus seeking to lower harmful ADMA levels to counter 
harmful effects of sleep loss may be relevant in preservation of vascular integrity44. FAM98A, 
encoding a microtubule-associated protein, is also functionally linked to osteoclast formation, 
which is key to bone resorption and involved in postmenopausal osteoporosis etiology45. Given 
that osteoporosis and CVD share pathology, the FAM98A locus may shed light on the 
importance of considering holistic treatment for hypertensive women approaching or after 
menopause – an example being Felodipine, an antihypertensive found to additionally discourage 
osteoclast differentiation46,47. 

 
Beyond FAM98A, specific genes highlight pathway connections to offer possible avenues for 
enhancing treatment efficacy for hypertension. Addressing the role of inflammation, SLA may 
lend promise as an immunosuppressant, with cytoplasm-specific delivery of specific domains of 
SLA shown to inhibit the T cell receptor functional cascade48. ALG10B closely interacts with 
KCNH2 to protect it from inhibition by pharmaceuticals and thus prevent acquired long QT 
syndrome - interesting, as past work has identified KCNH2 genetic variation to associate with 
efficacy of specific antihypertensive drugs49,50. PAK5 is the effector protein of CDC42, vital for 
endothelial integrity and involved in the mechanism of Nebivolol, a third generation beta-
blocker51,52. CRBN, due to its intrinsic role in ubiquitination, is recruited as an E3 ligase ligand in 
protease-targeted chimeras (PROTACs), which hold promise in cardiovascular therapeutics – an 
example being P22A shown to reduce collateral damage of HMGCR upregulation caused by 
statins53. These findings point to the need for future preclinical and clinical studies to confirm the 
hypothesized mechanisms and test promising interventions. 
 
Our druggability analysis specified genes acting as existing pharmacological targets of FDA-
approved drugs, offering perspective for drug repurposing. HTR1F and KCNJ3 are linked to the 
serotonergic pathway and are targets of approved ADHD and antiarrhythmic drugs Atomoxetine 
and Dronedarone, respectively. This is potentially relevant given that serotonin may impact 
blood pressure regulation, and serotonin receptor desensitization is implicated in chronic sleep 
restriction54,55. HTR1F encodes for 5-HT1F, shown to function in smooth muscle and trigeminal 
nerves, with its selective agonists (i.e. Lasmiditan) offering greater efficacy for migraine 
treatment without the collateral harm of vasoconstrictive effects induced by non-selective 
triptans56.  
 
Noticeably, all 22 gene-sleep duration interaction loci we identified were specific to a particular 
population group, a subset of population groups, or a particular sex. This may be due to 
substantial heterogeneity in BP architecture and sleep lifestyle as a result of cultural differences, 
uniquely varying stressors due to socioeconomics, and genetic risk that are both shaped by and 
influence lifestyle choices. For example, admixed African and Hispanic populations are more 
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likely to have poorly controlled hypertension and circadian abnormalities in BP regulation, as 
well as higher prevalence of both short and long sleep duration relative to individuals of 
European ancestry57,58. Females generally sleep longer, have higher prevalence of insomnia, and 
experience an increased proinflammatory response to sleep deprivation compared to males59. 
Such differential risk profiles are likely attributed to a myriad of social or environmental 
variables along with genetic and epigenetic susceptibility8. Therefore, it is likely that the same 
duration of self-reported sleep has different etiologies and physiological effects across sex and 
population background. Future research incorporating extensive phenotyping may help clarify 
whether gender-specific or population-specific findings are explained by differences in sleep-
related or other lifestyle behaviors, mechanisms underlying response to sleep disturbance, or are 
spurious. 
 
This study has several strengths, including its large-scale nature made possible by inclusion of 
several international biobanks and cohort studies, rigorous data harmonization and quality 
control protocols, and robust statistical analysis pipelines. Our findings are reinforced by 
multiple lines of evidence from bioinformatics analysis. Focused druggability analysis and 
interpretation of drug-gene interactions offer promising insight in drug repurposing and 
candidate targets for future pursuits. 
 
Limitations of this study include the risk of unidentified misclassification of self-reported sleep 
duration (opposed to objective measurements from actigraphy or polysomnography) due to recall 
bias, sleep misperception, or other psychosocial factors. Sleep health is complex, with key 
dimensions beyond duration (e.g., timing, quality, satisfaction, and regularity)60. Abnormality in 
these other sleep dimensions were not tested here due to lack of readily available data. Adding to 
the complexity, sleep duration itself reflects heterogeneous health effects influenced by genetic 
determinants. For example, genetic variation conducive to naturally short sleepers may even lend 
neuroprotection against harmful brain pathology61. In addition, there may be residual 
confounding bias due to unadjusted comorbidities or environmental factors. Lastly, despite 
notable diversity of our sample, our data was dominated by individuals of European ancestry. It 
is striking that several of our loci are HIS-specific – which may be resultant of complex 
admixture present in this population group. Although we were able to delve into sex-specific 
interpretations for FAM98A, and WBP1L – future investigation is desired to understand the 
reasons behind heterogeneous effects by sex. Enrichment of sample sizes in minority populations 
is critical for future investigations.  
 
In conclusion, this study advances our understanding of the interaction between sleep duration 
extremes and genetic risk factors shaping the genetic landscape of blood pressure. Our novel 
discovery of 22 gene-sleep duration interaction loci both accentuates the relevance of proper 
sleep duration in cardiovascular health and the need to be conscious of heterogeneity present in 
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specific sex or population groups, providing valuable perspective for therapeutic intervention 
strategies to address cardiovascular disease burden.  
 
METHODS 
 
This work was approved by the Institutional Review Board of Washington University in St. 
Louis and complies with all relevant ethical regulations. For each of the participating cohorts, the 
appropriate ethics review board approved the data collection and all participants provided 
informed consent.  
 
Data Harmonization 
Data from each cohort were harmonized following this centralized protocol. Data were stratified 
by population group, based on self-reported ancestry and individual cohort definitions (AFR: 
African, EAS: East Asian, EUR: European, HIS: Hispanic/Latinos, SAS: South Asian), and sex 
(combined sex, female sex, male sex). Analyses considered 3 primary blood pressure (BP) traits 
as outcome variables (SBP: systolic, DBP: diastolic, PP: pulse pressure) and 2 dichotomous 
lifestyle exposures (LTST: long total sleep time, STST: short total sleep time). Genetic variants 
(G) were restricted to autosomal chromosomes 1-22 imputation quality³0.3, and minor allele 
frequency³0.1%. Age was restricted to ³18 years, and reported total sleep time constrained 
within 3 and 14 hours. In scenarios of multiple visits, the single visit with largest sample size 
was utilized and in case-control study designs, cases and controls were required to be analyzed 
separately. For BP outcome measures, if multiple readings were taken in a single visit the mean 
was used. All BP values were winsorized at 6 standard deviations from the mean. BP values 
were adjusted for reported use of anti-hypertensive medications as follows: SBP (+15 mmHg) 
and DBP (+10 mmHg). PP was derived as SBP – DBP. In the case of studies with known 
between-sample relatedness, null model residuals (regressing BP traits on a kinship 
matrix/genetic covariance matrix) were denoted as the BP outcome. STST and LTST were 
derived from total sleep time (TST) by regressing TST on age, sex, age´sex and using the 
residuals’ 20th and 80th percentiles as cutoffs (STST=1 if ≤ 20th percentile, LTST=1 if ³ 80th 
percentile, STST=0 if > 20th percentile, LTST=0 if < 80th percentile). Covariates included 
population-group specific principal components, cohort-specific confounders (study center), age, 
age2, sex, age´S/LTST, age2´S/LTST, and sex´S/LTST. Samples with missing data were 
excluded. 
 
Data Analysis  
After data harmonization, each population-group specific cohort ran 2 regression models (M1 
and M2) for 18 phenotype-exposure-sex combinations (3 phenotypes x 2 exposures x 3 sex 
groups: combined sex, female sex, male sex). Below E denotes the lifestyle exposure (STST or 
LTST), Y denotes the BP outcome (SBP, DBP, or PP), C1 denotes the vector of covariates 
incorporating E (age, age2, S/LTST, age*S/LTST, age2*S/LTST, sex, sex*S/LTST), and C2 
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denotes the subset without incorporating E (age, age2, sex). Female-specific and male-specific 
analyses were not adjusted for sex. Specialized software choice included LinGxEScanR v1.0 
(https://github.com/USCbiostats/LinGxEScanR), GEM v1.4.1 (https://github.com/large-scale-
gxe-methods/GEM), and/or MMAP (latest version available) 
(https://github.com/MMAP/MMAP.github.io) with robust standard errors (SEs) enforced62. One 
degree of freedom (df) tests for the marginal effect (βM2_G), the main effect (βM1_G), and the 
interaction effect (βM1_GxE) were conducted; alongside the 2df joint test that simultaneously 
assesses the main effect and the interaction effect (βM1_G, βM1_GxE)9.  
 
        Model 1 (Primary GxE Model of Interest) 

(1) M1:  Y = βM1_0 + βEE + βM1_GG + βM1_GxE E´G + βM1_C1C1 
 
       Model 2 (Marginal Effect Model for Comparison) 

(2) M2: Y = βM2_0 + βM2_GG + βM2_C2C2 
 
Quality Control (Cohort-Level, Meta-Level) 
Summary statistics were centrally processed after individual studies submitted results. EasyQC2 
software (www.genepi-regensburg.de/easyqc2) was used to perform quality control (QC) on 
resultant data63. Data were filtered for degrees of freedom³20 calculated as minor allele count * 
imputation quality (e.g. MACxR2 provided by each cohort) within the unexposed, the exposed, 
and the total sample. Missing or invalid/out of range values for statistics and duplicated or 
monomorphic variants were discarded. hg19 genomic coordinates were lifted over to hg38 
genomic coordinates. Allele frequency discrepancies relative to TOPMed-imputed 1000G 
reference panels (Trans-Omics for Precision Medicine imputed 1000Genomes) were assessed for 
each specific population group, along with genomic control (GC) lambda inflation. Next, meta-
level quality control was conducted within groups based on population group (AFR: 12 cohorts, 
EAS: 5 cohorts, EUR: 34 cohorts, HIS: 7 cohorts, SAS: 1 cohort), with evaluation of unwanted 
centering of the outcome variable, outlying cohorts highlighting unstable numerical computation, 
or alarming inflation. 
 
Meta-Analysis  
Meta-analysis was designed as the following paradigm. Cross-population meta-analysis (CPMA) 
was designed to be combine all population group results, with additional focused population-
group specific and sex-specific analyses. This resulted in 18 total meta-analyses to be run: 6 
population groups (CPMA, EUR, HIS, EAS, AFR, SAS) and 3 sex groups (combined sex, 
female sex, male sex). To accomplish this, METAL software was first used to run all meta-
analyses within each specific population group for the marginal effect (βM2_G), main effect 
(βM1_G), interaction effect (βM1_GxE), and joint effect (βM1_G, βM1_GxE) with GC correction for 
inflation64. Inverse-variance weights were used and Manning et. al’s method for the 2df joint test 
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65. CPMA was subsequently executed on the resultant population-group specific METAL output 
results with GC correction. 
 
Genome-wide Significant Loci Identification 
EasyStrata2 software was used to prioritize top loci from significant results identified from the 
1df interaction and 2df joint tests66. GC correction for population-group specific results was 
applied. Variants found within 1 Mb distance of the major histocompatibility complex (MHC) 
region were excluded. Either minimum sample size (N>20000) or multiple cohorts (³3) was 
required as necessary criteria for processing results from a specific sex-stratified, and/or 
population group-stratified meta-analysis. 
 
Significant variants were identified using the following threshold criteria. i variants with 
significant interaction effect (PM1_GxE<5e-9, FDR<0.05) and j variants with significant joint 
effect (PM1_G,GxE<5e-9, FDR<0.05) were filtered as top variants. Additionally, k top variants for 
the interaction effect were identified using a 2-step method: identifying first z variants by the 
marginal effect (PM2_G<1e-5) and then filtering these by the interaction effect (PM1_GxE<0.05/NG, 

FDRGxE<0.05) where NG is the number of independent tests calculated using principal 
components analysis on the z variants. This 2-step method was incorporated to increase power 
for detecting interactions67. This design was executed to maintain both stringent threshold 
criteria and incorporate false discovery correction implemented by the Benjamini-Hochberg 
method. 
 
All such i+j+k significant variants were narrowed down to loci based on 500 kilobase (kb) 
regions. Finally, within these regions independent lead variants were identified as the top 
significant variant within the locus, subsequently defining variants in LD as those with linkage 
disequilibrium (LD) r2 threshold<0.1 using TOPMed-imputed 1000G reference panels. If 
variants were missing in the LD panels, then the most significant variant within each 500kb 
region was retained for combined sex meta-analyses results.  
 
Prioritizing Novel Sleep Duration Interaction Loci  
Significant independent loci were subsequently filtered to prioritize gene-sleep duration 
interaction loci. From the 1df interaction test, X interaction loci were prioritized as those not 
found within 1Mb of previously identified gene-sleep duration loci for BP8. Loci were annotated 
as whether novel for BP genetic architecture, or not, by checking for overlap with 1Mb of 
previous GWAS variants (Supplementary Table S3). 
 
For the 2df test, first loci were filtered to those variants not found within 1Mb of previous 
GWAS identified variants for BP traits, and with insignificant marginal effect (PM2_G >5e-09, 
FDRM2_G >0.05). From these variants, Y loci were prioritized as driven by interaction if they 
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harbored a stronger interaction effect relative to the main effect (PM1_GxE < PM1_G), and Z loci 
deemed as supported (but not driven) by interaction if this was not true.  
 
Thus, collectively X+Y gene-sleep duration interaction loci were highlighted, alongside 
secondarily Z loci supported by interaction. 
 
Heterogeneity by Sex 
To test for interaction effects showing evidence of heterogeneity by sex (p<0.05/Q), two-sample 
Z-tests assuming independence, were conducted for each of the top interaction loci and adjusted 
for multiple testing. 
 
Mapped Protein Coding Genes 
Gene mapping prioritized protein-coding genes for downstream interpretation. Variants directly 
overlapping protein-coding gene regions were top priority criteria for gene assignment. For 
intergenic variants nearest distance to transcription start site (TSS) or gene start/end site was 
queried from Open Target Genetics v22.1017 or MyGene.Info using Python package mygene 
v3.2.2 (https://github.com/biothings/mygene.py). Variant mapping annotations were additionally 
noted from Open Target Genetics, Functional Annotation of Variants – Online Resource v2.0 
(FAVOR)11, HaploReg v4.2 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php), 
BRAVO variant browser (https://bravo.sph.umich.edu/freeze8/hg38/), Functional Mapping and 
Annotation of Genome-wide Association Studies v1.5.6 (FUMA)12, and MyGene.Info. 
 
Functional Annotations 
At the variant level, FAVOR was queried to annotate deleteriousness or functionality scores11, 
and RegulomeDB v2.2 was used to extract aggregate regulatory function evidence scores, along 
with chromatin state, DNA accessibility, overlap with transcription factor (TF) binding sites or 
TF motifs, and expression quantitative trait loci (eQTL)10. At the genomic region level, FUMA’s 
SNP2GENE pipeline was used to annotate a comprehensive list of genes for each top locus, 
incorporating positional, chromatin interaction (FDR <=1e-6, 250bp upstream - 500 bp 
downstream of TSS), and GTEXv8 eQTL evidence (agreeing with RegulomeDB) with the top 
variant or its variants in LD (r2>0.1 within 500kb)12.  
  
Phenotypic Annotations 
At the variant level, PheWeb, Open Target Genetics, Common Metabolic Diseases Knowledge 
Portal (https://hugeamp.org/), and Oxford Brain Imaging Genetics Server (BIG40) were queried 
for significant trait associations (p<5e-08) from past GWAS13,15,17. At the gene level, 
International Mouse Phenotyping Consortium release 19.1 (IMPC), Online Mendelian 
Inheritance in Man (OMIM; https://omim.org/), PheWeb, Phenotype-Genotype Integrator 
(PheGenI), and Open Target Genetics were queried for phenotypic annotations from mice 
knockout study results, involvement in Mendelian disorders, and significant trait associations 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.07.24303870doi: medRxiv preprint 

https://hugeamp.org/
https://doi.org/10.1101/2024.03.07.24303870
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

(p<5e-08) 14-17. All STST and LTST mapped protein-coding genes were then queried using 
FUMA’s GENE2FUNC pipeline to identify significant (adjusted p-value<0.05) pathways and 
traits12. STRING v12.0 was additionally queried using medium confidence threshold (0.4) to 
note significantly (FDR<0.05) enriched traits or pathways to compare and contrast LTST and 
STST loci 18.  
 
Druggability Analysis 
The Drug-Gene Interaction database (v4.2.0) was first utilized to identify druggability potential, 
with genes also annotated for implicated pathways and functions using the Kyoto Encyclopedia 
of Genes and Genomes database. Druggability target categories were annotated and all 
interacting drugs queried from reports across 43 databases (BaderLabGenes, 
CarisMolecularIntelligence, dGene, FoundationOneGenes, GO, HingoraniCasas, 
HopkinsGroom, HumanProteinAtlas, IDG, MskImpact, Oncomine, Pharos, RussLampel, 
Tempus, CGI, CIViC, COSMIC, CancerCommons, ChemblDrugs, ChemblInteractions, 
ClearityFoundationBiomarkers, ClearityFoundationClinicalTrial, DTC, DoCM, DrugBank, 
Ensembl, Entrez, FDA, GuideToPharmacology, JACX-CKB, MyCancerGenome, 
MyCancerGenomeClinicalTrial, NCI, OncoKB, PharmGKB, TALC, TEND, TTD, 
TdgClinicalTrial, Wikidata). Protein targets for available active ligands in ChEMBL were also 
noted. Gene targets were looked up in the druggable genome using the most recent druggable 
genome list established from the NIH Illuminating the Druggable Genome Project 
(https://github.com/druggablegenome/IDGTargets) available through the Pharos web platform. 
Lastly, FDA-approved drugs, late-stage clinical trials and disease indications were queried in the 
DrugBank, ChEMBL, ClinicalTrials.gov databases to provide results for the top MESH and 
DrugBank indications and clinical trials.  
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Figure 1. Analysis Workflow 
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Figure 2. Forest Plots of Gene-Sleep Duration Loci Identified by the 1df Interaction Test in Female-Specific Cross-Population Meta-
Analyses.  
These are the prioritized 1df Interaction Test results from female-specific cross-population meta-analyses. Contributing female-specific population groups’ (if 
this variant is found in the particular population group, after quality control) summary statistics are depicted here that were pooled.  
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Figure 3. Forest Plots of Gene-Sleep Duration Loci Identified by the 1df Interaction Test in Combined Sex HIS-Specific Meta-
Analyses 
These are the prioritized 1df Interaction Test results from HIS-specific meta-analyses. Other population group data (if this variant is found in the particular 
population group, after quality control) are shown here to emphasize that these gene-sleep duration interaction loci were significant only in the HIS population 
group.  
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Table 1. Novel Gene-Sleep Duration Interaction Loci Identified in Cross-Population Meta-Analysis   
All results herein are from the M1 model. Supplementary Table S21 provides summary statistics according to each population group identified in cross-
population results. For the sex column, C denotes combined sex, and F denotes female sex-stratified meta-analysis. For the alleles column, E denotes effect 
allele, and O denotes other allele used as reference. Bold denotes significance.  
 
† denotes the variant was identified using the two-step approach.  
* denotes variants novel for BP. 

  

Exposure Variant Nearest 
gene(s) 

Position 
(hg38) 

Alleles 
(E/O) AF N Sex Population 

Groups Trait BM1_G (seM1_G) BGxE (seGxE) PM1_G PGxE PG,GxE Psex_diff 

 Loci Identified by 1df Interaction Test 

STST rs11314421† WBP1L 10:102808541 C/CG 0.551 279527 F 
AFR, EAS, 
EUR, HIS, 
SAS 

PP 0.12 (0.04) 0.40 (0.09) 1.60E-03 7.82E-06 3.54E-11 8.84E-05 

LTST rs538479553* FAM98A 2:33903659 C/G 0.102 41814 F 
AFR, EAS, 
EUR, HIS SBP 1.12 (0.40) -5.09 (0.86) 5.27E-03 3.32E-09 2.35E-08 3.59E-06 

 Loci Identified by 2df Joint Test, Driven by Interaction Effect 

STST rs76458410* YWHAB 20:44851866 G/A 0.023 47678 C AFR,HIS PP 0.14 (0.34) -3.65 (0.73) 6.93E-01 6.38E-07 3.88E-09 6.87E-02 

LTST rs1431999695* ALG10B 12:37297511 T/C 0.016 29473 F EUR, HIS PP -0.57 (0.44) -3.28 (0.78) 1.88E-01 2.46E-05 4.55E-09 4.07E-04 
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Table 2. Novel Gene-Sleep Duration Interaction Loci Identified Specific to Certain Population Groups. 
All results herein are from the M1 model. Supplementary Table S22 provides summary statistics according to each population group-specific cohort identified in 
these population-group specific results. For the sex column, C denotes combined sex meta-analysis, and M denotes male sex-stratified meta-analysis. For the 
alleles column, E denotes effect allele, and O denotes other allele used as reference. Bold denotes significance.  
 
* denotes variants novel for BP. 
† Empty cell in Psex_diff indicates the variant, after quality control, was not found in both sex-stratified meta-analyses. 

 
 

 
 
 
 
 

Exposure Variant Nearest 
gene(s) 

Position 
(hg38) 

Alleles 
(E/O) Sex AF N Population 

Groups Trait BM1_G 

(seM1_G) BGxE (seGxE) PM1_G PGxE PG,GxE Psex_diff† 

 Loci Identified by 1df Interaction Test  
STST rs114831731 AHCYL1 1:109970740 A/T C 0.009 23897 HIS PP 0.85 (0.64) -6.27 (1.04) 1.87E-01 1.57E-09 7.34E-11 5.67E-04 
 rs144229676 ZNF521 18:25303461 A/C C 0.019 27119 HIS DBP 2.32 (0.70) -7.23 (1.18) 8.70E-04 8.10E-10 1.80E-09 5.00e-01 
 rs1035064 ZNF682 19:19997730 T/C M 0.019 392939 EUR SBP -0.27 (0.18) 2.10 (0.36) 1.62e-01 4.82E-09 5.76E-08 1.52E-04 
 rs112958007* PAK5 20:9805888 C/T C 0.005 23897 HIS PP 2.09 (0.97) -10.83 (1.78) 3.03E-02 1.28E-09 1.23E-08  
 rs752086677* KRTAP13-2 21:30362234 C/G C 0.002 30009 EUR DBP 2.12 (0.87) -8.71 (1.23) 1.47E-02 1.46E-12 5.68E-13  
LTST rs372262693 TG, SLA 8:133069499 T/C C 0.023 23897 HIS PP 0.62 (0.41) -4.91 (0.82) 1.34E-01 2.33E-09 7.11E-09 2.43E-01 
 Loci Identified by 2df Joint Test, Driven by Interaction Effect 
STST rs143863772* MROH7 1:54707218 T/G C 0.006 23902 HIS SBP -1.56 (1.06) -6.99 (1.74) 1.47E-01 5.79E-05 1.84E-10  
 rs141117715* KCNJ3 2:155446948 C/T C 0.021 23897 HIS PP 0.51 (0.44) -4.29 (0.76) 2.53E-01 1.74E-08 2.45E-09 7.86E-02 
 rs17011282* ZNF385D 3:22386254 C/G C 0.006 23897 HIS PP -0.01 (0.79) -6.00 (1.20) 9.93E-01 5.86E-07 4.13E-10 1.97E-01 
 rs764985249* EFNA5 5:105713137 T/C C 0.002 26230 EUR PP 0.97 (1.48) -11.78 (2.00) 5.09E-01 4.06E-09 6.45E-12  
 rs542745170* WWOX 16:78323227 A/C C 0.009 23897 HIS PP -0.36 (0.72) -4.96 (1.19) 6.20E-01 3.14E-05 5.00E-09 2.05E-03 
LTST rs533724062* BRINP3 1:190792851 TA/T C 0.011 34442 AFR PP 1.13 (0.60) -4.40 (1.18) 6.03E-02 1.92E-04 3.69E-09 3.56E-04 
 rs138288695* CRBN 3:3295965 G/A C 0.006 23897 HIS DBP 0.57 (0.68) -5.50 (1.08) 4.07E-01 3.46E-07 1.31E-09  
 rs142966182* ALCAM 3:104791665 T/C C 0.006 26230 EUR DBP -0.20 (0.62) -5.37 (1.01) 7.50E-01 1.01E-07 1.21E-09  
 rs540041583* PAM 5:103002447 A/G C 0.003 26230 EUR PP -1.54 (1.20) -6.50 (1.66) 1.99E-01 8.93E-05 6.93E-10  
 rs113952142* SDK1 7:3917121 A/C C 0.005 23902 HIS SBP -0.28 (1.20) -9.07 (1.90) 8.18E-01 1.81E-06 5.49E-10  
 rs111392401* JMJD1C 10:65029197 T/G C 0.007 23897 HIS DBP 0.49 (0.63) -5.71 (1.00) 4.32E-01 1.27E-08 2.28E-10  
 rs772862932* ATP8A2 13:25395875 T/C C 0.002 30009 EUR DBP -0.11 (0.70) -4.85 (1.00) 8.70E-01 1.31E-06 1.28E-09  
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Table 3. Novel BP Loci Identified by the 2df Joint Test, Not Driven by the Interaction Effect 
All results herein are from the M1 model. Supplementary Tables S21-S22 provides summary statistics according to each population group-specific cohort for 
rs59680540 and rs150586434, and according to each population group for rs34761985 and rs13032423 below. For the sex column, C denotes combined sex 
meta-analysis. For the alleles column, E denotes effect allele, and O denotes other allele used as reference. Bold denotes significance.  
 
* denotes variants novel for BP. 
† Empty cell in Psex_diff indicates the variant, after quality control, was not found in both sex-stratified meta-analyses. 
 
 

 
 
 
 
 
 
  
 
 

Exposure Variant Nearest 
gene(s) 

Position 
(hg38) 

Alleles 
(E/O) Sex AF N Population 

Groups Outcome BM1_G (seM1_G) BGxE (seGxE) PM1_G PGxE PG,GxE Psex_diff† 

  Loci Identified by 2df Joint Test, Not Driven by Interaction Effect 

STST rs59680540* PRMT6 1:106595299 GGTGA/G C 0.0065 23897 HIS PP -2.43 (0.66) -2.59 (1.18) 2.52E-04 2.74E-02 4.87E-09 4.68E-01 

 rs34761985* ST6GAL2 2:106923653 T/TG C 0.6124 731622 AFR, EAS, 
EUR, HIS, SAS 

SBP -0.18 (0.04) -0.12 (0.08) 3.87E-06 1.43E-01 2.87E-09 1.10E-01 

 rs150586434* HTR1F 3:87648138 A/G C 0.0057 23902 HIS SBP -3.49 (1.09) -4.36 (1.77) 1.40E-03 1.37E-02 1.31E-09  

LTST rs34761985* ST6GAL2 2:106923653 T/TG C 0.6124 731622 AFR, EAS, 
EUR, HIS, SAS 

SBP -0.20 (0.04) -0.06 (0.08) 7.53E-07 4.45E-01 4.78E-09 1.90E-01 

 rs13032423* VRK2 2:57764977 A/G C 0.534 799211 AFR, EAS, 
EUR, HIS, SAS 

SBP -0.21 (0.04) 0.20 (0.07) 2.21E-09 4.77E-03 4.86E-09 3.45E-01 
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