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A B S T R A C T

As discontinuities of the smooth icy surface, linear surface features might be directly or indirectly linked to
Europa’s subsurface ocean. Mapping and categorising Europa’s lineaments is a means of retrieving information
that could be linked to their formation history. As of today, planetary mapping is mainly conducted manually,
which is tedious and subject to human bias once data sets become large. Mapping is further complicated by
the heterogeneous quality and coverage of the available image data.

Here, we train LineaMapper, a convolutional neural network (Mask R-CNN), to conduct instance segmen-
tation of the four main units of linear surface features on Europa: bands, double ridges, ridge complexes
and undifferentiated lineae. LineaMapper is trained on the basis of 15 mosaics from the Galileo solid-state
imager data, yielding 930 training tiles. With LineaMapper, we provide a new method that facilitates detailed
mapping of lineaments in Galileo images. LineaMapper could be applied to data to be returned by the Europa
Imaging System (EIS) onboard the Europa Clipper mission. We validate LineaMapper v1.0 on an independent
test set. On this test set, LineaMapper shows an overall higher precision than recall. In other words, there are
more non-detections of actual lineaments than there are false detections of lineaments. The model shows the
most correct predictions for double ridges (highest precision), while the most complete detections happen for
ridge complexes (highest recall), compared with the ground truth. In some cases, LineaMapper preserves the
cross-cutting relationships. The biggest strength of LineaMapper lies in its speed and tunable output. In the
future, LineaMapper can be retrained, fine tuned and applied to similar looking features, for example wrinkle
ridges on Venus, ridges on other planets and moons or even dust devil tracks on Mars.
1. Introduction

The surface of Jupiter’s icy moon Europa shows curvilinear geolog-
ical features called lineaments. Some of the lineaments on Europa span
over a hemisphere, while others appear only at regional scales (Prockter
and Patterson, 2009). These curvilinear surface features that potentially
stem from cracks in the ice shell (e.g. Harada and Kurita, 2006; Geissler
et al., 1998a,b) are of keen interest because they might provide direct
or indirect connections (e.g. Greenberg et al., 1998a; Pappalardo et al.,
1999; Greenberg and Geissler, 2002; Rhoden et al., 2015; Kalousová
et al., 2016; Dameron and Burr, 2018) to Europa’s subsurface ocean,
allowing a remote sensing study of the surface material originating
from the subsurface ocean.

The solid-state imager (SSI) onboard the Galileo mission (Belton
et al., 1992) observed Europa with eight band pass filters from near
ultra-violet to near infrared. Between 1996 and 2002 during 11 flybys,
SSI collected 700 individual 800 × 800 px images, resulting in a data
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set of almost 2 gigabyte. The Galileo SSI data set has a wide range of
resolutions, from 6 m/px up to 20 km/px. Two regional mosaics were
acquired in Encounters 15 and 17, one covers a 250 km wide area of
the trailing hemisphere from north to south and the other the same on
the leading hemisphere.

Based on a global map mosaiced from Galileo and Voyager images
at a scale of 1:15M (U.S. Geological Survey, 2002), Leonard et al.
(2019) mapped the whole surface of Europa into several distinct surface
feature units such as chaos, bands, impact crater units and linear
features. Their mapping shows that ridged plains make up most of the
surface area. Ridged plains appear as seemingly smooth terrain that
contains a high number of undifferentiated lineae if observed at higher
resolution.

The SSI images composing the two regional mosaics with a reso-
lution of about 230 m/px cover approximately 10% of Europa’s sur-
face (Doggett et al., 2009). At this regional scale, different categories
vailable online 28 July 2023
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of lineaments were identified, with the double ridge as the most com-
mon identifiable linear surface feature (Prockter and Patterson, 2009).
Although many formation hypotheses exist for double ridges (Sullivan
et al., 1998; Aydin, 2006; Gaidos and Nimmo, 2000; Nimmo and
Gaidos, 2002; Han and Showman, 2008; Head et al., 1999; Greenberg
et al., 1998b; Pappalardo and Coon, 1996; Tufts et al., 2000; Melosh
and Turtle, 2004; Han and Melosh, 2010; Turtle et al., 1998; Crawford
and Stevenson, 1988; Kadel et al., 1998; Dombard et al., 2013; Craft
et al., 2016; Johnston and Montési, 2014; Culberg et al., 2022), obser-
vations do not provide conclusive evidence for one specific hypothesis.
Also for a bundle of parallel-going, anastomosing and intertwining dou-
ble ridges, called a ridge complex, no formation hypothesis (Geissler
et al., 1998b; Greenberg et al., 1998b; Figueredo and Greeley, 2000;
Manga and Sinton, 2004; Aydin, 2006) is predominantly accepted. At
the time of writing, the community largely agrees on the formation
mechanism for cycloids and subtypes of bands. Cycloids are curvilinear
features consisting of arcuate segments interrupted by cusps (Hoppa
et al., 1999). They form in one orbit around Jupiter due to diurnal
stresses that arise from Europa’s slightly eccentric orbit, although other
stress contributors, such as non-synchronous rotation and obliquity,
might play a role (Hoppa et al., 1999; Hurford et al., 2007, 2009;
Pappalardo et al., 2016; Marshall and Kattenhorn, 2005; Rhoden et al.,
2010; Groenleer and Kattenhorn, 2008; Poinelli et al., 2019; Rhoden
et al., 2021). Bands are another tectonically important category of
Europan linear surface features. There exist several different subunits
of bands. A common subunit is the dilational band, which is a zone
of divergence that can be clearly identified with the help of adjacent
features (Tufts et al., 2000; Prockter and Patterson, 2009).

Selected images of the Galileo and Voyager data set have been
mapped on a regional scale (Greenberg et al., 1999; Greeley et al.,
2000; Figueredo and Greeley, 2000, 2004; Kattenhorn, 2002; Sarid
et al., 2004, 2005, 2006; Patterson et al., 2006; Collins et al., 2022;
Leonard et al., 2018; Noviello et al., 2019; Bradák et al., 2023). How-
ever, exhaustive detailed mapping is a time consuming process, because
features sometimes do not have clear borders and the classification of
units is not straightforward. Even so, the Galileo SSI dataset is small
enough to map all identifiable features manually. Mainly because of
the inhomogeneous and sometimes low resolution of Galileo SSI data,
no detailed global mapping of linear surface features has been provided
yet. Such a map could be used to extract morphological parameters on
a global scale. Bradák et al. (2023), for example, manually segmented
lineaments in the region of Rhadamanthys Linea at a resolution of
228 m/px. Their analysis suggests three different generations of lin-
eament formation and calls for a global analysis of lineaments at this
scale. Rhoden and Hurford (2013) analysed azimuths of 75 lineaments
that provide evidence that spin pole precession connected to an obliq-
uity of approximately 1 ◦ is the dominant stress that creates the wide
istribution of lineament azimuths. Their study focused on an area of
nly 36 × 61 km2 in the Bright Plains region, which equals less than
.01% of the total surface area of Europa, and would benefit from a
arger study area. However, a detailed global analysis at the regional
cale will only be possible with the global dataset returned by Europa
lipper in the 2030’s.

The Europa Imaging System (EIS, Turtle et al., 2023) onboard the
uropa Clipper mission is expected to downlink a volume of approx-
mately 1-2 Tb in the 2030’s, which is 60–125 times greater than
he Galileo data set. The EIS narrow angle camera (NAC) and wide
ngle camera (WAC) will cover more than 80% of the surface with a
esolution better than 100 m/px. An automated mapping tool on the
asis of deep learning could provide a more efficient mapping of this
ata set. The quality of these mappings could be assessed with an EIS
est set, manually mapped by a scientist.

Deep learning is a subdivision of machine learning, which itself is
mbedded under the umbrella of artificial intelligence. After increased
2

omputing powers and possibilities to store data in big amounts became b
vailable around 2012, deep learning activities started to deliver pow-
rful algorithms (e.g. Wang and Raj, 2017; Goodfellow et al., 2016).
omputer vision tasks such as image classification, object detection,
emantic segmentation and instance segmentation, for which a solution
as long been sought (Gonzalez and Wintz, 1977), began to be solved
ith increased performance by deep learning networks. In planetary

ciences, deep learning models are now on the rise, even though lagging
ehind other space-related fields, for example heliophysics (Azari et al.,
020). In the field of remote sensing, where more and more data
olume can be acquired in future missions, deep learning is used more
nd more for a variety of applications. Barrett et al. (2022) train
he ‘‘Novelty or Anomaly Hunter – HiRISE’’ NOAH-H for pixel-wise
apping into different terrain classes such as a variety of bedrock

errain or boulder fields. Bickel et al. (2019) trained a convolutional
eural network (CNN), the RetinaNet, for automated lunar rockfall
etection and classification, and later Bickel et al. (2020a) applied it
o the Moon on a global scale. Bickel et al. (2020b) re-trained their
etwork for rockfall detection on Mars. There have also been attempts
o extract features with curvilinear shapes using deep learning. Aghaee
t al. (2021) trained a CNN for semi-automated lineament detection
n remote sensing data for the exploration of minerals on Earth. Gen-
ral instance segmentation of sophisticated object shapes, including
ntersecting linear features, was explored by, for example, Mais et al.
2020).

Recently, He et al. (2018) introduced the Mask R-CNN, a region-
ased convolutional neural network, for object instance segmentation,
y extending the Faster R-CNN with a masking branch. This network
as bench-marked on the Common Objects in COntext (COCO) test set,
hich contains 80 different object classes. In remote sensing, the Mask
-CNN framework is used for a variety of applications: the detection of
hips and airplanes on Earth (Gan et al., 2020), automated segmen-
ation of ice-wedged polygons in the Arctic tundra on Earth (Zhang
t al., 2020) and automated spacecraft navigation using automatically
etected craters as landmarks (Del Prete and Renga, 2022). Closest to
ur application is the recent publication by Nixon et al. (2023), where
Mask R-CNN is trained for the detection of ice blocks in chaos terrain
n Europa.

To facilitate mapping of linear surface features in general and
pecifically on Europa, we provide, for the first time, a Mask R-CNN
odel that can detect, classify and map linear surface features. We

all our Mask R-CNN model LineaMapper Version 1.0 LineaMapper can
ltimately help geologists to map linear surface features on Europa
n less time, with a high precision and a deterministic method. It is
urrently trained on a subset of the Galileo data and takes into account
our different categories of linear surface features: (1) bands (2) double
idges (3) ridge complexes and (4) undifferentiated lineae.

. Methods

.1. Lineament categories

Mainly following Prockter and Patterson (2009), we characterise
ands, double ridges, ridge complexes, and undifferentiated lineae
ontained in ridged plains, in the following subsections. Examples are
iven in Fig. 1.

ands
A band is defined as a tabular zone with a uniform albedo. It can

ontain subparallel ridges (lineated band) or smooth terrain (smooth
and). Bands exhibit a clear boundary to the adjacent terrain, which is
onsistent alongside the band. As zones of convergence or spreading,
ands are linked directly to the motion of plates, which occurs episod-
cally at a regional scale (Kattenhorn and Prockter, 2014; Collins et al.,
022). If the features at the margins of the bands fit together when the
and is removed, the band can be classified as a dilational (pull-apart)

and, which is a zone of spreading. Bands are in general the widest
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Fig. 1. Units. Examples of the four investigated units: (a) bands, (b) double ridges, (c) ridge complexes, and (d) undifferentiated lineae. The examples in the first row
are from observation ‘11ESREGMAP01EXCERPT1’, examples in the second row are from observation ‘25ESDARKBP01’ and examples in the third row are from observation
‘15ESREGMAP01EXCERPT1’. The arrows indicate the borders of the units.
Source: Figure created with data from Bland et al. (2021).
linear surface features. Therefore, we include a width constraint in the
mapping guideline (Fig. A.14) which comes into play if no tabular
zone with clear boundaries can unquestioningly be defined. In this
case, features of question that are wider than 15 km are mapped as
bands (Figueredo and Greeley, 2000). Prominent bands are Agenor
Linea (convergence band) and Thynia Linea (dilational band). The
examples in Fig. 1 show that a band can be hard to distinguish from a
ridge complex due to the ridged terrain inside ridged bands. The colour
we use for bands is purple (hex: #7F4A9D) and was taken from Leonard
et al. (2019).

Double ridges
A double ridge consists of two ridge crests flanking an axial trough

(Greenberg et al., 1998a; Kattenhorn and Hurford, 2009). Double ridges
are the most common features (Prockter and Patterson, 2009). Interest-
ingly, double ridges were formed throughout Europa’s surface history:
double ridges appear in the old ridged plains as well as as very young
features implied by very few cross-cuttings (Kattenhorn and Hurford,
2009). Uniform morphological characteristics are found along double
ridges and they can be extremely straight, while varying in length
between tens to hundreds of kilometres (e.g. Greeley et al., 2000). The
examples in Fig. 1.b show that a double ridge is clearly identifiable
with its axial trough, and also in noisy images such as in the first row
of Fig. 1.b. If no axial trough can be clearly identified (e.g. Fig. 1.d, last
row), the feature is labelled as an undifferentiated lineae. The colour
we use for double ridges is dark orange (hex: #ED9A22) and was taken
from Leonard et al. (2018).

Ridge complexes
Double ridges that are overlapping, anastomosing, inosculating, and

follow a unified direction are called ridge complexes. The margins of a
ridge complex are identifiable, while they can be sinuous and individ-
ual ridges may join or divert from a ridge complex, and might exhibit
3

a dark1 deposit alongside the ridge complex (Lucchitta and Soderblom,
1982). It is possible that, due to a created weakness, the formation of
several double ridges is triggered by one fracture (Greenberg et al.,
1998a; Geissler et al., 1998b; Figueredo and Greeley, 2000; Manga and
Sinton, 2004). Other possible formation theories describe volumetric
deformation (Aydin, 2006) and the formation in an isotropic and tensile
stress field (Patterson and Head, 2010). Wide and long ridge complexes
are observable on a global scale with prominent examples being Agave
Linea, Belus Linea and Ephemeus Linea (Patterson and Head, 2010).
Fig. 1.c shows four identified ridge complexes. The colour we use
for ridge complexes is light orange (hex: #FFD380) and was taken
from Leonard et al. (2018).

Undifferentiated lineae
Undifferentiated lineae are linear surface features identifiable by

lower or higher albedo than the surroundings that cannot be distin-
guished further (Leonard et al., 2019). Some undifferentiated lineae
reveal themselves as an identifiable lineament category at a higher
resolution. Ridged plains contain mainly undifferentiated lineae that
are overprinted by younger features. The term ’ridged plains’ for
old background terrain that is filled with a high number of short,
often uncrossed undifferentiated lineae, was introduced for Europa
by Geissler et al. (1998b), Greeley et al. (1998), Head et al. (1998)
and Figueredo and Greeley (2000). The example of an undifferentiated
linea in Fig. 1.d, third row, on the left in the tile, contains a hint that
at a higher resolution, this instance might turn out to be a double
ridge. The colour we use for undifferentiated lineae is pale pink (hex:
#D9B6D6) following Leonard et al. (2019).

1 At visible wavelengths.
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Fig. 2. Map. A Galileo SSI map based on data from Bland et al. (2021) in equirectangular projection showing the locations of the training, validation, and test mosaics. The map
is colour coded by resolution in meters per pixel. The observation areas mapped for training LineaMapper are depicted in green, for validation in blue, and for testing in pink.
Map created using the Free and Open Source QGIS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
2.2. Manual segmentation of selected images

We trained LineaMapper in a supervised manner, which means that
we let the network learn by comparing its output to a solution, called
‘‘ground truth’’. To create this ground truth, in our case the mapped
lineaments, we manually segmented lineaments in selected Galileo
images. This selection is shown in Table 1, Fig. 2 and in more detail in
the appendices (Figs. B.15 and B.16), and is explained in detail below.

We imported photogrammetrically corrected mosaics and individ-
ual observations released by Bland et al. (2021) into QGIS version
3.22 (QGIS Development Team, 2022). We selected images with a
horizontal pixel resolution between 150 and 600 m/px. This is the
resolution range where most Galileo images were acquired. Our se-
lection assures that different illumination conditions and regions are
represented to train the network with a diverse data set.

Each lineament was mapped as a polygon. Fig. 1 shows that identi-
fying features and their borders is not always straight-forward. There-
fore, we followed our guideline (Fig. A.14) dedicated to map lineaments
as consistently as possible. The guideline tests first if the lineament is
longer than 30 px, wider than 4 px and has a contrast higher than
0.08 when evaluating the calibrated I/F (intensity divided by solar
flux). A contrast in I/F of 0.08, resulting from changes in brightness,
can be expected from the topography associated with the features,
if the features are illuminated not exactly parallel to their azimuth
and if the topography is distorted remarkably. At the same time, a
contrast limit introduces a known bias neglecting features illuminated
directly parallel to their azimuth. Finally, following the guideline,
which transforms the definitions described in Section 2.1 into a decision
tree (Fig. A.14), the lineament can be categorised.

The manual segmentation was done by a single person, who went
through each image twice. Because detailed mapping of all resolvable
linear surface features in Galileo images is a challenging task, the
mapping conducted by this person may be flawed and influenced by
individual human biases. Therefore, what we mean when we use the
term ’ground truth’ would be better reflected by the term ’human
4

mapping’, which we will use in the following when we want to make
this distinction clear.

2.3. Deep learning framework

2.3.1. Justification for a deep learning framework
Firstly, mapping of lineaments is a time-expensive process, since

for each lineament, a polygon must be drawn around it by selecting
boundary points. For example, the person mapping for this study
needed 4 h of focused time for mapping all 260 features in observation
‘17ESREGMAP03’. On average, this amounts to 1 min per feature.
Observation ‘17ESREGMAP03’ covers less than 0.1% of the Europan
surface with a resolution of 234 m/px in equirectangular projection. If
we assume the same density of lineaments, mapping the whole surface
at that speed and resolution would take 4000 h, equal to 500 days of
8-hour work-days.

Secondly, no classical line-detection algorithm is suitable for in-
stance segmentation. Algorithms such as the Hough transform (Duda
and Hart, 1972), the probabilistic Hough transform (Kiryati et al.,
1991), the Radon transform (Radon, 1917) and algorithms in the
Fourier frequency domain (e.g. Ruzicka et al., 2021) are valuable tech-
niques for line detection. However, they are hard to tune and not easily
generalisable to small changes in the image, such as different incidence
angles. Furthermore, these algorithms output parameters describing
the detected straight lines. Out of these, it is not straightforward to
compose a mask, which covers all pixels that belong to one instance of a
lineament. For straight instances of undifferentiated lineae and double
ridges, these algorithm might eventually work, but not for bands and
ridge complexes, which are not well described by single lines. Also for
curved instances of lineaments, these algorithms are impractical. Due to
the aforementioned reasons, deep learning based instance segmentation
provides the best method available as of today.
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Table 1
Overview of manually segmented Galileo observations. The segmentations were done directly on the mosaics from Bland et al. (2021) indicated in column ’Observation ID’. The
observing geometries (incidence angle, phase angle, etc.) were extracted from the individual Galileo observations displayed in column ’Clock ID’. If there are several individual
observations belonging to one segmented mosaic or mosaic excerpt, the geometries are given for the observation with a bold clock ID.

Data set Observation ID Clock ID incidence
angle [◦]

phase
angle [◦]

emission
angle [◦]

north
azimuth [◦]

Horizontal
pixel scale
[m/px]

vertical
pixel scale
[m/px]

Filter

Training set G7ESLOWFOT01 C0389768826R,
C0389767113R,
C0389767100R,
C0389767126R

35.799 5.024 37.75 84.08 456.955 548.245 Green

G7ESTYRMAC01 C0389772500R,
C0389772507R

47.131 15.696 38.293 285.068 671.686 691.257 Green

G7ESTYRMAC02 C0389773000R 47.327 18.661 37.156 280.565 623.652 678.529 IR-9680
G7ESAPEXCR01 C0389778842R 79.882 62.558 17.331 274.27 513.3 490.1 Clear
G7ESAPEXCR04 C0389780135R 80.963 72.834 20.446 273.756 521.692 549.536 Clear
G7ESAPEXCR05 C0389780563R 81.424 75.995 26.535 273.862 532.25 593.695 Clear
E4ESMACSTR01 C0374667300R 80.854 54.82 26.471 90.437 701.49 634.179 Clear
E6ESDRKLIN01 C0426267401/00R,

C0426267513R,
C0426267427/26R,
C0426267452R,
C0426267478R,
C0426267366/65R

59.391 95.183 36.872 91.774 213.2 174.2 Green

C0383713713R,
C0383713701R,
C0383713700R,
C0383713726R,
C0383713739R,
C0383713752R,
C0383713765R

82.336 39.217 45.345 93.386 249.417 194.51 Clear

11ESCOLORS01–01 C0420617239R,
C0420617213R,
C0420617226R,
C0420617200R

66.649 61.216 5.434 91.129 289.9 288.8 IR-9680

12ESFRTPLT01EXCERPT1 C0426267200/01R 85.346 93.08 52.224 91.342 185.3 294.8 Clear
15ESREGMAP01EXCERPT1 C0449961914R,

C0449961839R
73.942 63.463 45.393 93.747 230.173 327.339 Clear

17ESREGMAP03 C0466677052R 82.985 92.198 56.516 268.765 243.769 420.854 Clear
25ESDARKBP01 C0527275700R 64.94 33.593 33.003 287.91 249.43 234.4 Clear

Validation set G7ESAPEXCR02 C0389779270R,
C0389779271R

80.167 66.098 15.347 274.115 511.713 501.176 Clear

17ESREGMAP01EXCERPT2 C0466664352R 78.969 71.61 56.425 95.438 226 408 Clear
Test set 17ESREGMAP01EXCERPT1 C0466664366R 73.835 72.019 59.544 94.497 232 442 Clear

11ESREGMAP01EXCERPT1 C0420619278R 80.963 72.834 20.446 89.254 227.638 228.951 Clear
14ESWEDGES01EXCERPT1 C0440955239R 55.549 74.323 34.093 269.757 352.8 262.5 Clear
2.3.2. Architecture and hyperparameters
The architecture of a network defines the structure into which the

trained model fits. An architecture uses a selection of set parameters,
such as the number of layers or the number of input channels of the
input image. On the contrary, the term ‘hyperparameter’ is used for
modifiable parameters (the weights that are saved as the output of
the training still fit into the architecture, no matter the combination
of hyperparameters), such as the learning rate (how fast the network
learns by adjusting its weights) or the batch size (how many images
are shown to the network at the same time). We choose the Mask R-
CNN (He et al., 2018) architecture as a well-tested general instance
segmentation framework. In 2018, the Mask R-CNN outperformed the
winners of the COCO 2016 challenge in instance segmentation. It
achieved an average precision (explained in Section 2.3.5) of 37.1%
averaged over Intersection over Union (IoU; explained in Section 2.3.5)
thresholds of 0.5 to 0.95 with a ResNeXt-101-FPN backbone.

The Mask R-CNN scheme and the whole workflow of LineaMapper
are visualised in Fig. 3. LineaMapper outputs for each predicted bound-
ing box (a rectangle that encompasses the detected lineament) (1) a
probability score, which indicates how certain the network is about its
detection, (2) a label, which tells us the predicted class (= geological
unit), and (3) a mask, which is a binary image providing the lineament
segmentation: the pixels (inside the bounding box) that belong to the
detected lineament are set to 1, the rest to 0.

For LineaMapper, we used a ResNet-50 (He et al., 2016) as the
backbone with weights pretrained on 3-channel (RGB) ImageNet (Deng
5

et al., 2009) data. Although we found only a marginal difference
between pretrained weights and initialised weights, we decided to use
pretrained weights for increased robustness. Additionally, we chose 3-
channel RGB input to allow for colour data in light of Europa Clipper
EIS colour data. We fine tuned the Mask R-CNN with 3 trainable
backbone layer blocks (5 would be the maximum; in our case, 2 layer
blocks were frozen) to allow the weights to adopt significantly to linear
features in Galileo images. We used a stochastic-gradient descent (SGD)
optimiser (Robbins and Monro, 1951), a standard, well-used and tested
optimiser at the time of writing. An optimiser helps to decrease the
initial learning rate in a way that accelerates convergence of a network.
Through trial-and-error to find the optimum, the learning rate was set
to 0.01 and the batch size to 6 images. The minimum and maximum
size that the input tile was resized to was 200 × 200 and 300 × 300
pixel.

2.3.3. Hardware and software
The model was trained on a Predator Orion 5000 with an Nvidia

Geforce RTX 3080 GPU (10 GB GDDR6X dedicated memory, 8704
CUDA cores, 760 GB/s memory bandwidth, CUDA driver 11.6.134),
Intel Core i9-10900K CPU (10 cores, 20 threads, 3.70 GHz) on a
Windows 10 Enterprise operating system. We used the pytorch (Paszke
et al., 2019) python library version 1.11.0 implementation of the Mask
R-CNN. Additionally, we used the python library torchvision (Marcel
and Rodriguez, 2010) version 0.12.0 for training and inference.
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Fig. 3. Visualisation of the workflow with LineaMapper from image insertion to output. An input black-and-white image (1) is tiled up with a moving window tiling algorithm in
(2). The tiling window algorithm moves by half the tile size of the input image, in our case by 112 pixels, to get partially overlapping tiles (3). We follow the path of one such
black-and-white tile, which is converted into a 3-channel array by repeating the black-and-white channel three times to imitate an RGB input, and which is normalised (mean:
[0.485, 0.456, 0.406], standard deviation: [0.229, 0.224, 0.225]) in step (4). This array is fed into the backbone of the Mask R-CNN (5), for which we chose a ResNet-50-FPN,
which is 50 layers deep and outputs a feature pyramid network (FPN). The task of the backbone is to extract features based on which the Mask R-CNN makes predictions. The
output of the backbone network is a pyramid of four 256-channel feature maps (6). The feature maps are the basis for the region proposal network (7), which proposes bounding
boxes that potentially contain objects. The proposals, or region of interests (RoI) are aligned (8). The box prediction (9–15) is separated from the mask prediction branch (16–20).
For the box branch, the RoIs are flattened (9) and then fed into a fully connected network (10). This box head outputs an array of size (N,4) for the bounding boxes (15) and
an array of size (N, nclasses) containing the logit values (11) (logit of probability = logarithm of the odds), with 𝑁 being the number of proposals. The logits (11) are converted
to probability scores (values between 0 and 1) with a SoftMax function, which essentially normalises the logits values. The highest probability score in (12) defines the label of a
detection. This is done for each box proposal and leads to the output of the box predictor (21): scores (13), labels (14) and boxes (15). The mask head uses the extracted masks
reshaped to squares (16) as an input. It outputs refined predictions in 256-channels (18), which are turned into segmentation mask logits channels by the mask predictor (18).
The arrays in (19) are 28 × 28 px, nclasses-channel images. For the output of the floating point masks (20), it only takes the image with the correct label from (14). The floating
point 28 × 28 pixel masks are finally combined and pasted into the boxes (22). A non-maximum suppression algorithm now filters duplicates, and the top-scoring, maximum 100
detections are passed on. Finally, the floating point masks are converted to boolean (binary) masks by simple thresholding (23). This leaves us with a maximum of 100 detected
objects (24). As the last step, we choose a score threshold to display the most confident detections only (25). The final output (25) consists of objects with boxes, masks, labels and
scores. The box can be bigger than the mask due to the thresholding step in (23). During training (26), the model predictions are compared to the ground truth, from which the
losses (e.g. cross-entropy binary loss function for the mask loss) are calculated. This happens per batch (=6 tiles). The losses are backpropagated through the network to improve
it. Once the network has seen all available tiles (we call this one epoch), the optimiser (here: Adam optimiser) advances one step. Note that class 0 is an ‘empty’ class.
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Fig. 4. Area of bounding boxes in the training, validation and test set tiles.

Fig. 5. Feature count of instances in the training, validation and test set tiles.

Fig. 6. Augmentation. One example of an augmented training tile. Bands (1) are shown
in purple, double ridges (2) in dark orange, ridge complexes (3) in light orange and
undifferentiated lineae (4) in pale pink. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
7

2.3.4. Training LineaMapper
It is out of the scope of this work to go into detail about how

exactly the model learns. Readers are deferred to Goodfellow et al.
(2016) for an introduction to Deep Learning. Nevertheless, the sketch
in Fig. 3, especially step (26), should help to get an idea. In this section,
we go into detail about the training, validation and test data set. We
used a tiling window algorithm to divide the mapped Galileo images
into smaller tiles of size 224 × 224 px. The tiling window algorithm
moves by half the tile size of the input image, in our case by 112
pixels, to get partially overlapping tiles (Fig. 3, step 2 and 3). Trial-
and-error experiments to find the optimal tile size were conducted (not
shown). Since linear surface features on Europa often span more than
a 224 × 224 pixel area, the network might perform slightly better on
tiled-up lineaments, which appear in adjacently windowed tiles, than
on an independent surface area. Therefore, we ensure that the model
performance results are independent of the training set by isolating
individual mosaics for the validation and test set (Table 1). The test set
is tiled up without a tiling window algorithm to avoid double counting
predictions on the same image excerpt twice. We indicate in Table 1
which images are used for the training set, the validation set and the
test set. In total, we have 932 tiles in the training set, 52 tiles in the
validation set and 45 tiles in the test set.

The training set consists of a set of image tiles that are fed to the
network in batches (Fig. 3, step (26)). The network uses each batch of
image tiles to backpropagate the learnable parameters, which is called
one iteration for a single batch. When all available training tiles are
fed through the network, one epoch ends. Undifferentiated lineae make
up most of the instances in the training set (Fig. 5), and also make
up most of the bounding box area (Fig. 4). The feature counts are not
independent of each other, since lineaments get cut off randomly by
the tiling window algorithm, meaning that a single double ridge can
get tiled up into multiple instances of double ridges (compare Fig. 5 to
Table B.5).

The training set is imbalanced with regards to the feature count
as shown in Fig. 5 and with regards to the feature area as shown in
Fig. 4 (note the logarithmic axis). We note that the feature areas are
less imbalanced than the feature counts. The imbalance of the training
set represents the natural imbalance of linear features on Europa’s
surface. Inside the Mask R-CNN architecture, only the classification
loss of the Mask R-CNN is sensitive to class imbalance. However, an
implementation of a weighted loss did not improve the result. We
conclude that this class imbalance is not impacting the classification
performance due to the fact that classes do not compete in the Mask R-
CNN (He et al., 2018). For LineaMapper, this means that one lineament
detection can exist multiple times, classified in different categories.

The model was trained for 98 epochs (15,910 iterations, 162
batches, 972 training tiles) in 5.2 h, which is the number of epochs that
yielded the best performance on the validation set before the model
started to overfit on the training set. Overfitting means that the model
learns the training data by heart instead of learning the general concept
that it can then apply to unseen data (for example, a two-polynomial
fit for three points is an overfit). Most of the training time did not
increase the bounding box metrics, but the mask metrics, so the Mask
R-CNN needed time to adjust parameters in its mask branch (Fig. 3,
steps 16–20).

To prevent the model from overfitting early, we augmented every
tile in the training set in every epoch differently, using the imgaug (Jung
et al., 2020) python library. We used left–right and up–down flipping,
shearing, rotation, scaling, contrast enhancing, sharpening and bright-
ness augmenters, pixel inversion, and dropout, applied in a random
order and with random parameters. We selected the aforementioned
augmenters because they mimic observations of the same area under
different viewing geometries or differently processed images from raw
spacecraft data. As an aside, these augmenters help make the network
robust against such transformations. An example of a randomly aug-

mented training tiles is shown in Fig. 6. Validation and test tiles are
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Fig. 7. Introduction of the intersection-over-union (IoU) metric. This is the compact form of Fig. D.17. a) The IoU is the ratio of the intersection of two objects A and B (in this
case, two rectangles) over the union of the two objects. (b) An example for an IoU of 0.35 is shown with two rectangles (boxes). (c) An example for an IoU-value of 0.35 is
shown for two masks (a mask is a segmented object, in this case a lineament). (d) Examples for both masks and boxes are shown. A box is defined as the rectangle that holds
the mask. The examples in (d) show that mask IoU values are in general by design lower than box IoU values.
not augmented. We tested whether the model would overfit without
any augmentations and found that it learned the data after 100 epochs.

The validation set is used after each epoch. Undifferentiated lineae
are the dominant feature in the validation set (Fig. 5) and make up
most of the bounding box area (Fig. 4). To find the best combination
of hyperparameters, the model was evaluated on the validation set
by comparing model prediction with ground truth. The difference was
measured with metrics introduced in Section 2.3.5. This is only used
to assess the current model performance. In a way, we overfit on the
validation set, since we optimise hyperparameters for best performance
on it. In the final training, after the hyperparameters were set, the
validation set was added to the training set to maximise training
volume. Therefore, we need an additional independent test set, which
was not touched until the hyperparameters were fixed. The test set
consists of three individual mosaics (Table 1). In 224 × 224 px image
tiles, undifferentiated lineae are the most common feature in the test
set (Fig. 5) and make up most of the bounding box area (Fig. 4).

2.3.5. Performance metrics
For assessing the performance, we need the number of true positive

(TP), false positive (FP) and false negative (FN) detections. Fig. D.19 il-
lustrates the aforementioned quantities for one example tile (Fig. D.18).
For object detection and instance segmentation, a true negative (TN)
detection is not defined, because an infinite number of not-detected
bounding boxes would count as true negative. With TP, FP and FN,
the precision is defined as

precision = TP
TP + FP

(1)

and the recall is defined as

recall = TP
TP + FN

. (2)

The precision and recall are calculated for one example in Fig. D.20.
The precision measures the percentage of truly detected and correctly
classified lineaments ratioed by all lineament model detections. The
recall measures the percentage of truly detected and correctly classified
lineaments ratioed by all ground truth lineaments. Both metrics are
invariant to class imbalance. In plain language, high precision means
8

that features the model identifies as lineaments are nearly always real
lineaments. However, a model with high precision may be so selective
that many lineaments are missed (lots of false negatives). Hence, recall
is also used to describe the model. High recall would mean that the
model is very good at finding all of the real lineaments. However, a
model with high recall that is not very selective would also identify
many features that are not actually lineaments (lots of false positives).

To sort detections into true positives, false positives and false neg-
atives, we need to define when a ground truth object is counted as a
true detection of the model prediction. Since there will almost never be
a perfect detection, we use the intersection-over-union (IoU) metric to
define a true-detection criterion:

IoU = A ∩ B
A ∪ B

with two bounding boxes A and B or two masks A and B (see Fig. 7
for illustrations and examples). We set an IoU threshold above which a
predicted bounding box or mask and a ground truth bounding box or
mask are considered equal and the model prediction is a true positive.
This threshold can be varied. Following He et al. (2018), we use IoU
thresholds of 0.35, 0.50, 0.75 and a set of thresholds between 0.50 and
0.95 in steps of 0.05.

Furthermore, the network outputs a score for each detection, which
indicates how certain a prediction is (Fig. 3, step (13)). This score, how-
ever, is not well calibrated and might therefore not perfectly reflect a
linear probability. Still, a higher score means a higher model prediction
certainty. Detections are sorted by decreasing score to determine the
precision versus recall for a selected IoU threshold (see Fig. D.20 for an
example calculation). While decreasing the recall in steps of 0.01, the
threshold score, for which a specific recall is achieved, is identified. The
area under this precision–recall curve is called average precision, and
the mean over all classes is called mean average precision, or mAP (e.g.
Beitzel et al., 2009). A precision–recall curve of a perfect model would
have a precision of 1 for all recall thresholds and all IoU values. This
would result in a mAP of 1, or 100%. The mean average recall, or mAR,
is the recall averaged over all classes and over IoU thresholds between
0.5 and 0.95, as for the mAP, unless a single IoU threshold is chosen. An
example of calculating mAR and mAP is worked through in Fig. D.20. In
the following, we use the mAP and mAR to report model performance
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Fig. 8. Precision-versus-recall curve for bounding boxes (a) and masks (b). The line turns red if the score falls below 0.5. The IoU-threshold for this curve is 0.5. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)
.

Table 2
Bounding box (bbox) and mask precision and recall for detections with a score higher
or equal to 0.5 and at an IoU-threshold of 0.5. The results are displayed in percentage

bbox
precision

bbox
recall

mask
precision

mask
recall

Bands 33 18 15 8
Double ridges 92 12 68 9
Ridge complexes 50 34 30 17
Undiff. lineae 25 28 15 18

Average 50 23 32 13

results. When no IoU threshold is indicated, we refer to a set of IoU
thresholds between 0.5 and 0.95.

3. Performance of LineaMapper

3.1. Performance in metrics

We report results on the test set (Tables 2, 3, 4, and Fig. 8). We
start with the precision and recall values at an IoU threshold of 0.5
and a score threshold of 0.5 (Table 2). The precision values (Table 2)
are overall higher than the recall values, suggesting that there are
fewer false positives than false negatives, meaning that there are more
non-detections of actual lineaments than there are false detections of
lineaments. This means that a human mapper would have to add more
lineaments to the output of LineaMapper than she or he would have
to delete. This is true for bands, double ridges and ridge complexes,
but not for undifferentiated lineae. On the positive side, the threshold
above which output is generated can be tuned individually for each
class. This means that we could increase the score threshold to, for ex-
ample, 70% instead of 50% for undifferentiated lineae to consider only
the detections for which the model is more certain that its detection is
an undifferentiated lineae.

Furthermore, the metrics make it seem that the model has a harder
time correctly applying the mask, i.e. finding the outline of the lin-
eament, than correctly applying a bounding box that encompasses a
lineament. However, it is easier for larger objects to achieve a higher
IoU, which favours bounding boxes (which are by design bigger than
the masks, and much bigger for diagonal lineaments). This relation
is visualised in Fig. 7. Therefore, a more qualitative interpretation is
important (Section 3.2). Comparing the classes, we find that the model
shows the most correct predictions (fewest false positives) for double
ridges (highest precision), perhaps due to their clear axial trough, while
the most complete detections (fewest false negatives) happen for ridge
9

complexes (highest recall), compared with the ground truth.
The precision–recall curve (Fig. 8) at an IoU threshold of 0.5 allows
us to read off the values in Table 2 directly at the point where the line
turns red. For example, the line of bounding boxes of double ridges
turns from dark orange to red at a precision of 92% and at a recall of
12%. These are the values we find in Table 2. The precision–recall curve
visualises how a change in the probability score threshold would lead to
different precision and recall values. By tuning the score threshold, we
can select a pair of precision/recall values, which we find by following
the plotted line in Fig. 8. If we integrate the area under the precision–
recall curve in Fig. 8, we would get the average precision values in
Tables 3 and 4 for AP0.50. With one glimpse at the area under the
curve, we can see why double ridges score highest in the AP0.50 column
for both masks and bounding boxes (Tables 3 and 4). To calculate the
average precision at an IoU range of 0.50 to 0.95, we would need to plot
all precision–recall curves for each IoU threshold (one for 0.50, which
we have, one for 0.55, and so on), which is explained in Fig. D.20. We
then sum up the areas under those curves and get the ‘AP’ column in
Tables 3 and 4. The average recall ‘AR’ we calculate by averaging the
total recall (score threshold of 0.00) over different IoUs, or only one
IoU (AR0.35, AR0.50).

We are now focusing on the performance metrics shown separately
for bounding boxes in Table 3 and for masks in Table 4. The class
of double ridges reach the overall highest average precision (AP) for
masks and bounding boxes. This means that, summed up over all
evaluated IoU values, the area under the precision–recall curve was
largest for double ridges. This was somewhat expected from the pre-
cision discussed above (Table 2). Ridge complexes are the class with
the highest average recall (AR), for masks and bounding boxes, which
was expected as well from the recall discussion above (Table 2). The
worst performing classes, when considering the bounding boxes AP
are bands (Table 3), and undifferentiated lineae when considering the
masks AP (Table 4). When considering the AR, bands are the worst
performing class. Averaged over all classes, the bounding box mAP is
12.1% and the average recall is 31.1%. For masks, the class mean AP is
4.5% and the average recall is 14.6%. As expected from the discussion
around Fig. 7, the mAP and AR values are lower for masks than for
bounding boxes. We recall that the mAP for an IoU range of 0.5 to 0.95
is a very strict metric. When we look at the mAP at IoU thresholds of
0.5 and of 0.35, we find higher values. In the following, we analyse
the results for an IoU threshold of 0.35: The bounding box mAP0.35
is 24.5%, while the AR0.35 is 58.8%. The mask mAP0.35 increases to
14.5%, while the AR0.35 is 41.4%. Again, the mask metrics show lower
values simply because of the design of bounding boxes (Fig. 7). Setting
the IoU value to 0.35 increased the mean average precision and average
recall values by approximately a factor of 2 for bounding boxes and by
approximately a factor of 3 for masks.



Icarus 410 (2024) 115722C. Haslebacher et al.
Table 3
LineaMappper bounding box average precision (AP) and average recall (AR) per class and averaged over classes in percent. The
subsets 0.35 and 0.50 indicate an IoU threshold of 0.35 and 0.5, respectively. The subsets 𝑆, 𝑀 and 𝐿 indicate small, medium
and large objects evaluated at an IoU range of 0.50 to 0.95, while no subset evaluates all object sizes at an IoU range of 0.50
to 0.95. Cells are coloured darker (green) with increasing performance.

unit AP0.35 AP0.50 AP AP𝑆 AP𝑀 AP𝐿 AR0.35 AR0.50 AR AR𝑆 AR𝑀 AR𝐿

bands 16.4 15.2 9.4 0.6 5.5 22.5 47.3 40.0 24.5 9.0 16.9 43.2
double ridges 32.6 29.3 17.8 6.0 17.2 39.9 46.1 42.8 26.6 10.0 25.9 52.6

ridge complexes 28.4 26.3 11.7 6.5 2.8 27.6 77.1 74.3 42.3 46.7 28.9 60.8
undiff. lineae 20.7 18.4 9.6 2.9 11.0 25.2 64.5 59.4 31.2 17.8 35.2 55.0

mean 24.5 22.3 12.1 4.0 9.1 28.8 58.8 54.1 31.1 20.9 26.7 52.9
Table 4
Same as Table 3, for mask metrics.

unit AP0.35 AP0.50 AP AP𝑆 AP𝑀 AP𝐿 AR0.35 AR0.50 AR AR𝑆 AR𝑀 AR𝐿

bands 14.1 4.7 4.1 1.6 1.3 10.5 29.1 18.2 10.2 7.0 7.7 15.3
double ridges 15.9 13.4 6.2 0.5 9.8 9.4 28.3 24.4 11.4 6.9 14.8 9.1

ridge complexes 16.3 8.7 4.2 0.4 1.4 30.8 71.4 54.3 25.1 16.7 22.6 30.8
undiff. lineae 11.8 8.9 3.4 0.3 9.0 7.1 36.7 29.7 11.6 9.2 14.2 6.9

mean 14.5 8.9 4.5 0.7 5.4 14.5 41.4 31.7 14.6 9.9 14.8 15.5
s
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3.2. Qualitative analysis of LineaMapper’s predictions

Firstly, we show four examples of model predictions from the
test set that showcase the strengths of the current model in Fig. 9.
Qualitatively, many undifferentiated lineae are correctly detected by
LineaMapper, although sometimes an undifferentiated linea is detected
as two individual instances. Even though LineaMapper is not given
the full mosaic context, it was able to detect segments of bands. The
prediction in Fig. 9.1b of a ridge complex that is overprinted by a
double ridge shows that LineaMapper has learned to preserve cross-
cutting relationships in some cases. Predictions of the cross-cutting
double ridge and undifferentiated linea are scored lower than 0.5 and
therefore do not appear in Fig. 9.1b. In Fig. 9.2, the band intersected by
an undifferentiated linea was predicted as two individual bands, while
the shape is correct. In Fig. 9.3, a double ridge was confused with an
undifferentiated lineae, but the correct detection of the double ridge
simply scored lower than 0.5. In Fig. 9.4, the network of undifferenti-
ated lineaments was predicted almost perfectly, the double ridge in the
upper right corner is classified correctly and the small portion of the
band in the upper left corner got segmented and predicted correctly.
Inspecting the full test set, we find that predictions by LineaMapper
are stable in a sense that the network is not often distracted by other
surface features, such as craters or chaos regions.

Secondly, we discuss four examples of model predictions from the
test set that showcase the limitations of the current model in Fig. 10.
Overall, it seems that LineaMapper indeed finds lineaments, but not
the same ones than were mapped in the ground truth. We therefore
have a high number of false positives and false negatives. In Fig. 10.1,
only half of the band was detected by LineaMapper, while in the other
half of the band segment, undifferentiated lineae were predicted by
LineaMapper that do not appear in the ground truth. In Fig. 10.2, the
model detected only seven lineament instances with a score above 0.5,
out of 20 mapped in the ground truth. The model might have been
distracted by the densely lineated area observed in 14ESWEDGES01.
In Fig. 10.3, a band was confused with a ridge complex. Nonetheless,
the cross-cutting relationship was preserved by the model, in contrast to
the predicted undifferentiated lineae in the top of Fig. 10.3b, which was
additionally confused with a double ridge (Fig. 10.3c). In Fig. 10.4, all
double ridges in the ground truth were confused with undifferentiated
lineae and one with a ridge complex.

4. Discussion of model performance

We use a test set size of 5% of the total available amount of tiles
to maximise the number of tiles available for training. We note that
10
this test set size is slightly smaller than what is usually used for model
evaluation, but highlight that previous studies have used a similar
approach to mitigate the overall lack of training labels (e.g. Bickel et al.,
2022). Nevertheless, we keep in mind that the model performance
could vary on a different test set.

4.1. Metrics

The metrics show that LineaMapper has learned how to identify
a lineament and apply it to new data. The masks of undifferentiated
lineae are supposedly under-performing because of their small size
and their geometric relationship to double ridges. If a detection is
classified as an undifferentiated linea instead of a double ridge, the
prediction counts as a false positive for undifferentiated lineae and a
false negative for double ridges. This would decrease the precision of
undifferentiated lineae and decrease the recall for double ridges, in line
with the performance for double ridges and undifferentiated lineae.

Small objects, i.e. objects with a bounding box below 32 × 32 pixel,
how on average the lowest performance, for bounding box and mask
P and AR. Small objects perform also worst on the COCO test set,
ecause of the scarcity of small objects in the training data. This could
e mitigated by model adjustments (Kisantal et al., 2019).

If each mosaic in the test set is analysed individually (Tables C.6 to
.11), we find that 17ESREGMAP01EXCERPT1 shows by far the best
erformance metrics, reaching an AP at IoU of 0.35 of 42.2% for the
ounding boxes and 35.9% for the masks and an AR at IoU of 0.35 of
9.5% for the bounding boxes and 53.1% for the masks. The mosaic
7ESREGMAP01EXCERPT1 is the closest to the training and validation
ata mosaics 17ESREGMAP01EXCERPT2 and 17ESREGMAP03, since it
as acquired in the same encounter with similar observing geometries.
his shows that the performance of LineaMapper is better for similarly
cquired data. It also shows why an independent test set is important.

For the selected case shown in Table 2, the precision is on average
igher than the recall, which means that we have more false negatives
han false positives. The precision–recall curve in Fig. 8 shows that for

decreasing score, the recall increases (less false negatives) and the
recision decreases (more false positives). Especially for double ridges,
he bounding boxes could reach, for example, a recall of 30% for a
recision of 50% if the score threshold would be lowered. However,
or other classes, lowering the score threshold would not be beneficial
or the precision. Because the score threshold can be varied, it can be
et according to specific needs.

The performance of LineaMapper is impacted by two main factors,
esides the scarcity of training data. Firstly, the test set is independent
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Fig. 9. Example results from the test set showcasing LineaMapper’s strength. Column (a) shows the input test tile. Column (b) contains LineaMapper predictions for probability
scores above 0.5. The ground truth is shown for comparison in column (c). Bands (1) are shown in purple, double ridges (2) in dark orange, ridge complexes (3) in light orange
and undifferentiated lineae (4) in pale pink. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Example results from the test set showcasing LineaMapper’s limitations. Column (a) shows the input test tile. Column (b) contains LineaMapper predictions for probability
scores above 0.5. The ground truth is shown for comparison in column (c). Bands (1) are shown in purple, double ridges (2) in dark orange, ridge complexes (3) in light orange
and undifferentiated lineae (4) in pale pink. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Crevasses on the Aletsch glacier, Switzerland. left: Screenshot of an aerial view
of the Aletsch glacier. The excerpt shows an area of 98 × 98 meters at a resolution
of 0.5 m/px, which is the highest resolution that EIS NAC will achieve. (Data from
the Federal Office of Topography swisstopo). right: Prediction of LineaMapper. The
crevasses are classified by LineaMapper as undifferentiated lineae, while two glacier
fragments are classified as bands.

of the training and validation set, almost mimicking data from a dif-
ferent spacecraft, which makes the task harder. Secondly, segmenting
lineaments almost down to the noise level in Galileo SSI data is a
challenging task, even for a human (Fig. 1). Given these factors, the
performance metrics provide a lower limit to the actual performance
of LineaMapper.

4.2. Qualititative interpretation

The predictions on the test set show that LineaMapper is compre-
hensibly predicting and classifying linear surface features, and some-
times even detects cross-cutting relationships, although it is not yet
highly skilled at generalising predictions to unknown areas imaged
under conditions it has not been trained on. The predictions are com-
prehensible in a sense that a human can retrace why the network made
a mistake. For example, LineaMapper confuses ridge complexes often
with bands, and double ridges with undifferentiated lineae, which the
human mapper struggled with as well. It is therefore unsurprising that
undifferentiated lineae, when resolved better, often turn out as double
ridges. Interestingly, we see in the example of the logit masks (Fig. 3,
in step 19) that masks with labels 1 (bands) and 3 (ridge complexes)
contain almost identical values, and masks with labels 2 (double ridges)
and 4 (undifferentiated lineae) are also almost identical. This shows
that, at least in the mask branch, bands are treated the same as ridge
complexes and double ridges are treated the same as undifferentiated
lineae. For the connection between ridge complexes and double ridges,
there is an ongoing debate whether they have a different (Aydin,
2006) or the same (Manga and Sinton, 2004) formation mechanism.
Visually, in some ridge complexes, individual double ridges are clearly
identifiable (e.g. second row in Fig. 1), while in others not (e.g. first
and third row in Fig. 1). Furthermore, the logit masks in step (19)
(Fig. 3) show that the mask branch has problems with disentangling
individual lineaments. Perhaps, this issue could be diminished with a
synthesised training set, where instances are cropped out of the tile
and implanted into an environment without entanglements. However,
it might be that indeed because of the detection of multiple instances
in one mask, the cross-cutting relationships can sometimes be respected
by LineaMapper.

5. Conclusion

LineaMapper provides reasonable and valuable predictions, which
makes it a helpful and much needed tool for mapping lineaments on
Europa. Almost every detection, regardless of the score, is reasonable.
Sometimes, LineaMapper even suggests an additional lineament that is
not represented in the ground truth, perhaps due to length, width or
contrast constraints. This is an important result as this would improve
13
the performance metrics due to a higher number of true positives
and a lower number of false positives. More importantly, it shows the
difficulty of mapping lineaments completely and correctly, even for a
human.

One strength of LineaMapper is the possibility to be retrained with
additional data. Not only will this help to map lineaments in Europa
Clipper EIS data, but it can also be retrained for similar looking linear
surface features on other planetary objects, as was shown for a similar
application by Bickel et al. (2020b). Another strength is the that the
output of LineaMapper can be tuned by setting different thresholds,
such as the mask threshold for the conversion from float to binary
masks, or the probability score threshold (see Fig. 3). The biggest
strength, however, is the speed with which LineaMapper can produce
predictions: 15 ms per 224 × 224 tile on average.

The current version of LineaMapper has limitations, which can be
improved in subsequent versions. The major limitation of LineaMapper
v1.0 is that it is trained on a subset of Galileo data in the resolution
range of 150 to 600 m/px. Therefore, we do not have a good handle
on the model performance outside of this resolution range. This is
especially important for higher resolution images expected with EIS on
Europa Clipper. For a lower resolution image, lineaments are, in the
worst case, classified as undifferentiated lineae by the network, while
in a higher resolution image, the defined unit identifiers might change
and can lead to misclassified lineaments or to an increasing number of
false positives.

6. Summary

We train LineaMapper v1.0, a neural network to segment instances
of four categories of lineaments in Galileo images of Europa. We pave
the way to a faster and more deterministic mapping of linear surface
features on Europa. LineaMapper v1.0 allows global analysis of linear
surface features in a reasonable time frame. The detected bounding
boxes and their predicted masks facilitate parameter extraction, such
as length, width, and azimuth of an individual lineament. LineaMapper
v1.0 shows the potential for an automatic analysis of cross-cutting
relationships, since it is in some cases able to preserve the cross-cutting
relationships. In terms of performance metrics, LineaMapper v1.0 has a
mean average precision of 22.3% (bounding boxes) and 8.9% (masks)
and a mean average recall of 54.1% (bounding boxes) and 31.7%
(masks), both at an IoU of 0.5. Given the complexity of the problem and
considering human mapping biases, this is an adequate performance.

7. Outlook

In the light of Europa Clipper, calibration parameters from EIS
WAC and NAC can be used as augmenters for the next version of
LineaMapper to prepare it for data from a new spacecraft and unknown
regions of Europa. To further prepare LineaMapper for Europa Clipper
EIS data, superresolution neural networks could be trained to enhance
the Galileo data set and to simulate a larger high-resolution data set.
Additionally, terrestrial analogues (such as terrestrial glaciers or the
polar ice sheets) that have been imaged at the resolution we are expect-
ing from EIS could be used for training. One such example is given in
Fig. 11. Additionally, LineaMapper output can be georeferenced, which
is valuable for recurring updates of a detailed, global map of lineaments
on Europa. Such a georeferencing workflow could be envisaged by an
implementation into a GIS tool, for example as a plugin in QGIS. During
Europa Clipper flybys, a quick feature extraction would be valuable
for change detection, either since Galileo or between Europa Clipper
flybys. At the same time, such a framework would facilitate the extrac-
tion of spectra from Europa Clipper’s Mapping Imaging Spectrometer
for Europa (MISE) data (Blaney et al., 2022).

Naturally, the model training would benefit from a bigger training
set that includes a wider resolution range. Since manual segmentation
is a slow and cumbersome process, we envision an extended training
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Fig. 12. An outlook of a full 800 × 800 mosaic georeferenced model prediction. (a) The input black-and-white Galileo image (17ESREGMAP01EXCERPT1; Table 1). (b) For this
full-mosaic prediction, the individual predictions of LineaMapper on 224 × 224 tiles are simply puzzled together. A stitching algorithm is needed to join predictions of the same
lineament. (c) For comparison, the ground truth manual map is shown. Bands (1) are shown in purple, double ridges (2) in dark orange, ridge complexes (3) in light orange and
undifferentiated lineae (4) in pale pink. Projection is east-positive equirectangular. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Fig. 13. Wrinkle ridges on Venus. Left: Left look of a Magellan SAR black-and-white
input image resized from 100 × 100 px to 224 × 224 px (original resolution: 75 m/px,
7.5 km total width displayed). The projection is equirectangular and this excerpt is
located roughly at 99◦ East and 21◦ South. Data from USGS (Ford et al., 1989, 1993).
Right: Prediction of LineaMapper. The undifferentiated lineae category is essentially an
arbitrary line detector.

set by using LineaMapper v1.0 to reduce the segmentation workload
for a human mapper. In future work, we plan to cleanse LineaMapper’s
output on the full regional mosaics. This leaves us with a bigger training
set and, at the same time, provides a new lineament map revealing
unprecedented detail. The making of a global lineament map using all
available imaging data is our final goal. We are going to encompass
this with LineaMapper v2.0, which is going to be trained on the basis of
the cleansed regional mosaics. Furthermore, we need an algorithm that
joins the model predictions, which are output in small tiles, together.
This is showcased in Fig. 12.

Finally, it is conceivable that LineaMapper can be fine tuned andap-
plied to similar looking features such as wrinkle ridges on Venus, scarps
on Mercury, grooves and furrows on Ganymede (Fig. E.21) or dust devil
tracks on Mars. A preliminary test for wrinkle ridges on Venus in left
look Magellan Synthetic Aperture Radar (SAR) imagery data has shown
promising results (Fig. 13).
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Appendix A. Guideline for manual segmentation

See Fig. A.14.

Appendix B. Fully segmented images with feature count

See Figs. B.15 and B.16.

Appendix C. Performance on individual mosaics

See Tables C.6–C.11.

Appendix D. Machine learning basics - explanatory figures

See Figs. D.17–D.20.
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Fig. A.14. Guideline for manual segmentation.
Table B.5
Count of ground truth features in each observation.

Observation ID Total number Bands Double ridges Ridge complexes Undifferentiated Lineae

11ESCOLORS01-01 41 0 4 5 32
11ESREGMAP01EXCERPT1 142 12 49 12 69
12ESFRTPLT01EXCERPT1 43 5 15 2 21

14ESWEDGES01EXCERPT1 57 4 18 3 32
15ESREGMAP01EXCERPT1 108 4 11 4 89
17ESREGMAP01EXCERPT1 101 2 14 1 84
17ESREGMAP01EXCERPT2 99 7 9 1 82

17ESREGMAP03 260 20 4 10 226
25ESDARKBP01 112 3 19 5 85
E4ESMACSTR01 37 1 0 0 36
E6ESDRKLIN01 678 45 81 56 496
G7ESAPEXCR01 12 0 1 1 10
G7ESAPEXCR02 10 0 1 1 8
G7ESAPEXCR04 41 2 5 0 34
G7ESAPEXCR05 48 0 4 2 42

G7ESLOWFOT01 12 1 0 0 11
G7ESTYRMAC01 17 0 0 0 17
G7ESTYRMAC02 18 0 0 0 18

Sum 1836 106 235 103 1392
15
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Fig. B.15. Masks of segmented Galileo mosaics, separately displayed for the units (bands, double ridges, ridge complexes, undifferentiated lineae).
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Fig. B.16. Masks of segmented Galileo mosaics, separately displayed for the units (bands, double ridges, ridge complexes, undifferentiated lineae).
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Fig. D.17. Introduction of the intersection-over-union (IoU) metric. (a) The IoU is the ratio of the intersection of two objects A and B (in this case, two rectangles) over the union
of the two objects. (b) Examples for an IoU of 0.35, an IoU of 0.50 and an IoU of 0.80 are shown with two rectangles (boxes). (c) Example IoU-values of 0.35, 0.50 and 0.76 are
shown for two masks (a mask is a segmented object, in this case a lineament) are displayed, with the individual masks underneath for clarity. (d) Examples for both masks and
boxes are shown. A box is defined as the rectangle that holds the mask. The examples in (d) show that mask IoU values are in general by design lower than box IoU values.
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Fig. D.18. Full output of LineaMapper (maximal detections are set to 100) and the ground truth for one input test tile. (a) 100 detections of LineaMapper shown as binary masks
(mask threshold = 0.5) with their original boxes. The plots are sorted in descending order of probability scores, from left to right in rows from top to bottom. (b) The ground
truth masks are shown with their label and bounding box (computed from the mask). (c) The input tile. (d) The colour legend for the labels classifying the geological unit. (e)
The ground truth mappings (b) displayed on top of the input tile. (f) The full output of LineaMapper (a) displayed on top of the input tile.

Fig. D.19. Examples of true positives (a), false positives (b) and false negatives (c) for an IoU threshold of 0.5 and a score threshold of 0.5. Examples come from Fig. D.18.
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Fig. D.20. Precision and recall metrics explained in detail and showcased on one example.
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Table C.6
Same as Table 3 for bounding boxes in 14ESWEDGES01EXCERPT1.

unit AP0.35 AP0.50 AP AP𝑆 AP𝑀 AP𝐿 AR0.35 AR0.50 AR AR𝑆 AR𝑀 AR𝐿

bands 2.6 1.0 1.0 0.0 1.8 0.0 25.0 12.5 11.3 0.0 18.0 0.0
double ridges 48.8 45.3 31.6 5.4 24.5 58.2 53.5 51.2 35.8 5.0 30.6 62.7

ridge complexes 34.8 31.4 23.7 70.2 3.1 80.0 80.0 80.0 54.0 70.0 25.0 80.0
undiff. lineae 15.3 14.9 7.3 3.4 11.0 17.9 44.4 42.9 22.9 6.5 30.3 67.5

mean 25.4 23.1 15.9 19.8 10.1 39.0 50.7 46.6 31.0 20.4 26.0 52.5
Table C.7
Same as Table 3 for masks in 14ESWEDGES01EXCERPT1.

unit AP0.35 AP0.50 AP AP𝑆 AP𝑀 AP𝐿 AR0.35 AR0.50 AR AR𝑆 AR𝑀 AR𝐿

bands 1.0 1.0 0.2 0.0 0.4 0.0 12.5 12.5 2.5 0.0 4.0 0.0
double ridges 13.8 13.8 6.3 1.1 4.9 12.9 23.3 23.3 10.2 4.0 11.7 12.7

ridge complexes 45.0 34.8 15.6 8.7 4.7 50.0 100.0 80.0 32.0 25.0 30.0 50.0
undiff. lineae 9.6 7.8 2.8 0.7 10.5 0.0 19.0 15.9 6.5 1.9 10.9 0.0

mean 17.3 14.3 6.2 2.6 5.1 15.7 38.7 32.9 12.8 7.7 14.1 15.7
Table C.8
Same as Table 3 for bounding boxes in 11ESREGMAP01EXCERPT1.

unit AP0.35 AP0.50 AP AP𝑆 AP𝑀 AP𝐿 AR0.35 AR0.50 AR AR𝑆 AR𝑀 AR𝐿

bands 6.8 5.8 3.3 0.0 0.5 18.9 35.5 25.8 11.6 0.0 10.0 27.1
double ridges 22.4 18.8 11.0 6.6 10.4 27.8 38.5 34.6 20.3 10.8 16.9 47.4

ridge complexes 27.0 24.6 9.4 0.0 3.4 20.9 73.1 69.2 36.2 0.0 27.3 53.0
undiff. lineae 11.2 9.2 4.2 7.7 2.1 9.8 58.9 54.2 25.8 23.1 24.1 40.7

mean 16.8 14.6 7.0 3.6 4.1 19.4 51.5 46.0 23.5 8.5 19.6 42.1
Table C.9
Same as Table 3 for masks in 11ESREGMAP01EXCERPT1.

unit AP0.35 AP0.50 AP AP𝑆 AP𝑀 AP𝐿 AR0.35 AR0.50 AR AR𝑆 AR𝑀 AR𝐿

bands 2.7 0.8 0.5 0.3 0.1 8.9 16.1 9.7 3.9 2.9 2.4 8.6
double ridges 12.3 8.2 4.0 0.6 9.4 7.0 24.0 19.2 8.9 7.3 11.0 6.8

ridge complexes 12.6 5.0 2.5 0.0 1.7 21.4 69.2 50.0 22.3 0.0 24.7 21.0
undiff. lineae 2.9 2.1 0.6 0.7 4.7 0.0 25.2 19.6 6.3 8.8 5.1 0.0

mean 7.6 4.0 1.9 0.4 4.0 9.3 33.7 24.6 10.3 4.8 10.8 9.1
Table C.10
Same as Table 3 for bounding boxes in 17ESREGMAP01EXCERPT1.

unit AP0.35 AP0.50 AP AP𝑆 AP𝑀 AP𝐿 AR0.35 AR0.50 AR AR𝑆 AR𝑀 AR𝐿

bands 44.2 43.0 28.0 11.3 35.5 31.5 81.2 81.2 56.2 90.0 45.0 57.3
double ridges 40.1 39.4 21.8 3.9 27.8 0.0 60.6 57.6 34.2 15.0 38.2 0.0

ridge complexes 53.1 53.1 44.0 -100.0 1.8 85.0 100.0 100.0 67.5 -100.0 45.0 90.0
undiff. lineae 31.3 28.1 15.3 2.1 16.0 40.4 76.2 69.4 38.0 18.2 41.3 63.3

mean 42.2 40.9 27.3 5.7 20.3 39.2 79.5 77.1 49.0 41.1 42.4 52.7
Table C.11
Same as Table 3 for masks in 17ESREGMAP01EXCERPT1.

unit AP0.35 AP0.50 AP AP𝑆 AP𝑀 AP𝐿 AR0.35 AR0.50 AR AR𝑆 AR𝑀 AR𝐿

bands 41.5 14.8 13.2 50.0 8.8 15.4 62.5 37.5 26.3 50.0 35.0 20.9
double ridges 31.4 29.7 13.4 0.4 17.3 0.0 48.5 42.4 20.9 10.0 23.2 0.0

ridge complexes 50.5 50.5 35.3 -100.0 0.0 70.0 50.0 50.0 35.0 -100.0 0.0 70.0
undiff. lineae 20.3 15.3 6.1 0.4 12.2 14.0 51.2 41.9 17.2 14.3 18.9 13.9

mean 35.9 27.6 17.0 16.9 9.6 24.8 53.1 42.9 24.8 24.7 19.3 26.2
21
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Appendix E. LineaMapper on Ganymede

Fig. E.21. Performance of LineaMapper on Ganymede. Left: An image of the Galileo
Regio at a resolution of 160 m/px (81 km displayed width), showing a bright band and
dark terrain. Right: LineaMapper, which has only seen Galileo data of Europa during
training, predicts a band, running from top left to bottom right, and undifferentiated
lineae on both sides of the band. data source: https://photojournal.jpl.nasa.gov/catalo
g/PIA01616.
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