
1. Introduction
Multiple geologic and geochemical proxies collected over the past decades suggest that wetter environments 
prevailed in the early Martian climate, primarily during the Noachian and the Hesperian (∼3.9–3.5 Ga). This view 
is strongly supported by imprints of ancient valley networks, depositional rivers, lakes, and fan-shaped deposits 
that might have existed in arid to semiarid environments (e.g., Bahia et al., 2022; Davis et al., 2016; Dickson 

Abstract The first billion years of Martian geologic history consisted of surface environments and 
landscapes dramatically different from those seen today, with flowing liquid water sculpting river channels 
and ponding to form bodies of water. However, the hydro-climatic context, the frequency, and the duration 
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understanding of early Mars climate. Here, we reconstruct a long-lived archive consisting of an array of fluvial 
systems inside the Antoniadi crater––one of the largest lake basins on Mars (9.58 × 10 4 km 2). We found that 
the fluvial activity occurred throughout four major intermittent active intervals during the Late Noachian to 
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markedly increased surface runoff production. The record of these four riverine phases is preserved in fluvial 
ridges, valley networks, back-stepping or down-stepping fan-shaped landforms, and terrace-like formations 
within an outlet canyon. These morphologies point to lake-controlled base-level fluctuations suggestive of 
episodic precipitation-fed surface runoff punctuated by intermittent catastrophic floods that were capable of 
breaching crater-lake rims and incising outlet canyons. Fluvial-deposit thickness, junction angles of channels, 
and lake morphometry suggest that riverine systems lasted at least 10 3–10 6 years and episodically occurred 
under primarily arid and semi-arid climates. These findings place new regional constraints on the fluvial 
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Plain Language Summary The planet Mars is now a vast desert. However, geologic evidence 
points to radically different kinds of landscapes in the past, with precipitation-fed ancient rivers and lakes. As a 
consequence, questions have been raised about the climatic and environmental contexts that persisted during the 
formation of these hydrological records. Here, we have used high-resolution remotely sensed data to constrain 
the volumes, frequency, and periodicity of an array of water-formed landforms inside one of the largest lake 
systems on Mars that occupy the Antoniadi crater. We demonstrate that the Antoniadi crater was intermittently 
wet, hosting multiple rivers and at least two main bodies of standing water between 3.7 and 2.4 Ga. The 
morphometries of the lake and river systems imply that they episodically survived between a few thousand 
and 1 million years under arid climates. These findings make Antoniadi an interesting site for future Mars 
exploration dedicated to the potential ancient habitability of Mars because of such long-lived fluvial history.
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•  Antoniadi crater likely records at least 
four episodes of surface runoff

•  The river and lake systems at 
Antoniadi were probably active for 
10 3–10 6 years, supporting long-lived 
fluvial activity under arid climates
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et al., 2020; Grotzinger et al., 2015; Goudge et al., 2021; Hynek et al., 2010; Kite, 2019; Kite et al., 2019; Malin 
& Edgett, 2000, 2003; Mangold et al., 2021a; Stack et al., 2020; Williams et al., 2013; Wilson et al., 2021). Most 
of these water-formed landforms were likely formed in response to surface runoff, with groundwater sapping 
playing a lesser role (Higgins, 1982; Howard et al., 2005; Irwin et al., 2005; Lamb et al., 2006; Salese et al., 2019; 
Seybold et al., 2018). However, theoretical models have raised serious questions about the frequency, volume, and 
duration of the water that flowed on the early Martian surface, highlighting the difficulty of sustaining temper-
atures greater than the freezing point of water (e.g., Wordsworth et al., 2013, 2015). Such temperatures are not 
consistent with the hypothesis of a volume of liquid water that is sufficiently large enough to form a set of large, 
planetwide perennial lakes as well as carve extensive valley networks unless these deposits formed episodically 
during transient warm and wet intervals (El Maarry et al., 2010; Fassett and Head, 2008a, 2008b; Grotzinger 
et al., 2015; Hynek et al., 2010; Kite et al., 2021; Wordsworth et al., 2013, 2021). To tackle this fundamental 
issue, it is necessary to use robust geological clues that provide critical information that climate modelers can 
use as benchmarks for simulating Mars' past environments. Among Mars' geomorphological features, dry, eroded 
remnants of fluvial systems and ancient lake basins are abundant, globally distributed (e.g., Cardenas et al., 2017; 
Davis et al., 2016; Dickson et al., 2020; Fassett & Head, 2008a, 2008b; Goudge et al., 2021; Hynek et al., 2010), 
and serve as rich repositories for investigating past Martian environments (e.g., Grotzinger et al., 2015; Mangold 
et al., 2021a; Williams et al., 2013); they are also considered essential targets for investigating potential habita-
bility on early Mars (e.g., Grotzinger et al., 2015).

An extensive catalog of 265 crater lake candidates, based on outlet canyons and fans, has been created from 
several studies (e.g., Cabrol & Grin, 1999; Fassett & Head, 2008a, 2008b; Goudge et  al.,  2015, 2016; Irwin 
et al., 2005; Stucky de Quay et al., 2020). These candidate lakes can provide critical information as they repre-
sent a condensed archive of climatically driven fluvial processes that may have affected paleo-watersheds. We, 
therefore, reconstructed the systems that shaped the fluvial history of one of the largest open-basin lakes on Mars, 
Antoniadi crater. This impact basin has a diameter of ∼410 km, is located at 60.94°E, 21.10°N to the northwest 
edge of Syrtis Major Planum, and was likely formed nearly 4 Ga (Figure 1) (e.g., De Blasio, 2022; Fassett & 
Head, 2008a, 2008b). The flat part of the crater interior was interpreted by Tanaka (2014) to have been resurfaced 
by volcanic materials during the Early Hesperian. Additionally, previous work has proposed that during its early 
history, 5.5 × 10 5 km 2 of drainage basin supplied the Antoniadi crater with 3.10 × 104 km 3 of water, forming a 
large body of standing water that was responsible for creating an outlet canyon (Fassett and Head, 2008a, 2008b), 
∼3.8 Ga (De Blasio, 2022).

Prior work at Antoniadi crater has primarily concentrated on mapping the extent of large bodies of water in the 
region (Fassett and Head, 2008a, 2008b; Goudge et al., 2015), mapping the branched rivers standing as ridges 
in the modern landscape in the middle of the crater (Davis et al., 2016), or interpreting those branched ridges 
(e.g., De Blasio,  2022; Mangold et  al.,  2021b). The aforementioned research found that there is evidence of 
two large bodies of water, inverted channels, and possible involvement of volcanic or biogenic processes in the 
formation of the branching ridges (e.g., Davis et  al.,  2016; De Blasio, 2022; Fassett & Head, 2008a, 2008b; 
Goudge et al., 2015; Mangold et al., 2021b). This diverse array of water-formed landscapes provides a spectacular 
window into early Mars's environmental and climatic history.

In this paper, we constrain the frequency, duration, and climatic regime of fluvial activity during the formation 
and the evolution of the Antoniadi crater by reconstructing the paleo-morphology of various fluvial systems 
that fed this water body. Attaining this objective necessitates mapping and measuring the morphologies of the 
preserved remnants of ancient fluvial systems in and around Antoniadi, describing the depositional morphology 
and stratigraphy of the basin's fluvial sedimentary deposits, estimating the fluvial discharge and precipitation, 
constraining the aridity, and modeling age relationships. This study provides new regional constraints on the river 
and lake-forming environments that existed in and around the Antoniadi crater on early Mars.

2. Materials and Methods
2.1. Characterizing the Morphology and Stratigraphy of the Fluvial Systems

To explore the morphology and sedimentology of ancient fluvial deposits within Antoniadi crater and its 
proposed outlet canyon, as well as an attempt to extrapolate the depositional environments contained within, our 
study used images from the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX; ∼6 m/pixel; Malin 
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et al., 2007), the Colour and Stereo Surface Imaging System (CaSSIS; ∼4.6 m/pixel; Thomas et al., 2017), and the 
High-Resolution Imaging Science Experiment (HiRISE; ∼25 m/pixel; McEwen et al., 2007). In addition to the 
image data (Table S1 in Supporting Information S1), we used three digital terrain models (DTMs) from HiRISE 
(∼1 m/pixel) and CTX (∼20 m/pixel), a pair of stereo images that were specifically constructed for this study 
using the Integrated Software for Imaging Spectrometers (ISIS), and SocetSet software (following the methodol-
ogy of Kirk et al., 2008). We also used blended MOLA/HRSC gridded topographic maps (200 m/pixel) for vast 
areas that lack CTX and HiRISE stereo-pair coverage. Using stratigraphic correlations between the Antoniadi 
crater's rim and floor and the observed fluvial systems, we were able to divide the mapped fluvial landforms into 
four stages of deposition based on their relationship to Antonaidi's evolution. Also, morphometric characteristics, 
such as channel length, pattern, and width, were considered to refine our classification. Our observations and 
measurements of the fluvial landform morphometrics, including channel width and fluvial ridge thickness, were 
made using the measure distance and area tool in the ArcMap and Global mapper software packages (Figure 2).

Figure 1. Antoniadi crater paleolake basin, located at ∼60.94°E, 21.10°N (Fassett and Head, 2008a, 2008b). (a) Overview of shaded relief topographic map derived 
from the blended MOLA/HRSC gridded topographic map (200 m/pixel) showing the inferred paleolake occupying Antoniadi crater based on outlet canyon (∼500 m; 
Fassett & Head, 2008a, 2008b). It also shows the distribution of the other previously proposed water-formed landforms, including valley networks (Hynek et al., 2010), 
inverted channels (Davis et al., 2016), and other paleolakes (Davis et al., 2019; Fassett and Head, 2008a, 2008b; Goudge et al., 2016). The locations of fluvial systems 
discussed in this paper and their ages are also shown. The age scale shows where the figures described in the text are. The colors of the age scale represent the different 
timescales. (b) Profile A-A’ along the Antoniadi paleolake shows that the water breached the rims at ∼500 m, carving an outlet canyon.
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2.2. Chronology—Crater Retention Age and Stratigraphic Relationships

Although the age of the fluvial systems within the Antoniadi crater is unknown, crater counts per unit surface area 
(of specific geologic materials or geomorphic surfaces) can provide a means to estimate the upper limit of their 
age (e.g., Hartmann & Neukum, 2001; Michael, 2013); however, these measurements sometimes yield significant 
uncertainties that may lead to incorrect results (e.g., Warner et al., 2015). To correct these inconsistencies, we 
calibrated stratigraphic ages from published geological maps (Figure 3; Tanaka, 2014) to estimates obtained from 
crater counting. Also, we consider the stratigraphic relationships between the different phases of fluvial erosion 
and deposition (Figures 4–9). We carried out this crater-size frequency analysis using the Craterstats 2 software 
at three sites (Figures 4–6, 8, and 9; Michael & Neukum, 2010; Neukum, 1983).

2.3. Constraining the Paleo-Hydraulics and Climate Regime From Images

Many studies have used channel width as a proxy to estimate flow discharge on Earth and Mars (e.g., Dietrich 
et al., 2017; Eaton, 2013; Jacobsen & Burr, 2016, 2018; Kite et al., 2019; Williams et al., 2009). However, most 
of the paleo-river landforms within Antoniadi crater are eroded systems, leaving what used to be the river bed 
standing as elevated ridges in the present-day landscape (e.g., Zaki et al., 2021). Previous work in terrestrial 
environments estimated that discharge calculations based on the width of the fluvial ridge are a factor of 1–20 
greater than that inferred from slope and grain size information (e.g., Hayden et al., 2019; Hayden, Lamb, & 
Carney, 2021; Williams et al., 2009; Zaki et al., 2022). Despite the marked uncertainties involved in using these 
approaches, it is more feasible to quantify flow discharge rates on Mars using the former methodology, primarily 
because of the difficulty in measuring grain size and channel thickness from the available data (Kite et al., 2019). 
Also, whatever the uncertainty, the main objective of quantifying the discharge is to assess the magnitude of 
change between the different episodes. This would help track the development of fluvial history throughout the 
changing climate. Therefore, we selected the discharge-width relationship described in Eaton (2013), scaled to 
Martian gravity by Kite et al. (2015), and assumed that rivers on early Mars flowed slower than those on Earth 
(Equation 1). Here, we measured 94 ridges and channel width from three different fluvial intervals (Table S2 in 
Supporting Information S1; Figure 2).

𝑄𝑄w = [𝑊𝑊 ∕(1.257 × 3.35)]1.8656 (1)

We also use valley geometry, particularly angle junction, to determine whether Mars' environment at the time of 
the incision was dry or humid. Drainage networks in arid zones with higher surface runoff branch at substantially 
narrower angles (41°) than those in humid settings (72°) which experience more groundwater flow (e.g., Cang 
& Luo, 2019; Devauchelle et al., 2012). The branching angles can also be influenced by the slope (Castelltort & 
Yamato, 2013; Castelltort et al., 2009); however, Seybold et al. (2018) used a global analysis of junction angles 
on Mars and some terrestrial analogs on Earth to suggest that gradient variations were unlikely to affect the use 
of the junction angle as a proxy for climatic regimes. As such, we measured ∼300 junction angles to determine 

Figure 2. Cartoon showing how we measured the channel and ridge width as well as the junction angles.
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whether these drainage networks formed under relatively arid or humid Martian conditions (Figure 2, Figure S2 
and Table S2 in Supporting Information S1).

We also used lake area, lake volume, and watershed area of the Antoniadi crater that were constrained from 
MOLA and HRSC data by Fassett and Head (2008a, 2008b) to cross-validate the minimum aridity index (AImin, 
Equation 2) and bring a new constraint on the minimum precipitation (PT,min, Equation 3). The aridity index 
ranges from less than 0.05 for hyper-arid to more than >0.75 for hyperhumid environments. This approach has 
already been used to quantify precipitation and aridity on Mars (Stucky de Quay et al., 2020).

AImin = AL,O∕
[

𝐴𝐴L,O + 𝐴𝐴W,O

]

 (2)

𝑃𝑃T,min = 𝑉𝑉L,O∕
[

𝐴𝐴L,O + 𝐴𝐴W,O

]

 (3)

where AL,O is the lake area (km 2), AW,O represents the watershed area (km 2), and VL,O is the lake volume (km 3).

2.4. Constraining the Duration of Fluvial Activity

In order to approximate the duration of fluvial activity, we used thickness measurements of fluvial deposi-
tional rivers (fluvial ridges) as a proxy. This can be calculated simply by dividing the ridge thicknesses by the 

Figure 3. (a) Distribution of wholly eroded craters. (b) Context Camera image of a 17-km-diameter exhumed meander, 
indicating significant erosion rates at Antoniadi crater.
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aggradation rates of Earth's fluvial depositional systems. Most of the terrestrial aggradation rates from ancient 
fluvial systems range from 0.01 to 0.7 m/kyr (Colombera et al., 2015).

3. Observations and Results
3.1. Geomorphic and Chronologic Evolution

The Antoniadi crater and its surroundings show dark-toned material resurfacing the floor, coupled with exten-
sive erosional surfaces, including fluvial ridges and exhumed craters, which suggests a substantial exhumation 
and burial role in shaping its geological history. We discuss the fluvial ridges in detail in the following sections 
since they represent a significant part of Antoniadi's fluvial history. Here, we show that the erosion is not only at 
the scale of fluvial ridges (a few to tens of meters of vertical erosion based on the ridge thickness). Instead, our 
mapping of 18 completely eroded craters with diameters ranging from 1 to 70 km suggests that such craters would 
have depths of up to a few kilometers (now eroded away, recording a few kilometers of erosion, Figure 4). Despite 
this significant burial and erosion, a regional-scale survey of the Antoniadi crater's fluvial landforms shows 
relics of various fluvial erosional and depositional systems, including fluvial ridges, valley networks, fan-shaped 
deposits, and the outlet canyon, which can be traced to the crater's western and northern rims as well as its center. 
The patchiness of the fluvial record in the eastern and southern rims is likely attributable to differential erosion or 
burial by subsequent volcanic episodes; for example, Hesperian lava flows (Figure 4; Tanaka, 2014). The fluvial 
system morphology is locally sourced and varies significantly. We used morphologic attributes and stratigraphic 
relationships to classify these features into four key fluvial intervals over nearly 1 billion years (Figure 4).

Our investigation of stratigraphic relationships reveals that the earliest unit dates back to the early and mid-Noachian 
eras, which apparently once filled the entire basin. Subsequently, the crater was resurfaced by volcanic products 
from the early Hesperian period. Finally, a Hesperian to Amazonian impact crater is superimposed on the western 
rim of the Antoniadi, marking the concluding stage of the basin's geologic evolution.

In correlation with our scrutiny of fluvial remnants, we found that the outlet valley was incised into early 
Noachian rocks (Section  3.1.1), followed by fluvial landforms that are remarkably preserved within the 
Hesperian-Amazonian crater (Section 3.1.2). The Hesperian-Amazonian crater's ejecta displayed a source-to-sink 
fluvial system overlaid by volcanic products (Section  3.1.3), which was likely accumulated during the early 
Hesperian era. Above the volcanic unit, we identified a suite of branched ridges situated in the center of the 
Antoniadi basin (Section 3.1.4). This feature likely represents the final phase of fluvial activity. Collectively, 

Figure 4. A geological map showing the locations of the four fluvial intervals (adapted from Tanaka, 2014). The map 
indicates that the first interval was carved within the eNH formation (early Noachian), followed by the second interval during 
AHi (Hesperian to Early Amazonian). The third interval spanned the early Hesperian, after which the crater floor underwent 
resurfacing due to volcanic activity (eHv). The final interval occurred subsequent to this resurfacing event.
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these observations and their stratigraphic correlations suggest the existence of a record of at least four intervals of 
fluvial activity, stretching from the early Noachian to beyond the early Hesperian period.

3.1.1. The Early Growth of the Antoniadi Paleolake (>3.7 Ga)

We traced the Antoniadi crater rim to map the fluvial systems that were involved in filling the whole Antoniadi 
crater, forming an ancient lake (Figure 1 and Figure S1 in Supporting Information S1). These systems were esti-
mated to have occurred over an area of 550,000 km 2 (Fassett & Head, 2008a, 2008b); however, we were unable 
to detect any relics from the first episode of fluvial activity, except an outlet canyon (Figure 5). This prominent 
erosional feature occurs in the northern rim of Antoniadi crater at an elevation of ∼500 m; it is clustered in a 
∼1–4 km wide, ∼300 m depth, and ∼100 km long drainage system that is presumed to have directed water and 
sediments into another crater (Figure 5). The outlet canyon exhibits well-preserved interior terrace-like features 
or inverted cutbank deposits (Figure 5).

Based on the lake morphometries, including watershed, lake volume, and lake area, Fassett and Head (2008a, 
2008b) found that the lake empirically required minimum precipitation of ∼56 m to fill the entire lake (PT, min. 
Equation 3), reach an elevation of ∼500 m, and incise an outlet canyon. Using the previous lake parameters in 
Equation 2, we calculate the minimal aridity index to be 0.148, suggesting an arid environment, given that the 

Figure 5. (a, b) Mosaic of four Context Camera images of the outlet canyon that formed due to floods breaching the 
Antoniadi crater rims. We recognize terrace-like features that formed within the outlet canyon, implying that the formation 
of the outlet canyon and the hydrologic cycle within Antoniadi was episodic (P20_008967_2064_XN_26N299W; 
N10_066223_2072_XN _27N299W; N05_064482_2071_XI_27N298W; B01_010101_2053_XN_25N298W).
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Figure 6. (a) Context Camera (CTX) mosaic shows the source-to-sink of three fluvial systems that developed within 
an unnamed ∼65 km diameter (21°28′45.44″N; 57°52′55.65″E). (b) Perspective view from CTX mosaic derived from 
Google Mars displays one of these fluvial systems that record valley networks carved in a bedrock, transferring sediments 
and water through a trunk valley and forming multiple fans accumulated at various elevations. (c) Colour and Stereo 
Surface Imaging System image showing sedimentary structures of one of these fans; multiple layers are stacked within the 
fan (MY35_008677_022_0). (d) CTX image showing an ideal Gilbert-type delta within the crater (P16_007161_2011_
XN_21N301W). (e) Observed layering within the crater may indicate either a paleoshoreline or crater ejecta (HiRISE: 
ESP_066144_2015).
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Figure 7. (a) Portion of the fluvial system within the same crater shows fluvial ridges connected to multi-storey fan-shaped 
deposit (CTX: P13_005948_2017_XN_21N302W). (b, c) High-Resolution Imaging Science Experiment portions show 
trajectories of either back-stepping or down-stepping of the most bottom part of the delta; the undulating margin of the 
delta layers might correspond to either erosional randomness or a channel with possible overbank deposits overlaid by two 
younger layers that can be traced back (ESP_026162_2020). (d, e) Schematics of a longitudinal cross-section showing how 
back-stepping and down-stepping might have occurred during lake-level rise or the lake-level fall.

 21699100, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007606 by U
niversitat B

ern, W
iley O

nline L
ibrary on [31/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Planets

ZAKI ET AL.

10.1029/2022JE007606

10 of 21

Figure 8. A key map showing main sites that have been dated using crater counting. (a) Crater count of craters superposing the fluvial landforms within the unnamed 
crater shows the best fit to the 3.7 ± 0.1 Ga for the second major interval of the fluvial activity (see Figure S3 in Supporting Information S1). (b) The age of the 
volcanic unit that superimposes a fan-shaped deposit sourced from the western rim of Antoniadi crater (Figure S4 in Supporting Information S1). (c) Plots of the 
cumulative size-frequency distribution of craters on the branched ridges with the fitted model age show that the third interval must be older than 2.4 Ga (Figure S5 in 
Supporting Information S1). (d) Cross section shows the elevation and the geologic units evolution described in the paper.

 21699100, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007606 by U
niversitat B

ern, W
iley O

nline L
ibrary on [31/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Planets

ZAKI ET AL.

10.1029/2022JE007606

11 of 21

Figure 9. A mosaic showing a source-to-sink fluvial system on the western rim of the Antoniadi crater (22°47′30″N; 
57°48′55″E). The image shows that a fluvial system overlies crater ejecta that dates back to 3.7 Ga and is capped by 
a volcanic unit that resurfaced the floor of the Antoniadi crater at 3.3–3.2 Ga. (b–d) Close-up images derived from 
High-Resolution Imaging Science Experiment showing fluvial ridges in the source zone and fan-shaped deposits in 
the sink zone. The fan-shaped deposit is capped by a volcanic unit, as seen in portions (b, d) (ESP_064891_2030; 
ESP_071737_2025). (e) Profile A-A’ of slope changes from the erosion to the deposition zones; the profile was derived from 
the blended MOLA/HRSC.
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arid climate ranges from 0.05 to 0.2. However, this aridity index is a minimum estimate; a higher index could 
potentially be viable, which means that other climate regimes might have punctuated Antoniadi's geological 
history.

3.1.2. Post-antoniadi Paleolake Fluvial Activity (∼3.7 Ga)

Following the filling of the first Antoniadi crater, an unnamed ∼65 km-diameter crater was superimposed on 
the western rim of the first inferred lake within Antoniadi. This superimposition stratigraphically confirms that 
the fluvial landforms within the ∼65 km-diameter must be younger in the first episode. Our CTX, HiRISE, and 
CaSSIS observations of fluvial and lacustrine landscapes revealed an array of several canyons, three fan-shaped 
deposits, and fluvial ridges (Figure 6). The canyons are ∼1–4 km wide, ∼5–15 km long, and have a depth that 
does not exceed ∼300 m. These canyons have a dendritic upstream pattern and connect downstream to main 
trunks, which would have removed water and sediments, and formed fan-shaped deposits. One of these fans 
seems to have accumulated at multiple levels as shown in Figure 6, indicating changes in either water level or 
accommodation. The areas of the fan-shaped deposits range from 23.6 to 47.7 km 2; tracing the source-to-sink 
of these fans shows that the water and the sediments were transported from drainage basins with areas roughly 
ranging from 21 to 324 km 2. The measured catchment area that might have filled this crater and formed fans does 
not exceed 2,000 km 2. The fans accumulated at three distinctive elevations, ranging from ∼−1,100 to ∼−500 m, 
suggesting local areas prone to ponding (Figure 6 and Figure S2 in Supporting Information S1). The exposed 
fluvial sedimentary deposits include sedimentary beds stacked within the fans and contacts between these beds 
(Figure 6). One of these fan-shaped deposits is connected to a series of valley networks, where the main trunk is 
in the form of a standing ridge (Figure 7a). The thickness of this ridge-bearing fan ranges from 62 to 127 m and is 
up to ∼1.5 km wide; multiple layers show a channel belt stacking pattern. At the base of the ridge, a ∼230-m-wide 
channel fill is observed with possible lateral deposits, overlain by down-lapping layers that show geometric 
evidence for either back-stepping (possibly recording a transgression?) (Figures 7b–7d), or a down-stepping due 
to a fall in the lake level (Figure 7e). Our crater size-frequency data show an age of ∼3.7 Ga (late Noachian) for 
the fluvial deposits accumulated within the crater; this suggests that the crater must be of the same age or older 
(Figures 4 and 8).

3.1.3. Pre-Volcanism Fluvial Activity (∼3.7–3.2 Ga)

The northwestern rim of Antoniadi crater exhibits numerous fossil fluvial systems that were locally incised into 
an early Noachian bedrock over an area of 5,000 km 2 (Figure 9). These systems were subsequently transported 
above the previous crater's ejecta that dated back to ∼3.7 (Figure 8). They ranged from single-thread to branching 
channel patterns (Figure 8) and presumably captured water and sediments at elevations of ∼1,850 m and termi-
nated in the crater at elevations of ∼600 and ∼250 m. Those channels terminate at ∼250 m, leaving a fan-shaped 
deposit that is superimposed by a volcanic unit, limiting the age of this episode to occur between 3.7 and 3.2 Ga 
(Figure 8).

Southwest of the fan, there is a ∼33-km diameter crater that shows a relatively fresh ejecta texture compared to 
its surroundings dropping into the crater that dated back to ∼3.7 Ga, reflecting at least a younger age than the one 
dated back to 3.7 Ga. We did not observe any complex fluvial features except an outlet valley (Figure 6a; Figure 
S6 in Supporting Information S1). There is a clear absence of any catchment area. However, filling a lake to the 
breach level (945 m) likely formed a body of water with an area of nearly 500 km 2 (Figure S6 in Supporting 
Information S1).

3.1.4. Late-Stage Fluvial Activity (∼3.2–2.4 Ga)

A suite of broad, dark-toned, multi-branched ridges (dendritic pattern) exists near the Antoniadi basin center 
(Figure 10). These fine-scale ridges closely approach, and in some cases connect to, a larger ridge that sepa-
rated the two ridge systems (the southern system and the northern system). Using a HiRISE DEM, we found 
ridges 1–5 m high and have widths ranging from tens to a few hundred meters with lengths less than 9 km. 
However, the large ridge is nearly 1 km wide and ∼20 km long. The large ridge currently slopes toward the west 
(Figure 11). However, the present-day slope is likely affected by the existence of major faults and a prominent 
ridge-resembling wrinkle ridge system, as shown in Figure 11. A CTX DEM shows that the ridge network (former 
streams) originated from relatively elevated topography in the north and met at a confluence in the main ridge 
(former trunk valley?) (Figure 8). However, the dendritic ridges in the south run opposite the slope (Figure 11). A 
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wrinkle ridge system occurs toward the south, and thus the southern branched ridge system might have run to the 
opposite because of post-depositional NE tilting (tectonic?) (Figure 11; Figure S7 in Supporting Information S1).

The HiRISE Anaglyph stereo pair reveals that many ridges stand in negative relief that resembles paleo-channels 
that did not form along with the current topography (Figure 10). Some exposed portions of the primary trunk 

Figure 10. An array of short and stubby branched ridges. (a) A set of branched ridges preserve former channels. 
The tributary generally followed toward a larger, central trunk, which currently slopes toward the west side (CTX; 
P15_007095_2017_XI_21N299W). (b) A portion of CaSSIS color image (MY35_013494_159_0) shows the branched 
ridges. (c, d) High-Resolution Imaging Science Experiment close-up of the central trunk showing layering within the ridge 
(ESP_034311_2020). (e, f) 3D anaglyph close-up portions of a branched ridge. It is clear that the ridges stand within a 
paleochannel (HiRISE; ESP_012435_2015).
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exhibit meter-scale layering within the ridge (Figure 10). The ridges are made up of blocks that are up to 6 m in 
diameter. Taken together, these observations lead to the conclusion that networks might have formed in response 
to surface runoff.

Impact crater size-frequency statistics of the unit of the branched ridges (Figure 8) indicate a 2.4 Ga age (Early 
Amazonian). This shows that their formation occurred before 2.4 Ga. Given that the branched ridges occur over 
the ∼3.2 Ga-old volcanic unit, they must have formed between 3.2 and 2.4 Ga ago.

3.2. Discharge Rates and Junction Angles

Calculations of paleodischarge (Figure 12a) were obtained by combining 94 channel and ridge width measure-
ments from three intervals with an empirical, gravity-corrected width-discharge relationship (Equation  1). The 
second interval of fluvial activity was found to be more intense than the third episode, with an average discharge 
of (3.03 ± 0.87) × 103 m 3 s −1 based on the measurements of 28 ridges as well as the incised valleys (Table S1 in 
Supporting Information S1). However, paleodischarge estimates calculated from the widths of 41 fluvial ridges 
formed during the first fluvial interval range from (1.01 ± 0.03) × 103 to (7.6 ± 2.2) × 103 m 3 s −1, with an average 
of (2.3 ± 0.67) × 103 m 3 s −1 (Table S1 in Supporting Information S1). The last interval was found to have a lower 
discharge but from a smaller drainage area, with an average of (1.12 ± 0.34) × 103 m 3 s −1 determined from 26 width 
measurements (Table S1 in Supporting Information S1). Dividing the mean discharge of each interval by the rough 
estimate of the whole catchment area forming that interval gives us a rough estimate of the runoff production, which 
ranges from 1.5 mm/hr for the second interval to 13 mm/hr for the fourth interval. These estimates are subject to be 
over-estimated if they preserve channel belts and not channel fill, in which they record lateral migration and vertical 
aggradation built over a significant geological time (e.g., Dong & Goudge, 2022; Hayden, Lamb, & Carney, 2021).

Figure 11. (a) Map of the branched ridges, wrinkle ridges, and major faults overlaid on the blended MOLA/HRSC mosaic shows that the drainage network is 
topographically confined, representing tributary systems on both sides (south and north). Then, they drained into a central trunk. (b) Profile A-A’ of slope along the 
drainage system suggests that tectonic/volcanic uplifts mainly control the system. The red dotted line simply represents the proposed paleo-topographic profile. (c) B-B’ 
profile shows the slope of the branched ridges northern the main trunk. This profile is consistent with the scenario of a tributary drainage system, shown the idea that 
the ridges south of the main trunk might have tilted after the formation. The red dotted profile shows the idealized fluvial profile. (d) C-C’ longitudinal profile of the 
wrinkle ridge system shows how the slope increases in the north and drops down in the south. Such a profile suggests that a post-depositional NE-tilting might have 
taken place in the region.

 21699100, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007606 by U
niversitat B

ern, W
iley O

nline L
ibrary on [31/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Planets

ZAKI ET AL.

10.1029/2022JE007606

15 of 21

A regional survey of the branching angles from ∼300 tributary streams at Antoniadi crater shows that the junc-
tions from the three intervals range from 33.5° to 38° (Figure 12b). Although the valley networks that formed 
during these three fluvial intervals span a significant period of geological time and are located on a wide range 
of slopes ranging from crater rims to vast plains, their junction angles differ only slightly, with variations of ∼5° 
(Figure 12b). This supports the idea that the slope might not significantly change the junction angles.

Figure 12. (a) A kernel density estimate (smoothing parameter) of width-discharge rates calculated from three major 
episodes of fluvial systems within the Antoniadi crater. When dividing the mean channel-forming discharge of each episode 
by the drainage area leads to the runoff production. (b) Plots of 300 measured junctions from the three intervals showed that 
the mean for these intervals ranging from 34° ± 1° to 38° ± 6°.
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4. Discussion
Our results place new regional constraints on the hydro-climate history of Antoniadi crater, the site of a poten-
tial, persistent, large lake on early Mars; as such, our results provide new insights into the nature and timing of 
early Martian hydroclimate. Four major fluvial intervals identified here are interpreted to have involved locally 
sourced fluids and may have developed under episodic conditions over significant geological time, suggesting 
that the early Martian climate was episodically warm enough to sustain the fluvial activity. This may have been 
accomplished either by snow melting, rainfall, or groundwater-fed surface runoff on the planet's surface during 
its early history (Noachian to Hesperian or Early Amazonian) (e.g., Bahia et al., 2022; Cardenas et al., 2022; 
Carr, 1995, 1996; Davis et al., 2016; Dickson et al., 2020; Grau Galofre et al., 2020; Grotzinger et al., 2015; 
Hynek et al., 2010; Kite & Noblet, 2022; Kite et al., 2019; Lamb et al., 2006; Malin & Edgett, 2003; Mangold 
et al., 2021a; Salese et al., 2019; Williams et al., 2013). Our geomorphic observations suggest multiple episodes 
of fluvial activity within Antoniadi crater, likely driven by several warming events. Nevertheless, these obser-
vations do not conclusively establish the atmospheric conditions that would have facilitated surface runoff in 
this region. Our results identify at least three distinct episodes characterized by the presence of an outlet valley, 
fans, valley networks, and fluvial ridges. These features could be attributed to precipitation events (either rain or 
snowfall) or subsequent ice melting. The distinct morphological features of the stubby, branched ridges indicate 
the possible role of groundwater seepage in the formation of the fourth episode.

The absence of any geomorphic remnants of fluvial systems on the rims of Antoniadi hinders our ability to under-
stand the nature of the first fluvial episode that filled and breached the Antoniadi crater during its early growth. 
However, our observations reveal that the outlet canyon exhibits terrace-like features at two major elevations or 
inverted cutbank deposits (Figure 5), implying that its incision occurred over at least two stages during periods 
of higher standing water levels (Fassett & Head, 2008a; Goudge & Fassett, 2018; Goudge et al., 2018; Gupta 
et al., 2017). The stratigraphic relationships suggest that this interval must have occurred before ∼3.7 Ga (i.e., 
the age of the second episode); it was likely to have occurred between ∼3.81 and 3.74 Ga, which is the age of 
the oldest-known valley networks in Syrtis Major Planum (e.g., Fassett & Head, 2008b; Jaumann et al., 2010). 
Together, these observations may indicate multiple hydrologic cycles driven by episodic high-energy flooding, 
which is consistent with recent observations from the rover at Jezero crater (Mangold et al., 2021a); orbiter data 
suggest that this may have been a global occurrence (e.g., Goudge et al., 2021; Grau Galofre et al., 2020; Hughes 
et al., 2019). The volume/area relationship suggests that the watershed required to fill and breach the raised crater 
rim is ∼550,000 km 2 (Fassett & Head, 2008a); however, we could not trace any relics of this watershed, empha-
sizing the role of either erosion or burial in the reconstruction of the early Martian paleo-morphology. This is also 
consistent with our mapping of fluvial ridges and eroded craters.

The preservation of the structures formed during the second fluvial episode is much better than in the first 
episode, allowing us to observe sedimentary structures, which include the layering within fans, channels stacked 
within the fans, possible overbank deposits, and back- or down-stepping sedimentation patterns associated with 
these fans (Figures 6 and 7). Furthermore, we observed layering within the crater rim that could reflect the lacus-
trine deposition (Figures 6 and 7). Our age model affirms that the fluvial systems were active ∼3.7 Ga and peaked 
runoff around the time of the Noachian-Hesperian boundary (e.g., Davis et al., 2016; Dickson et al., 2020; Fassett 
& Head, 2008b; Kite et al., 2019; Mangold et al., 2004). The observations of lake-level fluctuations recorded 
by the deposition of fan-shaped deposits support the conclusion that these features were likely formed within a 
body of standing water. The basin topography and the fans observed at multiple elevations suggest that the base 
level of this water body changed over time (Figure 13), which is consistent with a scenario that involves the 
episodic formation of sedimentary structures associated with fluctuations in the water body. Such a scenario was 
recently proposed based on in situ observations at the Jezero crater and from orbiter data (e.g., Davis et al., 2018; 
Grau Galofre et al., 2020; Hughes et al., 2019; Mangold et al., 2021a; Vijayan et al., 2020). The elevation of 
these fans indicates that the lake within the crater could have exhibited up to three distinct water levels during its 
formation, as for the Gale crater (Palucis et al., 2016).

At the center of the Antoniadi crater, we interpreted a set of short and stubby branched ridges to be former chan-
nels inverted in the modern landscape using differential erosion processes. The short and stubby channels usually 
form by groundwater sapping, similar to those formed on Earth (e.g., Schumm et al., 1995). This interpretation is 
based on our observations that include the network organization, possible layering, and the remnants of a paleo-
channel in negative relief (Figures 10 and 11). This interpretation is inconsistent with recent studies that proposed 
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that these branched ridges might have been formed by viscous flows (Mangold et al., 2021b). This mechanism 
does not create such a network organization (Figures 10 and 11), in contrast to fluvial channels. The formation of 
these networks by groundwater seepage likely required a warm and wet climate since it is not common to release 
groundwater in a cold climate (e.g., Abotalib & Heggy, 2019; Tosca et al., 2018). Also, the presence of fractures 
and faults likely played an important role in triggering the groundwater release. Subsequently, it is possible that 

Figure 13. The Antoniadi fluvial system's primary growth phases. (a) The inferred paleolake level inside the Antoniadi crater at the time of the formation of the 
northern outlet canyon, when the lake likely breached the rims during catastrophic floods, forming an outlet canyon at an elevation of ∼500 m. The lake boundary is 
tentative and subject to uncertainty, considering the influence of burial and erosion in modifying the Antoniadi basin. The first episode was likely before 3.7 Ga. (b) 
A new paleolake was recognized based on three fan-shaped deposits, and layering possibly records a lacustrine environment, which was possibly active at ∼3.7 Ga. 
Based on the elevations of the fan-shaped deposits, we propose three lake levels (∼−1,100, ∼−700, and ∼−500 m). North of the paleolake; (1) a crater that was filled 
and breached at an elevation of 945 m, (2) and a source-to-sink fluvial system that is currently capped by a volcanic unit. These fluvial features could have been formed 
between 3.7 and 3.2 Ga. The shaded relief topographic maps in (a) and (b) derived from the blended MOLA/HRSC gridded topographic map. (c). In Antoniadi's center, 
there is a set of branched ridges that we interpret as ancient streams. The background was derived from CTX. These ridges might have formed at some point between 
3.2 and 2.4 Ga. (d) A geologic time history of Antoniadi shows the estimated discharge, duration, and climatic regime.
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viscous or volcanic flows filled them (Mangold et al., 2021b), making them more resistant to differential erosion 
to appear as ridges in the modern landscape.

The minimal thickness of the fluvial systems dated back to the second and fourth intervals allows us to provide 
rough estimates for the minimum duration of the fluvial environments that persisted within the Antoniadi crater. 
Given the 62–127 m from the fluvial ridges and fans of the second interval, a minimum duration of 0.181–1.26 Ma 
is obtained, assuming a mean sediment aggradation rate of 0.01–0.7 m/ka (Colombera et al., 2015). Applying 
the same approach to the third interval yields a minimum duration of 1.4–100 ka. Fluvial sediment accumulation 
rates can vary significantly by at least 11 orders of magnitude (Sadler, 1981; Sadler & Jerolmack, 2014); hence, 
the estimated duration was modified to fall within a range of 10 3–10 6 years, excluding the dry intervals. Our 
duration estimates align with previous studies of Mars' fluvial deposits (Balme et al., 2020; Cardenas et al., 2022; 
Hayden, Lamb, & McElroy, 2021; Lapôtre & Ielpi, 2020; Salese et al., 2020; Stucky de Quay et al., 2019, 2021).

The climatic regime can be inferred from the channel angles of the valley networks (Cang & Luo, 2019; Seybold 
et al., 2018). Our measurements show that the mean junction angles for each of the three intervals are between 
33.5° and 38° (Figure 12), similar to those observed in arid zones on Earth (Seybold et al., 2018). This suggests 
that three of four intervals of fluvial activity were preserved and expressed at the Martian surface in the Antoniadi 
crater formed under an arid climate. This suggestion is congruent with the minimum aridity index calculated from 
the paleolake morphometry, which yields an estimate of the aridity index at 0.18. These suggestions are aligned 
with a planetwide analysis of Martian valley networks (Cang & Luo, 2019; Seybold et al., 2018) and paleolakes 
(Stucky de Quay et al., 2020). However, the aridity index derived from lake morphometry could be minimal, 
considering the role of exhumation and burial in shaping the present-day Antoniadi paleo-lake morphometry. 
Therefore, there is a possibility that there was a more humid past with either snow melting or rainfall-fed surface 
runoff that was responsible for filling those lakes.

Many studies have previously reported upon observations that suggest that early Mars might have had climate 
conditions that could sustain rivers and lakes (e.g., Baker,  2001; Carr,  1995; Davis et  al.,  2016; Grotzinger 
et  al.,  2015; Kite et  al.,  2019; Malin & Edgett,  2003; Mangold et  al.,  2021a; Williams et  al.,  2013; Wilson 
et al., 2021). The fluvial systems at the Antoniadi crater have allowed us to assess the stratigraphic relationship 
between the four major episodes of fluvial activity capable of forming and sustaining two paleolakes (Figure 13). 
Furthermore, the geometry (width and thickness) of the relic fluvial systems, coupled with the measured junction 
angles, provide insights into the flow conditions as well as rough estimates of the duration and the climatic regime 
that persisted at Antoniadi crater during its early history. Together, our observations, measurements, and estima-
tions hint at the existence of long-lived and episodic fluvial processes that persisted under arid conditions on early 
Mars. Along with other geologic lines of evidence, these findings point to potential episodic warming events that 
enabled periodic surface runoff events under arid climates.

5. Conclusions
The fragmentary archive of fluvial activity at the Antoniadi paleolake suggests that the crater, which is presently 
a hyper-arid desert, hosted at least two large lakes that persisted intermittently across three fluvial intervals during 
the late Noachian and Early Hesperian (∼3.7–2.4 Ga). Our geomorphic and stratigraphic observations, which 
included terrace-like forms within the outlet canyon, show that the first interval involved episodic discharges 
that likely resulted in sustained fluvial activity but were dotted by catastrophic floods that carved the outlet 
canyon. The preservation of the second interval allowed us to observe multiple valley networks and fluvial ridges 
accumulating within the crater, forming fans at multiple elevations, recording a back-stepping or down-stepping 
trajectory, and bearing evidence of lake-level fluctuations. Subsequently, we observed an array of branched ridges 
and fan-shaped deposits that are stratigraphically distinct, supporting episodic surface runoff, which continued 
after the formation of the first two intervals. The climatic regime and discharge flow rates were constrained by the 
geometries of the fluvial systems, implying prolonged riverine processes over the course of thousands to millions 
of years under arid climates. Overall, our results support the hypothesis that episodic warming punctuated the 
climate of early Mars, better elucidating the apparent paradox of flowing water on a now-frozen planet.
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Data Availability Statement
The following standard data products mentioned in the manuscript are freely accessible via NASA Planetary 
Data Systems. (a) CTX (Malin, 2007). (b) HiRISE (McEwen, 2007). (c) MOLA (Fergason et al., 2018; Neumann 
et  al.,  2003). (d) CaSSIS: CaSSIS data are available through the ESA Planetary Science Archive (accessed 
CaSSIS, 2023). DTMs, measurements, and calculations are archivedachieved in Zaki (2022).
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