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Abstract
This study investigated the impact of ComBat harmonization on the reproducibility of radiomic features extracted from 
magnetic resonance images (MRI) acquired on different scanners, using various data acquisition parameters and multiple 
image pre-processing techniques using a dedicated MRI phantom. Four scanners were used to acquire an MRI of a nonana-
tomic phantom as part of the TCIA RIDER database. In fast spin-echo inversion recovery (IR) sequences, several inversion 
durations were employed, including 50, 100, 250, 500, 750, 1000, 1500, 2000, 2500, and 3000 ms. In addition, a 3D fast 
spoiled gradient recalled echo (FSPGR) sequence was used to investigate several flip angles (FA): 2, 5, 10, 15, 20, 25, and 
30 degrees. Nineteen phantom compartments were manually segmented. Different approaches were used to pre-process each 
image: Bin discretization, Wavelet filter, Laplacian of Gaussian, logarithm, square, square root, and gradient. Overall, 92 
first-, second-, and higher-order statistical radiomic features were extracted. ComBat harmonization was also applied to the 
extracted radiomic features. Finally, the Intraclass Correlation Coefficient (ICC) and Kruskal-Wallis’s (KW) tests were imple-
mented to assess the robustness of radiomic features. The number of non-significant features in the KW test ranged between 
0–5 and 29–74 for various scanners, 31–91 and 37–92 for three times tests, 0–33 to 34–90 for FAs, and 3–68 to 65–89 for 
IRs before and after ComBat harmonization, with different image pre-processing techniques, respectively. The number of 
features with ICC over 90% ranged between 0–8 and 6–60 for various scanners, 11–75 and 17–80 for three times tests, 3–83 
to 9–84 for FAs, and 3–49 to 3–63 for IRs before and after ComBat harmonization, with different image pre-processing 
techniques, respectively. The use of various scanners, IRs, and FAs has a great impact on radiomic features. However, the 
majority of scanner-robust features is also robust to IR and FA. Among the effective parameters in MR images, several tests 
in one scanner have a negligible impact on radiomic features. Different scanners and acquisition parameters using various 
image pre-processing might affect radiomic features to a large extent. ComBat harmonization might significantly impact the 
reproducibility of MRI radiomic features.
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1  Introduction

Magnetic resonance imaging (MRI) provides detailed, 
clinically relevant images of soft tissue structures, which 
are impossible to attain via any other non-invasive medical 
imaging modality [1–4]. Therefore, it is frequently uti-
lized for cancer diagnosis, staging, and follow-up. How-
ever, contrary to positron emission tomography (PET) and 
computed tomography (CT), which provide images coded 
in Hounsfield and kBq/mL units, MRI intensity gray levels 
do not use a particular standard unit owing to the lack of 
intensity for each specific tissue [1–4]. Consequently, the 
intensity varies for the same MRI scanner, imaging pro-
tocol, and biological tissue, hence the necessity of inten-
sity normalization [1–4]. Moreover, the radiomic feature 
reproducibility extracted from MR images is affected by 
numerous parameters, including but not limited to mag-
netic field strength, gradient strength, MR sequence, image 
acquisition protocol, and reconstruction algorithm [1–4].

In combination with machine learning, extracting high-
throughput quantitative measures from medical images, 
referred to as radiomics, is used to create models for pre-
diction, screening, diagnosis, response to treatment, and 
prognosis using medical images and clinical data [1, 3–5]. 
Hence, it is essential that radiomic features from various 
modalities, such as PET [6], CT [7], and MRI [8], be 
reproducible. In other words, it is crucial to obtain features 
that can be verified by subsequent research with an identi-
cal technique, dataset, and/or patient cohort to confirm that 
the analysis has been conducted without errors.

Previous studies demonstrated that various factors 
might impact radiomic features in MR images to a large 
extent, including image pre-, post-processing [9, 10], test-
retest [11], and multi-center [12, 13]. To overcome the 
low reproducibility of radiomic features, several methods 
have been proposed, among which selecting reproducible 
features and ComBat harmonization against influential fac-
tors seem to be plausible solutions [14].

Harmonization approaches were developed to improve 
the repeatability of research on radiomic features using 
medical imaging by removing undesired impacts of ven-
dor-dependent features or resolving inconsistencies across 
medical images [15]. Harmonizing MR images is feasible 
using two distinct approaches, namely prior to and follow-
ing feature extraction [16, 17]. The present study focuses 
on the second approach, i.e., using harmonized radiomic 
features once they have been extracted [16, 17].

ComBat harmonization has been widely used for dif-
ferent imaging modalities in a variety of scenarios, thus 
demonstrating its ability to decrease radiomic feature vari-
ability in CT [18], PET [6], and MRI [19]. This popular 
method was introduced by Johnson et al. [20] to remove 

batch effects impacts in microarray expression and then 
applied to PET, CT, and MR images [6, 18, 21, 22]. In 
addition, Orlhac et al. [1] used ComBat to eliminate the 
variability of MRI radiomic features in a multi-center 
study. Moreover, in another study, Li et al. [3] used this 
method for harmonized MRI radiomic features extracted 
from 3 and 1.5 Tesla magnetic field strength scanners.

The variability of radiomic features might be caused by 
several factors, such as varying flip angles (FAs) and inver-
sion recovery (IR) in the same MR scanner and separate 
scanners with almost the same protocols and situations (in a 
phantom study) [23–25]. In MRI, the FA affects signal inten-
sity and contrast in various tissues [23]. While a smaller flip 
angle speeds up scanning and improves the signal-to-noise 
ratio, it might impair T1 contrast and saturation recovery 
[23]. IR determines which tissue will be without signal or 
nulled according to the selection of inversion time (TI) [24, 
25]. Since only one texture is used in the phantom, using 
different TIs affects signal intensity. The signal from the 
phantom will be nullified if TI is equal to T1 [24, 25]. The 
signal from the phantom will be positive or negative depend-
ing on whether the TI is shorter or longer than the T1 of the 
phantom, respectively [24, 25]. A variety of image pre-pro-
cessing techniques had an additional effect on this variability 
[9, 10]. The current study aims to investigate the effect of 
the ComBat harmonization method on the reproducibility of 
MRI radiomic features for different scanners and acquisition 
parameters with different image pre-processing techniques 
using a dedicated MRI phantom study.

The novelty and main contribution of the current study 
can be summarized in the following items:

•	 Exploring the effect of ComBat harmonization on the 
reproducibility of MRI radiomic features;

•	 Investigating a broad range of inversion recovery (IR) 
sequences and flip angles (FA) in a nonanatomic phan-
tom from the TCIA RIDER for MRI scans;

•	 Employing various pre-processing techniques, such 
as bin discretization, wavelet filters, and Laplacian of 
Gaussian, to comprehensively evaluate the impact of 
these methods on the robustness and consistency of MRI 
radiomic features;

•	 Investigating the impact of ComBat harmonization on 
the reproducibility of MRI radiomic features for differ-
ent scanners and acquisition parameters with different 
image pre-processing techniques using a dedicated MRI 
phantom.

2 � Materials and methods

Different steps involved in the implementation of the current 
study are shown in Fig. 1.
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2.1 � Phantom design

The nonanatomic MRI phantom from TCIA (RIDER 
database), containing 18 gel-filled tubes (25 mm) and one 
20-mm tube filled with 0.25 mM GdDTPA, was used in this 
study [26–28].

2.2 � Evaluated scanners

MR images of the above phantom were acquired on 4 scan-
ners by RIDER database. The description of scanners and 
protocols are summarized in Table 1. Scanner A was chosen 
for multiple FAs and three times tests, whereas scanner D 
was selected for multiple IRs to assess the impact of various 
FAs, tests, and IRs in one scanner owing to the availability 
of a large number of images on this scanner.

Table 2 shows variables and constant acquisition param-
eters for 4 analytical approaches 2 [26, 27]. The first analy-
sis was performed on multiple scanners. Here, 4 scanners 
were used. For each scanner, 3 images with 1-h and 1-week 
(scanner D 2-week) intervals were acquired. Other constant 
acquisition parameters are presented in Table 2. Multiple 
tests were performed on scanner A with triplet tests (1-h 
and 1-week intervals). Constant acquisition parameters are 
shown in Table 2. An investigation of multiple FAs with 
2, 5, 10, 15, 20, 25, and 30 degrees was performed by a 
3D fast spoiled gradient recalled echo (FSPGR) sequence. 

For each FA, 3 images with 1-h and 1-week intervals were 
acquired. Other constant values for acquisition parameters 
are presented in Table 2. Different inversion times in fast 
spin-echo inversion recovery sequences included 50, 100, 
250, 500, 750, 1000, 1500, 2000, 2500, and 3000 ms. For 
each IR, 2 images with 2-week intervals were acquired. Con-
stant acquisition parameters are shown in Table 2 [26, 27].

2.3 � Image segmentation

Manual segmentation of 19 phantom compartments was 
performed using 3D Slicer version 4.11 [29]. The FAs 
series contained 12 slices, where the first and last slice was 
excluded during manual segmentation owing to the change 
in intensity in this section. IR images were acquired in a 
single slice, and each slice was separated and segmented.

2.4 � Image pre‑processing

Before feature extraction, each image was pre-processed 
using three methods: (i) Bin discretization (32, 64, 128, 
and 256 bins), (ii) Laplacian of Gaussian (LOG) filter with 
10 sigma’s (0.5 to 5 mm in 0.5-mm increment), (iii) wave-
let filter with a combination of low- and high-pass filters in 
3-dimensions, and (iv) other filters, including logarithm, 
square, square root, and gradient. It was not possible to 
use the LOG filter on IR image series since these series 

Fig. 1   Workflow summarizing the different steps involved in the current study

Table 1   Description of MRI scanners and protocols used in the current study

Name Scanner MRI coils Gradient specifications Field-of-view

Scanner A GE 1.5T 8 Channel HD BRM gradient subsystem (33 mT/m amplitude; 120 T/m-s) 24 × 19 cm
Scanner B GE 1.5T 8 Channel HD CRM gradient subsystem (50 mT/m amplitude; 150 T/m-s) 24 × 19 cm
Scanner C Siemens 1.5T 8 Channel HD Espree (VB13)

33 mT/m amplitude, 100 T/m-s gradient subsystem
24 × 19 cm

Scanner D GE 3.0T 8 Channel HD TwinSpeed gradients (40 mT/m; 150 T/m-s in zoom mode) 24 × 19 cm
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consisted of a single slice. Sixty-four bin discretization 
has been adopted for features extracted from LOG and 
wavelet-filtered images. These methods were implemented 
using PyRadiomics [30], which is compliant with image 
biomarker standardization initiative (IBSI) guidelines for 
radiomic analysis [31, 32]. In this study, we used fixed bin 
numbers for Bin discretization based on our previous study 
[8]. LOG filter was used for edge detection and extraction 
of key points on the image [30]. Low sigma refers to a fine 
filter, whereas higher sigma makes the filter coarser [30]. 
For the wavelet filter, we used Coiflets 1 from PyWavelet 
library [33] with 8 decompositions, including LLL, LLH, 
LHL, LHH, HLL, HLH, HHL, and HHH [30]. Logarithm, 
square, and square root filters were applied to the image 
and logarithm, square, and square root were calculated 
from image intensities [30]. Gradient calculated the gradi-
ent magnitude of an image. Further details about the use 
of filters can be found in [30–32].

2.5 � Radiomic features extraction

Ninety-two features were extracted within each ROI of phan-
tom images using the IBSI-compatible [34] PyRadiomics 
package [30] in Python for each pre-processing method, 
including two feature sets: first-order (FO, 18 features) and 
textures which also included (i) gray level co-occurrence 
matrix (GLCM, 23 features), (ii) gray level run length 
matrix (GLRLM, 16 features), (iii) gray level dependence 
matrix (GLDM, 14 features), (iv) gray level size zone matrix 
(GLSZM, 16 features), and (v) neighboring gray tone differ-
ence matrix (NGTDM, 5 features).

2.6 � ComBat harmonization

The ComBat harmonization method, which Johnson et al. 
first proposed, assumes that the feature value of y calculated 

Table 2   List of variables and 
constant acquisition parameters 
for 4 different methods

Evaluation Variable Constant

Scanners Scanner A,
Scanner B,
Scanner C,
Scanner D

T1 Measurements: 3D fast 
spoiled gradient recalled echo 
(FSPGR)

FA: 20
TE: 1.22 ms
TR: 6.38 ms
Matrix size: 512 × 512
Slice number: 10
Thickness: 5-mm sections
Acquisition time per FA: 0:58 sec

Multiple test Triplet with 1 hour and 1-week interval Scanner A
T1 Measurements: 3D FSPGR
FA: 20
TE: 1.22 ms
TR: 6.38 ms
Matrix size: 512 × 512
Slice number: 10
Thickness: 5-mm sections
Acquisition time per FA: 0:58 sec

Flip angles 2, 5, 10, 15, 20, 25, and 30 degrees Scanner A
T1 Measurements: 3D FSPGR
TE: 1.22 ms
TR: 6.38 ms
Matrix size: 512 × 512
Slice number: 10
Thickness: 5-mm sections
Acquisition time per FA: 0:58 sec

Inversion recovery 50, 100, 250, 500, 750, 1000, 1500, 2000, 
2500, and 3000 ms.

T1 measurements: fast spin-echo 
inversion recovery sequence

TE: 8.7 ms
TR: 5000 ms
Matrix size: 256 × 256
Slice number: 1
Thick: 10-mm sections
Acquisition time per inversion 

time: 4 min and 25 sec
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in VOI j and batch (scanner, test, FA, or IR) i is calculated 
using Eq. (1) [20]:

Accordingly, X indicates a design vector (matrix) for bio-
logical covariate(s) of interest, whereas α and β stipulate 
standard linear regression coefficients [20]. In addition, γi 
captures the additive batch effect on features (normal dis-
tribution assumption), while δi captures the multiplicative 
batch effect (inverse gamma distribution assumption) and εij 
represents an error part (assumed to have zero-mean normal 
distribution) [20].

The method below was developed by Fortin et al. [21, 
22] using an empirical Bayes model which estimates γi and 
δi parameters (denoted as γi* and δi*), with the normalized 
feature value of y for VOIj and batch i as follows [20–22]:

 wherein α and β parameters were estimated and noted as 𝛼̂ 
and 𝛽  in Eq. (2), respectively [21, 22]. It is worth mention-
ing that ComBat harmonization employs a transformation 
method for each feature, which is separately governed by the 
batch effect observed on feature values [21, 22]. As such, a 
non-parametric model with an empirical Bayes estimation 
of the ComBat method was applied, revealing no biological 
covariates and no assumptions for γi, δi, and εij. The ComBat 
R function1 used in this study is publicly available [21, 22].

2.7 � Data analysis

The investigation of the ComBat harmonization effect on 
feature values was performed by Kruskal-Wallis’s one-way 
test. This test was applied to features before and after harmo-
nization among multiple batches. The batches here defined 
multiple scanners, tests, FAs, and IRs. A p-value less than 
0.05 was considered statistically significant. Features with a 
significant p-value indicate a significant difference between 
batches, whereas a non-significant p-value indicates no sig-
nificant difference between batches. The intraclass correla-
tion coefficient (ICC) calculation was performed for each 
individual radiomic feature over a varoius batch with a ran-
dom two-way effects model. ICC values were categorized 
into 4 groups, (i) 90% ≤ ICC ≤ 100%, (ii) 75% ≤ ICC < 90%, 
(iii) 50% ≤ ICC < 75%, and (iv) ICC < 50% [35]. Radiomic 
features showing ICC > 90% were selected as robust features 
against each effective factor. We used irr package version 
0.84.1 for ICC and stats package for the KW test in R version 
4.0.4 (The R Foundation, Vienna, Austria) [36].

(1)yij = � + Xij� + �i + �i�ij

(2)yCombat
ij

=

yij − 𝛼̂ − Xij𝛽 − 𝛾i
∗

𝛿i
∗

+ 𝛼̂ + Xij𝛽

3 � Results

Figure 2a depicts the KW test among four scanners before 
and after ComBat harmonization when using various image 
pre-processing techniques. The number of features with non-
significant p-values (lower variability) ranged between 0–5 
and 29–74 before and after ComBat harmonization along 
with various image pre-processing techniques, respectively. 
The LOG filter with 4.5-mm sigma had the highest non-
significant p-values (2 before, 74 after). Other LOG filters 
performed better than other methods (65–72 features after).

Figure 2b shows the KW test among three times tests 
before and after ComBat harmonization using various 
image pre-processing steps. The number of non-significant 
features set is considerably higher than the results of the 
KW test evaluating other factors, where W_HHH_Before, 
W_LHH_Before, and Bin256_After had the highest number 
of significant p-value features with 61, 60, and 55 features, 
respectively. Besides, LOG_2.5S, LOG_3.0S, LOG_4.0S, 
W_HHL, and W_HLH, after ComBat harmonization, had 
non-significant p-value features, thus demonstrating the 
constructive impact of ComBat harmonization on features 
variability. These feature sets had 84, 83, 90, 57, and 64 non-
significant features before ComBat harmonization.

Figure 2c shows the KW test among multiple FA before 
and after ComBat harmonization when using various image 
pre-processing techniques. The number of features with non-
significant p-values ranged from 0–33 to 34–90 before and 
after ComBat harmonization along with different image pre-
processing steps, respectively. The wavelet filter with HHL 
decomposition had the highest number of non-significant 
p-values (12 before and 90 after), followed by the gradient 
filter, LOG filter with 5.0-mm sigma, and wavelet filter with 
HLH decomposition, which had 85, 84, and 84 non-significant 
features after ComBat harmonization. Other wavelet filters 
performed better than other methods (62–84 features after).

Figure 2d depicts the KW test among multiple IR before 
and after ComBat harmonization when using various image 
pre-processing techniques. The number of features with 
non-significant p-values ranged from 3–68 to 65–89 before 
and after ComBat harmonization along with other image 
pre-processing techniques, respectively. The wavelet filter 
with HLH, LHH, and HHH decompositions had the high-
est non-significant p-values before (68, 34, and 45 features) 
and after (89, 89, and 86 features) ComBat harmonization 
using various image pre-processing techniques, respectively. 
The square root filter had 82 non-significant features after 
ComBat harmonization.

Supplemental Figures 1-4 depict the KW test results for each 
radiomic feature before and after ComBat harmonization using 
various image pre-processing techniques. Supplemental Table 1 
shows which radiomic feature had over 20 non-significant (over 

1  https://​github.​com/​Jfort​in1/​ComBa​tHarm​oniza​tion

https://github.com/Jfortin1/ComBatHarmonization
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Fig. 2   Results of Kruskal-Wal-
lis’s (KW) test before and after 
ComBat harmonization, over 
various image pre-processing 
techniques for MR images 
acquired on: a four scanners, b 
three times test, c various flip 
angles, and d various inversion 
recoveries. LOG, Laplacian of 
Gaussian (LOG); S, sigma; W, 
wavelet; L, low-pass filter; H, 
high-pass filter
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15 for IR) in scanners, three times repeated the test, various 
flip angles, and inversion recovery across various image pre-
processing techniques after ComBat harmonization. Supple-
mental Figures 5-8 indicate that instance radiomic features 
were common in 4 analyses. Table 3 shows the numbers of 
non-significant features before and after ComBat harmoniztion, 
along with various image pre-processing techniques.

In Fig. 3, we illustrate the ICC percentage of various radi-
omic feature sets before and after ComBat harmonization. 
We also show the number of robust features with ICC ≥ 
90% in different feature sets before and after harmonization 
in Table 4. It is evident from Fig. 3a that the impact of dif-
ferent scanners on the LOG feature set and different wavelet 
feature sets are the least and the most, respectively. Further-
more, ComBat harmonization affects the reproducibility of 
the radiomic feature set against all parameters, where 80% 
of feature sets had no robust features (ICC ≥ 90%) before 
ComBat harmonization. Furthermore, Logarithm_Before, 
SquareRoot_Before, W_HHH_Before, W_HLH_Before, 
W_HLL_Before, W_LHH_Before, and W_LLH_Before 

features sets had no features in the third group (90% < ICC 
≥ 75%) either. All of the feature sets showed robust features 
after ComBat harmonization. After ComBat harmoniza-
tion, W_LHH_After showed the least reproducibility with 
6 robust features, whereas Square_After and Gradient_After 
led to the highest number of robust features with 60 features. 
As observed in Fig. 3b, three times, the test showed the most 
negligible impact on the radiomic features set, and Square 
feature sets showed the most robustness with 75 and 80 
features before and after ComBat harmonization. Different 
wavelet feature sets are the most robust features against vari-
ous FA (Fig. 3c). In Fig. 3d, the Logarithm_After features 
set with 63 robust features showed the most reproducibility, 
and W-LLH_After showed the least reproducibility with 3 
robust features over various IR after ComBat harmonization.

Supplemental Figures 9-12 show the ICC heat map of 
radiomic features with different image pre-processing tech-
niques over various scanners, three times repeated tests, 
various flip angles, and inversion recovery before and after 
ComBat harmonization, respectively.

Table 3   Comparison of the 
number of non-significant 
features before and after 
ComBat harmonization when 
using different image pre-
processing techniques

*FA filp angle, IR inverstion recovery, LOG Laplacian of Gaussian (LOG), S sigma, W wavelet, L low-pass 
filter, H high-pass filter

Feature set Scanner Three times test FA IR

Before After Before After Before After Before After

Bin32 0 60 54 91 1 77 6 69
Bin64 0 67 64 89 1 80 6 69
Bin128 0 64 80 89 1 81 5 70
Bin256 0 60 87 37 0 34 4 73
Gradient 1 66 38 91 3 85 3 72
Logarithm 0 60 63 86 11 71 6 77
Square 2 58 91 87 3 74 6 65
SquareRoot 0 62 45 90 3 75 5 82
LOG_0.5S 2 37 56 86 16 68
LOG_1.0S 2 72 77 81 3 58
LOG_1.5S 0 70 86 90 5 67
LOG_2.0S 1 65 84 91 4 72
LOG_2.5S 3 67 84 92 3 68
LOG_3.0S 1 69 83 92 2 73
LOG_3.5S 3 68 87 91 0 72
LOG_4.0S 4 69 90 92 2 76
LOG_4.5S 2 74 89 91 1 81
LOG_5.0S 3 72 87 90 2 84
W_HHH 1 29 31 90 33 82 45 86
W_HHL 0 30 57 92 12 90 3 73
W_HLH 0 40 64 92 8 84 68 89
W_HLL 1 37 38 90 21 78 3 72
W_LHH 5 32 32 75 24 62 34 89
W_LHL 0 46 60 91 6 69 4 77
W_LLH 1 63 87 91 1 79 6 76
W_LLL 0 66 39 91 3 83 7 75
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Fig. 3   ICC percentage value 
of different radiomic features 
set over: a various scanners, 
b three times repeated tests, c 
various flip angles, and d inver-
sion recovery before and after 
ComBat harmonization
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Figure 4a depicts the impact of multiple scanners on radi-
omic features where the distribution of ICC values is scaled 
between − 1 and + 1. When the density graph is left uneven, 
the mean is less than the median in the density plot (DP). 
Conversely, the plot concentration on the right panel (+ 1) 
illustrates the robustness. The left panel in Fig. 4a shows 
the massive distribution of ICC values representing the low 
reproducibility of radiomic features set over the different 
scanners before ComBat harmonization. The right panel of 
the same figure (after ComBat harmonization) indicates the 
beneficial effect of ComBat harmonization on the radiomic 
features set robustness. Figure 4b shows that most of the 
feature sets had high reproducibility before and after harmo-
nization. Figure 4c and d illustrate the ICC values concentra-
tion before and after ComBat harmonization over various 
FAs and IR. Although the impact of FA/IR is less than when 
using multiple scanners, the DP of radiomic features turns 
left after ComBat harmonization, which proves the construc-
tive effect of ComBat harmonization on the reproducibility 
of the radiomic features set.

4 � Discussion

We investigated the effect of ComBat harmonization on 
radiomic features extracted from MRI phantom when apply-
ing different image pre-processing techniques on images 
acquired using various imaging protocols (multiple FAs 
and IRs) and scanners. The results indicated that ComBat 
harmonization decreased the variability of radiomic features 
across various multi-center images and imaging protocols 
acquired on different scanners. In addition, using different 
image pre-processing techniques reduced the radiomic fea-
tures’ variability.

The results of the KW test indicate that the number of 
non-significant radiomic feature sets will rise after applying 
ComBat harmonization regardless of image pre-processing 
techniques applied in the current study. Following ComBat 
harmonization, LOG_4.5S, LOG_1.0S, and LOG_5.0S had 
the highest number of non-significant radiomic feature sets 
over multiple scanners in the KW test (Fig. 2) with 74, 72, 
and 72 non-significant features, respectively. Besides, prior 

Table 4   Comparison of the 
number of rubust features 
(ICC > 90%) before and after 
ComBat harmonization when 
using different image pre-
processing techniques

*FA filp angle, IR inverstion recovery, LOG Laplacian of Gaussian (LOG), S sigma, W wavelet, L low-pass 
filter, H high-pass filter

Feature set Scanner Three times test FA IR

Set Before After Before After Before After Before After

Bin32 0 56 35 47 5 39 9 9
Bin64 0 43 31 43 3 16 6 9
Bin128 0 29 48 63 3 9 5 6
Bin256 0 24 60 75 3 11 3 5
Gradient 1 60 26 41 6 55 3 6
Logarithm 0 8 13 17 26 35 37 63
Square 8 60 75 80 9 12 3 3
Square root 0 8 25 29 16 37 8 25
LOG_0.5S 0 16 18 24 31 54
LOG_1.0S 0 32 69 69 11 16
LOG_1.5S 0 42 73 73 11 16
LOG_2.0S 0 46 74 75 10 17
LOG_2.5S 0 43 65 66 7 17
LOG_3.0S 0 36 74 75 4 10
LOG_3.5S 0 46 69 73 4 13
LOG_4.0S 1 42 66 69 5 13
LOG_4.5S 1 36 69 72 4 14
LOG_5.0S 1 42 66 67 5 12
W_HHH 0 9 11 18 65 78 18 20
W_HHL 0 16 38 45 37 83 6 7
W_HLH 0 9 14 26 83 84 43 52
W_HLL 0 18 15 18 40 60 4 5
W_LHH 0 6 13 36 47 53 49 53
W_LHL 0 34 43 48 25 40 3 6
W_LLH 0 12 58 65 25 64 3 3
W_LLL 0 58 23 35 9 55 7 7
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to ComBat harmonization, Bin32, Bin64, Bin128, Bin256, 
logarithm, square root, LOG_1.5S, W_HHL, W_HLH, W_
LHL, and W_LLL had no significant radiomic features. MRI 
scanners have the largest impact on radiomic features among 
the parameters investigated in the current study. The use of 
various MRI scanners showed the largest effect on radiomic 
features before and after ComBat, even more than IR and 
FA combined. Ninety-four percent of radiomic features that 
are robust against FA and IR simultaneously are also robust 
against different scanners. Three times test had the most neg-
ligible impact on radiomic features variability.

Concerning the effects of image pre-processing on the 
variability of radiomic features, the study by Demircioğlu 
et al. [37] used public radiomic datasets to investigate the 
effect of various pre-processing filters on the predictive 
performance of radiomic models. They found that adding 
features pre-processed with various filters improved the pre-
dictive performance, although using pre-processing filters in 
some datasets showed the opposite [37]. Tuning the filters 
further improved the results, indicating that pre-processing 
filters should be used in radiomic studies to improve the pre-
dictive performance [37]. Moradmand et al. [38] investigated 
the impact of pre-processing techniques on MRI radiomic 
features and reported that 23% of radiomic features after bias 
field correction were robust (ICC > 90%). Yet, overlooking 
inter-scanner, inter-vendor, and inter-protocol variations in 
radiomics research can not only adversely affect the results 
but may also lead to failure in the process of finding uncer-
tainties in radiomics research. In spite of the significance 
of such deviations, only few studies have investigated this 
sphere and identified precautionary measures.

In a study conducted by Orlhac et al. [1], the RIDER MRI 
phantom scanned on 1.5 T and 3 T scanners were used to 
extract 42 radiomic features, 40 of which had significant dif-
ferences prior to ComBat harmonization. Following ComBat 
harmonization, this number was reduced to 0 features. The 
same phantom data was used in the present work, but con-
trary to the above reference, we used all available scanners, 
including three 1.5 T scanners and one 3 T scanner, besides 
extracting all 3D IBSI radiomic features and implementing 
various image pre-processing techniques, including different 
discretization of bins (32, 64, 128, and 256 bins), logarithm, 
square, square root, and gradient filters, LOG filter with 10 
sigmas, and wavelet filter with 8 decompositions. Further-
more, all data used in the current study were acquired three 

times using multiple flip angles and inversion recovery set-
tings. Our findings confirm the results of this study, i.e., all 
features with different bin discretization (32, 64, 128, and 
256) had significant differences before scanner harmoniza-
tion. However, this number varied in other pre-processing 
methods (0–5 features had non-significant differences).

Furthermore, our results demonstrated that the best feature 
set was the LOG filter (4.5-mm sigma), with 74 features with 
non-significant differences in different scanners. In a recent 
study, Li et al. [3] investigated how pre-processing steps and 
harmonization procedures (such as the ComBat method for 
radiomic features) may reduce scanner effects and enhance 
radiomic features’ repeatability in brain MRI radiomics. Their 
findings are entirely in line with ours in the sense that ComBat 
harmonization might increase radiomic features reproducibil-
ity to a large extent over various image pre-processing steps.

Another noteworthy finding that is highlighted in our 
results is that several times testing turned out to have the 
most negligible impact on radiomic features. In the con-
text of radiomics, imaging at multiple time points enables 
researchers to analyze features’ robustness to temporal vari-
abilities, e.g., organ expansion, shrinkage, and motion [39]. 
However, the significance of temporal variations fades in 
relation to inter-scanner variations, which are capable of 
causing much more fundamental inconsistencies between 
samples [40]. Lee et al. [41] investigated the robustness of 
radiomic features in an MRI phantom. The ICC for test-
retest analysis in phantoms with different materials was 
reported to be high (average ICC = 0.96 for T1-w images). 
While our study employed a three-time test, the ICC was 
also high for the majority of pre-processing methods, such 
as the LOG filter with different sigma.

Few previous studies explored the impact of image pre-
processing techniques and ComBat harmonization at the 
same time and managed to follow concise protocols [3, 
10, 42]. Nevertheless, there is a key point to keep in mind 
when interpreting the present findings since Baeßler et al. 
[4] showed in a phantom study that the number of robust 
features in a FLAIR MR image is higher than in T1- and 
T2-weighted images. Consequently, it is expected that dif-
ferent MR sequences might affect radiomic features, which 
was not explored in the current study.

Alternative methods for feature extraction, such as deep 
learning-based feature [43], Bag of Features (BoF) [44] 
and Local Binary Patterns (LBPs) [45] were also reported 
in the literature. These techniques were not used in the 
current study. Further analysis is required to explore the 
effect of various feature extraction methods. Our find-
ings underscore the importance of harmonization in MRI 
radiomics, potentially enhancing diagnostic accuracy 
and reliability in multi-center studies. By reducing vari-
ability across different scanners and protocols, ComBat 

Fig. 4   ICC value density plots (DPs) of the different radiomic fea-
ture sets over various scanners (a), three LOG: Laplacian of Gauss-
ian (LOG), S, sigma; W, wavelet; L, low-pass filter; H, high-pass 
filter, times repeated test (b), flip angles (c), and inversion recovery 
(d), before (left panel) and after (right panel) ComBat harmonization. 
LOG, Laplacian of Gaussian (LOG); S, sigma; W, wavelet; L, low-
pass filter; H, high-pass filter
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harmonization could lead to more consistent radiomic 
features, improving patient care through better-informed 
diagnostic and prognostic models. This advancement holds 
promise for standardized imaging biomarkers in clinical 
practice, offering a path toward more personalized and 
precise medical interventions.

5 � Conclusion

ComBat harmonization appears to be a decent solution 
to enhance MRI radiomic features reproducibility. The 
use of multiple scanners had the highest impact on radi-
omic features variability, followed by IR and FA. Most 
of the robust features against scanners are robust against 
IR and FA. However, acquiring several test images on a 
single scanner had the lowest impact on radiomic features 
among the remaining parameters. The main contribution 
of the current study is the consideration of various image 
pre-processing and data acquisition protocols using differ-
ent scanners and 3 times repeated scanning to avoid any 
errors. However, our study inherently bears some limita-
tions, the main one being that the effect of different MR 
imaging protocols was overlooked. Future studies will 
evaluate the effect of other MRI scanning protocols on the 
reproducibility of radiomic features to tackle this limita-
tion. Another limitation is the use of only phantom images. 
Clinical studies are required to validate these results.
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