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Background: In clinical practice, the size of adenomas is crucial for guiding
prolactinoma patients towards the most suitable initial treatment.
Consequently, establishing guidelines for serum prolactin level thresholds to
assess prolactinoma size is essential. However, the potential impact of gender
differences in prolactin levels on estimating adenoma size (micro- vs.
macroadenoma) is not yet fully comprehended.
Objective: To introduce a novel statistical method for deriving gender-specific
prolactin thresholds to discriminate between micro- and macroadenomas and
to assess their clinical utility.
Methods:We present a novel, multilevel Bayesian logistic regression approach to
compute observationally constrained gender-specific prolactin thresholds in a
large cohort of prolactinoma patients (N= 133) with respect to dichotomized
adenoma size. The robustness of the approach is examined with an ensemble
machine learning approach (a so-called super learner), where the observed
differences in prolactin and adenoma size between female and male patients
are preserved and the initial sample size is artificially increased tenfold.
Results: The framework results in a global prolactin threshold of 239.4 μg/L (95%
credible interval: 44.0–451.2 μg/L) to discriminate between micro- and
macroadenomas. We find evidence of gender-specific prolactin thresholds
of 211.6 μg/L (95% credible interval: 29.0–426.2 μg/L) for women and
1,046.1 μg/L (95% credible interval: 582.2–2,325.9 μg/L) for men. Global (that is,
gender-independent) thresholds result in a high sensitivity (0.97) and low
specificity (0.57) when evaluated among men as most prolactin values are
above the global threshold. Applying male-specific thresholds results in a
slightly different scenario, with a high specificity (0.99) and moderate sensitivity
(0.74). The male-dependent prolactin threshold shows large uncertainty and
features some dependency on the choice of priors, in particular for small
sample sizes. The augmented datasets demonstrate that future, larger cohorts
are likely able to reduce the uncertainty range of the prolactin thresholds.
Abbreviations

AUROC, area under the receiver operating characteristic; DA, dopamine agonist; MRI, magnetic resonance
imaging; PRL, prolactin; TSS, transsphenoidal surgery.

01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fsurg.2024.1363431&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fsurg.2024.1363431
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fsurg.2024.1363431/full
https://www.frontiersin.org/articles/10.3389/fsurg.2024.1363431/full
https://www.frontiersin.org/articles/10.3389/fsurg.2024.1363431/full
https://www.frontiersin.org/articles/10.3389/fsurg.2024.1363431/full
http://orcid.org/0000-0003-1764-688X
https://www.frontiersin.org/journals/Surgery
https://doi.org/10.3389/fsurg.2024.1363431
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Huber et al. 10.3389/fsurg.2024.1363431

Frontiers in Surgery
Conclusions: The proposed framework represents a significant advancement in
patient-centered care for treating prolactinoma patients by introducing gender-
specific thresholds. These thresholds enable tailored treatment strategies by
distinguishing between micro- and macroadenomas based on gender.
Specifically, in men, a negative diagnosis using a universal prolactin threshold
can effectively rule out a macroadenoma, while a positive diagnosis using a
male-specific prolactin threshold can indicate its presence. However, the clinical
utility of a female-specific prolactin threshold in our cohort is limited. This
framework can be easily adapted to various biomedical settings with two
subgroups having imbalanced average biomarkers and outcomes of interest.
Using machine learning techniques to expand the dataset while preserving
significant observed imbalances presents a valuable method for assessing the
reliability of gender-specific threshold estimates. However, external cohorts are
necessary to thoroughly validate our thresholds.
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1 Introduction

Prolactinomas account for the most common type of secretory

pituitary adenomas in humans (1). In daily practice, they constitute

a therapeutic challenge, both for endocrinologists and

neurosurgeons alike, insofar as concurrent effective treatment

options exist (2, 3). Dopamine agonists (DAs) are the first-line

choice, with strong efficacy to achieve both serum prolactin

(PRL) normalization and adenoma size reduction, even to the

extent of definitive cure (4). In recent years, surgery was

increasingly considered as first-line therapy in patients who have

a reasonable likelihood of cure, with the aim of minimizing the

need for continuous DA therapy in the long term (2, 3, 5, 6),

including potential side effects (7–9).

With regard to the long-term cure, prolactinoma size plays a

critical role in triaging patients towards the optimal first-line

therapy. Thereby, an increased adenoma size (i.e.,

macroadenoma) is generally associated with elevated serum PRL

levels (10–13). In the context of adenoma size, important gender

differences exist. Namely, microprolactinomas are more

commonly found in women, and macroprolactinomas in men,

given the often unreported or subclinical symptoms of

hypogonadism in the latter (6, 14, 15). Current serum prolactin

thresholds for distinguishing between micro- and

macroadenomas are inadequate due to imprecision, insufficient

consideration of individual variations, and overlooking factors

like age, gender, and medical conditions, which can affect

prolactin levels, making them unsuitable for generalization across

all adenoma volumes and thus requiring urgent refinement to

improve their accuracy and clinical applicability. As adenoma

size correlates with the degree of hyperprolactinemia, optimal

prolactin thresholds that account for the observed gender

differences in both serum prolactin levels and adenoma size are

warranted to robustly guide and triage these patients for optimal

first-line therapy robustly.

For a given biomarker and the sampled values from two

populations with different disease status, a widely adopted
02
approach used to compute an threshold is the Youden Index

(16, 17). Note, however, that there other approaches to derive a

threshold and that the optimum may depend on the specific

situation (18). The Youden Index is based on sensitivity and

specificity values over all possible cut-off values to discriminate

between the two populations: The biomarker level that

maximizes the Youden Index is considered the optimal

threshold. As an example of such a threshold for prolactinoma

patients, a retrospective cohort study featuring 114 prolactinoma

patients found an optimal threshold value of 204 μg/L and a

strong discriminatory ability with respect to adenoma size in

terms of the area under the receiver operating characteristic

(AUROC: 0.976) (10).

However, given the observed differences in adenoma size and

prolactin levels between female and male patients, a crucial

question is how the gender-differences in both the average

biomarker (prolactin) value and the observed outcomes affects

the sample estimate of an optimal threshold, its uncertainty and

—importantly—its reliability. Specifically, are high discriminatory

metrics in such prolactinoma cohorts dominated by the

observation that most male patients presented a macroadenoma?

Moreover, is there evidence to calculate gender-dependent

prolactin thresholds—and if there is—what would the diagnostic

implications of such gender-specific thresholds be?

To start, we present an uncertainty quantification framework to

address these questions and apply the proposed framework to a

large cohort of prolactinoma patients (N = 133). The framework

features a novel multilevel Bayesian logistic regression approach

to compute both global and gender-specific prolactin thresholds.

The size of the observational constraint is assessed in terms of

Bayesian credible intervals. Additionally, we employ a modern

ensemble machine learning method [a so-called super learner

(19)] to investigate the robustness of the prolactin threshold

estimates and their sensitivity to sample size and sampling

variability. We emphasize the potential role of machine learning

as a hypothesis-generating approach, wherein the additional

cohorts in the future can delve deeper into narrowing the
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uncertainty surrounding prolactin thresholds. Additionally, we

conclude by delving into the implications of diverse threshold

estimates on clinical practice regarding sensitivity and specificity,

and we explore the applications of this framework within the

realm of patient-centered care. Furthermore, we address the

limitations of this framework and outline potential avenues for

future research.
2 Methods

2.1 Data collection

Data collected from our prolactinoma patients and stored in

our institutional database between January 1996 and December

2015 included all consecutive patients with prolactinomas treated

with first-line surgery or DA therapy of either micro- or

macroprolactinomas. Diagnosis was based on clinical and

biochemical assessment as well as a standard protocol for

pituitary magnetic resonance imaging (MRI). In brief, PRL levels,

including the immunoradiometric PRL assay (IRMA), which uses

serum dilution in order to overcome the high-dose PRL hook

effect (20), were assessed. The presence of macroprolactin was

routinely assessed (21). MRI examination was done on a 1.5- or

3-Tesla system including a Proton/T2-weighted whole-brain
TABLE 1 Patients’ characteristics: demographics, comorbidities and
symptoms as well as treatment information.

All
patients

Macro-
adenoma

Micro-
adenoma

p

N = 133 N = 71 N = 62

Demographics
Sex (Female) 91 (68.4%) 36 (50.7%) 55 (88.7%) <0.001

Age (years) 36.0
[28.0;49.0]

43.0 [30.0;56.0] 32.0 [27.0;42.0] 0.002

BMI (kg/m2) [N = 103] 26.8
[21.9;30.1]

27.7 [25.1;31.3] 22.8 [21.0;27.0] <0.001

Comorbidities and symptoms
Headache [N = 130] 38 (29.2%) 28 (40.6%) 10 (16.4%) 0.005

Hypothyroidism
[N = 130]

11 (8.46%) 9 (13.0%) 2 (3.28%) 0.093

Growth hormone
deficits [N = 129]

0 (0%) 0 (0%) 0 (0%) 1.0

Hypocortisolism
[N = 130]

9 (6.92%) 7 (10.1%) 2 (3.28%) 0.172

Prolactin levels (µg/L) 220
[104;1,179]

1,000
[274;3,434]

112 [74.9;176] <0.001

Treatment
Treatment 0.359

Medical 56 (42.1%) 33 (46.5%) 23 (37.1%)

Surgery 77 (57.9%) 38 (53.5%) 39 (62.9%)

Invasion [N = 131] 53 (40.5%) 53 (76.8%) 0 (0.00%) <0.001

Bromocriptine parlodel 21 (15.8%) 11 (15.5%) 10 (16.1%) 1.000

Cabergoline cabaser
[N = 131]

18 (13.7%) 13 (18.3%) 5 (8.33%) 0.162

Cargoline dostinex [N
= 131]

12 (9.16%) 6 (8.45%) 6 (10.0%) 0.998

In case of missing data, the number of available values are indicated in brackets.
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study with unenhanced, contrast-enhanced, dynamic contrast-

enhanced and post contrast-enhanced overlapping studies in the

axial, sagittal and coronal planes throughout the sellar region

(22) A microadenoma was defined as a tumor with a diameter of

1–10 mm, while a tumor with a diameter exceeding 10 mm was

classified as a macroadenoma. Indication for first-line surgery or

DA therapy was individually discussed at the weekly

interdisciplinary pituitary tumor board meeting, with consensus

tailored to preventing patients from becoming dependent on DA

therapy over the long term (6, 14, 23). Pituitary surgery was

performed using a transseptal, transsphenoidal microsurgical

approach with sellar reconstruction.
2.2 Summary statistics

Summary statistics in Table 1 are based on mean and standard

deviation in case of normally distributed quantitative variables and

with median and interquartile range otherwise. Categorical

variables are presented with counts and frequencies.
2.3 Bayesian logistic regression

The Bayesian mixed-effect logistic regression model was

computed with the R-package rstan (24). The model features log-

transformed (base 10) serum prolactin as fixed-effect

(independent variable), a random offset for gender and adenoma

size as binary outcome (0: microadenoma, 1: macroadenoma).

The assumption of linearity was assessed by plotting the log-

odds of the predicted probability of a microadenoma versus the

common logarithm (base 10) of the patient’s prolactin levels

using traditional logistic regression for simplicity, showing

departure from linearity only for very low and very high serum

prolactin levels (Supplementary Figure S9). 50,000 samples

from the posterior distribution were drawn with the “NUTS“

(No-U-Turn) sampler (25) following a warmup phase of 25,000

samples. Convergence and efficiency of the Markov chain Monte

Carlo (MCMC) samples were determined with the Rhat and

Effective Sample Size metrics: we checked that Rhat was below

1.1 (26). Weakly informative priors were used by default for the

Bayesian logistic regression model without a random offset. In

the case of a random offset, the random intercepts were

constrained to lay in the interval [−5, 5]. We performed a

sensitivity analysis regarding the prior choice of the model

parameters using both Cauchy and Normal distributions as

priors (Supplementary Figure S5).

2.3.1 Threshold computation using the
Kolmogorov–Smirnov statistic

The Bayesian logistic regression model allows us to compute a

distribution of the probability of a macroadenoma for each patient.

Pooling these probability predictions separately for those patients

diagnosed with a microadenoma and those with a

macroadenoma allows us to assess how well the Bayesian logistic

regression model discriminates between the two adenoma types.
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The more separate the probability distributions are, the more

discriminatory information is embedded in the model

predictions. The Kolmogorov–Smirnov (KS) statistic is based on

the empirical cumulative distribution functions (ecdf) of the

predicted probabilities for micro- and macroadenoma patients

and quantifies the degree of separability between the two

adenoma types. The KS statistic ranges from 0 (identical

distribution) up to 1 (perfect separability). The maximum of the

KS statistic for two given ecdfs is associated with a certain

probability threshold to “optimally” discriminate between the

model predictions of micro- and macroadenomas. Calculating

the model predictions for a wide range of serum prolactin levels,

we derive a two-dimensional density plot relating prolactin levels

and the probability of a macroadenoma. We derive a

probabilistic distribution of a prolactin threshold by evaluating

the two-dimensional density plot at the optimal probability level

which was derived with the KS statistic.

Gender-specific prolactin thresholds are derived in a similar

fashion. With the use of the random intercept in the multilevel

Bayesian logistic regression model, the calibration plots and

calculations of the KS statistic can be done separately for female

and male patients, resulting in gender-specific probability

distribution for a prolactin threshold.
2.4 Super learner

To examine the impact of sample size and sampling variability

on the threshold estimates, we choose an ensemble machine

learning algorithm—a so-called super learner (19)—to artificially

augment the existing dataset with N = 133 prolactinoma patients.

A super learner combines various individual machine learning

algorithms (so-called base learners, e.g., a random forest) and

creates weighted combinations of these base learners in a sort of

meta-learner. The weighted combinations are based on a V-fold

cross-validation of each base learner of the same V-fold split of

the training data. In this study, we build a super learner based

on the following base learners: Bayesian Additive Regression

Trees, Gradient Boosting Machine, Neural Network, Generalized

Additive Model, Linear Regression and Non-Negative Least

Squares. As predictors we use age (in years), gender (female vs.

male), adenoma size (micro- vs. macroadenoma) and BMI (kg/

m2). Missing body mass index (BMI) values were imputed with

the median BMI value. By default, we used 10-fold cross

validation, and the super learners were evaluated by examining

the weight of each base learner and the 10-fold cross validation

for each learner (Supplementary Figure S2). The super learners

were computed with the R-package SuperLearner (27).

2.4.1 Data augmentation with a super learner
After training the super learner on the working dataset

(N = 133), we fitted a normal distribution to the age and BMI

values for four subgroups: female patients diagnosed with a

microadenoma, female patients diagnosed with a macroadenoma,

male patients diagnosed with a microadenoma and male patients

diagnosed with a macroadenoma. To achieve an augmented
Frontiers in Surgery 04
dataset that preserved the observed gender differences in both

biomarker size and outcome, we sampled the same number of

patients in each of the four subgroups and predicted the

corresponding serum prolactin levels with the super learner. For

example, we have seven male patients diagnosed with a

microadenoma. We thus sampled seven values for age and BMI

and calculate the corresponding prolactin levels. Repeating this

procedure for all four subgroups, we derived a new “artificial”

cohort with the same sample size (N = 133) and with the same

number of patients in each of the four categories. Simply adding

those “new” patients to the existing cohort doubled the initial

sample size. We repeated the augmentation process until we had

a sample size ten times larger than the initial cohort. To avoid

convergence to the mean and to account for sampling variability,

we added some random noise to the prolactinoma predictions of

the super learner for each prediction. We further accounted for

sampling variability by repeating this data augmentation process

from N = 133 to N = 10 × 133 twenty times, thus resulting in a

20-member ensemble of augmented datasets. An example of one

such ensemble is shown in Supplementary Figure S1.

2.4.2 Sensitivity analysis with respect to imbalance
in adenoma size

As sensitivity analysis, we used a data transformation technique

[Synthetic Minority Oversampling Technique; SMOTE (28)] to

account for the statistical imbalance in the number of micro- and

macroadenomas in the male subgroup. Using oversampling of

male patients with a microadenoma, we derive a new cohort with

42 microadenomas and the original 35 macroadenomas, thus

representing a more balanced male cohort. We repeat the

analysis of the gender-specific threshold computations and the

evaluation of test diagnostic with the SMOTE-augmented data. A

full table of the results of this sensitivity analysis is provided in

the Supplementary Table S1.
2.5 Statistical software

All computations were performed with R (29).
3 Results

3.1 Observed gender differences

The serum prolactin levels in our cohort—stratified according

to sex and grouped according to the size of the adenoma—are

illustrated in Figure 1A. There are three main features of the

cohort that catch the eye. First, male patients have higher

prolactin levels [median 1,978.0 μg/L, interquartile range (IQR):

780.0–4,890.0 μg/L] than female patients (median 150.0 μg/L,

IQR: 88.4–251.0 μg/L; unadjusted group comparison: p < 0.001).

Second, there are more than twice as many female patients

(91/133; 68.4%) as male patients (42/133; 31.6%). Third, there is

a distinct gender difference in terms of the outcome: only 7/42

(16.6%) male patients featured a microadenoma, whereas the
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FIGURE 1

Problem setting of this study and statistical approach to augment the initial dataset using a machine learning ensemble approach in order to study the
impact of sample size and sampling variability on optimal prolactin thresholds. (A) Distribution of prolactin levels in female and male patients stratified
according to the clinical endpoint adenoma size (microadenomas vs. macroadenomas). Colored dots represent individual patients whereas the data
distribution is indicated with violin plots. (B) Illustration of the machine learning setup to create augmented datasets preserving the observed gender
difference in adenoma size shown in panel (A). An ensemble of six machine learning methods (so-called base learners) is trained on demographic
variables (age, gender and body mass index) and adenoma size to predict the logarithmic serum prolactin levels. To create an augmented dataset,
we sample from the observed demographic variables and predict the logarithmic prolactin levels for patients with micro- and macroadenomas
separately for females and males. The so-called super learner weighs the predictions of the individual base learners, resulting in a new set of
“artificial” patients and their prolactin levels. We repeat this training and prediction process several times to create augmented datasets with a
sample size up to ten times the size of the original dataset (N= 133). By repeating this process 20 times and by adding random noise in the
predictions of the prolactinoma values, we are able to create a 20-member ensemble of augmented data which accounts for both sample size
and sampling variability (see Methods). (C) Illustration of an augmented dataset with a sample size five times the initial dataset (N= 5 × 133).
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ratio between micro- and macroadenomas in female patients is

more balanced: 55/91 (60.4%) females featured a microadenoma

and 36/91 (39.6%) females were diagnosed with a macroadenoma.
3.2 Augmented datasets and sampling
variability

To investigate the robustness of the prolactin threshold estimates

more broadly—in particular with regard to the low incidence of

microadenomas in males—we statistically augmented the original

dataset to get larger sample sizes using an ensemble of several

machine learning algorithms (a so-called super learner) while

preserving the observed difference of the original data. The patient

flow chart and the machine learning setup are illustrated in

Figure 1B. As an example, the augmented dataset featuring 5 times

more patients than the original dataset is depicted in Figure 1C

and demonstrates that the essential differences of the original
Frontiers in Surgery 05
data could be preserved. Further examples of the augmented

datasets are illustrated in the Supplementary Figure S1.
3.3 An observationally constrained
prolactinoma threshold

We now begin to examine how a Bayesian statistical

framework can be used to compute a global (that is, without

distinguishing between female and male patients) prolactin

threshold and to investigate the observational evidence for

possible gender-specific thresholds.

Figure 2 illustrates the steps involved in computing these

thresholds using both a simple and a multilevel Bayesian logistic

regression model (BLRM). In this model we relate the logarithm

of the odds of a macro-prolactinoma diagnosis linearly to the

logarithm of the PRL levels of each patient (see Methods). The

multilevel case allows for a random intercept for female and
frontiersin.org
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FIGURE 2

Illustration of the computation of a probabilistic prolactin threshold distribution using a simple Bayesian logistic regression framework. (Column A)
A Bayesian logistic regression model is fit to the logarithmic prolactin values of our cohort (N= 133) with adenoma size as the outcome. The
predicted probability distributions are shown separately for microadenomas (blue) and macroadenomas (red), allowing to inspect the degree of
calibration and discrimination between the two types of adenomas (A1). Illustration of the derivation of an optimal probability threshold based on
the cumulative probability distribution of the two adenoma classes using the Kolmogorov–Smirnov (K–S) statistic (A2) Projection of the optimal
probability threshold onto a prolactin threshold distribution using the posterior probabilistic distribution of the Bayesian logistic regression (A3).
Illustration of the derived observationally constrained distribution of the optimal prolactin threshold for all patients. The most likely threshold and
the 95% credible interval (CI) are shown (A4). (Column B) Derivation of a female-specific prolactin threshold. (Column C) Derivation of a male-
specific prolactin threshold.

Huber et al. 10.3389/fsurg.2024.1363431
male patients individually, and thus allows the modeling of gender-

specific thresholds containing the full information of the cohort

data without the need to consider only the female and male

subgroups in a separate fashion.
Frontiers in Surgery 06
The calibration of the BLRM is depicted in Figure 2 Panel A1,

where aggregated predicted probabilities are shown for patients

diagnosed with a microadenoma (blue) and with a

macroadenoma (red), respectively. The model is well calibrated,
frontiersin.org
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and predicted probabilities above the (default) probability

threshold of p = 0.5 are correctly associated with macroadenomas

and vice versa for microadenomas. With the help of the

empirical cumulative distribution function of these predicted

probabilities and the Kolmogorow-Smirnov static (KS-statistic;

see Methods), a prediction probability threshold of pthreshold=

0.48 can be calculated, which optimally discriminates between

the two possible outcomes (Figure 2 Panel A2). Note that this

probability threshold is close to the default threshold of p = 0.5.

After the BLRM was fit to the data, the predicted probabilities

of a macroadenoma diagnosis for a range of possible prolactin

levels could be visualized (Figure 2 Panel A3), with the curvature

depending on the model parameters (the intercept and the

slope). As before, low prolactin levels are associated with low

probability of a macroadenoma, and vice versa. To derive an
FIGURE 3

Estimates of prolactin threshold as a function of sample size and sampling va
of the working dataset (N= 133; see Figure 1). The most likely estimates (poin
the prolactin thresholds derived by means of the multilevel Bayesian logistic
were created to account for sampling variability and each solid line refers to
Youden Index, point estimates as well as non-parametric bootstrap 95% co
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observationally constrained prolactin threshold, we read Figure 2

Panel A3 not from prolactin levels (abscissa) to predicted

probabilities (ordinate), but in the other direction. That is, we

relate probabilities to prolactin levels. Drawing the previously

estimated optimal prediction probability threshold (pthreshold) as a

horizontal line, we derive an observationally constrained

probability distribution for the optimal global prolactin

threshold, with a most likely value of 239.4 μg/L (95% credible

interval: 44.0–451.2 μg/L) to discriminate between micro- and

macroadenomas instead of a simple point estimate of the optimal

threshold value. The width and shape of the threshold

distribution reflects the amount of observational evidence as well

as the assumptions regarding the choice of prior distributions for

the model parameters. Note that computation of, for example, a

95% credible interval does not require frequentist interpretations
riability. The sample size is shown as multiples of the original sample size
ts and lines) and 95% credible intervals (shaded grey areas) are shown for
regression approach. In total, twenty ensembles of augmented datasets
one particular member of the ensemble. For the thresholds based on the
nfidence intervals are shown.
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such as repeated sampling or the use of bootstrapping methods to

derive plausible ranges of the threshold value.
3.4 Gender-specific prolactinoma
thresholds

The multilevel BLRM allows a density plot of predicted

probabilities to be drawn for female and male patients separately

(Figures 2, columns B + C), and thus to derive observationally

constrained probability distributions for gender-specific prolactin

thresholds. For female patients, we derive a most likely threshold

estimate of 211.6 μg/L (95% CI: 29.0–426.2 μg/L), which is

slightly below the global threshold of 239.4 μg/L. We calculate a

most likely threshold value of 1,046.1 μg/L for male patients;

however, the width of the male-dependent prolactin threshold is

very wide (95% CI: 582.2–2,325.9 μg/L). The observational

constraints on the model parameters are low (Supplementary

Figure S4). The male-specific prolactin threshold distributions

show some dependency on the choice of priors, in particular for

small sample sizes (Supplementary Figure S5).
3.5 Prolactin thresholds in augmented
datasets

To assess the sensitivity of the prolactin threshold estimates to

the sample size and to sampling variability, we illustrate the most

likely estimates and 95% credible intervals of the global and

gender-specific prolactin thresholds as a function of sample size

in Figure 3. The estimates of the global and female-specific

thresholds are robust both in terms of sample size and
TABLE 2 Estimates of serum prolactin thresholds to discriminate between mic
associated performance metrics.

Method All patients (N = 133) Fem

Bayesian logistic
regression

Youden
Index

Bayesian
regre

Prolactin threshold (µg/L) 239.4 (44.0–451.2) 230.0 (203.0–466.1) 211.6 (29

AUROC 0.91 (0.85–0.95)

Sensitivity
Global threshold 0.79 (0.72–0.99) 0.84 (0.70–0.94) 0.61 (0.4

Gender threshold – 0.69 (0.4

Specificity
Global threshold 0.90 (0.10–0.97) 0.91 (0.81–0.99) 0.95 (0.0

Gender threshold – 0.91 (0.0

Positive predictive value
Global threshold 0.91 (0.56–0.96) 0.92 (0.83–0.99) 0.89 (0.4

Gender threshold – 0.84 (0.4

Negative predictive value
Global threshold 0.78 (0.74–0.94) 0.83 (0.72–0.93) 0.78 (0.7

Gender threshold – 0.82 (0.7

AUROC, area under the receiver operating characteristic.

The most likely estimates and 95% credible intervals are shown for thresholds derived

bootstrapped 95% confidence intervals are shown for the threshold estimates derived

with the BLRM) and 95% confidence intervals (for thresholds derived with the Youden

performance metrics are shown for two cases: First, when a global (gender-unspeci

specific threshold is used compute the confusion matrix.
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sampling variability. In stark contrast, the male-specific

threshold estimates vary significantly with respect to sampling

variability: the most likely estimate can vary between 606.0 μg/L

and 1,456.1 μg/L, and the 95% credible interval covers the

range from 386.2 μg/L to 2,432.0 μg/L. Figure 3 further

illustrates the corresponding estimates when the Youden Index

is used to compute the thresholds and highlights the similarity

of the two threshold methods. Note, however, that the width of

the bootstrapped 95% confidence interval for the threshold

derived with the Youden Index is generally smaller than the

width of the 95% credible interval derived with the Bayesian

framework (Supplementary Figure S6). Further highlights that

the uncertainty ranges of the threshold estimates are reduced

with increasing sample size.

When correcting for the imbalance in adenoma size in male

patients, we derive higher prolactin thresholds for the entire

cohort and the male subgroup with 460.9 μg/L (95% credible

interval: 216.1–793.3 μg/L) and 1,326.0 μg/L (95% credible

interval: 875.4–2,211.9 μg/L), respectively. The female-specific

prolactin threshold remains similar with 213.8 μg/L (95% credible

interval: – 2,211.9 μg/L).
3.6 Discriminatory performance

To conclude, we examine the discriminatory ability of prolactin

thresholds in terms of the area under the receiver operating

characteristic (AUROC) and the effect of the global and gender-

specific threshold values on the estimates of validity (sensitivity

and specificity). An overview of the performance metrics is

provided in Table 2. Figure 4 illustrates that the discriminatory

capacity is high for the entire cohort (AUROC 0.91, 95%-CI:
ro- and macroadenomas in a cohort of N = 133 prolactinoma patients and

ale patients (N = 91) Male patients (N = 42)

logistic
ssion

Youden
Index

Bayesian logistic
regression

Youden
Index

.0–426.2) 203.0 (189.8–243.2) 1,046.1 (582.2–2,325.9) 1,179.0 (596.2–1,510.0)

0.87 (0.78–0.94) 0.93 (0.83–0.99)

7–0.99) 0.64 (0.42–0.75) 0.97 (0.97–0.99) 0.97 (0.97–0.97)

7–0.99) 0.75 (0.61–0.78) 0.74 (0.54–0.97) 0.74 (0.69–0.94)

9–0.99) 0.95 (0.89–0.99) 0.57 (0.14–0.71) 0.57 (0.43–0.71)

0–0.98) 0.89 (0.82–0.95) 0.99 (0.71–0.99) 0.99 (0.71–0.99)

2–0.99) 0.88 (0.81–0.99) 0.92 (0.85–0.94) 0.92 (0.89–0.94)

0–0.94) 0.82 (0.74–0.88) 0.99 (0.94–0.99) 0.99 (0.94–0.99)

4–0.93) 0.80 (0.72–0.84) 0.80 (0.50–0.99) 0.80 (0.75–0.83)

4–0.99) 0.84 (0.79–0.85) 0.43 (0.30–0.83) 0.44 (0.39–0.71)

with a multilevel Bayesian logistic regression framework (BLRM). Median values and

with the Youden Index. Median and 95% credible intervals (for thresholds derived

Index) are shown for the performance metrics. For the female and male patients,

fic) threshold is used to compute the confusion matrix. Second, when a gender-
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FIGURE 4

Performance of a diagnostic test relating serum prolactin levels to adenoma size (microadenoma vs. macroadenoma) as a function of sample size.
Performance metrics were evaluated with the most likely prolactin threshold estimate derived with the proposed Bayesian logistic regression
framework. We employed a machine learning ensemble (a so-called super learner) to derive augmented datasets which preserve the observed
gender difference in adenoma size of the original dataset. The area under the receiver operating characteristic (AUROC) as well as sensitivity and
specificity metrics are shown for all patients [(A–C) top row], female patients [(D–F) middle row] and male patients [(G–I) bottom row]. For female
and male patients, the sensitivity and specificity was evaluated both for a global threshold (blue) and a gender-specific threshold (red) derived with
a multilevel Bayesian logistic regression model (see Methods). Individual colored lines show the estimates of a twenty-member ensemble that
representing sampling variability.
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0.85–0.95) as well as for the female subgroup (AUROC 0.87,

95%-CI: 0.78–0.94) and male subgroup (AUROC 0.93, 95%-CI:

0.83–1.00). For female patients, Figures 4E,F illustrate that

sensitivity values are slightly higher when the female prolactin

levels are evaluated with a female-specific threshold: 0.69

(95%-CI: 0.47–1.00) vs. 0.61 (95%-CI: 0.47–1.00). In contrast,

using the female-specific threshold results in lower specificity
Frontiers in Surgery 09
values: 0.91 (95%-CI: 0.00–0.98) vs. 0.95 (95%-CI: 0.09–1.00).

The same patterns are observed when the threshold are derived

with the Youden Index (Table 2), but the credible intervals are

much broader for the performance metrics derived with the

Bayesian framework. Overall, using a female-specific threshold

results in a more balanced performance in terms of sensitivity

and specificity for female patients.
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For male patients, Figures 4H,I highlight a key finding of

this study: evaluating the prolactin levels of the male subgroup

with a global prolactin thresholds results in very high

sensitivity (0.97, 95%-CI: 0.97–1.00) but very low specificity

(0.57, 95%-CI: 0.14–0.71), suggesting that male patients with

true macroadenomas are very likely to be identified, whereas

the test fails to detect true microadenomas in male patients.

The reverse is true in the male subgroup when a male-specific

threshold is used for diagnosis, resulting in high specifivity

and moderate sensitivity (Table 2). Thus, for male patients, a

negative diagnosis based on a global prolactin threshold can

be useful for ruling out a macroadrenoma, whereas a positive

diagnosis based on a male-specific prolactin threshold can be

useful for ruling in a macroadrenoma. To aid in

interpretation, one can refer to Figure 1 and mentally draw a

horizontal line at the global threshold of 239.4 μg/L. As for

female patients, using a female-specific threshold results in a

more balanced testing regime, in which both sensitivity and

specificity are high.

Importantly, the augmented datasets suggest that specificity

for the male subgroups when based on a global prolactin

threshold gets lower the larger the sample size becomes. This

sample size dependence, as well as the low sensitivity

suggested for larger cohorts, provides further motivation to

use a male-specific threshold instead of a global prolactin

threshold. These results are robust in terms of threshold

method; i.e., when thresholds based on the Youden Index are

employed (Supplementary Figure S10). We emphasize that

the uncertainty ranges of the performance metrics are larger

for the estimates derived with the Bayesian logistic regression

framework, which results from the broader threshold

estimates compared to the estimates based on the Youden

Index (Figure 3).
5 Discussion

The computation of an optimal cutoff threshold in prolactin

levels to discriminate between micro- and microadenomas

constitutes an essential step in the diagnosis, triage and

treatment of patients. While there are traditional methods such

as the Youden Index to derive such thresholds, issues i.e., with

imbalanced datasets (30), the effect of the sample size on the

measure of validity (31), the distribution of the biomarker in

question (32), unquantifiable biomarker levels below a limit of

detection (33) and the impact of prevalence (34) are

increasingly investigated. We are advancing these efforts by

introducing a novel Bayesian logistic regression framework to

compute both global and gender-specific serum prolactin

thresholds in prolactinoma patients.

In terms of clinical utility, a key result of this study is that

for male patients, a negative diagnosis based on a global

prolactin threshold can be useful for ruling out a

macroadrenoma, whereas a positive diagnosis based on a male-

specific prolactin threshold can be useful for ruling in a
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macroadrenoma. However, compared to men, a female-specific

prolactin threshold has only limited impact on clinical utility in

our cohort. Overall, we thus argue that in cases where it can be

expected that the average biomarkers in two populations differ

(e.g., the serum prolactin levels in female and male prolactinoma

patients), it is essential to investigate the characteristics of a

diagnostic test based on biomarker thresholds both in the entire

cohort and in individual subgroups.

Diagnostic errors for correct detection of either

microadenomas or macroadenomas are clinically equally

important, in particular with regard to the presence of gender

differences. The higher thresholds of 1,046.1 μg/L (95% CI:

582.2–2,325.9 μg/L) for men are of clinical interest, as they differ

from the traditional applied cutoff values for prolactinoma

detection. It is well established that men presenting with

prolactinomas are more frequently diagnosed with a

macroadenoma than women, suggesting that gender is an

important determinant of adenoma size (6, 14, 15) while drug-

induced hyperprolactinemia, systemic diseases or stalk effect

generally account for lower serum prolactin values (35). In the

context of the clinical utility of gender-specific prolactin

thresholds, further analyses, e.g., in the decision curve analysis

framework (36), are envisaged.

Given the importance of sample size and sampling variability,

we employed a modern machine learning ensemble approach [a so-

called super learner (19)] to examine the impact of these two key

statistical characteristics on the threshold and performance

estimates by statistically augmenting the initial data set and by

introducing sampling uncertainty. This novel approach of

modern machine learning resulted in important results: We were

able to demonstrate that future, larger cohorts are likely able to

reduce the uncertainty range of the prolactin thresholds—both

for the Bayesian regression approach proposed here and the

traditional approach using the Youden Index (Supplementary

Figure S6). In addition, we found that male-specific thresholds

are more sensitive to sampling variability and sample size than

global and female-specific thresholds (Figure 3) and that a much

bigger sample size is required for confidently constraining

gender-specific thresholds (particularly so for the case of the

male-specific threshold). However, we note that such data

augmentation methods might further increase existing biases that

may be inherent in the dataset. When accounting for statistical

imbalances in the number of micro- and macroadenomas in

male patients using a data augmentation method (SMOTE),

differences in gender-specific prolactin thresholds with respect to

adenoma size remained, with male-specific thresholds being

significantly higher (Supplementary Table S1).

In terms of statistical methodology, a key advantage of

regression models is that they provide a simple framework for

covariate adjustment, and this is increasingly appreciated in the

domain of classification settings using biomarkers (17, 37–42).

Additionally, a regression approach provides an assessment of

the calibration of the classifier, which is crucial in determining

the reliability of a prediction model (43, 44). Using Bayesian

methods to compute thresholds was proposed previously
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(45, 46); however, to the best of our knowledge this is the first

study to combine a multilevel Bayesian logistic regression

framework with the Kolmogorov–Smirnov statistic to estimate

probability distributions of biomarker thresholds, which is of

clinical importance. The Kolmogorov-Smirnov statistic is

applied to empirical cumulative distribution functions (ecdfs)

which also play an essential role in empirical estimation

methods of the Youden Index (33, 47). An important

distinction between the said methods and the framework

described in this study is that ecdfs of predicted probabilities

are considered, whereas ecdfs of a particular biomarker are

used to compute the Youden Index.

This study features some inherent limitations. First, the

uncertainty quantification presented here considers only internal

validation; a more robust evaluation needs to be performed on

an external dataset, which is a crucial step in establishing the

reliability of the inferred threshold (48, 49). Thus data sharing

and collaboration among medical researchers would benefit the

uncertainty quantification of prolactin thresholds in two ways:

the observational constraint can be better quantified within the

Bayesian framework using larger cohorts and the threshold

estimates can be externally validated. Second, the framework

presented here is a first, yet important step providing broad

opportunities for extensions and refinements, e.g., different super

learners and data augmentation approaches can be used to

generate hypotheses for future cohorts. Additionally, given the

small sample sizes of current prolactinoma cohorts, uncertainty

estimates based on non-parametric resampling methods such as

used here for the thresholds based on the Youden Index might

result in very similar threshold estimates with narrow confidence

intervals as the same observations are repeatedly sampled. This

issue could be overcome in future studies by using other

bootstrap methods (50). Third, this study focused on introducing

a novel framework for computing prolactin thresholds and could

not account for the impact of qualities such as age on the

prolactin levels. To do this, follow-up studies are needed.
6 Conclusion

The proposed framework constitutes a new step towards more

patient-centered care in the treatment strategy of prolactinoma

patients. Our results provide initial evidence that male-specific

thresholds would be higher than female-specific thresholds. The

advantages of the proposed framework is its ability to describe

an entire cohort without resorting to subgroup analysis and its

broad applicability to diagnostic settings where there are two

subgroups in which the average biomarker and the outcome of

interest differ. An important added value of the proposed

threshold computation approach method is that it provides a

broad and traceable means to assess the magnitude of the

observational constraint on threshold value that is inherent in

the data. This broader uncertainty assessment can be of

particular value in the case of small sample sizes, where

calculated thresholds can lead to overly optimistic estimates of
Frontiers in Surgery 11
sensitivity and specificity. Additionally, utilizing machine learning

methods to enhance the collected dataset while maintaining

crucial observed distinctions between two groups of interest

offers a valuable approach to examining the robustness of

threshold estimates. However, external cohorts are required to

thoroughly validate our thresholds.
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