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Abstract
Background: Numerous children present with early wheeze symptoms, yet solely a 
subgroup develops childhood asthma. Early identification of children at risk is key for 
clinical monitoring, timely patient- tailored treatment, and preventing chronic, severe 
sequelae. For early prediction of childhood asthma, we aimed to define an integrated 
risk score combining established risk factors with genome- wide molecular markers at 
birth, complemented by subsequent clinical symptoms/diagnoses (wheezing, atopic 
dermatitis, food allergy).
Methods: Three longitudinal birth cohorts (PAULINA/PAULCHEN, n = 190 + 93 = 283, 
PASTURE, n = 1133) were used to predict childhood asthma (age 5–11) including epi-
demiological characteristics and molecular markers: genotype, DNA methylation and 
mRNA expression (RNASeq/NanoString). Apparent (ap) and optimism- corrected (oc) 
performance (AUC/R2) was assessed leveraging evidence from independent studies 
(Naïve- Bayes approach) combined with high- dimensional logistic regression models 
(LASSO).
Results: Asthma prediction with epidemiological characteristics at birth (maternal 
asthma, sex, farm environment) yielded an ocAUC = 0.65. Inclusion of molecular 
markers as predictors resulted in an improvement in apparent prediction perfor-
mance, however, for optimism- corrected performance only a moderate increase was 
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1  |  INTRODUC TION

Asthma is one of the most common chronic lung diseases in child-
hood with varying prevalence across Europe, partly still increas-
ing.1–3 Around one- third of preschool children aged 1–5 years have 
asthma- like symptoms such as wheezing and 30–40% of them will 
develop asthma in later childhood.4,5 Yet, effective and clinically ap-
plicable tools for early identification of children at asthma risk are 
lacking. Although numerous independent asthma prediction models 
were proposed,5–9 they showed poor predictive accuracy when ex-
ternally validated10 and application is not recommended in guide-
lines due to limited performance for clinical practice (GINA).11 These 
models typically rely on current symptoms like early wheezing or 
allergic sensitization.12 Before occurrence of symptoms, cord blood 
sampling allows non- invasive extraction of biomarkers, including 
genetic variants and DNA methylation. Thus, numerous variants 
influencing asthma susceptibility identified through genome- wide 
association studies13–16 can be measured already at birth. Epigenetic 

mechanisms add to asthma risk, with DNA methylation potentially 
playing an important role in asthma development.17,18 However, 
neither genetic nor epigenetic biomarkers alone could accurately 
predict the development of asthma at an early age.19 Although tran-
scriptomic studies uncovered underlying mechanisms of asthma20–24 
at manifestation, to our knowledge, no asthma predictive transcrip-
tion markers for this time window were identified yet.

observed (upto ocAUC = 0.68). The greatest discriminate power was reached by add-
ing the first symptoms/diagnosis (up to ocAUC = 0.76; increase of 0.08, p = .002). 
Longitudinal analysis of selected mRNA expression in PASTURE (cord blood, 1, 4.5, 
6 years) showed that expression at age six had the strongest association with asthma 
and correlation of genes getting larger over time (r = .59, p < .001, 4.5–6 years).
Conclusion: Applying epidemiological predictors alone showed moderate predictive 
abilities. Molecular markers from birth modestly improved prediction. Allergic symp-
toms/diagnoses enhanced the power of prediction, which is important for clinical 
practice and for the design of future studies with molecular markers.

K E Y W O R D S
asthma, epidemiology, genetics, paediatrics, prevention

G R A P H I C A L  A B S T R A C T
For early prediction of childhood asthma, an integrated risk score combining established risk-factors with genome-wide molecular markers 
(genotype, DNA methylation, mRNA expression) at birth was defined, complemented by subsequent clinical symptoms/diagnoses (wheeze, 
atopic  dermatitis, food allergy). While epidemiological predictors have moderate predictive power, molecular markers from birth improve 
prediction to a modest extent. Including allergic symptoms/diagnoses significantly increased predictive efficiency.

Key messages

• Epidemiological predictors exhibit moderate predictive 
efficacy for childhood asthma.

• Molecular markers from birth modestly enhance 
prediction.

• Inclusion of allergic symptoms/diagnoses significantly 
boosts predictive power, informing future study designs.
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    |  3BÖCK et al.

We aimed to develop a novel prediction score by simultane-
ously integrating genotype, DNA methylation and mRNA expres-
sion data derived from cord blood on top of well- recognized and 
clinically easy- to- obtain epidemiological factors. Considering gen-
eralizability and transferability of prediction to independent pop-
ulations, we based the predictor selection whenever possible on 
evidence from prior independent studies. We extended our score 
by including the first symptoms/diagnoses of wheezing, atopic der-
matitis (AD) or food allergy (FA) occurring until age 3 years.

2  |  METHODS

2.1  |  Study population

For PAULINA and PAULCHEN (n = 190/93), pregnant women from 
urban (Munich) and rural areas were recruited from 2004 to 2009 
and N = 229 included based on strict inclusion criteria.25,26 ISAAC- 
based questionnaires were completed by parents after birth and at 
follow- ups (FU) after 3, 6 and 10 years (FU3/FU6/FU10). PASTURE 
is a prospective birth cohort from rural areas in five European coun-
tries including 1133 families recruited from 2002 to 2005 (530 farm-
ing, 603 non- farming), with 10 FU up to age 16 years.27

For all studies, asthma was defined identical as a reported doc-
tor's diagnosis of asthma or recurrent obstructive- , or asthmatic 
bronchitis after age 5 years. If the reported doctor's diagnosis was 
before age 5 years, additional asthma symptoms and/or medication 
after age 5 years had to be reported (Section S3.1).

2.2  |  Study participants with biomaterial and 
derived data

Selection of subsets for molecular measurements included all chil-
dren from PAULINA/PAULCHEN and a nested case–control design 
for the PASTURE cohort. Samples of all asthma cases meeting qual-
ity requirements were chosen. Non- asthma controls were selected 
to maximize overlap in DNA methylation and RNAseq data, consid-
ering the status of AD, sex, farming and study centre.

Cord blood was sampled for genotyping (GSA- chip), DNA meth-
ylation (Illumina- EPIC) and mRNA expression analyses (NanoString 
for PAULINA/PAULCHEN, RNAseq for PASTURE) (Figure 1). 
Additionally, PASTURE blood samples were taken at 1, 4.5 and 
6 years for qPCR analysis (Table S1, Sections S3 and S4).

2.3  |  Established risk factors

To enhance applicability and limit statistical complexity due to high- 
dimensional variable selection, an evidence- based selection of vari-
ables of well- replicated literature- based results was performed.

2.3.1  |  Base variables

Previously identified as asthma risk- associated variables sex,28 ma-
ternal asthma29 and farming and rural status30–35 served as base vari-
ables being included in every prediction model.

2.3.2  |  Genetic variant score (variant score)

Different published variant scores were evaluated, mostly leading 
to comparable results (Tables S2 and S3). To incorporate genetic 
predisposition based on genotype, we utilized the largest meta- 
analysed association study on childhood asthma,14 resulting in 12 
genetic variants incorporated into the variant score (Supplement 
S3.8.1, Table S4).

F I G U R E  1  Flowchart sample size. Subsets of data with 
respective outcome and molecular data available (details in 
Section 2).
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2.3.3  |  Methylation score (methyl. score)

Similarly, based on an epigenome- wide association study (EWAS) of 
cord blood DNA and childhood asthma,18 eight differentially methyl-
ated CpGs were integrated into the methylation score using the re-
ported OR (Table S5, Supplement S3.8.2).

2.3.4  |  Diagnoses/symptoms (diag/symp)

Three early diagnoses/symptoms were included. Early wheezing 
without cold5,8,9 was defined as any wheezing symptoms outside 
cold episodes, early FA36 and AD5,8,9,37 as reported doctor's diagno-
ses, all in the first 3 years of life.

2.4  |  Priorization of variables in high- dimensional 
data sets

2.4.1  |  Prioritized DNA methylation markers

EPIC- DNA methylation sites comprised 666,727 predictor variables 
after QC. From these, we selected 162 prioritized sites located within 
34 differentially methylated regions (Table S6).18

2.4.2  |  Prioritized mRNA expression markers

The entire mRNA expression data comprised 14,492 variables. For 
mRNA, no transcriptome- wide association study linking expression in 
cord blood to childhood asthma is available to our knowledge. However, 
we defined a prioritized set of 167 genes by reviewing relevant litera-
ture reporting associations of asthma and mRNA expression from later 
time points during childhood beyond cord blood (Table S7).20–24,38–41

2.5  |  Statistics

Variables were described with (relative) frequencies, ORs and de-
scriptive p- values. Residual heterogeneity was assessed with 
likelihood ratio tests between models with/without a main and in-
teraction effect of study (Section S3.7).

Logistic regression models were used for predictive modelling. 
Discrimination was reported as area under the receiver- operating 
characteristics curve (AUC), however, Nagelkerke's pseudo- R2,42 
which in addition considers the calibration aspect, was used as the 
main criterion. Models were internally validated by bootstrapping 
which was suggested as a preferable method compared to a split- 
sample approach.43 Performance was presented as apparent (ap), 
when entire data were used for model fitting and evaluation, and op-
timism corrected (oc), when the in- bag bootstrap samples were used 
in model fitting and the out- of- bag samples for evaluation. Model 
and variable selection was based on optimal oc performance. Further 

details, including the logistic regression models are provided in the 
supplement (Section S3.7, Figures S1–S4).

2.6  |  Sensitivity analyses

Sensitivity analyses comprised a doctor's diagnosis of asthma solely 
as outcome definition, an assessment of several variant scores, and 
different pre- processing for methylation data (Section S4).

3  |  RESULTS

3.1  |  Characterization of study cohorts

Children from three longitudinal birth cohorts (N = 1034) were in-
cluded based on available asthma status and GWAS data (173 from 
PAULINA/PAULCHEN, 861 from PASTURE). Of these, 491 children 
had DNA methylation data (n = 168 PAULINA/PAULCHEN; n = 323 
PASTURE) and for 353 children mRNA expression profiles were ana-
lysed (n = 141 PAULINA/PAULCHEN; n = 212 PASTURE). The sub-
set of n = 313 children had all three molecular components available 
(genotype, DNA methylation, mRNA expression, Figure S1). This re-
sulted in data subsets enriched for asthma and not representative of 
the whole cohort (Tables S8 and S9).

3.2  |  Associations and predictive performance of 
established risk factors

As base components, we assessed the association of established risk 
factors for childhood asthma, sex, maternal asthma and rural/farming 
status for compatibility with the literature (Table 1). In the pooled sam-
ples (n = 1034), it was more likely for males (OR = 2.00) and children 
with asthmatic mothers (OR = 3.63) to develop childhood asthma. 
Farm environment (OR = 0.65) and rural areas (OR = 0.88) had pro-
tective effects. Heterogeneity between the cohorts was observed 
in unadjusted analyses when the individual risk factors/covariates 
were considered separately. Controlling for sex, maternal asthma and 
rural and farming environment as given by the literature, heterogene-
ity was reduced to a statistically non- significant level, which made it 
possible to analyse the cohorts together. Associations of genetic vari-
ants included in the variant score with childhood asthma risk were 
detectable in our cohorts (p- values .001–.085, Table S4). Effect sizes 
of DNA methylation included in the methylation score were mostly of 
similar magnitude as reported, yet without statistical significant asso-
ciations in our cohorts, Table S5. Early symptoms and atopic diseases 
were positively associated with asthma: early wheeze without cold 
OR = 4.15, OR of AD = 2.22, OR of FA = 4.64 (Table 1).

Thus, observing compatible effect sizes, we integrated the base 
components using the Naïve- Bayes approach as it led to higher 
optimism- corrected performance in all three data subsets com-
pared to maximum likelihood estimation (Table S10). Their combined 
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apparent (optimism- corrected) performances were apAUC = 0.651 
(ocAUC = 0.652) and apR2 = 7.0% (ocR2 = 6.1%) for the whole data-
set n = 1034. In the n = 313- subset, the base components yielded 
an apAUC = 0.607 (ocAUC = 0.610) and apR2 = 5.4% (ocR2 = 2.9%) 
(Table 2, base model).

3.3  |  Inclusion of established molecular 
components to prediction

By integrating the genetic variant score into the base prediction 
model, the apAUC and ocAUC improved marginally by 0.030/0.025 
(n = 1034), while the methylation score increased apAUC by 0.036 
(ocAUC by 0.029; n = 491) (Table 2). The combination of both en-
hanced apAUC by 0.054 (ocAUC by 0.039; n = 491). Lower predic-
tive improvements were observed in the subset with complete 
molecular data (n = 313).

3.4  |  Data- driven selection of additional molecular 
markers to improve prediction

Next, the high- dimensional data sets (mRNA and methylation data) 
were assessed for predictive utility in different combinations of 
predictor setups (Table S11): (i) prioritized mRNA expressions (187 
variables), (ii) all mRNA expressions (14,492 variables), (iii) prioritized 
DNA methylation sites (162 variables) and (iv) all DNA methylation 
sites (666,727 variables).

In the data set n = 313, the highest performance was reached 
by selecting variables from the entire set of mRNA expression 
data (model_7, Figure 2a). The combined effect of the four 

genes AIDA, METTL4, ZDHHC2 (higher expression associated 
with higher asthma risk) and RNF25 (overexpression contrib-
uting to lower asthma risk) (Table S12a) increased the apAUC 
(model_3 to 7) from 0.64 to 0.69 (ocAUC 0.63–0.64). With focus 
on optimism- corrected performance, the addition of the entire 
methylation data (model_8) or the entire mRNA expression and 
methylation data in combination (model_9) showed no impact on 
predictive performance and similar low effects. The prioritiza-
tion of markers (model_4/5/6), although statistically beneficial 
by reducing dimensionality, did not prove helpful. All the above 
models could not improve on the simpler model 3 with an ocAUC 
of 0.63.

Additionally, the methylation data were assessed in the larger 
sub- sample (n = 491) where no complete mRNA measurements 
were available. Here, highest predictive performance was observed 
selecting three additional CpG sites (Table S12b) from the entire 
methylation set enhancing apAUC (model_3 to 8) from 0.65 to 0.72 
(ocAUC = 0.63–0.67). In contrast, with prioritized methylation data 
(model_4), no improvement in performance to simpler model 3 was 
observed apAUC = 0.65 (ocAUC = 0.63) (Figure 2a). No additional 
molecular data were available for the n = 1034 data set.

3.5  |  Considering early symptoms/diagnoses

As common in prediction scores for asthma, we also considered early 
diagnoses and symptoms and extended the model by FA, AD and 
early wheeze without cold. Starting with base variables (Figure 2a; 
n = 1034, model_1, apAUC/ocAUC = 0.65) the inclusion of symp-
toms/diagnoses (n = 1034, model_1) improved the AUC on average 
by 0.09 to apAUC/ocAUC = 0.74 (Table 3, all p < .01).

TA B L E  2  Variant and methylation score effect.

Data subset Model AUC (ap/oc) R2 (%) (ap/oc)
Increase AUC 
vs. base (oc)

Increase R2 (%) 
vs. base (oc)

Likelihood ratio 
test vs. base (p)

1034 Base 0.651/0.652 7.0/6.1

+variant score 0.681/0.677 8.9/7.5 0.025 1.4 .001

491 Base 0.595/0.596 3.8/2.2

+variant score 0.627/0.621 5.2/2.3 0.025 0.1 .038

+methyl. score 0.631/0.625 5.0/2.5 0.029 0.3 .051

+variant and methyl. 
score

0.648/0.635 6.4/2.7 0.039 0.5 .015
.043a

313 Base 0.607/0.610 5.4/2.9

+variant score 0.630/0.626 7.2/3.3 0.016 0.4 .058

+methyl. score 0.628/0.614 5.9/2.0 0.005 No increase .339

+variant and methyl. 
score

0.637/0.625 7.8/2.6 0.016 No increase .094
.286a

Note: Mean performance (500 bootstrap replications) when adding the variant and/or the methylation score to the model including base variables 
(maternal asthma, sex, farming and rural status).
Abbreviations: ap, apparent; AUC, area under the curve; oc, optimism corrected; R2, Proportion of explained variation (Nagelkerke's measure of 
determination).
aTest against model including base + variant score.
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Considering the high- dimensional molecular data in combi-
nation with symptoms/diagnoses, we used an analogue setup as 
above. With symptoms/diagnoses included (Figure 2b), the high-
est predictive performance in data subset n = 313 was reached by 
selecting variables from the entire set of mRNA expression data 
(model_7). The combined effect of three selected genes (AIDA, 
ZDHHC2- overexpression contributing to higher asthma risk, and 
TREX1- overexpression contributing to lower asthma risk) increased 
the apAUC (model_3 to 7) from 0.74 to 0.75 (ocAUC = 0.72–0.73) 
(Figure 2, Table S12c). With focus on oc performance, neither the 
entire methylation data (model_8) or the entire mRNA expression 
and methylation data in combination (model_9) nor the prioritized 
marker sets (model_4, 5, 6) did substantially add to predictive per-
formance, all showing an ocAUC of 0.72 as the simpler model 3.

Again, methylation without mRNA expression data was assessed 
in the larger subset (n = 491). By selecting 3 additional CpG sites 
(Table S12d) from the entire methylation set (model_8), apAUC could 
be enhanced from 0.74 to 0.76 (model_3 to 8; ocAUC from 0.73 to 
0.73). Two CpGs were in overlap with the model without symptoms 
(Table S12b). The approach restricted to prioritized methylation data 
(model_4) showed no improvement on simpler model 3.

In summary, significant improvement and highest absolute predic-
tion performance were observed when including symptoms/diagnoses 
(Table 3, on average + 0.09 in ocAUC, and + 11.9% in ocR2). Nevertheless, 
single new CpG and mRNA expression markers were identified as con-
tributing to risk prediction, albeit to a modest absolute scale.

3.6  |  Association of mRNA expression to asthma 
increases over time until age six

As we observed low predictive performance with biomarkers at 
birth, we studied the temporal association between asthma and 
gene expression also at later time points of life (1, 4.5 and 6 years) 
in depth. Thus, in 40 genes measured over multiple time points in 
the PASTURE cohort (qPCR, cord blood, 1 year, 4.5 years, 6 years, 
Table S13), the association of the same gene- set from several time 
points to a uniformly defined asthma outcome was inferred.

Including covariates sex, maternal asthma, farming and genetic 
variant score, increased performance was solely observed at 6 years 
(apAUC = 0.71–0.79; ocAUC = 0.68–0.72) by combining mRNA ex-
pression of genes SregionIgE, SOCS2 (overexpression higher asthma 
risk) and IL10, TNFSF13B, LY96 (overexpression lower asthma risk) 
(Table 4).

The temporal correlation of mRNA expression was assessed be-
tween each time point to one another (six coefficients) separately by 
gene. Overall average correlation between all time points and genes 
was mean_r = .08 (Figure 3). Between years 4 and 6 correlation is 
twice as high (r = .16), compared to the correlation of cord blood and 
year 6 three times higher. SregionIgE showed highest temporal cor-
relation (r = .59, p < .001, between year 4 and 6; r = .45 between year 
1 and year 4, p < .001) (Figure 3; Table S14).

Sensitivity analyses revealed large impact of pre- processing 
of methylation data, and lower predictive performances when 

F I G U R E  2  Predictive model performance. Apparent (ap) and optimism- corrected (oc) AUC is shown for models with data- driven selection 
of additional molecular markers (models 4–9) in contrast to respective models without newly selected molecular components (models 1–3). 
Models are sorted and numbered by model complexity (simple models at bottom) and grouped into models without (A) or with symptoms/
diagnoses included (B). ‘base’ model includes variables sex, maternal asthma, farming status and rural area status; base variables are part of 
every model. Variant score is built from 12 Chromosome 17 SNPs, Methylation score is built from 8 methylation sites. Symptoms/diagnoses 
include early food allergy, early eczema and early wheeze without cold. ‘all mRNA expr.’ include 14,492 mRNA expression variables, prio a 
subset of 154. ‘all methyl. sites’ include 666,727 DNA methylation variables, prio a subset of 162.

(A) (B)
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switching to a more restrictive asthma definition. We did not ob-
serve substantial differences in the variant score effect between 
farm and non- farm children (Section S4, Tables S17–S19, Figure S5).

4  |  DISCUSSION

Clinical work- up for childhood asthma includes several risk fac-
tors and comorbidities, however, individual risk scores were sub- 
optimal44 and have demonstrated restricted performance for 
clinical practice.11 Thus, although prognostic scores are mentioned 
in clinical guidelines, they are not part of specific recommendations. 
Nevertheless, there is consensus to integrate different multi- omics 
levels and clinical data to generate individual risk predictions.45

Using three longitudinal birth cohorts, we in parallel integrated 
both epidemiological and molecular factors quantifiable at birth in 
a prediction score for subsequent childhood asthma. Yet, molecu-
lar markers did not add substantially to predictive performance to 
reach clinical relevance – neither alone nor combined. Considering 
symptoms/diagnoses (wheeze, AD, FA) during early manifestation, a 
higher level of prediction performance was observed, as previously 
seen in other studies,6,46,47 however, too low for clinical application.

4.1  |  Components of the prediction score

We integrated sex, maternal asthma and environment as fixed com-
ponents in the score. Other factors influencing risk (e.g. caesarean 
section, breastfeeding, antibiotics in pregnancy, older siblings) were 
considered, but not included due to small or highly heterogeneous 
effect sizes or low prevalence.48

We combined the strongest effects from previous GWAS on 
childhood asthma14 into a variant score as objective, independently 
derived genetic component. Our findings of modest predictive abil-
ities of variants to predict asthma were similar to others19,49 and 
might reflect the phenomenon of missing heritability, however, con-
tributed independently to epidemiological or molecular components 
present in the model.

Using a similar methodology, we integrated the results of the 
largest asthma- EWAS using cord blood18 into a methylation score. 
For methylation data, no best practice exists for pre- processing (in-
cluding QCs, outlier- detection, normalization of signal, batch effect 
elimination). As addressed in our sensitivity analyses, results are 
highly dependent on these steps hampering the use of externally de-
rived effects. While the association of single CpG sites to childhood 
asthma in our cohorts was in accordance with the meta- analysis,18 
the low observed effect sizes anticipated their limited potential for 
prediction. This was reflected in the low improvement of perfor-
mance when adding methylation data and observed before, although 
with different materials.19 The methylome- wide screening identified 
additional CpGs, however with too limited predictive power.

Contrary to the above components, no applicable studies 
linking cord blood mRNA expression to childhood asthma were TA
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available. However, association studies of asthma and mRNA 
expression in childhood helped to define a prioritized gene- set. 
Additionally, an exhaustive transcriptome- wide approach was 
incorporated. After pre- processing of RNASeq and NanoString- 
derived data, unified analysis with enhanced power was possi-
ble. Prioritizing genes with known asthma links did not improve 
performance over the transcriptome- wide approach. We con-
cluded that asthma- related signals in those genes were not yet 
pronounced at birth, also confirmed in our qPCR data analysis 
showing that the association of asthma and gene expression in-
creases with increasing age of the children (1, 4.5 and 6 years). 
However, single genes contributing to prediction performance 
were identified, but like other molecular components, absolute 
improvement was small and independent experiments confirm-
ing differential expression are required to allow comprehensive 
biological interpretations. Attempts to replicate at least some of 
our reported prediction models in an independent cohort were 
hampered by the absence of any national or international birth 
cohort with comparable biomaterial, identical omics assessment, 
and outcome data of childhood asthma at comparable age as avail-
able in our study. As a remedial measure, we therefore selected 
evidence- based variables with well- replicated results from the lit-
erature as far as possible. Overall, a biological link between DNA 
methylation and mRNA expression at birth and asthma diagnosis 
at school age may be challenging to detect and quantify in blood 
cells reflecting systemic immune regulation.

Regardless of molecular markers, the inclusion of symptoms/di-
agnoses yielded the most substantial increase in predictive power, 
aligning with most proposed scores emphasizing first symptoms (e.g. 
wheeze characteristics) and allergic comorbidities (rhinitis, AD)/(s)IgE 
testing.12 Few studies integrated single biomarkers (exhaled breath 
condensate/volatile organic components)50 and genomic/methylation 
markers19,49 to improve prediction. Consistent with our results, rele-
vant enhancements were not observed, with AUC ranging from 0.66 to 
0.87 and 0.62 to 0.83, when externally validated.51 More specifically, 
the only study that reached an AUC over 0.8 in external validation, 
was based on small numbers (28 asthmatics).51,52 Also improvement 
of existing scores with molecular markers proved difficult.12 Several 
factors may be responsible for the small effects of molecular markers: 
Prediction at birth may be too early,53 and central underlying disease 
processes are not yet stably expressed. Early developmental matura-
tion and asthma onset differ chronologically, requiring in- depth longi-
tudinal analysis. Capturing the complex interplay and dimensionality 
of genetics, epigenetics and mRNA expression is statistically challeng-
ing and regulatory systems as metabolic responses through microbial 
influences may be important to be implemented.

4.2  |  Strengths and limitations

To the best of our knowledge, this is the first study to combine 
genetic, methylation, and mRNA expression layers with common 

F I G U R E  3  Temporal correlation of 
mRNA expression. Correlations were 
calculated on 40 genes over 4 time points 
(6 pairs of time points). The horizontal 
line shows the overall average (mean) 
correlation of mRNA expressions of all 
pairs of time points. Separate average 
correlation of genes between each pair of 
time points is indicated by coloured points 
and ranges (mean ± SD). Correlations 
above r = .35 and below .05 were labelled 
with gene names. N = 1084 distinct 
underlying PASTURE individuals involved 
in calculations (cb, cord blood).
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asthma risk factors for predictive modelling. We used appropriate 
prior knowledge about risk factors for childhood asthma in contrast 
to re- estimate effect sizes. This helped us avoid modelling cohort- 
specific features and reserved power for molecular components 
lacking effect parameters. The model- derived predictions are thus 
more immediately generalizable.

Performance measures, when assessed with data already used 
for model development (apparent performance), are generally higher 
compared to assessments with new data. We addressed this by 
transparently reporting and focusing on optimism- corrected per-
formance, using bootstrapping for internal validation.54 These mea-
sures are often missing or incorrectly performed in studies, although 
highly recommended for prediction.55

One limitation of many studies including ours, despite appli-
cation in three birth cohorts, is sample size. As a consequence, 
theoretical statistical considerations limit model complexity,56 
which might be needed to uncover biological structure. Integrating 
non- linear effects and interactions (e.g. gene environment) was 
infeasible due to the data- intensive nature of selecting from high- 
dimensional variables, estimating effect size, and assessing predic-
tive performance.57 Observing low predictive performance may 
reflect all combinations of low biological signals, too little power, 
or an inadequate modelling approach. Reporting sensitivity/speci-
ficity among others as threshold- specific measures as well as net 
benefit58 would be useful as a second step after achieving sufficient 
score performance. Due to the observed low overall performance, 
we refrained from reporting these further detailed measures, cru-
cial for assessing clinical relevance. Atopic sensitization for all co-
horts and biological measurements beyond peripheral blood cells, 
for example, at local tissue sites (nose, lung) were not available, as 
invasive biomaterial sampling was impractical in these prospec-
tive cohorts. Furthermore, we restricted our analysis to a general 
asthma phenotype.

4.3  |  Future directions

Predictive modelling would largely benefit from consent on canoni-
cal variables to include. The standard as with GWAS, to pool cohorts 
and report meta- analyses, requires realization also for other omics 
data. Ideally, the establishment of consortia that ensure uniform 
procedures for data collection, outcomes/variable definition, evalu-
ation and transparent reporting should be promoted. This includes 
harmonizing asthma definitions59 and improving statistical analyses/
reporting.51

From clinical perspective, more specific asthma sub- phenotyping 
including allergic sensitization and conventional markers (sIgE, eo-
sinophils, FeNO) may represent superior prediction endpoints than 
‘any asthma’. Subgrouping of individuals into endotypes which ac-
count for the heterogeneous nature of asthma60 might overcome the 
limited predictability observed in this approach. We believe a crucial 
initial step involves conducting traditional association analyses with 
these objectively defined endotypes. This is essential in establishing 

the foundation for prediction models. Both, cohorts characterized 
in depth with omics over time and conventional markers delineating 
distinct pathophysiology, may offer promising tools for successful 
and generalizable prediction during onset of precursor symptoms. 
Investigation of non- invasive surrogate tissues61 for lung/epithelial 
cells and purified cells may represent a compromise to overcome the 
highly cell- specific nature of DNA methylation and more systemic 
role of peripheral blood.

4.4  |  Summary

Asthma prediction models, including ours, demonstrated moderate 
performance. Although we integrated numerous common risk fac-
tors extended by new molecular markers at birth, this score remains 
insufficient for clinical application. Yet, this approach is relevant and 
can be translated to future studies. Symptoms at early manifesta-
tion together with addition of molecular markers at an age, where 
more stable pattern may be established, can offer new strategies 
for early identification of an increased asthma risk. Further de-
velopment might consider additional markers such as microbiota, 
metabolomics and proteomics. Prediction tools based on random 
forests or support vector machines offer more flexibility and make 
fewer structural assumptions than classical methods. Still, they can-
not overcome limitations due to low sample sizes and multiplicity of 
analysis. Multiple omics and clinical data should be measured simul-
taneously, at a currently unavailable scale, followed by standardized 
evaluation. Overarching funding opportunities including interdis-
ciplinary and international research consortia are key to realizing 
this challenging option for future asthma prediction and possibly, at 
some point, patient- tailored prevention.
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Wolfgang Greiner (Department of Health Economics and Health 
Care Management, School of Public Health, Bielefeld University, 
Bielefeld, Germany), Ole Marten (Department of Health Economics 
and Health Care Management, School of Public Health, Bielefeld 
University, Bielefeld, Germany), Young- Ae Lee (Max Delbruck 
Center for Molecular Medicine in the Helmholtz Association (MDC), 
Berlin, Germany; Charité—Universitätsmedizin Berlin, corporate 
member of Freie Universität Berlin and Humboldt- Universität zu 
Berlin, Berlin, Germany; Experimental and Clinical Research Center, 
a joint cooperation of Max Delbruck Center for Molecular Medicine 
and Charité—Universitätsmedizin Berlin, Berlin, Germany), Josefine 
Dobbertin- Welsch (Department of Pediatric Respiratory Medicine, 
Immunology and Critical Care Medicine, Charité Universitätsmedizin 
Berlin, Berlin, Germany), Christina Schorlemer (Department of 
Pediatrics, Children's Center Bethel, University Hospital OWL, 
University Bielefeld, Bielefeld), Patricia Maasjosthusmann 
(Department of Pediatrics, Children's Center Bethel, University 
Hospital OWL, University Bielefeld, Bielefeld), Parastoo Kheiroddin 
(University Children's Hospital Regensburg (KUNO), St. Hedwig's 
Hospital of the Order of St. John and the University of Regensburg, 
Regensburg), Daniel Walter (Dr. von Hauner Children's Hospital, 

University Hospital, LMU Munich, Munich, Germany), Stephanie 
DeStefano (Department of Pediatric Pneumology, Allergology and 
Neonatology, Hannover Medical School, Hannover, Germany).

PASTURE study group: Martin Täubel (Department of Health 
Security, Finnish Institute for Health and Welfare, Kuopio, Finland), 
Pirkka V. Kirjavainen (Department of Health Security, Finnish 
Institute for Health and Welfare, Kuopio, Finland; Institute of 
Public Health and Clinical Nutrition, University of Eastern Finland, 
Kuopio, Finland), Lucie Laurent (Department of Respiratory Disease, 
University Hospital of Besanҫon Besançon, France), Marie- Laure 
Dalphin (Paediatrics, University Hospital of Besançon, Besançon, 
France), Markus J. Ege (Dr. von Hauner Children's Hospital, 
University Hospital, LMU Munich, Munich, Germany; Member of 
the German Center for Lung Research, DZL, Germany), Sabina Illi 
(Institute for Asthma and Allergy Prevention, Helmholtz Zentrum 
München, Neuherberg, Germany; Member of the German Center for 
Lung Research, DZL, Germany), Johanna Theodorou (Dr. von Hauner 
Children's Hospital, University Hospital, LMU Munich, Munich, 
Germany; Member of the German Center for Lung Research, DZL, 
Germany), Sonali Pechlivanis (Institute for Asthma and Allergy 
Prevention, Helmholtz Zentrum München, Neuherberg, Germany), 
Francesco Foppiano (Dr. von Hauner Children's Hospital, University 
Hospital, LMU Munich, Munich, Germany), Claudia Beerweiler (Dr. 
von Hauner Children's Hospital, University Hospital, LMU Munich, 
Munich, Germany) Giulia Pagani (Institute for Asthma and Allergy 
Prevention, Helmholtz Zentrum München, Neuherberg, Germany).
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