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1  |  INTRODUC TION

Exosomes are the smallest extracellular vesicles ranging in size from 
30 to 150 nm and are found in the majority of bodily fluids.1 They can 
transport functional miRNAs, coupled with the inherent biological 

functions of exosomes, which makes them a highly sought after and 
novel delivery platform.2 Specifically, they have the characteristics 
of low immunogenicity and high transport efficiency, which can 
regulate inflammation and cross the blood–brain barrier (BBB).3–5 
They transport signaling molecules that drive a number of biological 
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Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most 
cells with the ability to communicate with other tissues and cell types over long 
distances. Their use in regenerative medicine has gained tremendous momentum 
recently due to their ability to be utilized as therapeutic options for a wide array of dis-
eases/conditions. Over 5000 publications are currently being published yearly on this 
topic, and this number is only expected to dramatically increase as novel therapeutic 
strategies continue to be developed. Today exosomes have been applied in numerous 
contexts including neurodegenerative disorders (Alzheimer's disease, central nerv-
ous system, depression, multiple sclerosis, Parkinson's disease, post- traumatic stress 
disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, 
kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degener-
ative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal de-
generation, osteoradionecrosis, respiratory disease), infectious diseases (COVID- 19, 
hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint 
regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/
skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spi-
nal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric 
cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune 
regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review 
is a first of its kind aimed at summarizing the extensive regenerative potential of ex-
osomes over a broad range of diseases and disorders.
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2  |    MIRON et al.

processes, including cell signaling, immunological responses, tumor 
metastasis, and other biological activities. Exosomes have now been 
shown in several investigations to play both diagnostic and thera-
peutic functions, in which their precise detection, separation, and 
quantification are crucial. Today, exosomes are one of the most 
highly researched topics in regenerative medicine with over 5000 
publications being published on the topic yearly. Part 1 of this three- 
part series on exosomes focused on exosome biogenesis as well as 
their standard isolation techniques, including ultra- centrifugation, 
microfluidic, immunoaffinity, precipitation, size- exclusion chroma-
tography, ultrafiltration technologies. This second article is focused 
on the therapeutic potential of exosomes in medicine. It is divided 
into eight categories highlighting the therapeutic potential of exo-
somes as follows:

• Neurodegenerative disorders: Alzheimer's disease, central ner-
vous system, depression, multiple sclerosis, Parkinson's disease, 
post- traumatic stress disorders, traumatic brain injury, peripheral 
nerve injury.

• Treatment of damaged organs: heart, kidney, liver, stroke, myo-
cardial infarctions, myocardial infarctions, ovaries.

• Degenerative processes: atherosclerosis, diabetes, hematology 
disorders, musculoskeletal degeneration, osteoradionecrosis, re-
spiratory disease.

• Treatment of infectious diseases: COVID- 19, hepatitis.
• Regenerative procedures: antiaging, bone regeneration, carti-

lage/joint regeneration, osteoarthritis, cutaneous wounds, dental 
regeneration, dermatology/skin regeneration, erectile dysfunc-
tion, hair regrowth, intervertebral disc repair, spinal cord injury, 
vascular regeneration.

• Cancer therapy: breast cancer, colorectal cancer, gastric cancer, 
and osteosarcomas.

• Improvements in immune function: allergy, autoimmune disor-
ders, immune regulation, inflammatory diseases, lupus, rheuma-
toid arthritis.

• Treatment of random disorders: infertility, obesity, and sleep 
apnea.

The aim of this scoping review is to summarize the extensive re-
generative potential of exosomes over a broad range of disorders 
and to elaborate on the potential clinical relevance of this novel 
treatment approach.

2  |  E XOSOMES AND 
NEURODEGENER ATIVE DISE A SE

The medical community is persistently seeking appropriate treat-
ment solutions for neurodegenerative illnesses due to the limita-
tions of short- term symptomatic therapy and the dose- dependent 
adverse effects associated with pharmaceutical treatments. This 
pursuit is driven by the recognition of neurodegenerative disorders 
as a significant global health problem.6 The identification regarding 

the therapeutic potential of stem cells for the treatment of neuro-
degenerative illnesses dates back to 1980 when Parkinson's disease 
(PD) was treated using fetal nerve tissue. Subsequently, a multitude 
of comprehensive investigations have been undertaken to formulate 
an effective therapeutic approach for the treatment of neurologi-
cal disorders. Currently, there is a significant body of knowledge on 
the therapeutic potential of stem cells and their secreted factors 
in the context of treating neurodegenerative illnesses. This novel 
framework has shown distinct attributes pertaining to this thera-
peutic approach, including neuroprotective and neurodegenerative 
effects, remyelination capabilities, mitigation of brain inflammation, 
and restoration of functionality subsequent to produced damage.6 
Nevertheless, the precise method by which stem cells facilitate the 
healing of nerve injury remains uncertain. One significant compo-
nent of their secretory function, exosomes, has been proposed as 
a key contributor to these therapeutic benefits. A multitude of re-
search conducted in recent decades has examined the therapeutic 
efficacy of exosomes in the management of many neurological dis-
orders. The primary objective of this review article is to examine the 
potential of stem cell- derived exosome- based treatments in the con-
text of treating and managing neurodegenerative disorders.6

Regrettably, the occurrence of diverse neurodegenerative dis-
eases, such as amyotrophic lateral sclerosis (ALS), PD, multiple 
sclerosis (MS), Alzheimer's disease (AD), and Huntington's disease 
(HD), has been attributed to the progressive deterioration of neu-
ronal function and structure in both the peripheral and central 
nervous systems.7 The process of aging is well recognized as the 
primary risk factor for several brain disorders.8 With the global 
elderly population seeing significant growth, it is anticipated that 
degenerative neurological illnesses will surpass cancer in the fore-
seeable future, therefore becoming the second most prevalent 
cause of mortality worldwide.9 Neurodegenerative disorders have 
a significant influence on several aspects of individual functioning, 
including but not limited to balance, motor skills, cognitive abilities, 
language proficiency, and respiratory function.10 While the etiology 
of several illnesses remains unclear, a confluence of hereditary and 
environmental variables might potentially contribute to their devel-
opment.10 Most often, these disorders cause neurons to die thus 
affecting distinct parts of the brain, such as the striatal regions in 
PD and the cortical and hippocampal regions in AD.11 These condi-
tions may present with minor or severe symptoms, depending on the 
part of the brain that is impacted.12 The presence of these diseases, 
characterized by their prolonged duration and significant treatment 
expenses, poses a substantial challenge for both patients and the 
healthcare community. Consequently, considerable efforts are being 
directed toward the development of efficacious treatments to ad-
dress this global issue.

Currently, there is a lack of definitive cures for these diseases, 
with the majority of treatment approaches in Western Medicine 
focusing on symptom management, pain relief, symptom control, 
and enhancement of mobility.11 During the 1970s, the first pharma-
cotherapy groups centered on target- based approaches emerged, 
serving as substitutes for second messenger modulators, direct 
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receptor agonists, enzyme inhibitors, releasing agents, and neu-
rotransmitters. Among the first generation of these drugs are those 
used to replace dopamine, such as dopaminergic drugs,13 acetylcho-
linesterase inhibitors,14 analgesic drugs,15 and surgical treatments, 
like deep brain stimulation, for the management of many movement 
disorders.16 Cholinesterase inhibitors, another significant family 
of FDA- approved medications used to treat all stages of AD since 
1978, and L- DOPA (L- 3,4- dihydroxyphenylalanine), the first drug au-
thorized for the clinical treatment of PD.17–20 The goal of the second 
generation of these medications is to halt and reduce the disease's 
development. Examples include riluzole for Huntington's disease, 
cerebellar ataxia, and ALS21; nonsteroidal anti- inflammatory medi-
cations (NSAIDs) that lower the risk of AD with long- term usage22; 
and CERE- 120 (adeno- associated virus serotype 2- neurturin), which 
is in phase I study for people with idiopathic PD.23–25

The blood–brain barrier (BBB) is a specialized membrane that ex-
hibits extreme selectivity in its permeability, effectively restricting 
the passage of big molecules and almost all small molecules from pe-
ripheral organs to the brain. Due to this rationale, a range of intrusive 
methodologies have been devised or are currently being explored to 
overcome the selective nature of the BBB. These procedures include 
neurosurgery, the biochemical manipulation of the BBB, and the use 
of diverse nanoparticle formulations. Nevertheless, these strategies 
are not without their limitations in the context of drug administra-
tion since they may encounter challenges related to the fast elim-
ination of drugs by the mononuclear phagocyte system. Multiple 
studies have provided evidence suggesting that exosomes possess 
the ability to traverse the BBB and surmount the immune- privileged 
nature of the brain, resulting in a decrease in medication elimination. 
Significantly, exosomes possess the capability to cross the BBB and 
convey proteins and RNAs into the brain via various routes of ad-
ministration, such as intranasal, intravenous, intraperitoneal, and in-
tracranial methods. This observation underscores the considerable 
adaptability and suitability of exosome- mediated drug delivery for 
the treatment of central nervous system (CNS) disorders.

Therefore, exosomes have been used as a therapeutic inter-
vention for many chronic degenerative neurological disorders. The 
conditions encompassed in this list are Alzheimer's disease, central 
nervous system diseases, depression, multiple sclerosis, neurode-
generative disease, Parkinson's disease, post- traumatic stress disor-
ders, and traumatic brain injury. Numerous studies have indicated 
the clinical efficacy of these treatments, as will be discussed in the 
following sections.

2.1  |  Alzheimer's disease

Alzheimer's disease is a common neurological illness that affects a 
significant number of people worldwide. Unfortunately, there are 
few therapeutic options available that have been proven efficacious. 
The primary strategy for therapeutic intervention in Alzheimer's dis-
ease involves the use of inhibitors targeting the enzyme BACE- 1 in 
both neurons and glial cells. This technique effectively reduces the 

levels of A- beta, the principal peptide associated with Alzheimer's 
pathology. The efficacy of drugs utilized for AD is often limiting 
since they must be taken following early diagnosis. The maintenance 
of homeostasis and normal brain function relies on cellular interac-
tions within the brain. Exosomes have been identified as significant 
contributors to cell- to- cell communication among brain cells, facili-
tating the transfer of information from one cell type to another. It 
is noteworthy that extracellular vesicles released by mesenchymal 
stem cells have shown superior efficacy compared with the cor-
responding parent cells.26 Exosomes possess several advantages 
upon their specific fusion with target cells. Firstly, they effectively 
exclude the heterogeneity present in the original cells through a pre-
cise selection process. Additionally, their engineering and drug ac-
cumulation capabilities enable them to exhibit molecular specificity. 
Exosomes are capable of inducing effective actions by leveraging 
variable concentrations of molecules and factors, as well as activat-
ing signaling cascades. The strength of their position is enhanced by 
their integration with a multitude of elements and activities.26

Exosomes have been seen to exert their effects on neuronal and 
glial cells, facilitating the healing process after traumas and immuno-
logical responses.26 The fusion of MSC- Exos has been found to be 
crucial in facilitating intercellular communication among brain cells, 
both in healthy conditions and in the context of different patholog-
ical states. Several protective effects have been documented, such 
as the facilitation of synaptic plasticity, provision of nutritional and 
metabolic assistance, promotion of neuron regeneration, modulation 
of inflammatory response, and removal of toxic elements.27,28 Both 
the brain and spinal cord may be subject to the induction of traumas 
and ischemia lesions. In several instances, it has been shown that the 
recuperation facilitated by modest dosages of MSC- Exos starts via 
the stimulation of a limited number of receptors. Subsequently, this 
leads to the phosphorylation of kinases (and other factors), as well 
as the activation of miRNAs.28–31 Similarly, it has been shown that 
MSC- Exos had the ability to alleviate trained immune responses ini-
tiated by innate cells, resulting in specific localized tissue healing.32 
Furthermore, MSC- Exos have been shown to regulate neuronal re-
sponses and mitigate the detrimental effects caused by glial cells, 
including astrocytes and microglia.33,34

Preclinical research on MSC- Exos has been extensively con-
ducted in murine models, with favorable results (Figure 1). The pri-
mary processes behind these effects include the release of secreted 
mesenchymal stem cell- derived extracellular vesicles (MSC- Evs) in-
cluding their cargo, which contains crucial components such as nu-
cleic acids, as well as other therapeutic agents. One of the significant 
impacts associated with AD is the downregulation of BACE- 1 and 
Aβ levels, accompanied by an elevation in sphingosine- 1- phosphate. 
These events are generated by the protective action of extracellular 
vesicles derived from MSC- Exos against neuronal damage caused by 
AD.35–37 As a result, the simple injection into the tail vein of animal 
models has been shown to produce positive effects on the mouse 
brain including ameliorating cognitive impairment and reducing 
A- beta aggregation as well as neuronal death.38 Action potentials, 
dendritic spine augmentations, [Ca2+] oscillations, and mitochondrial 
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reactivations are among the effects that MSC- Exos restore.38 
Recent findings have shown MSC- Exos demonstrate great promise 
as a therapeutic agent and biomarker for AD in humans.39–41 The 
symptoms that were reported, such as the return of homeostatic 
levels, the preservation of synapses, and enhanced cognition, are 
comparable to those shown in mice.42 In actuality, MSC- Exos pre-
vent neurodegeneration in AD and many other disorders, having fa-
vorable effects on brain regeneration and tissue repair.43 A growing 
body of research indicates that exosomes facilitate cell–cell commu-
nication in the brain, which enables them to reduce neuroinflamma-
tion and enhance the control of synaptic function. The utilization of 
exosomes in AD as a therapeutic target or as a biomarker for early 
identification has been covered in a number of review articles over 
the years.26,40,44–49

2.2  |  Parkinson's disease

The use of exosomes as a therapeutic intervention for Parkinson's 
disease has garnered significant attention due to the escalating 
global prevalence of the condition. PD is a progressive movement 
condition and the second most prevalent neurological illness behind 
Alzheimer's that impacts around 2% of those aged over 65 years.50 
Resting tremors, stiffness, slowness, and inability to maintain bal-
ance are all examples of motor symptoms. As dopaminergic neurons 
of the substantia nigra pars compacta die off over time, surviving 

neurons develop abnormal structures called Lewy bodies (LBs) and 
Lewy neurites (LNs) due to the accumulation of the synaptic protein 
alpha- synuclein (- syn).51 The neurotransmitter dopamine (DA) is de-
pleted as a result of these alterations, and an imbalance between ace-
tylcholine (ACH) and DA occurs, resulting in motor difficulties.50,52

RNA molecules, antioxidants, and dopamine agonists are some 
of the treatments now available to help reduce the motor symptoms 
associated with Parkinson's disease. Medication for PD nonmotor 
symptoms include secondary side effects such as sadness, exhaus-
tion, sleeplessness, and dementia.53–55 Nevertheless, the efficacy of 
these medications in halting the ongoing dopaminergic damage is 
limited due to the reduced efficiency of drug transport caused by 
the BBB. Similar to several other neurological illnesses, the insuffi-
cient permeability of the BBB has been a challenge in the administra-
tion of therapeutic interventions for PD in the brain.

In recent years, exosomes have gained significant attention in 
the field of neuroscience, particularly in the context of neurological 
disorders such as stroke and brain tumors owing to their ability to 
cross the BBB. This heightened interest may be attributed to the 
remarkable biocompatibility shown by exosomes, their capacity to 
cross the BBB without inducing toxicity, and their ability to selec-
tively target specific sites within the brain. The capacity of exosomes 
to readily cross the BBB without thrombotic concerns and integrat-
ing into neurons and glial cells has also provided the potential for 
utilizing nano- sized Exos as vehicles for therapeutic medicines or 
bioactive proteins.

F I G U R E  1  Therapeutic application of exosomes in AD. A, amyloid- beta; APP, amyloid precursor protein; BACE- 1, beta- site amyloid 
precursor protein cleaving enzyme 1; BaX, BcL- 2- associated X protein; BBB, blood–brain barrier; BCL2, B- cell lymphoma 2; Cur, curcumin; 
ECVs, extracellular vesicles; MP- MSCs, multipotent mesenchymal stem cells; NEP, neprilysin; NF- B, nuclear factor kappa- light- chain 
enhancer of activated B cells; NFT, neurofibrillary tangles; NSCs, neural stem cells; QU, quercetin; STAT, signal transduction and activator of 
transcription protein. 1081 × 540 mm (118 × 118 DPI). Reprinted with permission from Soliman et al.40
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Jarmalaviciute et al.56 were one of the first to investigate 
the neuroprotective capabilities of extracellular vesicles (EVs) 
in an in vitro model using dopaminergic neurons subjected to 
6- hydroxy- dopamine (6- OHDA) induced toxicity. Human exfoliated 
deciduous teeth were used to grow cultures of mesenchymal stem 
cells from the dental pulp. Dopaminergic neurons generated from 
neural stem cells were shielded against 6- OHDA when EVs were 
present in the growth medium. Thus, exosomes isolated from the 
tooth pulp prevented 6- OHDA- induced death of 80% of dopamine 
neurons.56

Using a 6- OHDA model of PD in rats, in which 6- OHDA was 
injected into the medial forebrain bundle (MFB), a subsequent in-
vestigation showed that MSC- EVs delivered intranasally enhanced 
treatment success.57 Eight days after unilaterally injecting 6- OHDA 
into MFB, animals who received daily Exo therapy for 15 days had 
substantial improvements in gait metrics and motor function. The 
results demonstrated that Exos from MSCs alleviated Parkinsonian 
symptoms in a rat model.57

Similar outcomes were also seen in a different study when con-
ditioned medium from human dental pulp stem cell cultures were 
administered in the PD animal model.58 In a 6- OHDA rat model of 
Parkinson's disease, the impact of intravenous hUC- MSC- EV treat-
ment (200 μg, every third day for 8 weeks) was investigated. Exos 
were shown to penetrate the BBB and integrate into the substan-
tia nigra where they decreased apoptosis, thereby safeguarding 
dopaminergic neurons and elevating dopamine levels in the stria-
tum. The Exo- treated animals also displayed diminished asymmet-
ric rotation in response to apomorphine treatment at 8 weeks after 
transplantation.59

Haney et al.60 created EVs by transfecting macrophages demon-
strating promise for the treatment of PD. By introducing a plasmid 
DNA (pDNA) containing the catalase gene into macrophages using 
electroporation, the resulting transfected macrophages released 
EVs that contained various components such as catalase genetic 
material (pDNA and mRNA), functional catalase, and NF- kB. These 
EVs were effectively transferred to neurons, leading to a notable de-
crease in inflammation and the activation of neuroprotective mecha-
nisms in the animal model utilized for PD.60

A notable study by Zhuang et al.5 observed that exosomes ob-
tained from MSCs loaded with curcumin, a low molecular weight 
compound with anti- inflammatory properties exhibited a reduc-
tion in the activation of microglial cells involved in inflamma-
tion. Consequently, these exosomes provided protection against 
brain inflammation induced by lipopolysaccharides (LPS) in mice.5 
Additionally, even MSC- Exos injected intraperitoneally were quickly 
absorbed by cells in the mice's brain, including microglial cells that 
were both active and in a resting state.5

In light of this, these combined results provides encour-
aging preclinical results regarding the use of exosomes as ef-
fective PD treatment alternatives with many review articles 
written on the topic61–65 with Figures 2 and 3 summarizing these 
findings.

2.3  |  Multiple sclerosis

Multiple sclerosis (MS) is an autoimmune neurodegenerative disease 
of the CNS that causes the brain and spinal cord to develop numer-
ous demyelinating lesions. It affects the lives of an estimated 2.8 mil-
lion individuals globally.66 A diverse range of symptoms, including 
exhaustion, impairment of bladder and bowel function, visual defi-
cits, difficulties with mobility and coordination, as well as sensory 
abnormalities. Individuals diagnosed with MS have significant cog-
nitive and emotional alterations that have a profound impact on 
their overall quality of life. The occurrence of myelin loss or demy-
elination may result in neuronal disruption, perhaps accompanied 
by alterations in axonal structure, hence giving rise to a variety of 
neurological symptoms. In the relapsing–remitting type of MS, these 
symptoms may transiently manifest for extended periods of time 
(weeks) during disease exacerbation (known as relapse). Despite the 
identification of many genetic, metabolic, and environmental vari-
ables that influence the development of MS, there is a lack of com-
prehensive understanding of the specific processes involved in the 
damage to CNS tissue. Recent research has shown the substantial 
involvement of circulating extracellular vesicles in several pathologi-
cal conditions. Exosomes have been identified as a crucial means of 
intercellular communication, facilitating the exchange of informa-
tion between two distinct cell types, whether they are located in 
close proximity or in different regions of the body. In light of recent 
advancements in comprehending the pathophysiology of MS, inves-
tigations have unveiled diverse EVs and their respective functions 
in the progression of MS. These EVs hold potential as biomarkers 
for the purpose of monitoring the advancement of the condition. 
Moreover, their complete understanding will allow exosomes to be 
used as therapeutic options with the goal of potentially reversing 
the disease.

The immune- mediated damage occurring in the CNS of individu-
als with MS is a result of intricate interactions involving several types 
of immune cells, including NK cells, macrophages, dendritic cells, B 
cells, and T cells.67–69 Glial cells, including astrocytes and microglia, 
function as nonclassical immune cells in the pathophysiology of mul-
tiple sclerosis in addition to other immune cells.70–73 Exosomes are 
thought to be very effective therapeutic options for the treatment 
of human illnesses, such as MS. Recent research has shown that in 
animal models of progressive multiple sclerosis, MSC- Exos may aid 
in the recovery from demyelination.74–77 Notably, MSCs transfer has 
been studied as a cell treatment for multiple sclerosis for many years, 
with varying degrees of success. Studies have found that MSC- Exos 
increased microglial polarization and decreased cytokine production 
including IL- 6, IL- 12p70, IL- 17AF, and IL- 22.74–77

Recently, Casella et al. created a murine microglial cell line that 
generates EVs loaded with IL- 4 that exhibit the endogenous “eat me” 
signal Lactadherin (Mfg- e8) on their surface. After only one injection 
of the modified EV, the mice with induced encephalitis showed less 
neuroinflammation and a lower EAE clinical score, which was linked 
to an increase in anti- inflammatory markers in phagocytic cells.78 
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6  |    MIRON et al.

Furthermore, in a recent study by the same research group, it was 
shown that naturally produced EVs from oligodendrocyte cultures 
containing myelin antigens found a decrease in the pathophysiology 
of experimental autoimmune encephalomyelitis (EAE).79 In another 
study, myelin stem cell- derived EVs cocultured with microglia im-
proved myelin healing by recruiting oligodendrocyte precursor cells 
favoring the recovery of damaged myelin.80

A study performed by Williams et al. examined the role of EVs in 
an EAE model concluded that circulating exosomes exhibit height-
ened levels during pregnancy.81 Furthermore, exosomes have been 
shown to inhibit T- cell activation in an EAE mouse model and aided 
in the development and migration of oligodendrocyte precursor cells 
to sites of inflammation.82 Thus, currently commercially available 
exosomes derived from placental amnionic fluids may be an excel-
lent avenue of future research for patients with MS.

2.4  |  Depression

Depression is a very widespread mental condition that impacts a 
substantial global population of over 250 million individuals.83 It may 

be treated using a wide range of psychological and pharmaceuti-
cal techniques, the majority of which involve adjusting the central 
nervous system's levels of bioenergy amines.84 Unfortunately, the 
effectiveness of currently available therapeutic techniques toward 
managing depression is limited mostly because of their inability to 
cross the BBB.85 The pathophysiology of depression is limited by 
a combination of genetic susceptibility, disrupted monoamine pro-
duction and function, and altered brain structure and function. 
Depression is linked to elevated oxidative stress as a result of reac-
tive oxygen species (ROS) production and an imbalance in oxidant 
and antioxidant signaling.86 Because of its increased oxygen use, 
greater lipid content, and more weakened antioxidative defense, the 
brain is more vulnerable to oxidative stress.87

In a paper titled: “Exosomes: A Novel Therapeutic Paradigm for 
Treatment of Depression”, Amanda Silva and colleagues highlighted 
the potential use of exosomes for the treatment of depressive dis-
orders.83 Numerous physiological processes, including nerve cell 
stress, cell- to- cell communication, synaptic plasticity, and neurogen-
esis, are often seen in the CNS. The ability for exosomes to cross 
the BBB and transport macromolecules to destination cells is one 
of their key and unique abilities. The use of exosomes as medicinal 

F I G U R E  2  Graphical abstract highly the potential of exosomes to be utilized as both diagnostic markers as well as therapeutics for the 
treatment and management of Parkinson's disease. Research today has investigated the incorporation of various small biomolecules into 
exosomes owing to their ability to cross the blood–brain barrier. Reprinted with permission from Ouerdane et al.65
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carriers has been thoroughly investigated in a variety of medical 
fields, including the treatment of autoimmune diseases and depres-
sion will significantly minimize the use of off- target drugs with harm-
ful effects such as antidepressants.

2.5  |  Traumatic brain injury

Traumatic brain injury (TBI) affects over 30 million people per year 
worldwide and caused by a variety of traumatic events including 
road accidents, falls, exposure to mechanical forces, interpersonal 
aggression, self- harm, sports injuries, and animal interactions. TBI 
carries the risk of abrupt or early death in addition to lifelong im-
pairments. Even if the mechanical insult initially results in damage/
healing, additional harmful effects are often caused by secondary in-
jury brought on by dysregulated reactions after neuronal death and 
inflammation. The secretome of MSCs, particularly the exosomes, is 
primarily responsible for their functional characteristics which have 
been thoroughly studied as a potential treatment for traumatic brain 
injury. It has been shown that administering exosomes may improve 
TBI resulting in a fully recovered brain.88 The ability to customize 
MSC- Exos to transport certain biomolecules of interest to improve 
their therapeutic efficacy is another benefit of recent technological 
advancements.

MSC therapy of traumatic brain injury in animal models has 
shown encouraging results. Zhang et al.89 carried out the oldest 
known research in 2008 with a cohort of seven patients ranging in 
age from 6 to 55. In this study, bone marrow- derived MSCs (BMSCs) 
were administered by two different routes: either directly injected 
into the lesion or administered intravenously. 6 months later, it was 
discovered that six individuals had significantly improved their neu-
rological function. Unfortunately, one of the patients had two sei-
zure episodes in the first 2 months and had to go back for regular 
therapy.89

Evidence has suggested that exosomes possess the same or bet-
ter benefits/advantages when compared to their parent stem cells 
owing to their ability to cross the BBB, however without the dangers 
of cell therapies. Because of their anti- neuroinflammatory, angioge-
netic, neuroprotective, and neurogenesis qualities, exosomes play a 
major role in therapy of TBI (Figure 4).

2.6  |  Post- traumatic stress disorder

In 1980, post- traumatic stress disorder (PTSD) was officially iden-
tified as a mental/anxiety disorder. Since then, a plethora of in-
formation on this disorder's symptoms, epidemiology, evaluation, 
subtypes, and therapy has surfaced.91 Particularly in military groups, 

F I G U R E  3  Summary of the therapeutic approaches of EXOs in Parkinson's disease. Reprinted with permission from Ouerdane et al.65
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8  |    MIRON et al.

PTSD is often encountered in conjunction with other mental disor-
ders, traumatic brain injury, and other concomitant symptoms, in-
cluding depression.92–94 Moreover, PTSD is associated with a host of 
other co- morbidities, including hypertension,95 cardiovascular dis-
ease,96 cardiometabolic diseases,97 suicidal thoughts,98 in addition to 
chronic pain.99 These highly resemble the disbalance in macrophage 
polarization toward a pro- inflammatory M1 macrophage phenotype 
affecting many illnesses. For instance, C- reactive protein (CRP) may 
indicate PTSD in recently deployed Marines,100 and cortisol levels in 
reaction to awakening can predict the outcome of PTSD therapy.101 
While not widely studied in much efficacy, exosomes have been 
proposed as both an ability to serve as a biomarker in PTSD detec-
tion and, more importantly, as a therapeutic alternative to current 
drug- based therapies for anxiety and PTSD once more knowledge 
is acquired.91 Since exosomes are also able to lower inflammation, 
they may also be infused into the body to lower inflammation as a 
whole and improve macrophage polarization toward the pro- tissue 
healing/resolution M2 phenotype (Figure 4).

2.7  |  Peripheral nerve injury

The most common type of traumatic damage to the nervous system 
is peripheral nerve injury (PNI) which affects more than a million indi-
viduals yearly.102 The majority of the time, these injuries lead to per-
manent impairment, which significantly lowers the patients' quality 
of life.103 The peripheral nervous system has the intrinsic capacity to 
regenerate to a certain extent subsequent to PNI.104,105 The surgical 
technique includes end- to- end anastomosis and is widely regarded as 
the ideal method for repairing peripheral nerves.106 It is now acknowl-
edged that autologous nerve grafts (ANGs) are the “gold standard” 
therapy for PNI.107 Nonetheless, there are still a number of serious 

problems with the therapeutic use of ANGs, including a lack of donor 
nerve availability, morbidity at the donor site, the creation of painful 
neuromas, longer recovery durations, and mismatches in length or di-
ameter.108,109 Moreover, less than half of the patients who had ANG 
transplants recovered fully and/or functionally.110

Interestingly, exosomes have been shown to have effects on ax-
onal nerve regrowth. A study conducted by Bucan et al.111 provided 
evidence that MSC- Exos could stimulate neurite extension in cul-
tured dorsal root ganglion neurons. Furthermore, MSC- Exos have 
been shown to increase the regeneration process after crush dam-
age to the sciatic nerve in vivo. Research conducted by Zhao et al.112 
showed that BMSC- Exos had a notable impact on enhancing neurite 
formation and increasing axon length.

Recent research has shown that exosomes may support and reg-
ulate the biological activities of Swann cells (SCs).113 In comparison 
with the vehicle control group, an in vivo study demonstrated that 
the exosome- treated group that maximized the functioning of SCs 
had improved axonal regeneration, remyelination, and muscle re-
pair.113 It was further shown by Zhang et al.114 that umbilical cord 
MSC- derived exosomes improved vascular regeneration by trans-
porting Wnt4 to endothelial cells, where it activated the Wnt/β- 
catenin pathway. Additionally, it has been shown that exosomes 
derived from bone marrow and adipose MSCs have pro- angiogenic 
effects during wound healing.115,116

There is a growing body of data suggesting that exosomes have 
the ability to facilitate vascular regeneration favoring nerve regen-
eration post- injury. Zhang et al.117 provided evidence that exosomes 
derived from MSCs have a substantial impact on promoting angio-
genesis in the lesion boundary zone.117 Consequently, the adminis-
tration of Immunosomes effectively enhances the recovery of motor 
function in rats following traumatic brain injury. Figure 5 summarizes 
the benefits of exosomes for nerve regeneration.

F I G U R E  4  Schematic of mesenchymal stromal cell (MSC) exosome polarization of microglia from M1 to M2. MSC exosomes are 
internalized into trauma activated M1 microglia to promote polarization into M2 state, resulting in secretion of anti- inflammatory cytokines 
which promote brain repair. Adapted from Li et al.90 and reprinted with permission from Mot et al.88
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    |  9MIRON et al.

3  |  E XOSOMES AND AUTOIMMUNE 
DISORDERS

The immune system may lead to many illnesses such as heightened 
inflammation and autoimmune disorders when it becomes overac-
tive. The field of immunomodulation is poised to emerge as a crucial 
therapeutic approach for the treatment of several disorders owing 
to the pivotal role played by the immune system in safeguarding the 
human body.119,120 Symptoms of an overactive immune system in-
clude autoimmune diseases and excess inflammation (Figures 6 and 
7). While the body needs some degree of inflammation to defend 
itself, excessive inflammation may have harmful side effects and im-
pede tissue function at the location of the illness.121 Autoimmune 
disorders arise due to the inadequate regulation of effector immune 
responses against the body's own tissues.122

Tregs, or regulatory T cells, are essential for controlling the im-
mune system.122 Defects in peripheral tolerance, allergy reactions, 
and eventual autoimmune disorders arise when Treg numbers or 
function decline. For instance, it has been demonstrated that an in-
crease in TH1- like regulatory T cells is linked with autoimmune dis-
orders.122 This suggests that in autoimmune disorders, maintaining 
the regulatory T cell's activity is crucial.122 Numerous studies have 
shown that Treg deficits are the root cause of autoimmune disorders 
such as type 1 diabetes, myasthenia gravis, multiple sclerosis, and 
rheumatoid arthritis.

Autoimmunity is not only caused by aberrant Treg function. 
Anti- inflammatory drugs that have the ability to alter inflamma-
tory signals often used to treat inflammation such as nonsteroidal 
anti- inflammatory medicines (NSAIDs) which block the synthesis of 
prostaglandins.123 Extensive research is being devoted toward the 
investigation of signaling pathway inhibitors,124 stem cell transplan-
tation,125 and various other approaches.

3.1  |  Exosomes and immune regulation

Prior to discussing the vast roles of exosomes and their therapeutic 
effects in the management of various autoimmune disorders, it is 
important to understand how exosomes affect immune cell regula-
tion.126 Exosomes produced from MSCs transport active signaling 
molecules and immunomodulatory effectors to control immune cell 
activity and hence mediate immunological suppression, particu-
larly on T cells and macrophages (Tables 1 and 2). In a study titled: 
“Immunosuppressive Effects of Mesenchymal Stem Cells- derived 
Exosomes,”127 MSC- Exos were clearly shown to regulate immune 
responses by interacting with immune effector cells. Both physical 
and chemical factors were shown to affect MSC- Exos.127

Lipid molecules found in abundance in MSC exosome membranes 
may merge with target cells to convey cargoes.150 The transfer and 
presentation of antigen peptides, the transport of miRNA, the DNA- 
driven cyclic GMP- AMP synthase stimulator of interferon genes in 
recipient cells, and other signaling pathways produced by surface- 
carrying ligands are possible causes of the immunoregulatory 

actions of MSC- Exos.151 MSC- Exos suppress immune cell activa-
tion and encourage the production of anti- inflammatory molecules, 
which lessens inflammatory reactions.152–154

MSC- Exos have the ability to modulate immune cells when they 
are prompted to become active. For instance, when T cells are stim-
ulated by antigen- presenting cells, MSC- Exos may convert T cells 
into Tregs.154–156 MSC- Exos, like their parent MSCs, also have an 
immunosuppressive effect. Crucially, pretreatment may regulate 
the specificity and immunosuppressive effects of MSC- Exos. For 
example, MSC- Exos that are treated with a high concentration of 
pro- inflammatory substances have higher immunosuppressive ef-
fects. MSC- Exos have the ability to migrate to the site of injury and 
impede the immune system. MSC- Exos are injected into the body, 
and their purpose is to reduce inflammation by migrating to the im-
mune organs, inflammatory tissues, and injured areas. After being 
injected intravenously, MSC- Exos may be administered to the sites 
of damage, ingested by immune cells, and found in the spleen and 
CD260+ cells 24 h later.157 In the past 2 years alone, there are dozens 
of systematic reviews that have investigated the role of exosomes in 
autoimmune disorders (Figure 8).158–167

3.2  |  Allergy

An increasingly significant worldwide health and economic burden is 
caused by allergic reactions and disorders. The search for new thera-
peutic strategies is necessary since there are no disease- modifying 
treatments other than particular allergen immunotherapy (AIT), 
which is not available for all allergy types.168 A lack of immunological 
tolerance and the expansion of TH2 cells, which activate B cells to 
generate IgE responses in response to benign antigens, character-
ize type I hypersensitivity.169,170 Because allergen- specific IgE binds 
to the high- affinity IgE receptor Fc”RI, it sensitizes mast cells and 
basophils.171 Upon secondary contact with the allergen, those cells 
degrade and release inflammatory mediators.172 Symptomatic treat-
ment options for allergies involve downregulation of the mediators 
released by mast cells or basophils (e.g., anti- histamine) or aim to 
downregulate IgE levels, such as the monoclonal anti- IgE antibody 
Omalizumab.173

EVs significantly contribute to the shaping of immune responses 
in both physiology and disease states. While vesicles secreted by 
immune cells are often implicated in the allergic process, growing 
evidence indicates that EVs from nonimmune cells produced in the 
stroma or epithelia of the organs directly affected by inflammation 
may also play a significant role. An overview of the mechanisms of 
allergy to which those EVs contribute, with a particular focus on 
exosomes is presented in Figure 9.174

Recent progress in the EV field determined that a thorough un-
derstanding of EV biology and function is pivotal for the compre-
hension of immune- driven diseases, including the pathogenesis of 
allergy. EVs contribute to asthma pathogenesis via various mech-
anisms related to both inflammation and pathological remodel-
ing,175 and there are interesting interdependencies that have been 
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10  |    MIRON et al.

F I G U R E  5  Effects of exosomes on peripheral nerve regeneration. Exosomes can exert therapeutic effects via mediating axonal regrowth, 
Schwann cell activation, vascular regeneration, and inflammatory regulation, which contribute to providing a favorable microenvironment for 
peripheral nerve regeneration. Reprinted with permission from Yu et al.118
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    |  11MIRON et al.

observed. Specifically, it has been shown that fibroblast- derived 
EVs secreted by cells obtained from severe asthmatics increase 
the proliferation of bronchial epithelial cells in comparison to those 
in healthy individuals due to a decrease in the TGF- b2 content.176 
Vice versa, vesicular transfer between epithelial cells and fibro-
blasts which includes inositol polyphosphate 4- phosphatase type 
I A (INPP4A) cargo, may regulate inflammation and airway remod-
eling.177 Furthermore, Gupta et al. demonstrated that sEV transfer 
between airway epithelial cells and human tracheobronchial cells 
promotes the expression of several proteins which may contribute 
to allergic inflammation and exacerbation of asthma symptoms, that 

is, gel- forming mucins.178 The addition of an allergen source (house 
dust mite) to the airway epithelial cells culture resulted in DC activa-
tion by secreted EVs in vitro and increased airway inflammation in a 
murine model.179 While the goal of this overview review article is not 
to specifically provide major input on the role of exosomes in allergy, 
a recent review article174 on this topic has greatly demonstrated all 
the preclinical animal studies (Table 3) and clinical studies (Table 4), 
currently underway highlighting the prolific role of small vesicles for 
the management/treatment of allergic diseases.

Furthermore, various groups have elicited various roles of exo-
somes in allergic sensitization and inflammation and further discuss 

F I G U R E  6  Schematic summary of immunoregulatory cells and cytokines. Reprinted with permission from Suh et al.120

F I G U R E  7  Schematic of the human body with inflammatory diseases. Reprinted with permission from Suh et al.120
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12  |    MIRON et al.

the mechanisms by which exosomes could potentially be used in im-
munotherapeutic approaches for the treatment of allergic diseases. 
For an excellent review article on the topic by Engeroff and Vogel,168 
the following four strategies have been proposed as potential for 
utilizing exosomes in the field of allergy:

• Exosomes generated from mast cells that express the IgE recep-
tor Fc"RI have the ability to absorb IgE and reduce systemic IgE 
levels.

• Tolerogenic exosomes have the potential to inhibit allergic reac-
tions by stimulating regulatory T cells.

TA B L E  1  miRNA involved in the immunosuppressive effects of mesenchymal stromal cell exosomes on macrophages cells.

miRNA Mechanism Effect References

miR- let- 7b Negatively regulated TLR4 and p- p65 expression, 
suppressed STAT3 and AKT phosphorylation

Orchestrated macrophages plasticity 128

miR- let- 7c – Downregulated MMP9, TGF- β1 129

miR- 145 Inhibited the expression of MRP1 Promoted phagocytic activity of macrophages 130,131

miR- 146a Inhibited the expression of TRAF6 and IRAK1, reduced 
phosphorylation of NF- κB- p65 and IκBα

Reduced the production of pro- inflammatory 
factors in macrophages

132

miR- 146b Lessened the release of pro- inflammatory factors and 
the pro- inflammatory response by NF- κB

Improved the survival rate of sepsis mice 133

miR- 17 Inhibited the activation of NLRP3 inflammatory bodies 
in macrophages by targeting TXNIP

Reduced the levels of pro- inflammatory 
factors IL- 1β and IL- 18 and improved ALF

134

miR- 181c Reduced TLR4 expression Reduced pro- inflammatory response in 
macrophages

135

miR- 223 – Inhibited the expression of TNF- α, IL- 1β, and 
IL- 6 in sepsis- induced macrophages

136

miR- 455- 3p Through combination of miR- 455- 3p and 3′UTR site of 
PIK3R1 gene

Reduced macrophages infiltration and the 
secretion of pro- inflammatory factors

137

IncRNA KLF3AS1 Downregulated MMP13 expression Inhibited chondrocyte apoptosis 138

Note: Reprinted with permission.127

TA B L E  2  miRNA involved in the immunosuppressive effects of mesenchymal stromal cell exosomes on T cells.

miRNA Mechanism Effect References

miR- 1246 Regulated the IL- 6- gp 130- STAT3 pathway Reduced the Th17/Tregs ratio in CD4+ T cells and improved 
liver dysfunction

139

miR- 125a- 3p – Inhibited the activation of CD3+ T cells and promoted the 
Tregs populations

140

miR- 126 Reduced NLRP3 inflammatory body activity 
and NF- κB- p65 levels

Improved retinal inflammation which caused by 
hyperglycemia

141

miR- 1470 Targeted c- jun mRNA 3′ region Inhibited c- jun expression and promoted the upregulation of 
P27KIP1 and the ratio of CD4+ CD25+ Foxp3+ Tregs

142

miR- 17 Inhibited the transactivation of Jak1 Reduced IL- 7 signal transduction and the production of pro- 
inflammatory factors

143

miR- 17- 92 Negatively regulated PTEN expression and 
activated the PI3k/Akt/mTOR signaling 
pathway and inhibited GSK- 3β activity

– 144

miR- 181a Downregulated c- Fos protein expression 
the expression of TGF- β and IL- 6 and the 
expression of Foxp3

Improved the area of cerebral infarction and lessened 
inflammatory infiltration and effectively reduced 
myocardial I/R damage

145

miR- 221 Targeted TIMP2 Reduced the expression of PTEN and p27 proteins, 
accelerated the proliferation, migration, and invasiveness 
of GC cells

146

miR- 223- 3p Negatively regulated STAT3 Inhibited the secretion of IL- 17 by Th17 cells and reduced 
the expression of IL- 1β and IL- 6, increased the ratio of 
Tregs/Th17

147

miR- 29b- 3p Downregulated PTEN Activated the Akt signaling pathway 148

miR- 92a- 3p Inhibited Wnt Regulated T cells development 149

Note: Reprinted with permission.127
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    |  13MIRON et al.

F I G U R E  8  Therapeutic effects of extracellular vesicles (EV) on inflammatory diseases. Reprinted with permission from Suh et al.120

F I G U R E  9  Extracellular vesicles produced by nonimmune cells and their involvement in allergic diseases. Microvesicles and exosomes 
are the two types of extracellular vesicles, which have been implicated in the pathogenesis of allergic inflammation. There is significant 
predominance of the exosomal involvement, likely due to the phenotypic characteristics and physical properties of these vesicles, enabling 
more without damage and entering the circulation for long- distance delivery. Reprinted with permission by Hovhannisyan et al.174
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14  |    MIRON et al.

• Exosomes may encourage TH1- like reactions in response to an 
allergen.

• Exosomes may alter how IgE facilitates the presentation of 
antigens.168

HBECs, human bronchial epithelial cells; BALF, bronchoalveolar 
lavage fluid; NM, nasal mucus; NECs, nasal epithelial cells; AECs, air-
way epithelial cells; HTBEs, human tracheobronchial cells; RBCs, red 
blood cells; IECs, intestinal epithelial cells; KCs, keratinocytes; FBs, 

TA B L E  3  Preclinical models using EVs for allergy treatment in animals.

Study title Conditions Outcomes References

Exosomes from bronchoalveolar 
fluid of tolerized mice prevent 
allergic reaction

Allergy BALF- derived exosomes induce tolerance and 
protection against allergic sensitization in mice

Prado et al.180

Pro- inflammatory role of 
epithelial cell- derived 
exosomes in allergic airway 
inflammation

Asthmatic inflammation IL- 13 treated epithelial cell- derived exosomes 
induce enhanced proliferation and chemotaxis 
of undifferentiated macrophages in the lungs 
during asthmatic inflammatory conditions

Kulshreshtha et al.181

Selective release of miRNAs 
via extracellular vesicles is 
associated with house dust 
mite allergen- induced airway 
inflammation

Allergic airway inflammation Selective sorting of Th2 inhibitory miRNAs into 
airway secreted EVs and increase release to 
the airway is involved in the pathogenesis of 
allergic airway inflammation

Gon et al.182

Exosomes derived from human 
adipose tissue- derived 
mesenchymal stem cells 
alleviate atopic dermatitis

Atopic dermatitis Intravenously or subcutaneously injected human 
adipose tissue- derived MSC- Exos ameliorate 
AD in an in vivo mouse model

Cho et al.183

Extracellular vesicles from 
mesenchymal stem 
cells prevent contact 
hypersensitivity through 
the suppression of Tc1 and 
Th1 cells and expansion of 
regulatory T cells

Allergic contact dermatitis Human umbilical cord- derived MSC- EVs prevent 
the pathology of contact hypersensitivity by 
inhibiting Tc1 and Th1 immune responses 
and inducing the Tregs phenotype in vivo and 
in vitro

Guo et al.184

Small extracellular vesicles 
derived from human 
mesenchymal stromal cells 
prevent group 2 innate 
lymphoid cell- dominant 
allergic airway inflammation 
through delivery of 
miR- 146a- 5p

Allergic rhinitis (patients) 
ILC2- dominant asthma 
(mouse model)

MSC- sEVs prevent ILC2- dominant allergic airway 
inflammation through miR- 146a- 5p

Fang et al.185

Exosomes from human adipose 
tissue- derived mesenchymal 
stem cells promote epidermal 
barrier repair by inducing de 
novo synthesis of ceramides 
in atopic dermatitis

Atopic dermatitis Human adipose tissue- derived MSC- Exos 
effectively repair defective epidermal barrier 
functions in atopic dermatitis

Shin et al.186

Syngeneic red blood cell- induced 
extracellular vesicles suppress 
delayed- type hypersensitivity 
to self- antigens in mice

Delayed- type 
hypersensitivity contact 
hypersensitivity

Intravenous delivery of syngeneic mouse red 
blood cells that is mediated by EVs in a 
miRNA- 150- dependent manner suppresses 
delayed- type hypersensitivity

Nazimek et al.187

Intranasal delivery of MSC- Exos 
attenuates allergic asthma via 
expanding IL- 10 producing 
lung interstitial macrophages 
in mice

Allergic asthma Intranasally delivered MSC- Exos inhibit allergic 
asthma in mice

Ren et al.188

Epithelial exosomal contactin- 1 
promotes monocyte- derived 
dendritic cell–dominant T- cell 
responses in asthma

Airway allergic models 
asthma

Epithelial contactin- 1 in exosomes is a critical 
player in asthma pathology

Zhang et al.179

Note: Reprinted with permission by Hovhannisyan et al.174
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    |  15MIRON et al.

fibroblasts; MSCs, mesenchymal stem cells. ↑ increase in a process; 
↓ decrease in a process; + disease promoting effect; − disease allevi-
ating effect. Reprinted with permission.174

3.3  |  Atopic dermatitis and contact allergy

Atopic dermatitis (AD) is a chronic inflammatory skin disease that 
is characterized by severe pruritus, eczematous cutaneous lesions, 
and disruption of the epidermal barrier. The pathophysiology of AD 
is multifaceted, with Th2 cells and ILC2 being the primary mediators 

of cytokine production.189 Innate, Th17, and Th22 components are 
also involved.190 However, delayed- type hypersensitivity to minor 
contact allergens, such as contact allergy and contact sensitization, 
is rather prevalent. An allergy to anything touched repeatedly or 
for extended periods of time is called contact dermatitis.191–193 The 
study conducted by Nazimek et al. demonstrates that the introduc-
tion of syngeneic mouse red blood cells through intravenous ad-
ministration results in the generation of EVs. These EVs exhibit the 
ability to inhibit the immune response known as directed delayed- 
type hypersensitivity, and this effect was shown to be dependent 
on the presence of miRNA- 150. More specifically, the EVs derived 

TA B L E  4  Registered clinical trial investigating the feasibility of using EVs in allergic patients.

Study title Conditions Interventions Locations Identifier

Non- coding RNAs analysis 
of eosinophil subtypes in 
asthma

Allergic asthma, 
severe 
eosinophilic 
asthma

Biological: Dermatophagoides 
pteronyssinus allergen 
Procedure: Blood sampling, 
Procedure: Bronchial 
challenge with allergen

Lithuanian University 
of Health Sciences, 
Pulmonology 
Department Kaunas, 
Lithuania

NCT04542902

Effectiveness of Qufeng 
Shengshi Fang on treatment 
of allergic rhinitis

Rhinitis, allergic, 
perennial

Drug: Qufeng Shengshi Fang 
and Loratadine, Drug: 
Loratadine

Peking Union Medical 
College Hospital 
Traditional Chinese 
medicine department 
Beijing, Beijing, 
China

NCT02653339

Cohort study of the patterns of 
microvesicles in the serum of 
participants with Atopic and 
non- atopic asthma

Asthma, allergies Biological: tumor derived 
microparticles, Drug: 
cisplatin

The Ohio State 
University Medical 
Center Columbus, 
Ohio, United States

NCT00700726

Influence on human bronchial 
epithelial cells smoker 
extracellular vesicles 
influence on human bronchial 
epithelial cells

Smokers human 
bronchial 
epithelial 
cells lung 
pathogenesis 
biomarkers

Diagnostic test: 
Bronchoalveolar lavages

Hôpital Saint- Philibert, 
Lomme, France

NCT03608293

Phase I/IIa study on chitin 
microparticles in subjects 
suffering from allergic rhinitis

Seasonal allergic 
rhinitis

Drug: Chitin microparticles by 
nasal route

Hammersmith Medicines 
Research, London, 
United Kingdom

NCT00443495

Exploratory study of the 
cutaneous penetration of 
biodegradable polymeric 
Microparticles in atopic 
dermatitis (MicroIskin)

Atopic dermatitis Drug: Biodegradable and 
biocompatible polymeric 
microparticles containing 
a fluorochrome applied to 
the skin followed by a skin 
biopsy

Regional University 
Hospital Besançon, 
France

NCT02369432

Impact of narrowband UVB 
phototherapy on systemic 
inflammation in patients with 
atopic dermatitis

Atopic dermatitis Other: Narrow band UVB 
treatment (NB- UVB)

The Rockefeller 
University New York, 
New York, United 
States

NCT03083730

Trial on vascular inflammation in 
atopic dermatitis

Atopic dermatitis 
vascular 
inflammation 
coronary 
atherosclerosis

Other: FDG- PET scan other: 
MDCT, other: biopsy and 
blood collection

Innovaderm Research 
Inc Montreal, 
Quebec, Canada

NCT02926807

Role of macrophage in immune 
modulation by mesenchymal 
stem cell derived exosome in 
asthma

Respiratory disease Primary indicator: PD- L1, 
immunosuppression 
capacity of regulatory T cell

Sun Yat- Sen Memorial 
Hospital, Sun Yat- Sen 
University

ChiCTR2000031122

Note: Reprinted with permission by Hovhannisyan et al.174
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from syngeneic mouse red blood cells reduce the activation of T 
cells and promote their programmed cell death.187 Similarly, it has 
been shown that EVs generated from human umbilical cord MSCs 
may both prevent and treat the pathophysiology of touch hypersen-
sitivity in mice.184 In particular, these EVs suppressed the production 
of TNF- a and IFN- g, induced Tregs, and decreased the amount of 
released IL- 10 in both CD8+ cytotoxic cells and CD4+ Th1 cells.184 
While this field remains in its infancy in terms of clinical applicability, 
future understanding of exosomes, including their ability to modu-
late the immune system, should shed light on potential avenues of 
future uses of exosomes for the treatment of AD and contact allergy.

3.4  |  Lupus

Systemic lupus erythematosus (SLE) is a common autoimmune con-
nective tissue disease with unclear etiology and pathogenesis. It is 
characterized by the excessive synthesis of pathogenic autoanti-
bodies and immunological complexes, aberrant immune cell activa-
tion, and organ- wide effects.194 The immunological problems that 

accompany the complicated etiology and pathophysiology of SLE 
include aberrant T cell, mononuclear macrophage cell, and B cell 
growth, differentiation, activation, and malfunction. Chronic inflam-
matory conditions and autoimmune diseases ultimately lead to harm 
to tissues and organs.195,196

The most frequent and serious organ impairment in SLE is lupus 
nephritis.197 Currently, SLE is conventionally treated with glucocorti-
coids and immunosuppressants. Nevertheless, a significant number 
of patients with refractory conditions continue to present challenges 
in achieving clinical remission, resulting in elevated death rates. SLE 
patients have significant economic and psychological challenges.198 
Therefore, there is still a pressing need to develop solutions to the 
issue for SLE patients.

In a paper by Yang et al. titled: “Immunomodulatory Effect of 
MSCs and MSCs- Evs in Systemic Lupus Erythematosus”199 it has 
been shown that MSCs and the exosomes they produce are useful 
in controlling innate and adaptive immunity, which are engaged in 
a variety of pathological and physiological processes and support 
immunological homeostasis in sickle cell disease.199 Figure 10 gives 
new insight into the pathophysiology of SLE and directs biological 

F I G U R E  1 0  Composition and mechanism of immunological tolerance of MSC- EVs in systemic lupus erythematosus. MSC- EVs are 
spheroidal shaped and two- layer lipid particles containing various types of protein, lipids, DNAs, non- coding RNAs, miRNAs, and mRNA, 
which cause genetic information exchange by various of signal pathway and reprogramming of the recipient cell. MSC- EVs can suppress the 
differentiation and proliferation of B cell by PI3K- AKT pathway and reduce production of IL- 10. Similarly, T cells play the suspensive role on 
the proliferation and maturation, while reducing the production of Th17 and Th1 and improve function of Treg and Th2 through the TGF- b/
NF- kB pathway. EVs can suppress the proliferation and maturation of DCs and induce tolerable DCs with low expression of costimulatory 
makers. Macrophages can transform to anti- inflammatory M2 phenotype after treating by MSC- EVs through the PI3K/AKT pathway. EVs 
can suppress the proliferation, differentiation, and cytotoxicity of NK cells in a TGF- b- dependent manner. MSC- EVs play an important role 
in the pathogenesis of autoimmune diseases, including SLE, graft- versus- host disease, and experimental autoimmune encephalomyelitis. 
Reprinted with permission from Yang et al.199
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treatment by illuminating all the underlying mechanisms and immu-
nomodulatory effects of MSC/MSC- EVs in SLE.199

3.5  |  Rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune dis-
ease that causes cartilage and bone damage with a considerably high 
social and economic impact. Severe systemic consequences, includ-
ing cardiovascular events, as well as lifelong disability and function 
loss, are all possible outcomes of RA. The most frequent symptoms 
are related to symmetrical knee, foot, wrist, and hand discomfort 
and edema.200 Approximately 0.5%–1% of the global population 
is affected with RA, which may affect people of any age, but it is 
most common in those in their third, fourth, and fifth decades.201 
Even if disease remission may be achieved with strict management 
and treat- to- target tactics, as recommended by current guidelines, 
RA is still regarded as an incurable condition.201 More than half of 
patients have disease flares, which significantly increase the risk of 
radiographic damage, worse quality of life, disability, use of health-
care services, and expenses.202,203 At present, there are no mark-
ers for tailored treatment or predictors of therapeutic response. 
However, RA causes irreparable damage to joints or organs as well 
as persistent inflammation if treatment is not received. Therefore, 
the most prevalent symptoms in RA patients are increased disability 
and shorter lifetime.204,205

Bone marrow mesenchymal stem cells (BMSCs) were tested 
originally and demonstrated significant improvements in symp-
toms of refractory patients in two clinical studies.206,207 These out-
comes are in line with the majority of BMSC- based arthritic models. 
Consequently, BMSC- derived exosomes (BMSC- Exos) have been 
suggested as a potential treatment for RA because they have effects 
similar to those of their parent MSCs without compromising the im-
mune system.208

The function of BMSC- Exos in RA models was first studied by 
Stella et al. who demonstrated that these Exos prevented T and B 
lymphocyte proliferation and generated Treg and IL- 10- expressing 
regulatory B cells dose- dependently to mitigate experimental RA.208 
The immunomodulatory properties of BMSC- EVs have shown pos-
itive outcomes in various animal models of osteoarthritis.209,210 
Moreover, BMSC- EVs have been shown to contribute to angiogene-
sis and bone/cartilage regeneration.209,211

The primary mechanism by which MSC- EVs affects the illness is 
by the transfer of miRNAs,212 thus inhibiting the cyclin I/ATM/ATR/
p53 signaling pathway.213 In addition, EVs were shown to overex-
press a number of miRNAs that were previously downregulated in 
synovial tissue but were effective in treating inflammatory arthritis. 
One of them, miR- 192- 5p, regulates the immunological response by 
targeting Ras- related C3 botulinum toxin substrate 2, therefore de-
laying the inflammatory response in rat models of collagen- induced 
arthritis.214 It was shown that miR- 320, which is secreted from 
BMSCs via exosomes, selectively downregulates the chemokine 
ligand CXCL9, hence preventing RA- FLS activation, migration, and 

invasion.215 Matrix metalloproteinase 14 and vascular endothelial 
growth factor (VEGF) are two proteins involved in angiogenesis that 
are downregulated by exosomal miR- 150- 5p.216,217

Although BMSC- EVs have a beneficial impact on RA, the 
mechanisms by which they enhance immune modulation and anti- 
inflammatory responses in RA remain poorly understood and hence 
need more study. Additionally, umbilical cord mesenchymal stem 
cells and EVs produced from AMSCs (AMSC- EVs)218 have been pro-
posed as a therapy for RA.219,220 Figure 11 highlights various mech-
anisms by which MSC- Evs impact RA.

3.6  |  Osteoarthritis

Osteoarthritis (OA) is a long- term degenerative joint disease that 
is characterized by synovial inflammation, subchondral bone scle-
rosis, articular cartilage deterioration, and the growth of osteo-
phytes.158,222 Joint pain, swelling, and abnormalities are the primary 
clinical signs. The loss of articular cartilage is the primary degenera-
tive alteration.223 Joint pain is brought on by dysfunction, but it also 
has an impact on the patient's quality of life and ability to sleep.224

A recently filed clinical study (NCT05060107) aims to provide 
MSC- Exos intravenously for the purpose of managing OA. A total of 
10 participants were enrolled in a Phase 1 clinical study and thereaf-
ter monitored for duration of up to 12 months in order to validate the 
safety of MSC- Exos as a therapeutic intervention for OA.

Many preclinical studies exist supporting the use of exosomes. 
A study conducted by Zhang et al.225 revealed that the use of chi-
tosan hydrogels as carriers loaded with MSC- Exos had the potential 
to enhance the stability of proteins and miRNAs inside MSC- Exos. 
Liu et al. conducted a study in which they incorporated MSC- Exos 
into a hydrogel glue using the photoinduced imine crosslinking (PIC) 
technique. These results suggested that the MSC- Exos is a promis-
ing strategy for treating articular cartilage abnormalities since it may 
stimulate repair and regeneration of damaged cartilage.226

Additionally, anti- inflammatory molecules with low bioavailabil-
ity such as curcumin may also be encapsulated using MSC- Exos as 
carriers. Consequently, curcumin has been loaded into MSC- Exos 
as a drug delivery system for curcumin at the nanoscale. The phos-
phorylation of p- 38MAPK and Erk1/2, PI3K/Akt, caused by IL- 1β 
may be reduced by curcumin- encapsulated MSC- Exos, which in 
turn reduces the activity of pathways involving these kinases.227 
Accordingly, the curcumin- encapsulated MSC- Exos may also cause 
target cells to express miR- 126- 3p more highly and lessen the IL- 1β- 
induced OA chondrocyte breakdown.227 While the therapeutic ben-
efits of MSC- Exos have shown promise in both clinical and animal 
settings, it is essential to further increase research to elucidate the 
underlying mechanism and ensure the safety of MSC- Exos prior to 
their widespread clinical use.

The chondroprotective and anti- inflammatory effects of murine 
BMSC- Exos have been demonstrated in the treatment of a mouse 
model of collagenase- induced osteoarthritis (CIOA).158 These ef-
fects were achieved by (1) restoring the homeostatic state of 
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chondrocytes, (2) preventing chondrocyte apoptosis, and (3) pro-
moting a shift in macrophages toward an anti- inflammatory pheno-
type.210 Furthermore, by switching synovial macrophages from M1 
to M2 and minimizing the breakdown of articular cartilage, a recent 
study showed that intra- articular injection of BMSC- Exos might re-
duce OA damage in rat models.209 In vitro TNF- alpha- stimulated OA, 
BMSC- EVs have also been suggested to enhance cartilage regener-
ation and exhibit anti- inflammatory properties.228 Zhu et al.229 also 
demonstrated that by promoting chondrocyte migration and prolif-
eration, transplanting- induced pluripotent stem cell- derived MSC- 
Exos had a significant therapeutic benefit in the CIOA animal model 
when compared to MSC- Exos obtained from synovial membranes.

Overexpression of miR- 140- 5p in MSC- Exos has also been 
shown to promote cartilage tissue regeneration and reduce knee 
joint damage in a rat model of osteoarthritis.230 It has recently been 
shown that LPS- primed MSC- EVs promote knee cartilage healing in 
an OA animal model by increasing chondrocyte proliferation, migra-
tion, and decreasing apoptosis.231 Wang et al.232 showed that in a 
mouse model of OA, MSC- Exo- miR- 155- 5p increased chondrocyte 
proliferation and migration, decreased apoptosis, modulated pro-
duction of cartilage ECM, that resulted in a final increase in cartilage 
regeneration. By restoring a healthy equilibrium between ECM pro-
duction and degradation, intra- articular infusion of embryonic stem 

cell (ESC)- MSC- Exos alleviated cartilage injury and decreased matrix 
degradation in a mouse model of medial meniscus instability.233 In 
addition, BMSC- Exos alleviated knee discomfort in arthritic rats and 
had regenerative effects on cartilage damage and ECM synthesis.234 
Recent research by Jin et al.235 discovered that miR- 26a- 5p in par-
ticular, which is produced in BMSC- Exos, may reduce OA damage 
in vivo by inhibiting PTGS2. Polydactyly BMSC- Exos have also ex-
hibited better capacity in promoting chondrocyte regeneration and 
attenuating OA in a mouse model via BMP4 signaling pathway.236 In 
another animal experiment by Liu et al.,237 MSC- Exos was admin-
istered into CIOA mice that led to an increase in chondrocyte pro-
liferation and a decrease in chondrocyte apoptosis. Another study 
found that MSC- Exos reduced inflammation, restored matrix ho-
meostasis, improved proliferation, increased matrix synthesis, and 
decreased apoptosis in an OA rat model of the temporomandibular 
joint (TMJ), therefore lowering pain and promoting TMJ regener-
ation.238 Using a CIOA- induced mouse model, Mao et al.149 found 
that BMSC- Exo- derived miR- 92a- 3p inhibited cartilage degradation 
and maintained homeostasis via regulating WNT5A expression. 
Chen et al.239 implanted 3D- printed ECM/GelMA scaffolds with 
BMSC- Exos subcutaneously in rabbits with osteochondral defect. 
These scaffolds improved early OA treatment by rectifying carti-
lage mitochondrial dysfunction, increasing chondrocyte migration, 

F I G U R E  11  Schematic view of the potential mechanisms of mesenchymal stem cell- derived EVs in the treatments of rodent models 
of RA. EVs from different sources of MSCs show efficacy in the treatment of RA models. These EVs mainly show the immunosuppressive 
function of inhibiting T- cell proliferation, downregulating Ig production and decreasing pro- inflammatory factors levels in vivo, thus 
attenuating clinical signs of paw swelling as well as histopathological indicators of bone and cartilage erosion and pannus formation. Several 
contents (including miR- 34, TGF- β1, and IL- 1ra) have been indicated to be associated with these functions. AMSC- EVs, adipose tissue 
mesenchymal stem cell- derived extracellular vesicles; BMSC- EVs, bone marrow mesenchymal stem cell- derived extracellular vesicles; 
CKs, cytokines; FLS, fibroblast- like synovial cells; FOXP3: fork- head box protein P3; Ig, immunoglobulin; IL, interleukin; IL- 1ra, IL- 1 receptor 
antagonist; miR- 34, microRNA- 34; MSC- EVs, mesenchymal stem cell- derived extracellular vesicles; PGE2, prostaglandin E2; RA, rheumatoid 
arthritis; ROR- γ, retinoic acid receptor- related orphan receptor γ; TGF- β: tumor growth factor beta; Th17, T helper 17; TNF- α, tumor necrosis 
factor alpha; Tr1, T regulatory type- 1; Treg, regulatory T cells; UC- MSC- EVs, umbilical cord mesenchymal stem cell- derived extracellular 
vesicles. Reprinted with permission from Miao et al.221
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and polarizing synovial macrophages toward M2.239 Furthermore, 
Wu et al.240 demonstrated that intra- articular injections of MSC- 
Exos reduced cartilage damage in OA rats by inhibiting chondro-
cyte apoptosis, preserving cartilage homeostasis, and blocking the 
mTOR- autophagy pathway. Additionally, ADSC- Exos have been 
shown in an in vitro investigation to lessen inflammatory responses 
and oxidative stress in OA osteoblasts.241 Tables 5 and 6 as well as 
Figure 12 display all recent publication highlighting the use of exo-
somes and EVs for the management of OA.242

3.7  |  Inflammatory bowel disease

Inflammatory bowel disease (IBD) is an autoimmune disease includ-
ing ulcerative colitis (UC) and Crohn's disease (CD) that significantly 
affects the quality of life in these patients.158,263,264 MSC- EVs have 
recently been investigated in various IBD models. Heidari et al. (2021) 
assessed the efficacy of ADSC- Exos in a mouse model of acute coli-
tis caused by dextran sulfate sodium (DSS).265 In this animal model, 
it was demonstrated that an increase in Treg population and a de-
crease in inflammatory cytokines alleviated colitis.266 Additionally, 
in a DSS- induced IBD animal model, intravenous injection of ADSC- 
Exos enhanced epithelial regeneration, decreased inflammation, and 
supported functional recovery while preserving intestinal barrier 
integrity.266 Additionally, a recent study by Li et al.267 found that in a 
mouse model of DSS- induced colitis, ADSC- Exos as well as the par-
ent ADSCs both exhibited comparable anti- inflammatory and immu-
nosuppressive effects. Specifically, exosomes have been shown to 
regulate the mechanisms involved in inflammation, hence exhibiting 
potential therapeutic benefits in mice with DSS- induced colitis.268

Exosomes have also been shown to mitigate DSS- induced IBD in 
mice by means of ubiquitination269 and the control of IL- 7 produc-
tion in macrophages.270 Tolomeo et al.271 conducted a comparative 
investigation including MSCs and MSC- EVs. The purpose of their 
research was to compare the effectiveness of two different therapy 
strategies for treating IBD in a DSS- induced colitis mouse model.271 
The results of their study demonstrated that cytokine- primed MSC- 
EVs exhibited a significant reduction in intestinal fibrosis and an-
giogenesis, while also enhancing the functionality of the intestinal 
epithelium. These effects were achieved by the modulation of mac-
rophage polarization, specifically shifting from the M1 phenotype 
to the M2 phenotype, as well as an increase in the number of Treg 
cells.272,273 Moreover, rats exposed to 2,4,6 trinitrobenzenesulfonic 
acid (TNBS) developed colitis, but miR- 146a- containing BMSC- EVs 
protected them by inhibiting IL- 1 receptor- associated TNF receptor- 
associated factor 6 (TRAF6) and kinase 1 (IRAK1).132 In a study by 
Tian et al.,274 olfactory ecto- MSC- Exos dramatically reduced the 
degree of disease by downregulating Th17 and Th1 populations 
and upregulating Tregs in a mouse model of DSS- induced colitis. 
Furthermore, Duan et al.275 investigated the possibility that EVs de-
rived from human placental MSCs might alleviate colitis produced by 
TNBS in mice by inhibiting inflammation and oxidative stress. Lastly, 

overexpressing telomerase and hypoxia- inducible factor 1- alpha 
in MSCs primed with pro- inflammatory stimuli has been found to 
provide greater therapeutic advantages in mice with TNBS- induced 
colitis. According to their research, the EVs might reduce inflamma-
tion and fibrosis by producing more M2 macrophages.276 Table 7 
highlights the use of exosomes in various autoimmune diseases in-
cluding IBD.

3.8  |  Type 1 diabetes

In type 1 diabetes mellitus (T1DM), T lymphocytes destroy pancreatic 
beta cells resulting in this complicated and hard to treat autoimmune 
disease.277 Environmental, immune system, and genetic variables all 
impact type 1 diabetes.278,279 A study by Nakano et al.280 assessed 
the efficacy of injecting rat BMSC- Exos intravenously in mice with 
diabetes treated with streptozotocin (STZ). In a second study uti-
lizing the STZ- diabetic mouse model, ADSC- Exos was administered 
intraperitoneally to one group, whereas the other group received 
no treatment.281 The autoimmune responses were significantly 
reduced in the treated group which led to improved regulation of 
IFN- γ, IL- 17, IL- 4, IL- 10, and TGF- β. Furthermore, Shigemoto- kuroda 
et al. discovered that MSC- EVs could inhibit Th1 and Th17, thereby 
significantly increasing plasma insulin concentrations and effectively 
delaying the onset of T1DM in order to avoid islet inflammation.282

3.9  |  Osteoporosis

Osteoporosis (OP) is a common complication in rheumatic diseases 
characterized by an imbalance between bone resorption and bone 
formation thereby contributing to the long- term deterioration of 
bone tissue including an elevated risk of bone fracture.158,283 MiR- 
150- 3p from BMSC- Exos was investigated by Qiu et al.284 to reduce 
OP in rats. In 2020, Yang et al.285 demonstrated that the miR- 1263 
produced from huc- MSC- Exos exhibited anti- apoptotic properties 
in osteoporosis caused by hind limb unloading (HLU) via the Mob1/
Hippo axis. In a mouse model, Huc- MSC- Exos have also been shown 
to play a role in osteoporosis inhibition and osteogenic induction.286 
Furthermore, it was shown that ADSC- Exos relieved diabetic OP 
via inhibiting the NLRP3 inflammasome in rat osteoclasts.287 A 
2020 publication showed that delivering miR- 22- 3p generated from 
BMSC- EVs was a useful strategy to enhance osteogenic differen-
tiation in mice with ovariectomized- induced OP.288 The prevention 
of OP was also shown in association with cyclic mechanical stretch 
(CMS)- modified BMSC- Exos which function by lowering the activa-
tion of the NF- κB signaling pathway.289 While the majority of stud-
ies to date focus on in vitro and in vivo work using exosomes for 
the management of osteoporosis,290–295 there remains great interest 
to translate these findings toward clinical practice. Tables 7 and 8 
highlights additional studies investigating exosomes on autoimmune 
disorders.
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4  |  TRE ATMENT OF DAMAGED ORGANS

This section is dedicated to the treatment of various organs that 
have benefited from exosome therapy. Today, a multitude of studies 
have tackled the effects of exosome therapy on the treatment and 
aid of various organs including heart (such as myocardial infarctions 
and stroke), kidney, liver, and ovaries.

4.1  |  Heart

Cardiovascular disease (CVD) is a significant global health issue. 
Based on statistics from the US Center for Disease Control and 
Prevention, CVDs are the primary cause of mortality in the United 
States.321 Furthermore, according to an epidemiological analysis in 
China, the prevalence of CVD continues to rise.322,323 As a result 
of societal and economic developments (especially within the aging 
population), the acceleration of urbanization, and changes in national 
living differences over the past few decades, unhealthy lifestyles are 
becoming increasingly common, and the effects of CVD risk factors 
on the health of residents are becoming more prominent/significant.

In the cardiovascular system, stem cells, vascular cells, pro-
genitor cells, cardiomyocytes, and endothelial cells are linked and 
communicate with one another via exosomes. Exosomes have the 
ability to stimulate angiogenesis, suppress ventricular remodeling, 
enhance cardiac function, suppress local inflammation, and modu-
late immunological responses. Exosomes also have a significant im-
pact on the growth, harm, and illness of the cardiovascular system. 
Nevertheless, being a relatively new field of medicine, clinical scien-
tists are currently investigating the function of exosomes and their 
processes with the long- term goal of facilitating cardiac function and 
repair comprehensively.324

As a result, exosomes are crucial to the cardiovascular system 
and are involved in many different CVDs, including heart failure (HF), 
acute myocardial infarction (AMI), atherosclerosis (AS), and myocar-
dial ischemia–reperfusion (I/R) damage as highlighted below.324

4.1.1  |  Exosomes from different cell sources and 
cardiovascular signal transduction

Exosomes are effective disseminators of biological signals related to 
myocardial function (Table 9). In the heart, crosstalk between sev-
eral cell types via EVs mediates local communication. EVs secreted 
by different heart cell types may also affect the same cells that re-
lease vesicles in an autocrine manner.324 Remote communication be-
tween the heart and other organs (e.g., the kidneys, brain, and bone 
marrow) is mediated by EVs secreted from the myocardium entering 
systemic circulation. Local and distant communication comprises en-
docytosis, membrane fusion, or gap junction- mediated transfer, and 
the exchange of nucleic acids, lipids, and proteins by exosomes.324 
The mechanism by which exosomes work also includes receptor- 
mediated signal transduction, which regulates transcription and Ce
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post- transcriptional processes in target cells. Because of these abili-
ties, exosomes have proven to be effective disseminators of biologi-
cal signals, which are involved in multiple processes that regulate 
cardiac function under normal physiological and pathological cardiac 
conditions.324

4.1.2  |  Myocardial infarctions and injury

The restricted capacity of adult mammalian cardiomyocytes to un-
dergo cell division in response to cardiac injuries is a significant fac-
tor toward the development of detrimental fibrotic and myocardial 
remodeling, eventually leading to heart failure. The persistent preva-
lence of heart failure- related illness and mortality necessitates the 
focused efforts by researchers globally to develop effective treat-
ments for cardiac restoration.325 Following heart damage, this lack 
of proliferation leads to pathological healing processes and fibrotic 
scarring.326–328

The majority of studies on stem cell therapies has demon-
strated enhanced cardiac function and vascularization along with 
decreased infarct size despite the transplanted cells dying quickly 
in the damaged myocardium. This suggests that paracrine mecha-
nisms play the most significant role in cardiac healing. It has been 
noted that all progenitor and stem cells used in cell- based therapies 
secrete substances that affect nearby cells in a paracrine manner. 

These exosomes are grouped around pro- angiogenic, pro- survival, 
proliferative, and immunogenic factors.329–335 Noteworthy, many 
miRNAs have now been discovered as either being in pro- repair or 
pro- pathological state, as shown in Figure 13.336

Exosomes derived from various origins have the ability to mit-
igate cardiac ischemia/reperfusion (I/R) damage through the mod-
ulation of inflammation, autophagy, and apoptosis. Chen et al.323 
discovered that exosomes obtained from BMSCs containing miR- 
125b enhanced cell survival and decreased the rate of apoptosis by 
specifically targeting SIRT7. As a result, this reduces the size of myo-
cardial infarction and inhibits harm caused by myocardial ischemia/
reperfusion.323 In another study, Zhao et al.337 discovered that MSC- 
Exos employed miR- 182 to alter the polarization of macrophages and 
suppress cardiac inflammation, therefore mitigating myocardial isch-
emia–reperfusion (I/R) damage in mice. Youn et al.338–340 discovered 
that administering exosomes produced from cardiac progenitor cells 
(CPCs) directly into the animal heart may effectively inhibit cell death 
in acute ischemia/reperfusion damage models. Zhang and Zhang341 
discovered that serum exosomes have the potential to enhance he-
modynamics and decrease apoptosis by stimulating the PI3K/AKT 
signaling pathway, hence reducing I/R damage. Additionally, it was 
observed that serum exosomes may also increase the production of 
inflammatory factors. The study conducted by Dai et al.342 showed 
that exosomes produced from M2 macrophage exosomes mitigated 
myocardial I/R damage by suppressing TXNIP and deactivating the 

F I G U R E  1 2  Schematic diagram of potential factors that affect the management of EVs- miRNAs, which might further affect its clinical 
application in human OA. Reprinted with permission from Shang et al.242
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TLR4/NF- κB/NLRP3 inflammasome signaling pathways. Several 
other studies also found positive outcomes when investigating exo-
somes on I/R injury.343–345

Zhu et al.346 showed that exosomes produced from ADSCs en-
hanced the formation of new blood vessels (angiogenesis) in the 
ischemic hind limbs and heart of mice. This effect was mediated by 
the miRNA- 31/FIH1/HIF- 1α pathway, leading to an improvement in 
MI damage. Pan et al.347 extracted exosomes from ADSCs that were 
either unmodified or modified with miR- 146a. They then assessed 
the therapeutic impact of these exosomes in a rat model of acute 
myocardial infarction (AMI) by using hypoxia- induced H9c2 cells. 
The study revealed that exosomes containing miR- 146a had a more 
pronounced effect compared with the group treated with unmodi-
fied exosomes in suppressing AMI- induced apoptosis, inflammation, 
and fibrosis.347 The study further discovered that exosomal miR- 
146a diminishes myocardial damage caused by AMI by suppressing 
the EGR1- mediated TLR4/NF- κB signaling pathway.347

Studies in pigs of both acute and chronic MI models demon-
strated that the administration of exosomes isolated from 

cardiosphere- derived cells improved cardiac healing by enhancing 
cardiac function and reducing infarct size.348 Moreover, it was rec-
ognized that cardiac progenitor cells (CPCs) control heart repair and 
protection. Significantly, the exosomes obtained from CPCs also 
enhanced the viability and reproduction of H9C2 cells by promot-
ing the expression of Akt and activating the Akt/mTOR pathway.349 
A pediatric investigation has shown that exosomes obtained from 
newborn CPCs enhanced heart function and repair. In contrast, 
exosomes produced from CPCs of older children need hypoxic pre-
conditioning in order to manifest cardioprotective advantages. The 
observed outcomes included enhanced formation of new blood ves-
sels (angiogenesis) and decreased formation of scar tissue (fibrosis), 
leading to enhanced functioning of the heart after a heart attack 
(infarction).350

In addition, exosomes produced from CD34+ hematopoietic stem 
cells (HSCs) exhibited a significant expression of pro- angiogenic mi-
croRNAs (miRNAs), such as miR- 126 and miR- 130, which enhance 
the development of blood vessels in the damaged heart.351 A study 
of miRNA sequences revealed a comparable miRNA profile between 

TA B L E  9  Exosomes from different cell sources and cardiovascular signal transduction.

Cells Inclusions Factor Function

Cardiomyocytes miR- 222/143 HIF- 1α, TNF- α Induce angiogenesis

miR- 217 IL- 6, CCL2/6/7 Cardiac hypertrophy, cardiac fibrosis (enhance 
the proliferation of fibroblasts)

Cardiac fibroblasts miR- 21- 3p Ang II Induce cardiomyocyte hypertrophy

Cardiac endothelial cells miR- 214 16K PRL Inhibit the senescence of endothelial cells, induce 
angiogenesis

miR- 146a Erbb4, Notch1, Irak1 Reduces the metabolic activity of cardiomyocytes

miR- 143/145 KLF2 Induced atherosclerotic protective phenotype

miR- 92a- 3p THBS1 dependent mechanism Regulating the angiogenesis

– ERK1/2 MAPK signaling pathway Resistance to simulated I/R injury

Mst1 – Inhibiting autophagy, promoting cell apoptosis, 
and inhibiting glucose metabolism in 
cardiomyocytes

VCAM1 – Regulate the local inflammatory response

Smooth muscle cells – coagulation protein prothrombin Regulate blood coagulation and calcification

Immune cells (dendritic cells) – CD4(+) T cells Promote wound healing after MI

Immune cells (macrophages) mir- 155 – Inhibited the proliferation of fibroblasts and 
enhanced inflammation.

Other heart- derived miR- 21- 5p PTEN/Akt pathway Promotes angiogenesis and cardiomyocyte 
survival

Circulating exosomes AT1Rs Ang II Improve blood pressure responsiveness

miR- 939- 5p iNOS- NO pathway Promote angiogenesis

miR- 342- 5p – Protect the heart from myocardial I/R injury

myo- miRs CXCR4 Systemic responses to cardiac injury

Note: Reprinted with permission from Cui et al.324

Abbreviations: 16K PRL, 16- kDa N- terminal prolactin fragment; Akt, Protein kinase B, also known as PKB or Rac; Ang II, Angiotensin II; AT1Rs, Ang 
II receptor type 1; CCL2/6/7, CC- motif chemokine ligands 2/6/7; CD4, cluster of differentiation 4; CXCR4, C- X- C motif chemokine receptor type 4; 
ERK1/2, extracellular signal- regulated kinase1/2; HIF- 1α, hypoxia- inducible factor- 1α; I/R, ischemia–reperfusion; IL- 6, interleukin- 6; iNOS, inducible 
nitric oxide synthase; KLF2, Kruppel- like factor 2; MAPK, mitogen- activated protein kinase; MI, myocardial infarction; NO, nitric oxide; PTEN, gene 
of phosphate and tension homology deleted on chromosome 10; THBS1, thrombospondin 1; TNF- α, tumor necrosis factor- α; VCAM1, vascular cell 
adhesin 1.
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MSCs and exosomes formed from MSCs, indicating a mechanistic 
commonality in the way MSCs and MSC- Exos contribute to cardiac 
healing. This highlights the enhanced therapeutic significance of 
exosomes produced from MSCs compared to MSCs themselves in 
the context of heart repair and has reported as being much safer.352 
Additional research has shown that exosomes obtained from MSCs 
that have been preconditioned under hypoxic conditions exhibit 
higher levels of several miRNAs associated with better cell survival, 
angiogenesis, and decreased fibrosis. As a result, these exosomes 
produced from hypoxic MSCs are more effective in promoting car-
diac repair compared to exosomes derived from MSCs under nor-
mal oxygen conditions.353–356 Additional examination shown that 
pre- treating CSCs with exosomes produced from MSCs also leads to 
enhanced viability and angiogenic capability of CSCs.357

4.1.3  |  Hypertension

Hypertension is a prevalent global health issue that significantly 
contributes to the occurrence and death rates of CVDs. An esti-
mated 1.13 billion individuals worldwide were affected by this silent 
illness, and the number continues to rise.358–360 According to the 
American Heart Association, about 45% of individuals in the United 
States have uncontrolled hypertension. Vascular smooth muscle 
cell (VSMC) migration is crucial for the restructuring of hyperten-
sive blood arteries, whereas adventitia fibroblasts (AFs) have a 

significant impact on the maintenance of vascular structures. Tong 
et al.361 cultured primary VSMCs and AFs from the aorta of sponta-
neously hypertensive rats and Wistar- Kyoto (WKY) rats and found 
that AF exosomes from hypertensive rats convert Ang- converting 
enzyme transfer to VSMCs, thereby increasing the level of Ang II 
and activating the Ang II type 1 receptor (ATR) in VSMCs, thereby 
promoting VSMC migration.

Due to their unique properties, EVs have attracted attention as 
a possible prognostic and therapeutic option for the treatment of 
hypertension. First, EVs serve as prognostic biomarkers and may be 
collected using minimally invasive (circulating EVs) or noninvasive 
(urinary EVs) procedures. They also provide information to the cli-
nician on the potential etiology of hypertension since EVs include 
components from their parent cells. It has been proposed that EVs 
may serve as surrogate indicators for vascular damage, endothelial 
dysfunction, and elevated renal sodium transporter/exchanger ac-
tivity in hypertension.362–365 Additionally, EVs may be used as indi-
cators of enhanced vascular endothelial function.

During a 12- week course of treatment with aliskiren (a direct 
renin inhibitor), hypertensive patients receiving hemodialysis had 
increased levels of platelet- derived EVs and flow- mediated dilata-
tion.366 The goal of further research was to examine EVs as potential 
functional biomolecules as potential biomarkers.367 These studies 
were employed to track the vascular health of individuals including 
the expression of circulating EVs and their favorable correlation with 
the endothelial activation marker E- selectin.368

F I G U R E  1 3  miRNAs target myocardium in pathological process after MI. miRNAs are involved in myocardial cell apoptosis, myocardial 
fibrosis, and myocardial hypertrophy acting on myocardial targets after MI. Upregulation of red miRNAs promoted the development of 
pathology, while upregulation of green miRNAs inhibited or even reversed the pathological process. Reprinted with permission from Wang 
and Zheng.336
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Equally relevant, EVs have significant benefits as therapeutic 
agents. Due to their minimal immunogenicity, EV- based therapeu-
tics have the potential to overcome many of the challenges associ-
ated with cell- based therapies.369–371 EVs are currently in the early 
stages of development as a therapeutic option for hypertension. 
Research conducted in vivo has revealed that circulating EVs from 
WKY and SHRs with low plasma levels may modify the vasoreactiv-
ity of isolated mesenteric arteries in a distinct way.372 In a preclinical 
model, plasma EVs had the ability to control systemic blood pressure 
and have a positive impact on end- organ damage caused by hyper-
tension. While still early in the process, EV- mediated therapies for 
blood pressure management should be available in the near future 
offering much hope for the management of hypertension in a more 
natural way. Additionally, disease progress and resolution can be 
monitored by using exosomes as biomarkers throughout the disease 
process.

4.1.4  |  Atrial fibrillation

Atrial fibrillation (AF) is the most prevalent type of cardiac arrhyth-
mia worldwide, has a heavy socioeconomic burden, high morbid-
ity, and death rate, as well as poses major consequences including 
heart failure and stroke.373,374 It is predicted that the incidence 
of AF will more than double over the next 40 years, impacting 
1%–1.5% of the global population. The condition's frequency is di-
rectly correlated with growing age.375,376 An established therapy 
for AF, particularly for paroxysmal AF (PAF), is catheter ablation. 
However, since the operation is often accompanied by hazards 
and other clinical problems, the success rate for persistent AF 
(PsAF) is not optimal. Additionally, the AF lacks efficient upstream 
management.377–379

At present, there are relatively few studies on exosomes and 
AF, and the studies that have been conducted have mainly focused 
on the diagnosis of AF. Fibroblast activation of myofibroblasts is a 
crucial step in the pathophysiology of fibrosis. Wei et al.380 demon-
strated that the expression of miRNA extracted from the plasma of 
individuals with AF and normal sinus rhythm differs. Research by 
Mun et al.381 established a connection between atrial shape and 
function, oxidative stress, and fibrosis pathways through serum 
exosomal miRNA and the genes it targets. Based on these findings, 
exosomal miRNAs show some promise as potential biomarkers for 
tracking AF development.

4.1.5  |  Heart failure

Heart failure (HF) is a clinical state that may be caused by several 
disorders affecting the myocardium, cardiac valves, pericardium, 
or vasculature. Idiopathic dilated cardiomyopathy is one such ail-
ment. Ischemic heart disease is another. The main symptoms of HF 
are usually exhaustion, edema, and dyspnea. HF is mostly caused 
by coronary artery disease, valve disease, hypertension, and dilated 

cardiomyopathy in the Western world.382 HF is an expensive and 
possibly fatal illness.383 While the lifetime risk of heart failure is al-
ready quite high (20%–45%),384 projections indicate that the preva-
lence of the condition is expected to increase even further, and the 
spending on treatment/therapy is expected to increase by 127% by 
the year 2030.385

Chen et al.386 discovered that exosomes obtained from BMSCs 
had a substantial protective effect on the myocardium against car-
diac hypertrophy, reducing myocardial cell death and fibrosis, and 
preserving cardiac function under pressure overload conditions. 
Additionally, studies have demonstrated that exosomes generated 
from MSCs also inhibit cell hypertrophy induced by Ang II. Exosomes 
also stimulate the early recovery of aging of myofibroblasts in a labo-
ratory setting, suggesting that they have beneficial effects in reduc-
ing fibrosis during cardiac remodeling. In summary, exosomes offer 
cardiomyocytes protection from pathological hypertrophy and hold 
great potential as a therapeutic option for HF.

4.1.6  |  Atherosclerosis

Atherosclerosis (AS) is an inflammatory condition affecting blood 
vessels characterized by the buildup of lipids in the vessel walls. 
Accumulation results in the deposition of plaques and the narrowing 
of the channel's inner opening.387,388 Smoking, obesity, diabetes, and 
vascular damage are significant contributors to the accumulation of 
fatty substances and cholesterol in the bloodstream, which is a key 
element in the development of the disease.389–392 Atherosclerosis 
involves alterations in the characteristics of vascular systems, such 
as impaired function of endothelial cells (EC), increased proliferation 
and movement of vascular smooth muscle cells (VSMC), calcification 
of blood vessels, inflammation, infiltration of macrophages into the 
plaque, and polarization of macrophages.393–395

Multiple studies have shown that exosomes have a significant 
impact on different phases of the onset and progression of AS. 
They have a crucial function during inflammation, oxidative stress, 
and apoptosis.396–403 Research has shown that exosomes derived 
from many origins may contribute to the onset and progression of 
AS by engaging in the NF- κB signaling pathway.396–398 Yao et al.396 
found that the overexpression of peripheral platelet exosomal 
(PLT- exosomes) miR- 25- 3p inhibited coronary vascular endothelial 
cell inflammation. Further studies found that the inhibitory effect 
of PLT- exosomes carrying miR- 25- 3p is related to the NF- κB sig-
naling pathway.396 Zhong et al.397 verified that exosomes obtained 
from fully developed dendritic cells (mDC- exosomes) have a role in 
endothelial inflammation and atherosclerosis (AS). The process in-
volves the transfer of miR- 146 from mDC- exosomes to HUVECs. 
The activation of the NF- κB signaling pathway has been shown to 
enhance the production of adhesion molecules in endothelial cells 
and shields HUVECs from further stimulation by suppressing IL- 1 
receptor- associated kinases. This suggests that mDC- exosomes play 
a key role in the feedback mechanism that regulates inflammation in 
a negative manner.
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Oxidized low- density lipoprotein (ox- LDL) also has a significant 
impact on the initiation and progression of AS by activating macro-
phages and endothelial cells. After discovering that exosomal miR- 
146a, which are derived from ox- LDL- treated macrophages, Zhang 
et al.400 discovered that AS in mice was greatly worsened after in-
travenous injection of exosomes originating from ox- LDL- treated 
THP- 1 cells. Chen et al.401 found that exosomal miR- 505 from ox- 
LDL- treated vascular endothelial cells intensified AS by triggering 
the production of NETs.

Another study by Li et al.399 showed that the miR- let7/HMGA2/
NF- źB pathway was responsible for the improvement of AS in ApoE 
mice and the promotion of M2 macrophage polarization in plaques. 
Furthermore, exosomes produced from MSCs prevented macro-
phage recruitment in plaques via the miR- let7/IGF2BP1/PTEN path-
way. This finding offers novel methods to reduce atherosclerotic 
plaque inflammation and enhances our knowledge of how MSC- 
Exos impact this condition. According to Lin et al.,402 miR- 203- 3p 
was discovered to decrease cathepsin S production and AS- related 
characteristics in BM- derived macrophages when transferred from 
dendritic cell- derived exosomes (DEXs). A prospective therapeutic 
target for AS, the p38/MAPK signaling pathway, has emerged as a 
result of studies aiming to slow the progression of the disease in 

mice. The combined results demonstrated that exosomes mitigate 
the development of macrophage foam cells by modulating the ex-
pression of cholesterol transporters.403 This discovery unveils a 
novel method by which PVAT safeguards the vasculature against 
atherosclerosis.

Figure 14 summarizes the number of findings derived from 
extensive studies on exosomes as therapeutic agents for the 
treatment of various heart conditions. These studies have shown 
that exosomes promote angiogenesis, encourage the polarization 
of M2 macrophages, reduce the presence of pro- inflammatory 
immune cells, and mitigate the antifibrotic properties of the 
injury.404

4.2  |  Stroke

Ischemic strokes are a major contributor to chronic disability world-
wide, and there are few therapies that are successful. Mounting data 
indicate that exosomes have a role in ischemic disease and have 
beneficial therapeutic benefits by facilitating cell- to- cell contact in 
individuals with significant impairment and substantial economic 
constraints.405,406

F I G U R E  14  Mesenchymal stromal cell (MSC)- derived exosomes for cardiac repair and function. Exosomes isolated from different 
sources of MSCs carry and deliver proteins, nucleic acids (DNA, miRNAs, mRNAs, and other RNAs), and metabolites to the damage heart 
tissue, consequently promoting cardioprotective effects. Reprinted with permission from Joladarashi and Kishore.404
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The inflammatory response may be seen as both beneficial and 
detrimental in the progression of cerebral ischemia.407–409 The nar-
row treatment window (<4.5 h) and methodological limitations of 
ischemic strokes have led to a focus on innovative techniques in 
clinical research. Inflammation may cause the immune system to 
become overactive in the early stages of a stroke as inflammatory 
factors or biological components produced by dying cells stimulates 
resident microglia and invades peripheral immune cells. Following 
this, these cells release a range of inflammatory mediators, chemo-
kines, adhesion molecules, tissue- degrading enzymes, and comple-
ment system activators.410–412 Together, they worsen brain injury 
and accelerate BBB degradation in a vicious cycle.411

4.2.1  |  MSC exosomes for stroke therapy

Clinical investigations and animal models have shown that MSC 
transplantation may facilitate recovery after a stroke (Table 10).413 
Increasing data supports the concept that that stem cells primar-
ily exercise their therapeutic benefits via paracrine processes, with 
a particular focus on the release of exosomes.414,415 MSC- derived 
exosomes have been shown to effectively enhance stroke recovery 
in cases of ischemia.

Findings have most commonly utilized intravenous delivery of 
exosomes. It was demonstrated in a rat model that intravenous 
delivery of MSC exosomes improved function and recovery in the 
transient middle cerebral artery occlusion (tMCAO) paradigm by 
stimulating neurogenesis, neurite remodeling, and angiogenesis.417 
The results demonstrated that MSC exosomes and MSCs them-
selves had almost identical effects on neuroprotection, angiogen-
esis, and immunomodulation.418,419 Exosomes produced from brain 
extract- treated or oxygen–glucose deprivation (OGD)- treated MSCs 
also demonstrated superior therapeutic benefits. This may be based 
on the fact that their exosomes were enriched with certain func-
tional proteins.420,426

Interestingly, MSC- Exos were also shown to be beneficial in a 
stroke model in primates. The recovery of fine hand motor function 
was aided by intravenous injection of MSC- Exos 24 h and 14 days 
after the damage in the macaca mulatta cortical hand motor brain 
injury model.432 Additional mechanistic research revealed that in 
old macaca mulatta, MSC- Exos not only decreased neuroinflam-
mation but also changed the roles of microglia into restorative 
ones.430 Furthermore, it impeded hyperexcitability caused by dam-
age and reinstated the equilibrium between excitatory and inhibi-
tory processes.431 These effects may be explained by the transfer 
of functional miRNAs or proteins and the subsequent activation of 
downstream signaling pathways. Prior to ischemia, intranasal admin-
istration of MSC- Exos decreased neuronal mortality, encouraged the 
formation of oligodendroglia, and suppressed microglia- mediated 
neuroinflammation, perhaps via the Toll- like receptor 4/CD14/NF- 
kB signaling pathway.427,433

MSC- Exos further improved the hippocampus spatial learn-
ing and memory impairments in global ischemia, perhaps via 

cyclo- oxygenase- 2 expression regulation.425 MSC- Exos facilitated 
axonal sprouting and encouraged the restoration of white matter in 
cases of subcortical ischemia.424 In vitro, the enhancement of axonal 
development was facilitated by the transfer of miR- 17- 92 cluster via 
exosomes, which then activated the PTEN/mTOR signal pathway.434 
Exosomal miR- 134 targeted caspase- 8 to prevent oligodendrocytes 
from undergoing apoptosis.435 Another research group that utilized 
lentiviruses in both knockdowns and knock in miR- 133b in MSCs re-
vealed that exosomal transfer of miR- 133b to astrocytes and neurons 
was a partial mechanism by which MSCs mediated their effects.436 
MSC- Exos prevented neurons in OGD from dying by transferring let- 
7- 5 p and then suppressing the production of caspase- 3.437

Lately, there has been a growing interest in developing tech-
niques to optimize the therapeutic potential of exosomes using 
engineering methodologies (Figure 15).438,439 For example, MSC- 
Exos that were enhanced with the miR- 17- 92 cluster showed more 
significant enhancements in oligodendrogenesis, neurogenesis, 
and neurite remodeling when compared to the control group.144 
Researchers in a mouse photothrombosis model enhanced the prop-
erties of MSC- Exos by including rabies virus glycoprotein (RVG), a 
peptide that targets neurons. This was achieved by fusing RVG with 
exosomal protein lysosome- associated membrane glycoprotein 2b 
(Lamp2b). Subsequently, the exosomes were loaded with miR- 124- 
mimics using electroporation. The engineered exosomes demon-
strated effective transportation of miRNA- 124 to the area affected 
by ischemia, resulting in the improvement of brain injury through 
facilitation of neural progenitor differentiation.423

4.2.2  |  Neural stem cell- derived exosomes for 
stroke therapy

Since 2018, there has been major interest in studies on exosomes pro-
duced from neural stem cells (NSCs) in stroke patients (Table 11). In 
a thromboembolic stroke model, the effects of exosomes from NSCs 
and MSCs—both of which were derived from the same pluripotent 
stem cell line—were compared. It was found that NSC exosomes im-
proved the function and reduced infarct volume more than MSC- Exos, 
which were linked to a more potent effect in polarizing macrophages 
toward an M2 phenotype and reducing inflammation.441 Furthermore, 
the maintenance of astrocyte activity may be a contributing factor to 
the efficacy of NSC exosomes in lowering infarct volume.442 In a sen-
ior stroke rat model, NSC exosomes showed encouraging therapeutic 
benefits.441 Significantly, NSC exosome therapy improved white mat-
ter integrity and function recovery in a porcine stroke model while 
also reducing infarct volume and brain edema.443

4.2.3  |  Adipose- derived stem cells derived 
exosomes for stroke therapy

Adipose- derived stem cells (ADSCs) have also shown promise as 
an ischemic therapy option and are readily acquired from surgically 
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removed adipose waste tissue. Exosomes from ADSCs are becom-
ing increasingly popular as a replacement treatment (Table 12).444 
While miR- 181b- 5p was customized, ADSC exosomes enhanced 
brain micro- vessel endothelial cell migration and tube formation 
in vitro.445 In rats with ischemic conditions, systemic injection of 
ADSC exosomes overexpressing miRNA- 126 has the potential to 
efficiently suppress neuroinflammation, decrease neuronal death, 
stimulate neurogenesis, and aid in functional recovery when com-
pared to normal and miRNA- 126 knockdown ADSC exosomes.446 
ADSC- Exos enriched in miR- 30d- 5p protected brain damage like the 
normal and knockdown groups via enhancing M2 microglia polariza-
tion. A mechanistic investigation on beclin- 1 and autophagy- related 
genes found that MiR- 30d- 5p inhibited M1 microglia polarization.447 
Intraventricular injection of ADSC exosomes modified with a multi-
functional protein pigment epithelium- derived factor inhibited neu-
ronal death by upregulating the expression of autophagy- associated 
proteins in a rat ischemia model.448

4.2.4  |  Other cell- derived exosomes for 
stroke therapy

Other cell- derived exosomes, including microglia, endothelial cells, 
and astrocytes, have shown therapeutic benefits in stroke patients 

(Table 13). Exosomes generated from astrocytes have been shown 
to control autophagy, decrease infarct volume, and prevent neu-
ron death.450 By releasing miR- 92b- 3p, exosomes from OGD- 
preconditioned astrocytes reduced OGD- induced neuronal death.451 
Sema- 3A inhibitors may decrease astrocyte activation and increase 
axonal elongation in rats with persistent ischemia via activating 
the GTPase- 1/R- Ras/Akt/GSK- 3β signaling pathway. Additionally, 
the authors confirmed that exosomes from astrocytes treated with 
OGD Sema- 3A inhibitors enhanced neuron axonal outgrowth more 
than exosomes from both normal and OGD astrocytes.452

Exosomes derived from normal microvascular endothelial cells 
were shown to prevent astrocyte death in vitro, lessened BBB dis-
ruption, decreased infarct volume, and aided in the restoration of 
neurological function in vivo.453 In contrast, exosomes from OGD 
endothelial cells had the opposite effects.453 These inconsistencies 
may be explained by variations in the exosomal protein and miRNA 
contents that were separated from the same cells under differing 
cell culture conditions.457

To improve cell migration and invasion during OGD, SH- SY5Y 
cells were exposed to exosomes produced by OGD human umbilical 
vein endothelial cells (HUVEC) resulting in cell death reduction.458 
Furthermore, exosomes from endothelial cells inhibited the activa-
tion of macrophages and inflammation by transferring miR- 10a and 
blocking the NF- kB signaling pathway.459

F I G U R E  1 5  MiRNAs in exosomes secreted by mesenchymal stem cells stimulate cell and structure growth. miRNA- 133b can 
downregulate the expression of CTGF in astrocytes, reduce the formation of glial scar, and promote the remodeling of myelin sheath. miRNA- 
17- 92 can downregulate the expression of PTEN, thereby activating the PIK3- Akt pathway and inactivating GSK- 3b, promoting the growth 
of neuronal axons. miRNA- 124 promotes neurogenesis in SVZ and striatum regions. miRNA- 22- 3p can inhibit KDM6B- mediated KBMP2/
BMP pathway and play a neurotrophic role. Akt, protein kinase B; BMP, bone morphogenetic protein; CTGF, connective tissue growth factor; 
GSK- 3b, glycogen synthase kinase- 3b; KBMP2, neurotrophic factor; KDM6B, lysine(K)- specific demethylase 6B; PIK3, phosphatidylinositol 
3- kinase; PTEN, phosphatase and tensin homolog; SVZ, subventricular zone. Reprinted with permission from Xiong et al.440
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Interestingly, a research model using diabetic mice were given brain 
endothelial cell exosomes intravenously 3 days after ischemia was in-
duced. Their neurological and cognitive results improved, and the find-
ings demonstrated an increased myelin density and axon outgrowth, 
stimulated angiogenesis, and more M2 macrophage polarization.454 
These positive benefits were significantly diminished when endothelial 
cell exosomes with reduced levels of miR- 126 were utilized.454

Lastly, exosomes derived from BV2 microglia cells that were acti-
vated with IL- 4 enhanced the process of HUVEC tube formation.460 
Systemic delivery of M2 microglial exosomes decreased the size of 
the infarct, encouraged the restoration of neurological function, and 
prevented the death of neurons, potentially via transferring miR- 124 
and modifying ubiquitin- specific protease 14 in neurons.456 The cul-
mination of these findings suggest the importance of exosomes in 
intercellular communication and their potential therapeutic use for 
stroke management (Table 14).

4.2.5  |  Routes of exosome administration for 
stroke therapy

Exosome administration pathways in stroke may be categorized into 
two main groups: systemic and local administration. Subcutaneous, 

intraperitoneal, intranasal, and intravenous injections into the tail 
vein, femoral vein, or internal jugular vein are all examples of sys-
temic administration methods. The majority of exosomes admin-
istered to rats with ischemic stroke models enter the bloodstream 
via the tail vein .417,423,424,441,447,453,456 When indium- 111- labeled 
exosomes were administered 1 h after ischemia, single photon emis-
sion CT (SPECT) imaging revealed that the exosomes first arrived 
at the infarcted region and were mostly removed from the brain by 
the next day.441 A further investigation showed that the process of 
exosomes being eliminated from the bloodstream started promptly 
after 1 h and continued progressively for a duration ranging from 1.5 
to 6 h after injection.476

Using a rat model of prenatal brain damage, a thorough investi-
gation of intranasally administered exosomes before the occurrence 
of ischemia showed that exosomes were seen in the frontal cortex 
as soon as 30 min after administration and were equally distributed 
throughout the whole brain 3 h after being administered.427 The 
analysis of biodistribution after cerebral ischemia demonstrate that 
the quantity of exosomes supplied intranasally and labeled with gold 
nanoparticles was more than twice as high in the brain compared to 
those administered intravenously. Following intranasal distribution, 
a significant quantity of exosomes remained in the brain, while there 
was an almost minimal amount following intravenous delivery 24 h 

TA B L E  11  Published studies of neural stem cell- derived exosomes in ischemic stroke.

Animals Stroke model Time of treatment
Routes of exosome 
delivery

Exosome 
modifications Proposed mechanisms References

Mouse TE- MCAO 2, 14, 38/6, 24, 48 h 
(in aged mice) 
after ischemia

Tail vein No Immunomodulation, inhibit 
inflammation

441

Mouse 1- h tMCAO 2 h after ischemia Internal jugular vein No Preserve astrocyte function 442

Pig pMCAO 2, 14, 24 h after 
ischemia

Intravenously No Protect the integrity of BBB 
and WM

443

Note: Modified with permission Li et al.416

Abbreviations: BBB, blood–brain barrier; pMCAO, permanent middle cerebral artery occlusion; TE- MCAO, thromboembolic middle cerebral artery 
occlusion; WM, white matter.

TA B L E  1 2  Published studies of adipose- derived stem cell- derived exosome in ischemic stroke.

Animals Stroke model Time of treatment
Routes of exosome 
delivery

Exosome 
modifications Proposed mechanisms References

Rat 50- min tMCAO 3 h after ischemia Intravenously No Anti- inflammation, 
anti- apoptosis

449

Rat tMCAO Immediately after 
ischemia

Tail vein Enriched with 
miR- 30d- 5p

Reduce autophagy and 
inflammation, and 
promote microglia M2 
polarization

447

Rat tMCAO Not mentioned Intravenously Enriched with 
miR- 126

Promote neurogenesis, 
angiogenesis, 
anti- inflammation

446

Rat 1- h tMCAO 3 days before 
ischemia

Lateral cerebral 
ventricle 
injection

Loaded with pigment 
epithelium- 
derived factor

Promote autophagy 448

Note: Modified with permission Li et al.416

Abbreviation: tMCAO, transient middle cerebral artery occlusion.
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after injection. Significantly, a considerable proportion of exosomes 
supplied by the nasal route also gathered in the lungs, spleen, and 
kidney.477 The findings indicated that delivering exosomes via the 
nose was a more effective and promising noninvasive treatment ap-
proach for ischemic stroke.

The typical method of administering local anesthesia involves 
injecting it into the brain ventricle.425,448 Intracerebroventricular 
injection of MSC- Exos prevented cyclo- oxygenase- 2 expression, en-
hanced spatial learning and memory, and restored hippocampal syn-
aptic transmission impairments in global ischemia.425 Furthermore, 
infarct volume and cell apoptosis were improved 3 days after tMCAO 
by ADSC exosomes administered via the lateral cerebral ventricle for 
approximately 3 days before ischaemia.448

4.2.6  |  Exosome clinical trials in stroke

Exosomes were shown in clinical pilot studies to be adequate in 
promoting neurovascular remodeling and functional recovery after 
ischemic stroke. To encourage the translation of exosomes into the 
clinic, well- designed clinical trials are necessary since the clinical 
studies of exosome- based treatment for stroke have just recently 
started. To date, documented clinical studies (NCT03384433) are 
presently being investigated in patients on the use of exosomes to 
treat stroke with IRB approval. Clinical investigators are still debat-
ing the best route of MSC- Exo administration. Patients in this clini-
cal study received 200 mg of MSC exosomes 1 month following the 
commencement of ischemia. 12 months after the delivery of ex-
osomes, the modified ranking scale and adverse treatment- related 
events were measured.

Remarkably, the majority of clinical studies concentrate on the 
functions that miRNAs play in stroke in terms of prognosis, diag-
nosis, and prediction. For instance, the analysis of blood miRNAs 
from 1523 controls aged 40–69 years and 173 cases of cerebrovas-
cular illness aged above 69 years is being investigated to determine 
serum miRNAs for the prediction of stroke risk. They discovered 10 
miRNAs that connected with a projected risk of stroke (miR- 1268b, 
miR- 4433b- 3p, and miR- 6803- 5p).478 The purpose of clinical trials 
NCT04175691 and NCT04230785 is to use next- generation se-
quencing to examine patients' expression patterns of circular RNA, 
microRNAs, and long non- coding RNA. The trials will then inves-
tigate and differentiate related biomarkers that can be utilized to 
detect and predict the outcome of acute ischemic stroke, as well 
as track the progression and prognosis of acute ischemic stroke 
patients undergoing endovascular treatment. A final clinical study 
(NCT03577093) aims to explore the molecular pathways via which 
microRNA- 494 regulates the cell cycle after cerebral ischemia. 
These investigators intend to collect peripheral blood DNA samples 
from individuals aged 18–80 who had a stroke within 6 h. Over the 
coming years, additional exosomal signals and pathways will be dis-
covered including their ability to aid in neuroprotection (Figure 16).

4.3  |  Liver

A number of articles have now been published on the use of ex-
osomes for the management or treatment of various illnesses/
diseases involving the liver. These include acute liver failure, drug- 
induced liver injury, hepatocellular carcinoma, and viral and alcohol- 
induced hepatitis and cirrhosis.

TA B L E  1 3  Published studies of other cell- derived exosomes in ischemic stroke.

Animals Stroke model
Time of 
treatment

Source of 
exosomes

Routes of 
exosome delivery

Exosome 
modifications

Proposed 
mechanisms References

Mouse pMCAO 1 h after 
ischemia

Astrocyte Tail vein No Anti- apoptosis 450

Mouse 90 min tMCAO 30 min after 
ischemia

Brain 
microvascular 
ECs

Tail vein No Protect BBB 
integrity, inhibit 
astrocyte 
activation

453

Mouse Photothrombosis 3 days after 
ischemia

Brain endothelial 
cells

Intravenously Enriched with 
miR- 126

Promote 
angiogenesis, 
neurogenesis and 
M2 macrophage 
polarization

454

Rat 2 h tMCAO Immediately 
after 
ischemia

Macrophage cell 
line

Tail vein No Promote M2 
microglial 
polarization

455

Mouse 90 min tMCAO 1, 2, 3 days 
after 
ischemia

Microglia cell line Tail vein No Promote neuronal 
survival

456

Note: Modified with permission Li et al.416

Abbreviations: pMCAO, permanent middle cerebral artery occlusion; tMCAO, transient middle cerebral artery occlusion.

 16000757, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/prd.12561 by U

niversitat B
ern, W

iley O
nline L

ibrary on [09/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



38  |    MIRON et al.

TA
B

LE
 1

4
 

Th
er

ap
eu

tic
 e

ff
ec

ts
 o

f e
xo

so
m

e 
on

 s
tr

ok
e 

by
 ta

rg
et

in
g 

m
ic

ro
gl

ia
 p

ol
ar

iz
at

io
n.

Ex
os

om
e

O
bj

ec
tiv

es
Co

nt
en

ts
Si

gn
ifi

ca
nc

e
M

ec
ha

ni
sm

Re
fe

re
nc

es

Ex
os

om
es

 fr
om

 s
er

um
 

of
 y

ou
ng

 ra
ts

A
ge

d 
is

ch
em

ic
 ra

ts
M

or
e 

C
D

46
, l

es
s 

C1
q,

 C
3a

, C
3b

Im
pr

ov
ed

 s
ho

rt
 a

nd
 lo

ng
- t

er
m

 fu
nc

tio
na

l 
ou

tc
om

es
 a

ft
er

 is
ch

em
ic

 s
tr

ok
e 

an
d 

re
du

ce
d 

sy
na

pt
ic

 lo
ss

Re
du

ci
ng

 Ib
a1

+
 C

D
86

+
 m

ic
ro

gl
ia

 b
ut

 
in

cr
ea

si
ng

 Ib
a1

+
 C

D
20

6+
 m

ic
ro

gl
ia

46
2

EV
s 

fr
om

 s
er

um
A

IS
 p

at
ie

nt
s

hs
a-

 m
iR

- 1
24

- 3
p

Re
du

ce
d 

se
ru

m
 p

ro
- in

fla
m

m
at

or
y 

cy
to

ki
ne

s 
an

d 
th

e 
N

IH
SS

 s
co

re
Re

ve
rs

in
g 

th
e 

LP
S-

 in
du

ce
d 

in
fla

m
m

at
or

y 
ef

fe
ct

 in
 B

V
2 

m
ic

ro
gl

ia
 b

y 
in

hi
bi

tin
g 

th
e 

ex
pr

es
si

on
 o

f G
RB

2 
an

d 
A

K
T3

 g
en

e 
in

vo
lv

ed
 in

 p
ro

- in
fla

m
m

at
or

y 
si

gn
al

in
g 

pa
th

w
ay

s

46
3

Ex
os

om
e 

fr
om

 A
D

SC
s

A
IS

 ra
ts

m
iR

- 3
0d

- 5
p

Re
du

ce
d 

ce
re

br
al

 in
ju

ry
Su

pp
re

ss
in

g 
au

to
ph

ag
y 

an
d 

pr
om

ot
in

g 
M

2 
m

ic
ro

gl
ia

 p
ol

ar
iz

at
io

n
46

0

Ex
os

om
es

 fr
om

 s
er

um
En

do
to

xe
m

ia
 m

ic
e

m
iR

- 1
5a

, m
iR

- 1
5b

, m
iR

- 2
1,

 m
iR

- 
27

b,
 m

iR
- 1

25
a,

 m
iR

- 1
46

a,
 

an
d 

m
iR

- 1
55

In
cr

ea
se

d 
sy

st
em

ic
 p

ro
- in

fla
m

m
at

or
y 

cy
to

ki
ne

 
pr

od
uc

tio
n,

 a
nd

 e
le

va
te

d 
C

N
S 

ex
pr

es
si

on
 

of
 p

ro
- in

fla
m

m
at

or
y 

cy
to

ki
ne

 m
RN

A
 a

nd
 

th
e 

in
fla

m
m

at
io

n-
 as

so
ci

at
ed

 m
iR

- 1
55

In
du

ci
ng

 th
e 

ex
pr

es
si

on
 o

f I
ba

- 1
 a

nd
 m

ic
ro

gl
ia

l 
up

ta
ke

 o
f e

xo
so

m
es

 d
er

iv
ed

 fr
om

 s
er

um
- 

co
nt

ai
ni

ng
 in

fla
m

m
at

io
n-

 re
la

te
d 

m
iR

N
A

s

46
4

Ex
os

om
es

 fr
om

 B
M

SC
s

IC
H

 ra
ts

m
iR

- 1
46

a-
 5p

Im
pr

ov
ed

 n
eu

ro
lo

gi
ca

l f
un

ct
io

n 
an

d 
re

du
ce

d 
ne

ur
on

al
 a

po
pt

os
is

In
hi

bi
tin

g 
m

ic
ro

gl
ia

l M
1 

po
la

riz
at

io
n 

by
 

do
w

nr
eg

ul
at

in
g 

th
e 

ex
pr

es
si

on
 o

f I
R

A
K1

 
an

d 
N

FA
T5

46
5

Ex
os

om
es

 fr
om

 
hU

M
SC

s
Is

ch
em

ic
 m

ic
e

m
iR

- 1
46

a-
 5p

Im
pr

ov
ed

 re
co

ve
ry

 o
f f

un
ct

io
n,

 a
tt

en
ua

te
d 

m
ic

ro
gl

ia
- m

ed
ia

te
d 

in
fla

m
m

at
io

n
D

ec
re

as
in

g 
IB

A-
 1+

 C
D

16
+
 c

el
ls

 a
nd

 in
cr

ea
si

ng
 

IB
A-

 1+
 C

D
20

6+
 c

el
ls

 b
y 

su
pp

re
ss

in
g 

IR
A

K1
/T

R
A

F6
 s

ig
na

lin
g 

pa
th

w
ay

46
6

EV
s 

fr
om

 n
eu

ra
l 

pr
og

en
ito

r c
el

l
M

C
AO

 m
ic

e
le

t- 7
g-

 5p
, m

iR
- 9

9a
- 5

p,
 le

t- 7
i- 5

p,
 

m
iR

- 1
39

- 5
p,

 m
iR

- 9
8-

 5p
, 

m
iR

- 2
1-

 5p
, a

nd
 le

t- 7
b-

 5p

Su
pp

re
ss

ed
 in

fla
m

m
at

io
n 

re
sp

on
se

In
hi

bi
tin

g 
th

e 
ex

pr
es

si
on

 o
f I

ba
- 1

 a
nd

 M
A

PK
 o

f 
an

 in
fla

m
m

at
io

n-
 re

la
te

d 
pa

th
w

ay
46

7

Ex
os

om
e 

fr
om

 B
M

SC
s

M
C

AO
 ra

ts
N

R
A

tt
en

ua
te

d 
ce

re
br

al
 is

ch
em

ia
–r

ep
er

fu
si

on
 

in
ju

ry
- in

du
ce

d 
ne

ur
oi

nf
la

m
m

at
io

n 
an

d 
py

ro
pt

os
is

Sh
ift

in
g 

M
1-

 po
la

riz
ed

 m
ic

ro
gl

ia
 s

hi
ft

ed
 to

w
ar

d 
M

2-
 po

la
riz

ed
 m

ic
ro

gl
ia

46
8

Ex
os

om
es

 fr
om

 
m

ac
ro

ph
ag

e
pM

C
AO

 ra
ts

Ed
ar

av
on

e
En

ha
nc

ed
 n

eu
ro

pr
ot

ec
tio

n
Pr

om
ot

in
g 

th
e 

po
la

riz
at

io
n 

of
 m

ic
ro

gl
ia

 fr
om

 
M

1 
to

 M
2

46
9

Ex
os

om
es

 fr
om

 p
la

sm
a

pM
C

AO
 ra

ts
M

el
at

on
in

D
ec

re
as

ed
 in

fa
rc

t v
ol

um
e,

 im
pr

ov
ed

 re
co

ve
ry

 
of

 fu
nc

tio
n,

 a
nd

 re
du

ce
d 

m
ic

ro
gl

ia
 

py
ro

pt
os

is

In
hi

bi
tin

g 
TL

R4
/N

F-
 κB

 p
at

hw
ay

- m
ed

ia
te

d 
m

ic
ro

gl
ia

l i
nf

la
m

m
at

io
n 

an
d 

N
LR

P3
- 

m
ed

ia
te

d 
m

ic
ro

gl
ia

 p
yr

op
to

si
s

47
0

Ex
os

om
es

 fr
om

 
hU

M
SC

s
tM

C
AO

 ra
ts

CC
R2

En
ha

nc
ed

 o
lig

od
en

dr
og

en
es

is
 a

nd
 

re
m

ye
lin

at
io

n
D

ec
re

as
in

g 
C

D
16

 a
nd

 IL
- 1

β 
m

RN
A

 e
xp

re
ss

io
n 

an
d 

in
cr

ea
si

ng
 C

D
20

6 
an

d 
A

rg
- 1

 m
RN

A
 

ex
pr

es
si

on

47
1

Ex
os

om
es

 fr
om

 
LP

S 
st

im
ul

at
ed

 
m

ac
ro

ph
ag

e

M
C

AO
/R

 ra
ts

N
R

In
cr

ea
se

d 
ne

ur
op

ro
te

ct
io

n 
an

d 
fu

nc
tio

na
l 

im
pr

ov
em

en
t

En
ha

nc
in

g 
th

e 
m

ic
ro

gl
ia

l p
ol

ar
iz

at
io

n 
fr

om
 M

1 
ph

en
ot

yp
e 

to
 M

2 
ph

en
ot

yp
e

47
2

Ex
os

om
es

 fr
om

 A
D

SC
s

M
C

AO
/R

 ra
ts

m
iR

- 1
26

Im
pr

ov
ed

 n
eu

ro
ge

ne
si

s 
an

d 
fu

nc
tio

na
l 

re
co

ve
ry

In
hi

bi
te

d 
m

ic
ro

gl
ia

l a
ct

iv
at

io
n 

an
d 

th
e 

ex
pr

es
si

on
 o

f i
nf

la
m

m
at

or
y 

fa
ct

or
s

47
3

 16000757, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/prd.12561 by U

niversitat B
ern, W

iley O
nline L

ibrary on [09/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  39MIRON et al.

4.3.1  |  Acute liver failure

Acute liver failure (ALF) manifests 24 weeks after the beginning of 
the first symptoms480 and are categorized depending on the time 
and intensity of their clinical presentation: hyperacute, acute, and 
subacute.481 Fulminant hepatic failure is present in both the hypera-
cute and acute forms, although subacute variants are also known as 
subfulminant.482 Remarkably, the fatality rate is lower among indi-
viduals who develop hepatic encephalopathy 8 weeks after the first 
symptoms (fulminant hepatic failure) when compared to those with 
a more progressive progression.483 Multiorgan failure (MOF) is the 
primary reason (>50%) for death in cases of ALF, with intracranial 
hypertension (ICH) and infection being the other significant causes 
of mortality in this group of patients.484

Shokravi and colleagues conducted a thorough review paper 
examining the use of stem cells and their exosomes in the context 
of acute liver failure (ALF).485 It has been shown that the usage of 
MSCs affects how cells differentiate into hepatocytes, reduce in-
flammation, possess antifibrotic effects, and help release and ab-
sorb antioxidants.485 Exosomes have been shown to be much safer 
with their effects examined in Table 15. In summary, exosomes have 
been shown to reduce oxidative stress, enhance angiogenesis, en-
hance liver survival and function, and lessen inflammation in the 
liver overall.

4.3.2  |  Drug- induced liver injury

Drug- induced liver injury (DILI) is a prominent factor in cases of acute 
liver injury (ALI), leading to black box warnings and the removal of 
medications from the market. This condition may be attributed to 
over 1000 pharmaceuticals that are presently accessible.499–501 
Nonsteroidal anti- inflammatory, anti- infectious, psychotropic, and 
hypolipidemic medications were the most frequently implicated 
pharmaceuticals.502,503

Recent findings indicate that exosomes in circulation and their 
contents may serve as noninvasive sources of prospective molecular 
biomarkers for their early identification, tracking, and assessment 
of DILI. Additionally, it was shown that exosomes present in urine 
contained RNAs or proteins suggestive of DILI. Exosomes derived 
from hepatocytes or mesenchymal stem cells are also thought to 
be promising therapeutic agents since they may reduce hepatocyte 
apoptosis, regulate the inflammatory response, and encourage liver 
regeneration. In a mouse model of chronic liver damage caused by 
CCl4, exosomes were suggested to mitigate hepatic inflammation 
and collagen deposition.504 Additionally, in mice models of CCl4- 
induced acute liver damage, exosomes generated hepatoprotective 
effects by increasing hepatocyte proliferation through enhanced 
proliferating cell nuclear antigen and high cell survivability. EVs also 
prevented hepatocyte apoptosis caused by APAP and H2O2 by up-
regulating the expression of the Bcl- xL protein.505

Human umbilical cord- derived MSCs (huc- MSCs) are a valu-
able asset in the field of regenerative medicine for treating liver Ex
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damage. These cells have been extensively studied in phase I and 
II clinical trials with the aim of enhancing liver function. Therefore, 
huc- MSC exosomes could be the best option for DILI. Apoptosis 
and reactive oxygen species were considerably reduced, as well as 
pro- inflammatory cytokines such as G- CSF, IL- 1α, and MCP- 1 after 
a single systemic injection of human MSC exosomes was given to 
patients with acute liver failure brought on by CCl4. Additional 
research revealed that huc- MSC exosomes prevented oxidative 
stress- induced apoptosis and stimulated ERK1/2 activation and Bcl2 
expression. It is interesting to note that GPX1 knockdown hindered 
the function of huc- MSC exosome- induced liver recovery and for 
this reason, GPX1 is crucial for the antioxidant activity and liver pro-
tection provided by huc- MSC exosomes.486 In comparison with the 
Bifendate group, which is often employed in clinical therapy to mit-
igate liver damage caused by CCl4, the huc- MSC exosomes group 
exhibited better integrated hepatic tissue structure and a reduced 

loss of hepatic lobules.506 Thus, the current research showed that 
huc- MSC exosomes had a hepatoprotective effect against the de-
velopment of liver damage.

4.3.3  |  Therapeutic intervention for 
hepatocellular carcinoma

The sixth most prevalent cancer, and the one with the highest death 
rate, is hepatocellular carcinoma (HCC). EVs have been utilized in 
various trials to treat HCC cells. Hepatic stellate cells, stem cells, 
HCC cells, hepatocytes, and fat- free milk from cows are a few ex-
amples of several sources of EVs. The bulk of research involved 
loading miRNA, or other therapeutic compounds, into EVs by using 
an endogenous loading technique. Before EV shedding, the target 
donor cells are altered using the endogenous loading technique, also 

F I G U R E  1 6  Neuroprotective mechanism of exosomal miRNA. Reprinted with permission from Xu et al.479

 16000757, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/prd.12561 by U

niversitat B
ern, W

iley O
nline L

ibrary on [09/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  41MIRON et al.

known as preloading.507,508 Following the loading of therapeutic 
compounds into the donor cells, EV transference into the recipient 
HCC cell is made possible by coculturing the donor and recipient 
HCC cells. Every study so far has shown that their therapeutic pay-
load can be delivered to target tumor cells and promote apoptosis in 
those cells,509 lessen the chemoresistance,510 inhibit cellular prolif-
eration,509,511–513 and decrease the movement of cells.511

In another study, recipient HCC cells were cocultured with donor 
HCC cells that had been transfected with genes encoding the sodium 
iodide symporter (NIS).514 The NIS protein increased the sensitivity 
of transplanted HCC to I- 131 ablation by increasing the toxicity of 
I- 131 in those cells.514

In various animal models, HCC xenograft tumors have been sub-
cutaneously implanted into various animals in immunocompromised 
mouse models. The EVs were loaded with antitumoral molecules 
and intravenously injected via tail veins or via direct intratumoral 
injections. The therapeutic EVs resulted in reduced tumor diame-
ters,509–511,515–519 enhanced apoptosis of tumor cells,509–511,515 as 
well as enhanced chemoresistance.510,516

Apart from their function as therapeutic cargo, EVs have also 
been found to have an indirect application in the treatment of HCC. 
It has been shown that intraperitoneal injections of propofol stim-
ulated tumor- associated macrophages to create miR- 142- 3p EVs, 
which is linked to a reduction in tumor development.518 In one 
research study, mice with xenograft HCC were treated with an 
exosome- based tumor vaccination (dendritic cells triggered by tumor 
EVs).519 The outcome showed that the xenograft tumor volume was 
successfully reduced by intravenous injection of an exosome- based 
tumor vaccination.519 Because EVs may transfer therapeutic com-
pounds into xenograft HCC, reducing tumor development, all exist-
ing in vivo investigations displayed the potential benefits of EVs as 
a therapeutic modality for HCC. EVs can also be utilized as a thera-
peutic cargo or as a tumor vaccination.

An article by Nimitrungtawee et al.520 concluded that increasing 
data demonstrates the ability of HCC cells to communicate with one 
another using EVs in order to stimulate cell proliferation. Clinical re-
search has previously shown that RNA cargo from HCC- derived EVs 
may serve as prospective serum biomarkers to aid in the diagnosis of 

TA B L E  1 5  Mesenchymal stromal cells (MSCs) derived molecules (e.g., exosome) in liver failure preclinical models, especially acute liver 
failure (ALF).

Sources Model Intervention Result (reference)

Umbilical cord Mice MSCs exosome GPX1- enriched exosomes diminished oxidative stress and also 
apoptosis486

Placenta Rat MSCs exosome CRP- enriched exosome provoked angiogenesis by upregulation of 
Wnt signaling axis487

Bone marrow Rat MSCs exosome Stimulation of hepatoprotective impacts by exosome- rich 
fractionated secretome488

Bone marrow Mice MSCs exosome Suppression of NLRP3 in macrophages and thereby reducing ALF by 
TNF- ɑ pretreated exosome489

Menstrual blood Mice MSCs exosome Liver function recovery, improved survival rates, and suppressed 
hepatocellular apoptosis490

Umbilical cord Mice MSCs extracellular vesicles Inhibition of T- cell activation in liver tissue following reserve of 
CD154 expression491

Bone marrow Mice MSCs- conditioned medium Promoting hepatocyte proliferation, inhibition of their apoptosis, 
hindrance of the infiltration of macrophages, improving Th2/Th1 
ratio, and enabling hepatic stellate cell (HSC) loss492

Bone marrow Rat MSCs- conditioned medium Marked attenuation of panlobular immune cells infiltrates and also 
hepatocellular apoptosis493

ESCs- MSCs Mice MSCs- conditioned medium Supporting hepatocyte growth by VEGF enriched conditioned 
medium494

Bone marrow Mice MSCs- exosome Attenuation of liver inflammation by exosomal miR- 20a- 5p/
intracellular CXCL8 axis495

Bone marrow Rat MSCs- conditioned medium Reduced hepatocyte apoptosis496

Bone marrow Rat MSCs- conditioned medium Improving the hepatoprotective impacts of the conditioned medium 
by SMGO potently elicited through inhibition of inflammation 
and loss of hepatocytes497

Amniotic fluid Mice MSCs- conditioned medium Hepatic progenitor- like (HPL)- CM showed superiority over amniotic 
fluid- MSCs in terms of liver recovery498

Note: Reprinted with permission from Shokravi et al.485

Abbreviations: CM, conditioned medium; CRP, C- reactive protein; ESCs, embryonic stem cells; GPX1, glutathione peroxidase1; IL- 8 or CXCL8, 
interleukin 8; NLRP3, NLR family pyrin domain- containing 3; SMGO, silica magnetic graphene oxide; Th1/2, T helper 1/2; TNF- α, tumor necrosis 
factor- α; VEGF, vascular endothelial growth factor.
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HCC. A portion of this EV- RNA is also linked to tumor size, suggest-
ing that it might be used as a prognostic marker. Furthermore, data 
from research conducted in vivo and in vitro suggested that EVs may 
be used to reduce tumor size and development. A summary of the 
potential roles of EVs is shown in Figure 17.

4.3.4  |  Viral and alcohol- induced 
hepatitis and cirrhosis

Liver illnesses, including viral hepatitis, alcoholic hepatitis and cir-
rhosis, nonalcoholic steatohepatitis, and hepatocellular carcinoma, 
impose a significant burden on many individuals globally. Worldwide, 
liver illnesses claim the lives of over 2 million individuals each year. 
The main causes of these deaths are hepatocellular carcinoma 
(HCC), complications from liver cirrhosis, and viral hepatitis (VH).521

A study by Zhou et al.521 focused on immune cell exosomes and 
their effects on liver disease treatments examining both the patho-
genic and possible therapeutic functions of these exosomes in liver 
illnesses. Although the authors discussed the potential use of exo-
somes produced from different immune cell sources to treat liver 

disease, further study is necessary, particularly in human subjects. 
Nevertheless, many benefits associated with exosomes have been 
found across a wide range of liver- related illnesses.

4.4  |  Kidneys

Acute kidney injury (AKI) is a severe global issue that causes abrupt 
loss of renal function as a result of tissue destruction and then pro-
gresses to chronic kidney disease. It has a high incidence of morbidity 
and death. Numerous assaults, including nephrotoxic drugs, environ-
mental toxins, ischemia, systemic inflammation, nephritis, and urinary 
tract obstruction, may cause AKI.522 While research into viable treat-
ments for AKI is ongoing, at this time, only simple supportive therapy 
is available. Regenerative medicine for kidney illnesses is not yet pos-
sible due to the multiple etiologies of renal damage and the significant 
complexity of the kidney structure. Nonetheless, modern stem cell 
treatments have been utilized in several preclinical models and clinical 
studies over the last few decades due to the immense promise that 
stem cell technology has demonstrated.523–525 More significantly, EVs 
made from stem cells have attracted much more attention as a novel 

F I G U R E  17  Roles of HCC- derived EVs, HCC- derived EVs as a biomarker, and the evidence of therapeutic EVs from currently available 
reports. HCC cells secrete EVs that can lead to increased tumor cell proliferation, migration, chemoresistance, and decreased tumor cell 
apoptosis. They can also affect tumor microenvironments such as increased angiogenesis. Some of these HCC- derived EVs can be detected 
in circulation, making them available for use as a diagnostic biomarker. Moreover, it is possible for EVs to be used as a therapeutic cargo 
to transfer therapeutic molecules into tumor cells. Several in vitro and in vivo reports have demonstrated antitumoral effects using this 
method. ANGPT2, angiopoietin2; Circ, circular RNA; linc, long interceding/intergenic non- coding RNA; miR, microRNA; siRNA, signal 
interference RNA; TUC, tumor ultra- conserved RNA. Reprinted with permission from Nimitrungtawee et al.520
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therapeutic alternative for improved healing from many kinds of kid-
ney damage without requiring allogeneic stem cells.526

In addition to their therapeutic possibilities, exosomes have also 
been studied for their potential as biomarkers for the identification 
of AKI.527 A research paper titled: “Unconscious Cells and Sudden 
Kidney Damage: Potential Therapeutic Avenue for Renal Repair and 
Regeneration”528 highlighted the effects of exosomes and how they 
affect multiple pathways of tissue regeneration including their role 
in (1) attenuating inflammation and improving immune modulation, 
(2) aiding in cell proliferation, (3) improving oxidative stress, (4) au-
tophagy, and (5) minimizing cell death. Multiple lines of evidence 
substantiate the renoprotective impact of EVs derived from various 
sources in mitigating renal injury in diverse experimental models of 
AKI as presented in Table 16.528

4.4.1  |  Bone marrow MSC- derived EVs for 
kidney therapy

A number of AKI models have shown the protective function of EVs 
produced from BMSCs. Bruno et al.529 demonstrated that by trans-
porting certain cellular mRNAs, human BMSC- derived EVs enhanced 
the growth and minimized apoptosis of renal proximal tubular cells 
and helped mice recover from glycerol- induced AKI. Additionally, by 
reducing inflammation and apoptosis, a single injection of BMSC- EVs 
soon after an ischemia–reperfusion (I/R) damage- induced acute kid-
ney injury promoted kidney recovery and enhanced function.530,531 
Collino et al.534 showed that miRNAs transported by BMSC- EVs 
played a significant role in the recovery process after AKI. Specifically, 
miR- 199a- 3p from BMSC- EVs inhibits the Akt and Erk1/2 signaling 
pathways to prevent renal I/R damage and apoptosis.535 BMSC- EVs 
also improved renal function and morphological abnormalities in AKI 
produced by gentamicin or cisplatin.532,533 Importantly, Gregorini 
et al.559 showed that by modifying the expression of genes involved in 
membrane transport and cell energy metabolism, the immediate pre- 
transplantation incubation of donated rat kidneys with BMSC- derived 
EVs decreased ischemia damage.559

4.4.2  |  Umbilical cord MSC- derived EVs for 
kidney therapy

In many AKI models, the administration of EVs generated from um-
bilical cord MSC (UC- MSC) was useful in the treatment of kidney 
injury. In rats, UC- MSC- EVs injected underneath the renal cap-
sule prevented cisplatin- induced AKI.536 In vitro and in vivo cell 
proliferation was promoted by injecting UC- MSC- EVs, which also 
reduced oxidative stress and apoptosis.536 Additionally, UC- MSC- 
EVs enhanced kidney function in vivo and reduced renal NRK- 52E 
cell production of caspase 3 and the p38/MAPK pathway activation 
in vitro.536 UC- MSC- derived EVs also provided protection against 
kidney damage, inflammation, and apoptosis caused by cisplatin.543 
In addition to enhancing renal function, UC- MSC- derived EVs 

demonstrated protection against sepsis- induced AKI by reducing 
tubular cell death and inflammation. In particular, NF- κB inhibition 
and miR- 146b overexpression in renal tubular cells mediated the 
protective effects of EVs.133 Interestingly, UC- MSC- EVs also pre-
vented inflammation, apoptosis, and kidney damage in rats after I/R 
by suppressing CX3CL1 and reducing macrophage accumulation,537 
and also demonstrated antioxidative qualities.540 Evidence from re-
cent research suggests that UC- MSC- derived EVs control kidney 
angiogenesis in a way that is independent of HIF- 1. This suggests 
that these EVs enhance kidney function after unilateral I/R by de-
creasing apoptosis and increasing proliferation and angiogenesis.542 
The pro- angiogenic payload of EVs, which includes RNAs and VEGF, 
may account for their capacity for regeneration.542 Additionally, 
UC- MSC- EVs accelerate tubular cell dedifferentiation and prolif-
eration by upregulating HGF expression. This is probably due to the 
EVs' stimulation of Erk1/2 signaling while transferring RNA to dam-
aged tubular cells.538

Through the use of miR- 30b/c/d, human UC- MSC- derived EVs 
prevented I/R- induced kidney damage by preventing mitochondrial 
fragmentation and lowering apoptosis,539 as well as miR- 125b- 5p/
p53,545 stimulation of the Nrf2/ARE system,541 and OCT- 4- mediated 
Snail pathway recruitment in RPTECs.544 According to in vivo imag-
ing data, EVs preferred to settle near renal proximal tubular cells in 
ischemia- injured kidneys.545

4.4.3  |  Placental tissue MSC- derived EVs for 
kidney therapy

Liu et al.548 examined the function of EVs produced from human 
placental MSC (hP- MSC) in AKI and demonstrated that they had a 
greater impact when encapsulated in a collagen matrix prior to in-
trarenal delivery. The collagen matrix promoted renal tubular cell 
proliferation and angiogenesis while preventing apoptosis and en-
doplasmic reticulum stress. It also enhanced the retention and ther-
apeutic efficiency of hP- MSC- EVs in I/R- induced AKI.548 Similarly, 
Zhang et al.549 created hydrogels known as RGD (Arg- Gly- Asp) to 
control the stability and retention of the EVs. RGD bound to inte-
grins on the surface of the MSC- EV membrane mediated the in-
teraction between EVs and hydrogel. In I/R- induced AKI, EV- RGD 
hydrogels effectively prevented renal damage and reduced their 
morphological damage by encouraging autophagy and proliferation 
in tubular epithelial cells.549

4.4.4  |  Adipose tissue MSC- derived EVs for 
kidney therapy

Adipose MSC- derived EVs (ADSC- EVs) have also been studied in 
relation to AKI recovery and regeneration. ADSC- EVs significantly 
reduced oxidative stress, apoptosis, and inflammation while also 
promoting renal angiogenesis thereby improving kidney dysfunc-
tion from I/R damage. An even better result than with EVs alone 
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TA B L E  1 6  Application of EVs as therapeutic agents in acute kidney injury.

EV source AKI model EV cargo Signaling pathway Mechanism Administration References

BMSCs Glycerol mRNA n/i Proliferation, apoptosis Intravenous 529

I/R injury RNA n/i Proliferation, apoptosis Intravenous 530

I/R injury CCR2 NF- κB p65 Inflammation Intravenous 531

Cisplatin n/i n/i Proliferation, apoptosis Intravenous 532

Gentamicin RNA n/i Proliferation, apoptosis Intravenous 533

Glycerol miRNA n/i Inflammation Intravenous 534

I/R injury miR- 199a- 3p Akt, Erk1/2 Apoptosis Intravenous 535

UC- MSCs Cisplatin n/i p38/MAPK, Erk1/2 Oxidative stress, apoptosis, 
proliferation

Renal capsule 536

I/R injury n/i CX3CL1 Apoptosis, inflammation Intravenous 537

I/R injury HGF/RNA Erk1/2 Proliferation, apoptosis Intravenous 538

I/R injury miR- 30b/c/d n/i Apoptosis Intravenous 539

I/R injury n/i NOX2/gp91 Oxidative stress, apoptosis, 
proliferation

Intravenous 540

I/R injury n/i Nrf2/ARE Oxidative stress, apoptosis Intravenous 541

I/R injury VEGF, RNAs n/i Apoptosis, proliferation, 
angiogenesis

Intravenous 542

Cisplatin n/i n/i Inflammation, apoptosis, 
autophagy

Renal capsule 543

I/R injury Oct- 4 Snail Apoptosis, proliferation Intravenous 544

Sepsis miR- 146b NF- κB Apoptosis, inflammation Intravenous 133

I/R injury miR125b- 5p p53 Apoptosis, proliferation Intravenous 545

AD- MSCs I/R injury n/i n/s Inflammation, apoptosis, 
oxidative stress, 
angiogenesis

Intravenous 546

Sepsis n/s SIRT1 Apoptosis, inflammation Intravenous 547

P- MSCs I/R injury n/i n/i Proliferation, angiogenesis, 
apoptosis

Intrarenal 548

I/R injury Let- 7a- 5p n/i Proliferation, apoptosis, 
autophagy

Intrarenal 549

K- MSCs I/R injury mRNA n/i Proliferation, angiogenesis Intravenous 550

I/R injury miRNAs n/i Proliferation Intravenous 551

L- MSCs Glycerol n/i n/i Proliferation, apoptosis Intravenous 552

u- EVs Glycerol miRNA, Klotho n/i Proliferation, inflammation Intravenous 553

TECs I/R injury CD26 p53, p21 Proliferation, inflammation Intravenous 554

USCs I/R injury miR- 146a- 5p NF- κB Apoptosis, inflammation Intravenous 555

Mac I/R injury IL- 10 mTOR Inflammation, autophagy Intravenous 556

EPCs I/R injury miRNAs n/i Proliferation, apoptosis Intravenous 557

Sepsis miR- 93- 5p H3K27me3/TNF- α Inflammation, apoptosis Intravenous 558

Note: Reprinted with permission from Kosanovic et al.528

Abbreviations: AD- MSCs, adipose tissue MSCs; AKI, acute kidney injury; ARE, antioxidant response element; BMSCs, bone marrow MSCs; EPCs, 
endothelial progenitor cells; EVs, extracellular vesicles; I/R, ischemia–reperfusion; K- MSCs, kidney resident MSCs; L- MSCs, liver resident MSCs; Mac, 
macrophages; MAPK, mitogen- activated protein kinase; MSCs, mesenchymal stem cells; mTOR, mammalian target of rapamycin; n/i, not investigated; 
n/s, not specifiedP- MSCs, placental MSCs; TECs, tubular epithelial cells; UC- MSCs, umbilical cord MSCs; uEVs, renal derived EVs isolated from urine; 
USCs, urine- derived stem cells; VEGF, vascular endothelial growth factor.
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was obtained when ADSCs and ADSC- EVs were used in combina-
tion.546 Through the SIRT1 signaling pathway, ADSC- derived EVs 
reduced renal inflammation and apoptosis in a sepsis- induced AKI 
model.547

4.4.5  |  EVs derived from other sources for 
kidney therapy

There is growing evidence that EVs produced from macrophages, 
kidney MSCs, liver MSCs, tubular epithelial cells, or endothelial pro-
genitor cells (EPCs) are advantageous in experimental AKI.

In I/R- induced AKI, kidney- derived MSC- EVs were shown to 
enhance kidney function and structural alterations by transferring 
mRNA with pro- angiogenic characteristics, which in turn promoted 
the proliferation of peritubular capillary endothelial cells and pre-
vented the loss of peritubular microvessels.550 Glomerular- MSC- EVs 
activated cell proliferation and transferred miRNA cargo to protect 
against I/R- induced AKI.551 Additionally, CD26- containing tubu-
lar epithelial cell- derived EVs reduced inflammation and promoted 
cell proliferation by lowering p53 and p21, therefore mitigating I/R- 
induced AKI.554

It is interesting to note that EVs produced from human urine 
stem cells (USCs) prevented I/R- induced AKI and reduced inflam-
mation and apoptosis by transferring miR- 146a- 5p and conse-
quently reducing NF- κB activation.555 Similarly, EVs generated 
from liver MSCs ameliorated mice's glycerol- induced AKI.552 
Normal urine- derived EVs from kidneys (uEVs) were shown to en-
hance the recovery from glycerol- induced AKI by promoting tu-
bular cell proliferation, re- establishing endogenous Klotho levels, 
and reducing inflammation via miRNA cargo and Klotho transfer to 
resident kidney cells.553

EPC- secreted EVs stimulated renal regeneration in I/R- induced 
AKI by delivering miRNA cargo to local tubular epithelial cells and 
thus triggering regenerative mechanisms.557 In addition, EVs re-
leased by EPCs containing miR- 93- 5p were shown to provide pro-
tection against sepsis- induced AKI by reducing vascular leakage, 
inflammation, and apoptosis. This protective effect was achieved via 
the modulation of the H3K27me3/TNF- axis.558

Ultimately, when EVs obtained from macrophages were loaded 
with IL- 10, it led to a successful delivery to renal tubular cells and 
macrophages in damaged kidneys and improved durability of vesi-
cles. This process helped alleviate kidney injury, suppress inflamma-
tion, and stimulate mitophagy by inhibiting mTOR signaling.556

At present, a list of clinical trials is found on www. clini caltr ials. 
gov investigating the use of exosomes for treating various kidney 
related illnesses. Exosomes and EVs generated from umbilical cord 
MSCs were shown in a phase II/III clinical trial to be effective in 
treating chronic kidney disease and slowing disease progression. 
Serum creatinine, blood urea, and urine albumin creatinine ratio 
were significantly improved in patients with stage III and IV chronic 
renal disease who received eGFR- EVs made from cord tissue 
MSC.560

4.4.6  |  MSC- Exos for chronic kidney disease

Chronic kidney disease (CKD) affects 10% of the population globally 
with many patients unaware of their condition.561 While the etiol-
ogy of CKD may differ, diabetes and hypertension remain the pre-
dominant factors.561 Regardless of the many factors that contribute 
to the initial kidney damage, the development of renal fibrosis is a 
shared characteristic of all types of CKD.562

In experimental CKD, MSCs have shown encouraging effec-
tiveness in reducing kidney damage.563,564 MSC- Exos, which share 
repair capabilities with MSCs, have been extensively used in the 
treatment of CKD, including DKD and renal fibrosis. The preclinical 
experiments included numerous CKD animal models, varied doses 
and timings, and several delivery techniques (tail infusion, organ per-
fusion, or direct application in the kidney), yet each study showed 
promising outcomes when utilizing EVs/exosomes.

4.4.7  |  MSC- Exos for diabetic kidney disease

Chronic kidney disease (CKD), a consequence of diabetes mellitus 
(DM) affecting small blood vessels, is the most prevalent type of CKD 
and is expected to rise significantly worldwide.561 Microalbuminuria 
is a common early sign in DKD, but it may not always occur, and 
it consequently indicates a higher likelihood of developing kidney 
damage over time. Diabetic individuals with renal disease have a 
higher risk of death compared to those without renal impairment. 
Given the projected rise in the worldwide adult population affected 
by DM, from 8.8% in 2015 to 10.4% in 2040, the significance of DKD 
and need for therapeutic options to manage or treat the disease is 
eminently needed.561

Hyperglycemia induces the activation of various inflammatory 
pathways through several mechanisms, including the direct gen-
eration of reactive oxygen species, oxidative stress, stimulation 
of the renin- angiotensin- aldosterone system (RAAS), secretion of 
profibrotic cytokines like TGF- beta, and formation of advanced 
glycation end- products.565 All of these result in albuminuria, podo-
cyte and tubular damage, and apoptosis. Progressive fibrosis re-
sults from the accumulation of ECM proteins, including collagen 
and fibronectin, in the tubulointerstitium and renal mesangium due 
to an increase in matrix protein synthesis and a reduction in protein 
breakdown.565,566 The potential therapeutic effects of MSC- Exos 
in STZ- DKD has been quite frequently investigated using in vivo 
models of the disease (mice or rats) as well as in vitro podocyte, 
tubular epithelial cell (TEC), and glomerular endothelial cells. The 
effectiveness of MSC- Exos in alleviating DKD in preclinical models 
is highlighted in Table 17.

4.4.8  |  MSC- Exos for kidney fibrosis

Commonly, kidney fibrosis, namely tubulointerstitial fibrosis, is the 
ultimate result of almost all progressive forms of chronic kidney 
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disease.562 Tubulointerstitial fibrosis histology is distinguished by 
the accumulation of extracellular matrix in the interstitium. This ac-
cumulation is associated with damage to tubular cells, activation and 
proliferation of fibroblasts, and a decrease in the density of blood 
vessels surrounding the tubules.562 Through a variety of pathways, 
TGF- beta has been shown to be a key profibrotic factor in several 
investigations.575

Recently, the antifibrotic efficacy of MSC- Exos has been as-
sessed using a variety of rodent models of CKD, including diabetic 
and hypertensive CKD models, and ischemia–reperfusion injury 
(Table 18). Unilateral ureteral obstruction causes significant renal 
damage, which manifests as decreased glomerular filtration rate and 
renal blood flow within 24 h. Interstitial inflammation peaks 2–3 days 
later, and tubular dilatation, tubular atrophy, and fibrosis appear a 
week later. It results in severe interstitial renal fibrosis with exces-
sive ECM buildup, tubular cell death, resident renal cell phenotypic 
change, and macrophage infiltration into the interstitial space.576 
Table 18 summarizes the use of MSC- Exos from various sources on 
antifibrotic effects in kidney fibrosis.

4.5  |  Ovaries

While not as commonly investigated as some of the other organs, 
ovaries have also been a target of exosome- related therapies. In a 
study titled: “Mesenchymal stem cells therapy: An auspicious ap-
proach for the management of uterine scarring and early ovarian 
failure,” Gao and colleagues investigated stem cells from various 
sources and their impact on ovarian regeneration and improvements 
in scarring.583 While most of the research to date has been on stem 
cells, few studies have investigated exosomes with the authors hint-
ing at their low immunogenicity as a key advantage. According to a 
study by Yang et al., exosomes produced by BMSCs considerably 
improved the estrous cycle, augmented the quantity of basal and 
sinus follicles, and modulated the levels of reproductive hormones 
in rats suffering from premature ovarian failure. The enhancement 
was linked to the suppression of cell death in granulosa cells by spe-
cifically targeting phosphatase and tensin homologs.584 Moreover, 
the existence of miRNAs in BMSC- derived Exos might play a signifi-
cant role in their ability to resist fibrosis while repairing intrauterine 
adhesions in the endometrium.585,586 Exosomes have the potential 
to cure a variety of ovarian illnesses, albeit research in this area of 
medicine remains in its early stages.583

5  |  DEGENER ATIVE PROCESSES

While many of the upcoming sections could certainly be attributed to 
the degeneration of tissues, this section focuses specifically on long- 
term degeneration tissues and their common diseases. Exosomes 
have played an important role in their improvements. These sections 
include primarily the effects of type 2 diabetes on the body as well 
as the number of issues related to respiratory disease/degeneration M
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over time. Exosomes have played a marked impact on the improve-
ment of all tissues, as highlighted below.

5.1  |  Type 2 diabetes mellitus

Many review articles have been written on the use of exosomes in 
the treatment of type 2 diabetes mellitus.587,588 Globally, the inci-
dence of diabetes mellitus (DM) is rising at an alarming pace. More 
than 30.3 million people in the United States suffer from DM and 
91.2% of them are type 2 diabetes mellitus (T2DM), which dis-
proportionately affects African Americans and Hispanics. T2DM 
is the primary cause of morbidity and death for diabetic individu-
als and a significant risk factor for cardiovascular disease (CVD). 
Intensive glucose control has not been able to stop the devel-
opment of macro-  and microvascular- associated mortality in this 
population, despite major advancements in T2DM therapy. This 
emphasizes the need to better understand the underlying mo-
lecular pathways that contribute to CVD in the context of type 2 
diabetes. The development of vascular problems brought on by 
diabetes, such as diabetic nephropathy (DN) and CVD, is signifi-
cantly influenced by endothelial dysfunction (ED). Furthermore, 
as the costs of managing and treating type 2 diabetes and its mul-
tisystem consequences continues to climb, the troubling rise in 
the disease's prevalence in the United States and other countries 
has put a heavy burden on healthcare systems, policymakers, 
families, and caregivers.

The intricate molecular foundations of type 2 diabetes and its 
associated consequences are made up of an interconnected system 
of lifestyle, genetic, and epigenetic variables that function within a 
physical, social, and cultural context.589 In particular, it is generally 
believed that genetic predisposition, excessive energy- dense food 
intake, and inactivity cause T2DM by interfering with the feedback 
loops that regulate insulin action and secretion.590 Persistent hy-
perglycemia may arise from this disturbance, which may also affect 
β- cell activity, insulin signaling, and glucose metabolism. Insulin re-
sistance and β- cell dysfunction both arise early in the etiology of 
type 2 diabetes and, over time, propel the development of IGT from 
normal glucose tolerance (NGT) to T2DM.589 Furthermore, the de-
velopment of T2DM is influenced by several variables, such as popu-
lation aging, intrauterine environment, alterations in the microbiota, 
and pollution.

5.1.1  |  Exosomal miRNAs as markers of endothelial 
dysfunction

Exosomes may be detected in several body fluids, including blood, 
saliva, urine, tears, and lactation. This characteristic makes exosomes 
appealing as noninvasive biomarkers for the illness. Exosomes serve 
as distinctive markers of the cells they originate from and the physi-
ological state of that cell.591 Hence, the diverse concentrations 

of exosomes and their abundant payload, including as proteins, 
mRNAs, and miRNAs, may serve as valuable indicators for predict-
ing and diagnosing diseases. Furthermore, it may provide a valuable 
understanding of the intricate biological mechanisms involved in dis-
orders like type 2 diabetes, as well as the underlying endothelial dys-
function that contributes to the vascular problems associated with 
this metabolic disorder. Tables 19 and 20 demonstrate examples of 
commonly utilized exosomal miRNAs and microRNAs used as bio-
markers. In fact, nowadays, various exosomes derived from various 
body fluid sources have now been utilized for the detection of DM 
and its subsequent disease (Table 21).

5.1.2  |  Exosomes, glucose, and lipid metabolism

Changes in the metabolism and absorption of glucose is the pri-
mary issue in diabetes, ultimately resulting in hyperglycemia.648 
The ghrelin system has a role in improving glucose metabolism 
in the treatment of TIDM, and hyperbaric oxygen may influence 
the ghrelin system, hence impacting glucose metabolism.649 
Clinical investigations on diabetic individuals have shown that 
GLP- 1 may have a function in lowering blood glucose levels.650 
Exosomes have been found to drastically reduce gluconeogenesis 
and promote the metabolism and absorption of fats and carbo-
hydrates.651 Notably in DM, autophagy suppression reduces the 
therapeutic effect of exosomes produced from MSCs. Further re-
search showed that exosomes triggered AMP- activated protein 
kinase (AMPK) to increase autophagy by upregulating Beclin- 1 
and LC3- II, which in turn promoted lipid metabolism and glucose 
absorption.651

5.1.3  |  Exosomes and β- cell function

The pancreas contains a large number of Langerhans islets, whereby 
each islet is made up of around 1000 β cells and weighs 0.9 g in 
total.652 The β cells are affected in diabetes mellitus and obesity, 
among other diseases. Hyperinsulinemia, or elevated insulin levels 
in the plasma of obese patients, is a compensatory mechanism that 
keeps insulin resistance at bay. Thus, the mass of β cells increases, 
resulting in hyperinsulinemia.653 An obese rat model demonstrated 
that obesity might increase β cell mass up to three fold.654 TIDM is 
characterized by the loss of β cells or their inability to secrete insulin 
and the mass of β cells in TIDM patients has been shown to decline 
to nearly 100% over an extended period of time.655–657

MSC- Exos have been used in an attempt to treat TIDM. After 
the exosomes were injected intravenously into animal models, insu-
lin and glucose levels were assessed 6 weeks later. According to the 
findings,658 exosomes stimulated β- cell regeneration in the pancreas 
and increased their bulk which is crucial for increasing insulin release 
in type 1 diabetes. Apart from increasing insulin levels, MSC- Exos 
markedly reduced serum glucose levels.
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5.1.4  |  Exosomes and insulin resistance

The management of patients with diabetes mellitus is becoming in-
creasingly more difficult due to their insulin resistance, which causes 
a change in the insulin concentration–effect curve and a tendency 
for greater concentration levels to have a comparable effect.658 
Commonly seen in TIIDM and sometimes in obese individuals, insu-
lin resistance is caused by cells that are not sensitive to insulin.

Insulin increases the expression and activity of GLUTs, including 
GLUT4, to improve the absorption of glucose by cells.659 Nonetheless, 
there are a few causes of insulin resistance. For example, fat buildup 
in obese individuals causes a reduction in adipokine release, an in-
crease in lipolysis, and the production of pro- inflammatory cyto-
kines. These effects result in elevated amounts of free glycerol and 
fatty acids linked to insulin resistance.660

Exosomes have been shown in experiments to have therapeutic 
effects by increasing insulin sensitivity, a crucial aspect of treating 

diabetes mellitus. A high- fat diet, which includes fatty acids like pal-
mitic acid (PA), may cause insulin resistance. High PA intake causes 
the hepatocytes to develop the insulin resistance characteristics. 
In addition to inhibiting IRS- 2 phosphorylation and preventing glu-
cose absorption as a consequence of insulin stimulation, the PA may 
cause apoptosis in INS- 1 cells. The neutral ceramidase (NCDase)- 
enriched exosomes inhibit insulin resistance brought on by exces-
sive PA consumption and halts the production of reactive oxygen 
species, perhaps helping to reduce INS- 1 cell death.661 In a different 
experiment, exosomes isolated from umbilical cord MSCs were used 
to treat TIIDM. The authors demonstrated the ability of exosomes 
to increase insulin- induced glucose absorption, lasting for at least 
48 h. Additionally, exosomes lower leptin levels and dramatically 
increased SIRT1 and IRS- 1 mRNA expression, demonstrating their 
ability to increase adipocyte insulin sensitivity.662

One of the most well- known cargos of exosomes are miRNAs, 
and the effect of exosomes on target cells will vary depending on 

TA B L E  19  Extracellular miRNAs associated with type 2 diabetes mellitus and endothelial dysfunction.

miRNA Normaglycemic T2DM Targets/pathways Source Complication References

miR- 126 Up Down SPRED- 1
PIK3R2/p85- β- PLK4

Plasma Impaired angiogenesis 592–594

miR- 26a Up Down TRPC6 Plasma Impaired angiogenesis 595

miR- 133b Down Up MAPK/ERK signaling Serum Diabetic nephropathy 596,597

miR- 342 Down Up SRY- box 6 (SOX- 6) Serum Diabetic nephropathy 596,598

miR- 30a Down Up TGF- β 1
Becn1

Serum Diabetic nephropathy 596,599

miR- 326 Up ADIPOR- 2 (adiponectin) Plasma T2DM 600

Let- 7a Down Glucose metabolism Plasma T2DM 600

Let- 7f Down Glucose metabolism Plasma T2DM 600

miR- 20b- 5p Down Up AKT- interacting protein Serum T2DM 601

miR- 21- 5p Down Up WWP1 (WW domain- 
containing protein 1)

Endothelial progenitor cell 
proliferation

Plasma T2DM 602,603

miR- 375- 3p Down Up β- cell function Serum T2DM 604

miR- 362- 3p Down ADAMTS1 Plasma Atherosclerosis (CAD) 605

miR- 15a Down Up UCP- 2 RBC T2DM 606,607

miR- 15b Down Up TNF- alpha
SOCS3

RBC Pre- T2DM 606

miR- 499 Down Up PTEN RBC Pre- T2DM 606

miR- 7 Down Up mTOR signaling Serum Vascular complications 608

miR- 25- 3p Up CDH1 and PTEN Plasma Diabetic retinopathy 609

miR- 320b Down Up Angiogenesis Plasma Diabetic retinopathy 609

miR- 495- 3p Down Down Plasma Diabetic retinopathy 609

miR- 34a Down Up Sirt1 Mouse aortic 
endothelial cells

Endothelial 
dysfunction

610

miR- 210 Down Up Cell proliferation Serum Diabetic retinopathy 611

miR- 210 Up Down PTP1B RBC T2DM 612

miR- 139- 5p Down Up c- Jun Peripheral blood T2DM 613

Note: Reprinted with permission from Fluitt et al.588

 16000757, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/prd.12561 by U

niversitat B
ern, W

iley O
nline L

ibrary on [09/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  51MIRON et al.

TA
B

LE
 2

0
 

Ex
os

om
al

 m
ic

ro
RN

A
s 

as
so

ci
at

ed
 w

ith
 ty

pe
 2

 d
ia

be
te

s 
m

el
lit

us
 a

nd
 e

nd
ot

he
lia

l d
ys

fu
nc

tio
n.

m
iR

N
A

N
or

m
ag

ly
ce

m
ic

 
(c

on
ce

nt
ra

tio
n/

ex
cr

et
io

n)
T2

D
M

 (c
on

ce
nt

ra
tio

n/
ex

cr
et

io
n)

Ta
rg

et
s/

pa
th

w
ay

s
So

ur
ce

 o
f 

ex
os

om
es

M
et

ho
d 

of
 is

ol
at

io
n

Co
m

pl
ic

at
io

n
Re

fe
re

nc
es

m
iR

- 4
51

Lo
w

H
ig

h
Y

W
H

A
Z

C
A

B3
9

U
rin

e
U

ltr
a-

 ce
nt

rif
ug

at
io

n
D

ia
be

tic
 n

ep
hr

op
at

hy
61

4–
61

6

Le
t- 7

c-
 5p

Lo
w

H
ig

h
U

rin
e

D
iff

er
en

tia
l c

en
tr

ifu
ga

tio
n

D
ia

be
tic

 n
ep

hr
op

at
hy

61
7

m
iR

- 1
92

Lo
w

H
ig

h
Eg

r1
U

rin
e

U
ltr

a-
 ce

nt
rif

ug
at

io
n

D
ia

be
tic

 n
ep

hr
op

at
hy

61
8,

61
9

Le
t- 7

e-
 5p

Lo
w

H
ig

h
FA

SL
G

 (m
ig

ra
tio

n 
an

d 
tu

be
 fo

rm
at

io
n 

of
 

en
do

th
el

ia
l p

ro
ge

ni
to

r 
ce

lls
)

U
rin

e
m

iR
C

U
RY

™
 e

xo
so

m
e 

is
ol

at
io

n 
ki

ts
 (Q

ia
ge

n)
D

ia
be

tic
 n

ep
hr

op
at

hy
62

0–
62

2

m
iR

- 1
5b

Lo
w

H
ig

h
TN

F-
 al

ph
a

U
rin

e
U

ltr
a-

 ce
nt

rif
ug

at
io

n
D

ia
be

tic
 n

ep
hr

op
at

hy
62

3

m
iR

- 3
4a

Lo
w

H
ig

h
G

ro
w

th
 a

rr
es

t s
pe

ci
fic

 1
 

(G
A

S1
)

m
iR

- 6
36

Lo
w

H
ig

h
A

di
po

ge
ne

si
s

m
iR

- 3
0b

- 5
p

Lo
w

H
ig

h
Ep

ith
el

ia
l- t

o-
 m

es
en

ch
ym

al
 

tr
an

si
tio

n
U

rin
e

U
ltr

a-
 ce

nt
rif

ug
at

io
n

D
ia

be
tic

 n
ep

hr
op

at
hy

62
0

m
iR

- 2
0-

 5p
Lo

w
H

ig
h

W
nt

9b
/β

- c
at

en
in

 s
ig

na
lin

g 
pa

th
w

ay
Pe

rip
he

ra
l b

lo
od

U
ltr

a-
 ce

nt
rif

ug
at

io
n

W
ou

nd
 h

ea
lin

g 
an

gi
og

en
es

is
62

4,
62

5

m
iR

- 1
26

Lo
w

H
ig

h
A

ng
io

ge
ne

si
s 

va
sc

ul
ar

 
in

te
gr

ity
M

ou
se

 b
ra

in
 

en
do

th
el

ia
l c

el
ls

Ex
oQ

ui
ck

- T
C 

(e
xo

so
m

e 
pr

ec
ip

ita
tio

n 
so

lu
tio

n 
ki

t, 
sy

st
em

 b
io

sc
ie

nc
es

)

St
ro

ke
45

4

m
iR

- 3
20

c
Lo

w
H

ig
h

A
D

A
M

TS
5

C
D

K6
TS

P-
 4

BM
P6

U
rin

e
Ex

oQ
ui

ck
- T

C 
(e

xo
so

m
e 

pr
ec

ip
ita

tio
n 

so
lu

tio
n 

ki
t, 

sy
st

em
 b

io
sc

ie
nc

es
)

D
ia

be
tic

 n
ep

hr
op

at
hy

62
6

Le
t- 7

i- 3
p

Lo
w

H
ig

h
W

nt
/b

- c
at

en
in

 s
ig

na
lin

g 
ca

sc
ad

e,
 a

ct
iv

in
 

re
ce

pt
or

 s
ig

na
lin

g,
 a

nd
 

ce
ll 

di
ff

er
en

tia
tio

n 
an

d 
pr

ol
ife

ra
tio

n

U
rin

e
m

iR
C

U
RY

™
 e

xo
so

m
e 

is
ol

at
io

n 
ki

ts
 (Q

ia
ge

n)
D

ia
be

tic
 n

ep
hr

op
at

hy
62

7

m
iR

- 2
4-

 3p
Lo

w
H

ig
h

D
ia

be
tic

 n
ep

hr
op

at
hy

m
iR

- 2
7b

- 3
p

Lo
w

H
ig

h
D

ia
be

tic
 n

ep
hr

op
at

hy

m
iR

- 1
5b

- 5
p

H
ig

h
Lo

w
D

ia
be

tic
 n

ep
hr

op
at

hy

m
iR

- 2
5-

 3p
Lo

w
H

ig
h

En
do

th
el

ia
l c

el
l 

pr
ol

ife
ra

tio
n 

A
ng

io
ge

ne
si

s

Pl
as

m
a

Ex
oQ

ui
ck

- T
C 

(e
xo

so
m

e 
pr

ec
ip

ita
tio

n 
so

lu
tio

n 
ki

t, 
sy

st
em

 b
io

sc
ie

nc
es

)

D
ia

be
tic

 re
tin

op
at

hy
60

9

m
iR

- 3
20

b
Lo

w
H

ig
h

m
iR

- 4
95

- 3
p

Lo
w

H
ig

h

N
ot

e:
 R

ep
rin

te
d 

w
ith

 p
er

m
is

si
on

 fr
om

 F
lu

itt
 e

t a
l.58

8

 16000757, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/prd.12561 by U

niversitat B
ern, W

iley O
nline L

ibrary on [09/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



52  |    MIRON et al.

TA
B

LE
 2

1
 

Ex
os

om
es

 d
er

iv
ed

 fr
om

 b
od

y 
flu

id
 c

an
 a

ct
 a

s 
no

ve
l b

io
m

ar
ke

rs
 fo

r e
ar

ly
 d

ia
gn

os
is

 o
f D

M
 a

nd
 d

ia
be

tic
 c

om
pl

ic
at

io
ns

.

D
is

ea
se

Ta
rg

et
 c

on
te

nt
 in

 
ex

os
om

e
Sa

m
pl

e
M

et
ho

d
Sc

ie
nt

ifi
c 

m
ec

ha
ni

sm
Re

fe
re

nc
es

T2
D

M
C

ou
nt

s 
of

 c
el

l- 
de

riv
ed

ex
os

om
es

 ↑
Se

ru
m

Fl
ow

 c
yt

om
et

ry
 

m
et

a-
 an

al
ys

is
1.

 T
ot

al
 a

nn
ex

in
 V

- p
os

iti
ve

 b
lo

od
 c

el
l m

ic
ro

pa
rt

ic
le

s—
pr

oc
oa

gu
la

nt
 a

ct
iv

ity
 c

ou
ld

 b
e 

in
vo

lv
ed

 
in

 v
as

cu
la

r c
om

pl
ic

at
io

ns
. 2

. E
nd

ot
he

lia
l m

ic
ro

pa
rt

ic
le

s 
st

im
ul

at
ed

 b
y 

el
ev

at
ed

 g
lu

co
se

 
ch

an
ge

 th
ei

r m
ol

ec
ul

ar
 c

om
po

si
tio

n 
an

d 
in

cr
ea

se
 th

ei
r b

io
lo

gi
ca

l a
ct

iv
ity

, w
hi

ch
 m

ay
 le

ad
 to

 
pr

og
re

ss
iv

e 
en

do
th

el
ia

l d
am

ag
e 

an
d 

su
bs

eq
ue

nt
 c

ar
di

ov
as

cu
la

r c
om

pl
ic

at
io

ns
 in

 d
ia

be
te

s

62
9–

63
1

D
ia

be
te

s 
ne

ph
ro

pa
th

y
C

ou
nt

s 
of

 c
el

l- d
er

iv
ed

 
ex

os
om

es
 ↑

U
rin

ar
y

Fl
ow

 c
yt

om
et

ry
M

iR
- 2

6a
- 5

p 
fr

om
 a

di
po

se
- d

er
iv

ed
 m

es
en

ch
ym

al
 s

te
m

 c
el

l- d
er

iv
ed

 E
Vs

 p
ro

te
ct

 a
ga

in
st

 D
N

63
2

D
ip

ep
tid

yl
 p

ep
tid

as
e-

 IV
 

↑
U

rin
ar

y
EL

IS
A

Th
e 

ur
in

ar
y 

le
ve

l o
f m

ic
ro

ve
si

cl
e-

 bo
un

d 
m

ic
ro

ve
si

cl
e-

 di
pe

pt
id

yl
 p

ep
tid

as
e-

 IV
 is

 a
ss

oc
ia

te
d 

w
ith

 
th

e 
se

ve
rit

y 
of

 d
ia

be
tic

 k
id

ne
y 

di
se

as
e

63
3

W
ilm

s 
tu

m
or

- 1
 ↑

U
rin

ar
y

W
es

te
rn

 b
lo

tt
in

g
A

m
on

g 
po

do
cy

te
- d

er
iv

ed
 s

ig
na

l t
ra

ns
du

ct
io

n 
fa

ct
or

s 
in

 u
rin

ar
y 

ex
os

om
es

, W
T1

 m
RN

A
 le

ve
ls

 
re

fle
ct

ed
 d

am
ag

e 
of

 d
ia

be
tic

 g
lo

m
er

ul
i i

n 
th

e 
pa

tie
nt

s
63

4

A
M

BP
, M

LL
3 

↑ 
V

D
A

C1
 ↓

U
rin

ar
y

LC
–M

S/
M

S
C

om
pa

rin
g 

D
N

 u
rin

e 
ex

os
om

es
 a

nd
 h

ea
lth

y 
co

nt
ro

ls
, i

t w
as

 d
is

co
ve

re
d 

in
 a

 p
an

el
 o

f t
hr

ee
 

pr
ot

ei
ns

 (A
M

BP
, M

LL
3,

 a
nd

 V
D

A
C1

) t
ha

t t
he

y 
w

er
e 

di
ff

er
en

tia
lly

 fo
un

d 
in

 u
rin

ar
y 

ex
os

om
es

 fr
om

 D
N

 p
at

ie
nt

s

63
5

M
iR

- 1
30

, m
iR

- 1
45

, m
iR

- 
15

5,
 m

iR
- 4

24
 ↑

U
rin

ar
y

Ta
qM

an
 q

PC
R

H
ig

h 
gl

uc
os

e 
w

ill
 s

tim
ul

at
e 

m
es

an
gi

al
 c

el
ls

 a
nd

 in
cr

ea
se

 th
e 

co
nt

en
t o

f m
iR

- 1
45

 in
 m

es
an

gi
al

 
ce

lls
 a

nd
 th

ei
r d

er
iv

ed
 e

xo
so

m
es

63
6

M
ito

ch
on

dr
ia

l D
N

A
 ↓

U
rin

ar
y

In
tr

ar
en

al
 G

en
e 

Ex
pr

es
si

on
 A

na
ly

si
s

U
rin

e 
ex

os
om

es
 fr

om
 p

at
ie

nt
s w

ith
 d

ia
be

te
s a

nd
 C

KD
 h

ad
 le

ss
 m

ito
ch

on
dr

ia
l D

N
A

, a
nd

 k
id

ne
y 

tis
su

es
 fr

om
 p

at
ie

nt
s w

ith
 d

ia
be

tic
 k

id
ne

y 
di

se
as

e 
ha

d 
lo

w
er

 g
en

e 
ex

pr
es

sio
n 

of
 P

G
C1

a
63

7

El
f3

 ↑
U

rin
ar

y
W

es
te

rn
 b

lo
tt

in
g

AG
E 

tr
ea

tm
en

t i
nd

uc
ed

 th
e 

se
cr

et
io

n 
of

 E
lf3

- c
on

ta
in

in
g 

ex
os

om
es

 fr
om

 c
ul

tu
re

d 
po

do
cy

te
s, 

w
hi

ch
 

w
as

 d
ep

en
de

nt
 o

n 
th

e 
ac

tiv
at

io
n 

of
 th

e 
TG

F-
 b-

 Sm
ad

3 
sig

na
lin

g 
pa

th
w

ay
63

8

M
iR

- 1
6 

↓
U

rin
ar

y
RT

- q
PC

R
M

iR
- 1

6 
id

en
tif

ie
d 

as
 th

e 
m

os
t s

ta
bl

e 
en

do
ge

no
us

 re
fe

re
nc

e 
ge

ne
 in

 d
at

a 
se

t, 
m

ak
in

g 
it 

a 
su

ita
bl

e 
en

do
ge

no
us

 re
fe

re
nc

e 
ge

ne
 fo

r m
iR

N
A

 s
tu

di
es

 o
f u

rin
ar

y 
ex

os
om

es
 d

er
iv

ed
 fr

om
 

C
K

D
 p

at
ie

nt
s

63
9

G
el

at
in

as
e 

↓ 
ce

ru
lo

pl
as

m
in

 ↑
U

rin
ar

y
EL

IS
A

G
el

at
in

as
e 

(d
ec

re
as

ed
 a

ct
iv

ity
) a

nd
 c

er
ul

op
la

sm
in

 (i
nc

re
as

ed
 le

ve
ls

), 
in

 th
e 

ur
in

ar
y 

ex
os

om
es

 o
f 

di
ab

et
ic

 k
id

ne
y 

pa
tie

nt
s 

w
er

e 
in

 a
gr

ee
m

en
t w

ith
 th

e 
al

te
ra

tio
ns

 o
f t

he
se

 tw
o 

pr
ot

ei
ns

 in
 th

e 
ki

dn
ey

 ti
ss

ue

64
0

D
ia

be
tic

 
ca

rd
io

m
yo

cy
te

s
C

ou
nt

s 
of

 e
xo

so
m

es
 ↑

Bl
oo

d
Fl

ow
 c

yt
om

et
ry

Ex
os

om
es

 fr
om

 d
ia

be
tic

 ra
ts

 n
o 

lo
ng

er
 a

ct
iv

at
ed

 th
e 

ER
K1

/2
 a

nd
 H

SP
27

 c
ar

di
op

ro
te

ct
iv

e 
pa

th
w

ay
 a

nd
 w

er
e 

no
 lo

ng
er

 p
ro

te
ct

iv
e 

in
 a

 p
rim

ar
y 

ra
t c

ar
di

om
yo

cy
te

 m
od

el
 o

f h
yp

ox
ia

 
an

d 
re

ox
yg

en
at

io
n 

in
ju

ry
. E

xo
so

m
es

 fr
om

 d
ia

be
tic

 p
la

sm
a 

ha
ve

 lo
st

 th
e 

ab
ili

ty
 to

 p
ro

te
ct

 
ca

rd
io

m
yo

cy
te

s,
 b

ut
 p

ro
te

ct
io

n 
ca

n 
be

 re
st

or
ed

 w
ith

 e
xo

so
m

es
 fr

om
 n

on
di

ab
et

ic
 p

la
sm

a

64
1

H
sp

20
 ↓

Se
ru

m
LC

–M
S/

M
S

El
ev

at
io

n 
of

 H
sp

20
 in

 c
ar

di
om

yo
cy

te
s 

ca
n 

of
fe

r p
ro

te
ct

io
n 

in
 d

ia
be

tic
 h

ea
rt

s 
th

ro
ug

h 
th

e 
re

le
as

e 
of

 in
st

ru
m

en
ta

l e
xo

so
m

es
64

2

M
iR

- 3
20

 ↑
Se

ru
m

Ta
qM

an
 q

PC
R

C
ar

di
om

yo
cy

te
s 

ex
er

t a
n 

an
ti-

 an
gi

og
en

ic
 fu

nc
tio

n 
in

 ty
pe

 2
 d

ia
be

tic
 ra

ts
 th

ro
ug

h 
ex

os
om

al
 

tr
an

sf
er

 o
f m

iR
- 3

20
 in

to
 e

nd
ot

he
lia

l c
el

ls
64

3

M
iR

- 1
26

 ↓
Se

ru
m

Ta
qM

an
 q

PC
R

M
iR

- 1
26

 ta
rg

et
s 

in
su

lin
 re

ce
pt

or
 s

ub
st

ra
te

 (I
RS

)- 1
 e

xp
re

ss
io

n 
vi

a 
PI

3K
/A

kt
 s

ig
na

lin
g 

pa
th

w
ay

s 
su

gg
es

ts
 th

at
 it

 is
 in

vo
lv

ed
 in

 IR
 m

od
ul

at
io

n
64

4

M
iR

- 7
 ↑

Se
ru

m
RT

- q
PC

R
M

iR
- 7

 w
as

 d
em

on
st

ra
te

d 
to

 b
e 

in
vo

lv
ed

 in
 b

- c
el

l d
ys

fu
nc

tio
n 

an
d 

in
su

lin
 s

ec
re

tio
n

60
8

D
ia

be
tic

 C
ha

rc
ot

 
ne

ur
oa

rt
hr

op
at

hy
 

(C
N

)

C
ou

nt
s 

of
 e

xo
so

m
es

 ↑
Pl

as
m

a
Fl

ow
 c

yt
om

et
ry

Th
e 

co
nc

en
tr

at
io

n 
of

 E
Vs

 is
 re

la
te

d 
to

 e
le

va
tio

n 
of

 m
ar

ke
rs

 o
f i

nf
la

m
m

at
io

n 
(C

RP
 a

nd
 fo

ot
 

te
m

pe
ra

tu
re

 d
iff

er
en

ce
) i

n 
ac

ut
e 

di
ab

et
ic

 C
N

64
5

G
es

ta
tio

na
l d

ia
be

te
s

C
ou

nt
s 

of
 e

nd
ot

he
lia

l 
ce

ll 
ex

os
om

es
 ↑

Se
ru

m
, 

pl
as

m
a

W
es

te
rn

 b
lo

tt
in

g,
 

RT
- q

PC
R

Ex
os

om
al

 A
ng

2 
se

cr
et

io
n 

is
 re

gu
la

te
d 

by
 th

e 
PI

3K
/A

kt
/e

N
O

S 
an

d 
sy

nd
ec

an
- 4

/s
yn

te
ni

n 
pa

th
w

ay
s

64
6,

64
7

N
ot

e:
 R

ep
rin

te
d 

w
ith

 p
er

m
is

si
on

 fr
om

 S
un

 e
t a

l.62
8

A
bb

re
vi

at
io

ns
: A

G
E,

 a
dv

an
ce

d 
gl

yc
at

io
n 

en
d-

 pr
od

uc
t; 

C
K

D
, c

hr
on

ic
 k

id
ne

y 
di

se
as

e;
 C

RP
, C

- r
ea

ct
iv

e 
pr

ot
ei

n;
 D

M
, d

ia
be

te
s 

m
el

lit
us

; D
N

, d
ia

be
tic

 n
ep

hr
op

at
hy

; E
V,

 e
xt

ra
ce

llu
la

r v
es

ic
le

; L
C–

M
S/

M
S,

 li
qu

id
 

ch
ro

m
at

og
ra

ph
y–

ta
nd

em
 M

S;
 T

2D
M

, t
yp

e 
2 

di
ab

et
es

 m
el

lit
us

.

 16000757, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/prd.12561 by U

niversitat B
ern, W

iley O
nline L

ibrary on [09/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  53MIRON et al.

the miRNAs' activity. It has been proposed that miRNA- 3075 acts 
as an antidiabetic agent by improving insulin sensitivity which has 
been shown in hepatocyte- derived exosomes.663,664 The pro- 
inflammatory role of macrophages and the progression of insulin 
resistance are connected (Figure 18, Table 22).

5.1.5  |  Exosomes and diabetic wound healing

In diabetic individuals, the healing process of wounds is slowed 
down, making chronic non- healing wounds much more common.673 
Pro- inflammatory cytokines and proteases are abundant in diabetic 
wounds, decreasing growth factors in the area.674–676 Medications 
for diabetics are administered to about 70% of individuals with 
the disease. Inflammation, re- epithelialization, collagen deposition, 
angiogenesis, and proliferation are just a few of the many cellular 
and molecular processes involved in the intricate process of wound 
healing.677,678

A recent systematic review published by Bailey et al. 2022 titled: 
“Extracellular Vesicles Derived from MSCs to Treat Diabetes- Related 
Injuries: A Comprehensive Review and Meta- Analysis of Preclinical 
Animal Research”679 discovered numerous benefits of exosomes in 
the treatment of diabetic wounds. Wound closure was the main re-
sult that was assessed, but secondary outcomes demonstrated many 

advantages including (1) increase in blood vessel density and num-
ber, (2) re- epithelialization, (3) collagen deposition, (4) scar width, 
and (5) inflammation (Figure 19).679

5.1.6  |  Diabetic- induced neuropathy

Due to focal and widespread nervous system impairments, neuropa-
thy is seen in around 50% of DM patients. Diabetic individuals often 
have neuropathy, which may cause discomfort and a lower quality 
of life.680 In the USA, diabetic neuropathy is the cause of $10 billion 
in expenses each year.681 Consequently, actions aimed at managing 
and avoiding diabetic neuropathy should be taken. Notably, anti- 
diabetic drugs have shown promise in reducing brain damage caused 
by DM. Anti- diabetic medications have the ability to greatly reduce 
neuroinflammation and oxidative damage, hence preventing the 
onset of neurological disorders like Alzheimer's and Parkinson's dis-
eases. Moreover, antidiabetic medications like GLP- 1R and DPP- 4i 
have the potential to enhance the process of neurogenesis and im-
prove cognitive performance.682

Exosomes have been shown to possess an ability to lower apop-
tosis in neurons.683 Administering paeoniflorin enhances the thera-
peutic effects of Schwann cell- derived exosomes and supports the 
stability and integrity of the endoplasmic reticulum. Moreover, the 

F I G U R E  1 8  Exosomes and insulin resistance/sensitivity in DM. The exosomes demonstrate dual function in DM and can mediate both 
insulin resistance and sensitivity. For instance, exosomes derived from M1 macrophages can induce insulin resistance and are rich in PI3K 
and Ptch; on the other hand, exosomes derived from mesenchymal stem cells and hepatocytes induce insulin sensitivity via affecting 
molecular pathways such as SIRT1 and Akt as well as transferring miRNAs. Reprinted with permission from Ashrafizadeh et al.665
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intervention of paeoniflorin enhances the ability of exosomes to in-
hibit programmed neuron cell death by reducing the expression of 
GRP78 and IRE1α. These interactions are crucial for the prevention 
of neuropathy in individuals with diabetes mellitus.683 There is hope 
that exosomes produced by MSCs might alleviate diabetic peripheral 
neuropathy. It has been demonstrated that exosomes with a high 
concentration of miRNA- 146a have the ability to increase the speed 
at which nerves transmit signals while also potentially reducing the 
threshold for feeling heat and pressure. To lessen diabetic neu-
ropathy, these exosomes delivered via IV suppress endothelial cell 
activation and reduce monocyte inflammation. To lessen diabetic 
neuropathy, the TLR- 4/NF- κB axis may be suppressed by miRNA- 
146a- enriched exosomes.684

5.1.7  |  Diabetic- induced nephropathy

Another DM consequence that leads to end- stage renal disease is 
nephropathy.685 Nephropathy occurs in 25% of patients and devel-
ops for a number of reasons. By producing Amadori and advanced 
glycation end- products, hyperglycemia may lead to diabetic ne-
phropathy. Moreover, the electron transport cycle is triggered by 
hyperglycemia, which dramatically raises ROS levels and contributes 
to diabetic nephropathy.686

Exosomes may have a therapeutic effect on diabetic kidney 
disease. MSC- Exos have elevated concentrations of miRNA- 125b, 
which inhibits TRAF6 and triggers Akt signaling. This leads to the 
activation of autophagy and a reduction in apoptosis, both of which 
are crucial for mitigating the symptoms of diabetic nephropathy.687 
Autophagy is a crucial biochemical mechanism involved in cell death. 
In summary, autophagy facilitates the breakdown of aging organelles 
and macromolecules that are hazardous to primary cell homeosta-
sis. Autophagy has context- dependent roles in both pro- survival 
and pro- death processes.682,688–692 Notably, pro- survival autophagy 
may stop a cell from going through apoptosis.693 The exosomes pro-
duced from MSCs also inhibit mTOR signaling, a negative regulator 
of autophagy, in order to significantly enhance the levels of Beclin- 1 

and LC3. These proteins play a crucial role in promoting autophagy 
and preventing apoptosis helping alleviate diabetic nephropathy.569

5.1.8  |  Diabetic- induced endothelial dysfunction

Around the globe, gestational diabetes is prevalent in around 
5%–20% of pregnancies. Endothelial dysfunction is one of the dis-
eases that arise in gestational diabetes mellitus.694 Fetal- placental 
endothelial dysfunction is caused by increased production of nitric 
oxide (NO) and improved transport of l- arginine.695,696 While experi-
ments are still in their infancy, exosomes lower the levels of a num-
ber of substances during disease progression, including IL- 8, MDA, 
SOD, and—more importantly—ICAM- 1, which helps avoid endothe-
lial failure.697

5.1.9  |  Diabetic- induced erectile dysfunction

One known risk factor for erectile dysfunction is diabetes mel-
litus which affects 19%–90% of individuals and may manifest up 
to 10 years before the onset of diabetes mellitus, lowering a man's 
quality of life and self- esteem.698–700 In addition to diabetes mellitus, 
additional risk factors for the development of erectile dysfunction 
include smoking, cardiovascular illnesses, dyslipidemia, hyperten-
sion, and obesity.701 Vasculogenic variables that mediate arterial in-
flow or venous outflow problems are the most prevalent causes of 
erectile dysfunction.702

ADSC- Exos have been injected intravenously to increase smooth 
muscle level relative to collagen and increase intracavernous pres-
sure, as shown by CD31 overexpression.703 In addition, exosomes 
reduce the degree of caspase- 3 production while simultaneously 
enhancing the expression of Bcl- 2 to inhibit apoptosis. Exosomes 
obtained from ADSCs have been shown to be effective therapeu-
tic agents for relieving erectile dysfunction in individuals with di-
abetes mellitus.703 Exosomes generated from adipose stem cells 
have the ability to promote angiogenesis and speed endothelial cell 

F I G U R E  19  Forest plot demonstrating increased wound closure rates of diabetic wounds receiving MSC- EVs. Note the positive impact of 
exosomes on wound closure in diabetic in vivo models. Reprinted with permission from Bailey et al.679
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proliferation in the treatment of erectile dysfunction. Moreover, 
these exosomes decreased fibrosis in the corpus cavernosum.

Further research showed that large quantities of pro- angiogenic 
factors miRNA- 126, - 130a, and - 132, as well as antifibrotic factors 
miRNA- let7b and - let7c, were present in exosomes produced from ad-
ipose stem cells.317 According to the trials, the best way to treat erec-
tile dysfunction brought on by diabetes is to avoid fibrosis. Smooth 
muscle cell exosomes increase the amount of smooth muscle and re-
duce the buildup of collagen to have an antifibrotic effect. In order to 
improve erectile dysfunction in diabetics, exosomes upregulate the 
expression levels of eNOS and nNOS to trigger the NO/cGMP axis.704

5.1.10  |  Diabetic- induced cardiovascular diseases

Diabetes is also greatly linked to a number of cardiovascular disorders 
including atherosclerosis, which was previously discussed.705,706 By in-
hibiting TGF- β signaling, the exosomes derived from MSCs may lower 
the expression level of Smad2, therefore improving cardiac fibrosis in 
diabetic patients.707 These studies suggest that exosomes may pre-
vent cardiac damage and help avoid DM- mediated heart damage.

5.1.11  |  Diabetic- induced eye disorders

The protective effect of exosomes on the retina seems to depend on 
the route in which they are administered.708 Exosomes administered 
subconjunctivally provide superior outcomes than those adminis-
tered intravenously and arrange the retina's cellular constituents 
in a well- organized fashion. The optimal method is thought to be 
intraocular delivery, which enhances retinal layers that resemble the 
natural retina. Hyperglycemia has been shown to decrease miRNA-
 222 expression. To slow down retinal damage in diabetic macular 
degeneration, MSC- Exos increase the expression of miRNA- 222.708

5.1.12  |  Summary of diabetic- induced complications

Diabetes affects millions of individuals worldwide, and the associ-
ated complications caused by diabetes are both numerous and dif-
ficult to treat. These studies show that a range of diabetic problems 
arise such as ocular disorders, cardiovascular illnesses, delayed 
wound healing, erectile dysfunction, endothelial dysfunction, and 
neuropathy which may be ameliorated by exosomes. Table 23 sum-
marizes the use of MSC- Exos for the treatment of many diabetic- 
related complications.709 Figure 20 highlights all the benefits related 
to the use of exosomes for the treatment of diabetes.

5.2  |  Hematology disorders

Hematology disorders are often degenerative by nature and can lead 
to serious complications and life- threatening conditions. MSC- Exos 

have the ability to transport intricate loads and maintain balance 
within altered homeostasis, hence regulating diseases or malignan-
cies. Recently, the use of MSC- Exos has had significant impacts on 
many hematological conditions such as graft- versus- host disease 
(GVHD),740 multiple myeloma,741 acute myeloid leukemia (AML),742 
chronic myeloid leukemia (CML),743 chronic lymphocytic leukemia 
(CLL),744 lymphomas,745 and myelodysplastic syndrome (MDS).746 
An excellent article by Shen and Chen 2021747 focused exclusively 
on the role of exosomes for hematology disorders and highlighted 
many studies in Table 24 and a summary of all related benefits found 
in Figure 21.

5.3  |  Musculoskeletal degeneration

There are major obstacles to treating musculoskeletal degenera-
tion injuries such as fracture nonunion, muscle fibrosis, reinnerva-
tion, compartment syndrome, and infection and inflammation. In 
the realm of musculoskeletal regeneration, there has been a recent 
focus on exosomes. Various cell types release these vesicles, which 
are crucial for cell communication since they transport functional 
signaling molecules including proteins and RNAs. A multitude of 
these cargo molecules may be used for reparative functions in skel-
etal illnesses such as osteoporosis, osteogenesis imperfecta, sar-
copenia, and fracture healing. A research conducted by Youssef El 
Baradie and colleagues in 2021762 titled “Therapeutic application of 
extracellular vesicles for musculoskeletal repair and regeneration” 
comprehensively investigated the many uses of exosomes in both 
repairing and regenerating musculoskeletal tissues.

5.4  |  Osteoradionecrosis and radiation therapy

In a study titled: “An indispensable tool: Exosomes are involved in 
the treatment of radiation- induced damage,” Li and colleagues in-
vestigated the numerous benefits of exosomes following radiation 
therapy.763 Approximately 70% of individuals with tumors receive 
radiation at various time intervals.764 Radiotherapy may improve the 
rate of tumor control and the quality of life for patients. However, 
normal tissues often experience radiation- induced damage resulting 
from radiotherapy. Recent research has shown that exosomes have 
the potential to serve as biomarkers for many illnesses and have a 
therapeutic role in radiation- induced damage. They further pos-
sess the ability to control the inflammatory response, amplify the 
regenerative impact on injured tissue, and facilitate the restoration 
of damaged tissues and cells, hence prolonging their lifespan.

Various degrees of radiation damage reduction may be achieved 
by using MSC- Exos, which include inherent benefits such as minimal 
immunogenicity, facile culture separation, potent immunosuppres-
sive properties, robust regenerative capabilities, and versatile multi-
differentiation capacities.765–770 Recently, there has been significant 
research on MSCs as they pertain to radiation damage. A growing 
body of data suggests that the therapeutic benefits of MSC therapy 
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TA B L E  2 3  MSC- Exos used in the treatment of DM complication.

DM complication MSC types Effect/involved non- coding RNA References

Diabetes wound Bone marrow MSC Vascularization 710

Adipose- derived MSC Vascularization 711

Adipose- derived MSC Vascularization/miR- 21- 5p 712

Bone marrow MSC Vascularization 713

Bone marrow MSC Regulate inflammation/lncRNA H19 714

Adipose- derived MSC Vascularization 715

Synovium MSC Vascularization/miR- 126- 3p 716

Urine MSC Vascularization 717

Adipose- derived MSC Vascularization and regulate inflammation 718

Induced pluripotent stem cell Vascularization 719

Menstrual blood- derived MSC Vascularization and regulate inflammation 720

Adipose- derived MSC Vascularization 721

Adipose- derived MSC Vascularization 722

Adipose- derived MSC Vascularization/mmu_circ_0000250 723

Bone marrow MSC Vascularization and regulate inflammation 724

Bone marrow MSC Vascularization/miR- 221- 3p 725

Umbilical cord MSC Vascularization 726

Diabetic nephropathy Adipose- derived MSC Podocyte repair/miRNA- 215- 5p 727

Urine MSC Podocyte repair 728

Bone marrow MSC Anti- fibrosis and promote renal function 
recovery

572

Bone marrow MSC Anti- fibrosis and promote renal function 
recovery

569

Adipose- derived MSC Podocyte repair/miR- 486 729

Urine MSC Podocyte repair/miR- 16- 5 730

Umbilical cord MSC Reduce kidney inflammation and improve 
kidney function

731

Umbilical cord MSC Reduce kidney inflammation and improve 
kidney function

732

Diabetic retinopathy Adipose- derived MSC Retinal repair/miR- 222 708

Umbilical cord MSC Retinal repair and regulation of 
inflammation/miR- 126

141

Erectile dysfunction Adipose- derived MSC Vascularization and anti- apoptosis 703

Adipose- derived MSC Promote angiogenesis and anti- fibrosis/
miR- 126, miR- 130a, miR- 132, miR- 
let7b, miR- let7c

317

Adipose- derived MSC Vascularization and anti- inflammatory 733

Bone marrow MSC Vascularization and anti- inflammatory/
miR- 21- 5p

734

Cognitive dysfunction Bone marrow MSC Nerve repair 735

Bone marrow MSC Nerve repair and anti- inflammatory/
miR- 146a

736

Bone marrow MSC Nerve repair 280

Diabetic stroke Bone marrow MSC Nerve repair/miR- 9 737

Bone marrow MSC Nerve repair/miR- 145 738

Submandibular gland dysfunction Bone marrow MSC Salivary gland function repair 739

Diabetic cardiomyopathy MSC Reduce myocardial injury and fibrosis 707

Note: Reprinted with permission from Xiong et al.709
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are mostly attributed to the vesicles released via their paracrine 
pathways, particularly the actions of exosomes.771 In the article pro-
posed by Li et al.,763 exosomes were shown to play a role following 
radiation on (1) lungs, (2) skin, (3) intestinal, (4) testicular, (5) bone, 
and (6) hemopoietic system (Figure 22, Table 25). A recent study ti-
tled: “The therapeutic potential of exosomes derived from mesen-
chymal stem cells in the treatment of osteoradionecrosis.” further 
highlighted the potential for exosomes to improve necrotic tissues 
caused by osteoradionecrosis.772 While this field is still in its infancy 
and protocols remain to be developed, there is great therapeutic po-
tential for utilizing exosomes to treat radiation damage.

5.5  |  Respiratory diseases

Recent interest has focused on the ability for MSC- EVs to treat 
chronic respiratory diseases. MSC- EVs have the potential to be a 
revolutionary cell- free treatment for pulmonary fibrosis, COPD, 
asthma, and pulmonary arterial hypertension, among other chronic 
respiratory disorders. The two most common ways to administer 
MSC- EVs are intravenous and intratracheal. Target cells may receive 

microRNAs and proteins from MSC- EVs, which further amplifies 
their therapeutic effects. It is interesting to note that exosomes have 
been used in several clinical studies for the diagnosis and/or treat-
ment of respiratory disorders and that number is only predicted to 
rise sharply in the years to come (Figures 23 and 26). Figure 24 sum-
marizes research to date on the topic of exosomes and their associa-
tions regarding their regenerative potential.

5.5.1  |  Chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) is a prevalent 
chronic lung illness marked by recurrent airway inflammation and 
permanent, progressive airflow restriction. It significantly impairs 
the patient's ability to breathe and significantly impacts their daily 
activities and ability to work.806,807 The pathophysiology of COPD 
is approached from a variety of angles, including protease/antipro-
tease, oxidative stress, epigenetics, cell aging, apoptosis, chronic 
inflammation, and linear green body function.808 Genetic muta-
tions and environmental variables are involved. The main risk fac-
tor for COPD is exposure to cigarette smoke (CS), whether from 

F I G U R E  2 0  Exosomes and diabetic complications. The various kinds of diabetic complications, including eye disorders, cardiovascular 
diseases, nephropathy, neuropathy, delayed wound healing, and endothelial dysfunction, can be ameliorated by exosomes. Neuropathy 
and nephropathy are the most common diabetic complications. Apoptosis, autophagy, angiogenesis, and fibrogenesis are among the most 
common molecular mechanisms affected by exosomes in alleviating diabetic complications. Reprinted with permission from Ashrafizadeh 
et al.665
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secondhand smoke or active smoking.809,810 In some developing 
nations, exposure to chemicals at work and environmental pollu-
tion are major causes of COPD.811 Indoor air pollution exposure 
is linked to chronic obstructive pulmonary disease and may even 
have an impact on fetuses. The World Health Organization (WHO) 
lists COPD as the third most common cause of mortality world-
wide. According to statistical forecasts, the number of fatalities 
from chronic obstructive pulmonary disease will reach 4.4 million 
by 2040, with low- income and middle- income nations accounting 
for 90% of these deaths.812 Issues related to the airway epithelium, 
such as initial contact and prolonged exposure to CS, can cause 
epithelial cells to produce pro- inflammatory medium, senescence- 
associated secretory phenotype (MCP- 1, IL- 1, IL- 6, and IL- 8), 
and damage- associated molecular patterns (HIG box, heat shock 

proteins, receptor for advanced glycation end products). The 
contents that are released into systemic and pulmonary circula-
tion813,814 may accelerate the development of COPD by causing 
damage to the alveoli and lung tissue.815 The degeneration of lung 
structure and function cannot be reversed by current COPD ther-
apy approaches; they can only slow down the loss of lung function. 
Consequently, it is critical to comprehend the molecular process 
behind the onset and progression of COPD for the purpose of im-
proving the therapeutic treatment plan.

Currently, the primary pharmaceuticals used for COPD treat-
ment are bronchodilators, which are derived from treatments of 
asthma. However, in COPD patients, the addition of inhalation cor-
ticosteroids (ICSs) is associated with a reduced risk of exacerbation 
and mortality. Nevertheless, the majority of patients do not exhibit 

F I G U R E  2 1  Schematic diagram of molecular mechanisms MSC exosomes in hematological diseases. (A) The action of MSC exosomes and 
subsequent clinical outcomes in GVHD. (B) A brief outline of exosomal cargoes and underlying mechanisms of MSC exosomes in MM. (C) 
Exosomal loadings and potential effects of MSC exosomes in the diseases of AML, CML, and CLL. AML, acute myeloid leukemia; cGVHD, 
chronic GVHD; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; HLA- G, human leukocyte antigen- G; IM, imatinib; MM, 
multiple myeloma; PIs, proteasome inhibitors. Reprinted with permission from Shen and Chen.747
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F I G U R E  2 2  Exosomes as an indispensable tool play a role in biomarker and therapy for radiation damage. Exosomes carry many proteins 
and nucleic acids, which become potential biomarkers for a variety of diseases. And they show broad prospect in the treatment of radiation- 
induced lung injury, skin injury, intestinal injury, bone injury, testicular injury, and hemopoietic system injury. Reprinted with permission from 
Li et al.763

TA B L E  2 5  Clinical studies of exosomes affiliated with improvements post- radiation therapy.

Source miRNAs/proteins Signaling pathway Function References

Lung miR- 28- 5p PI3K/Akt Regulates MSCs ability 773

Pulmonary epithelial cells Caspase- 3 ROCK I Reduce lung injury 774

MSCs KGF Hippo- Yap Protecting lung
Prevent bone loss

775,776
777

ADSCs Reduce lung injury
Promote wound healing

778
779–783

huc- MSCs miR- 21, miR- 221, etc. β2/SMAD2
Wnt/β- catenin

Inhibit pulmonary fibrosis
Promote wound healing

784,785
114

Ovarian carcinoma cells miR- 29b κB Promote pulmonary fibrosis 786,787

MenSCs Let- 7/LOX1 Reduce lung injury 788

Human fibroblast miR- 21, miR- 126, etc. Promote angiogenesis 789

BM- SPCs Alleviate chronic enteritis 790,791

BMSCs miR- 29b Wnt/β- catenin Reduce radiation enteritis
Alleviate osteoporosis
Weaken radiation- induced bone loss
Reverse radiation- induced bone marrow 

damage

792
793
794
795

Brest milk Prevent enterocolitis 796–798

Mice macrophages G- CSF, MIP- 2 TLR4 Remain the function of testis 799

Serum Hippo, PI3K- Akt HSCs protection 800–802

Note: Reprinted with permission from Li et al.763

Abbreviations: ADSCs, adipose- derived stem cells; BMSCs, bone marrow- derived mesenchymal stem cells; BM- SPCs, bone marrow- derived stromal 
pro- genitor cells; huc- MSCs, human umbilical cord mesenchymal stem cells; MenSCs, menstrual blood- derived endometrial stem cells; MSCs, 
mesenchymal stem cells.

 16000757, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/prd.12561 by U

niversitat B
ern, W

iley O
nline L

ibrary on [09/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  63MIRON et al.

sensitivity to steroids, and the administration of high doses ampli-
fies the likelihood of developing pneumonia.816 Consequently, it is 
imperative to provide COPD patients with a targeted therapy that 
addresses their important needs. Additionally, there is a significant 
need for medications that may prevent the worsening of the illness, 
as well as the development of pulmonary hypertension and other 
problems associated with COPD.

In CS- exposed human pulmonary microvascular endothelial 
cells (HPMECs), Sun et al.817 observed higher miR- 206 expression 
as well as an increase in caspase- 3 and HPMEC apoptosis. MiR- 
206, Notch3, and VEGFA mRNA levels were negatively correlated. 
They found that miR- 206 targets Notch3 and VEGFA to modu-
late COPD vascular remodeling.817 Additionally, anti- miR- 27- 3p 
may halt the inflammatory process, reduce BALF inflammatory 
cytokines, and decrease neutrophil and macrophage infiltration in 
the lungs. Another study found that overexpressing miR- 3202 in 
COPD may reduce the increase in T lymphocyte IFN- g and TNF- a 
caused by CSE while increasing Fas and FasL. High miR- 3202 lev-
els decrease T- cell apoptosis and protect human bronchial epi-
thelial cells by targeting FAIM 2.818 Remarkably, 43 papers were 
included in a recent systematic review on the use of exosomes 
for COPD by Gomez et al.819 The investigations were categorized 
based on the pathophysiological function of EVs, their origin and 
cargo, their contribution to COPD exacerbations, and their diag-
nostic value.819

5.5.2  |  Asthma

Asthma is one of the most common respiratory diseases for which 
current diagnostic and treatment strategies are still inadequate de-
spite significant advancements.820–823 The symptoms associated 
with asthma such as wheezing, shortness of breath, coughing, chest 
tightness, and recurring signs of varying levels of intensity and se-
verity, are primarily caused by reversible airway blockage resulting 
from easily induced bronchospasm and increased mucus produc-
tion.824–827 Alashkar Alhamwe et al.828 recently reviewed the use 
of exosomes for the treatment and management of asthma as high-
lighted in Table 27.

5.5.3  |  Pulmonary hypertension

Multifactorial reasons contribute to the debilitating nature of pulmo-
nary hypertension (PH).835 Pulmonary vascular resistance is influenced 
by many etiologies and results in right heart failure. Five types of PH 
are distinguished based on the hemodynamic characteristics that influ-
ence pathogenesis.836 Based on the global prevalence, nearly 70 million 
individuals are impacted by PH worldwide.837,838 Some of the patho-
logic aspects include dysfunctional endothelial cells (ECs), the prolif-
eration of fibroblasts and smooth muscle cells (SMCs), communication 
between pericytes, and detrimental changes in ECs and mesenchymal 

F I G U R E  2 3  Mechanisms of mesenchymal stem cell- derived extracellular vesicles (MSC- EVs) in treating chronic respiratory diseases. 
Sources of MSC- EVs: umbilical cord, bone marrow, adipose tissue and induced pluripotent stem cells (iPSCs); isolation methods: ultra- 
centrifugation (UCF), exosome extraction kits and anion- exchange chromatography; treatment routes: intratracheal delivery and intravenous 
administration; diseases: chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis, and pulmonary arterial hypertension 
(PAH). Reprinted with permission from Ma et al.803
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cells.839 Medically, these disorders result in blood clot formation, 
swelling, and constriction of the blood vessels. The major elements 
that influence pulmonary vascular remodeling are the interactions 
between cellular instigators such as pulmonary ECs and pulmonary 
artery SMCs, various immune cells, and molecular recruitment media-
tors such as cytokines and paracrine products.840–842 These pathobio-
logical responses worsen the hemodynamic conditions of patients and 
lead to right heart failure which damages several organs and eventually 
results in death.843,844 An increasing amount of evidence indicates that 
the development of progressive vascular remodeling in PAH is closely 
associated with pulmonary vascular inflammation brought on by inter-
actions between various immune cells.845,846

Exosomes play a crucial role in intercellular signaling and commu-
nication throughout the physiological cellular process of vascular re-
modeling. Apart from the fundamental secretory channels that have 
been theoretically discovered so far, exosomes, and various additional 
EVs are novel therapeutic ways to treat pulmonary arterial hyperten-
sion.847 Understanding the traditional channels of secretory proteins 
that operate on these arteries, as well as the circumstances surround-
ing the use of nonconventional pathways, are necessary to restore 
damaged pulmonary vasculature. Exosomes have played a crucial role 
as immunomodulators in the presentation of antigens and intercellu-
lar communication that trigger immune responses. Additionally, new 
research suggests that exosomes may be important regulators of the 
inflammatory response, which is one of the processes contributing 
to the progression of vascular disorders. Despite concerns regarding 
the excessive proliferative capacity of stem cell treatments, therapies 
using exosomes provide a robust and promising answer for several 
illnesses such as PH. One benefit of exosome therapies is their ability 
to directly be administered at substantial quantities to damaged tis-
sues without risks associated with their native parent MSCs. Table 28 
highlights some of these findings.835

5.5.4  |  Interstitial lung diseases

Interstitial lung diseases (ILDs) are long- lasting pulmonary illnesses 
that cannot be reversed and have a high impact on both the health 
and survival of individuals. The diagnostic methods for ILDs are 
complex and include several factors. Ongoing research has led to 
significant advancements in the development of effective treatment 
approaches including EVs which provides a novel approach in the 
field of diagnostics (biomarkers) and therapy.857 ILDs may occur idi-
opathically as a result of exposure to biological, chemical, or small 
particles, or resulting from co- morbidities such as connective tissue 
or autoimmune illnesses.858,859 Chronic, progressive, irreversible 
fibrosis with substantial morbidity and death is a hallmark of ILDs' 
natural course.860–863 If treating the underlying cause of the illness 
is crucial for managing nonidiopathic ILDs, conventional treatment 
methods for ILDs include lung transplantation or antifibrotic medi-
cation.864–868 Despite the fact that modern therapies significantly 
reduce morbidity and death,869 they do not possess any form of re-
generative properties.N
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F I G U R E  2 4  Overview of biofluid- derived extracellular vesicles in chronic respiratory disease research. Reprinted with permission from 
Purghe et al.805

TA B L E  2 7  Major asthma- related cellular and systemic effects of extracellular vesicles (EVs) released by mesenchymal stem cells (MSCs).

EVs Source cells/tissue Recipient Main effect(s) Publication

MVs Equine amniotic MSC Horse Reduction in TNF- α secretion and, to a lesser 
degree, TGF- β and IL- 6 from primary alveolar 
macrophages

829

Exosomes Human BM- derived
MSCs

Human Upregulation of IL- 10 and TGF- β1 secretion 
from PBMCs of asthmatics and promotion 
of proliferation and immunosuppressive 
capacity of Tregs

830

EVs Human/mouse
BM- derived MSCs

Mouse Amelioration of Aspergillus extract- induced AAI 
in sensitized animals

831

miR- 1470- containing
Exosomes

Human MSCs Human Promotion of Tregs differentiation from CD4+ 
T cells isolated from PBMCs of acute 
asthmatics

142

Exosomes Mouse adipose
Tissue- derived MSCs

Mouse Effective suppression of the maturation of 
BM- derived DCs as reflected by decreased 
IL- 6 release but augmented IL- 10 and TGF- β 
secretion

832

EVs Human adipose
Tissue- derived MSCs

Mouse Reduced symptoms and cellular and molecular 
features of OVA- induced AAI as well as lung 
TGF- β levels in OVA- sensitized animals

833

Exosomes Mouse adipose
Tissue- derived MSCs

Mouse Attenuating effect on airway remodeling in a 
model of OVA- induced AAI could be further 
augmented by genetic modifications of 
MSCs

834

Note: Reprinted with permission from Alashkar Alhamwe et al.828

Abbreviations: AAI, allergic airway inflammation; BM, bone marrow; DCs, dendritic cells; IL- 10, interleukin- 10; MVs, microvesicles; OVA, ovalbumin; 
PBMCs, peripheral blood mononuclear cells; TGF- β1, transforming growth factor beta 1; Tregs, regulatory T cells.
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The involvement of EVs in parenchymal lung damage and inter-
stitial fibrosis is a novel and exciting field of study.870–872 Critical 
advantages of EVs exist in their mechanistic interventions in the 
therapy of ILD including reparative, antifibrotic, and immunomod-
ulatory properties.873 Although therapeutic EV investigations are 
in their early stage of study for the management of ILD, preclinical 
findings are promising treatment approaches.871,874

According to recent research, BMSC- EVs have been shown to in-
hibit lung fibrosis and fibroblast proliferation by downregulating the 
expression of Frizzled Class Receptor 6 (FZD6).875 While the precise 

mechanism remains unknown, it was also shown that EVs modulate 
local pro- inflammatory activation of macrophages and monocytes. 
Additionally, EVs generated from MSC displayed therapeutic effec-
tiveness in lung fibrosis produced by silica and bleomycin.876

6  |  REGENER ATIVE PROCEDURES

Therapeutic exosomes have been utilized successfully for many 
years owing to their ability to improve many conditions and diseases 

TA B L E  2 8  Therapeutic role of stem cells- exosome in pulmonary arterial hypertension.

Exosome source Cargo molecules Research object Role References

Human AdMSCs PDGF
VEGF
FGF

Human
Microvascular
Endothelial cells

• Modulating effect on pro- angiogenic 
and anti- angiogenic factor

Lopatina
et al.848

Human AdMSCs miR- 191 MCT rat model
Hypoxic rat model

• Ameliorating effect on the MCT- induced 
PAH pathology via BMPR2 degradation

Zhang
et al.849

Human MSCs miR- 196b Sugen5416/hypoxic
Rat model

• Preventing and reversing effect on 
pulmonary artery pressure, right 
ventricular hypertrophy, and pulmonary 
vascular remodeling

• Modulating effect on macrophage 
recruitment to the lung, promote the 
alternative (M2) macrophage activation 
pathway, and increase vessel formation

Klinger
et al.850

Human MSCs/mice
MSCs

miR- 21, 145, 199a MCT mice model • Anti- proliferative, apoptotic, or 
senescent effects on a variety of 
hyperproliferative cells

• Modulating effect on pulmonary 
vascular remodeling

Aliotta et al.851

Mice mesenchymal 
stromal cell

miR- 204 Hypoxic mice model • Suppression effect on hyper- 
proliferation by STAT3 mediating 
signaling

Lee et al.852

Human placental 
MSCs

miR- 210 Human placenta
microvascular
endothelial cells

• Facilitating effect on placental 
microvascular endothelial cells migration 
and vascularization

Komaki et al.853

Human UC- MSCs CD63, CD81, TS101, 
Alix

MCT rat model
Hypoxic rat model

• Attenuating effect on PH pulmonary 
vascular remodel

• Reduction effect on excessive 
proliferation PASMCs by p- GSK3β 
signaling in PH

• Protective effect on vascular remodeling 
and hypoxic PH

• Inhibitory effect on proliferative STAT3 
signaling in PAECs

Salomon et al.854

Human umbilical cord
Wharton's Jelly MSCs

CD34, CD45, CD73,
CD90, CD105, 

HLA- DR

MCT rat model • Protective effect on PH vascular 
remodeling by regulating Wmt5a/
BMPR2 signaling

Zhang et al.855

Human umbilical cord
Wharton's Jelly MSCs

ALIX, TSG101, CD81,
CD9, CD63, Flotilin- 1

Hypoxic mice model • Restoring effect on lung architecture
• Decreasing effect on fibrosis and 

pulmonary vascular muscularization, 
ameliorating PH

Willis
et al.856

Note: Reprinted with permission from Oh et al.835

Abbreviations: AdMSC, adipose- derived mesenchymal stem cell; FGF, fibroblast growth factor; MCT, monocrotaline; MSC, mesenchymal stem cell; 
PAEC, pulmonary arterial endothelial cell; PAH, pulmonary arterial hypertension; PASMC, pulmonary arterial smooth muscle cell; PDGF, platelet- 
derived growth factor; PH, pulmonary hypertension; STAT3, signal transducer and activator of transcription 3; UC- MSC, umbilical cord- derived 
mesenchymal stem cell; VEGF, vascular endothelial growth factor.
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due to their stability and delivery of signaling molecules in a safer 
manner. This section focuses more specifically on their ability to im-
prove and regenerate damaged tissues in many fields of medicine. 
These include bone, cartilage, cutaneous wounds, dermatologic ap-
plications, dental, vascular, and spinal tissue regeneration.

6.1  |  Antiaging

The use of exosomes has improved various cognitive disorders, in-
cluding Alzheimer's disease, dementia, and multiple sclerosis, with 
an ability to cross the blood–brain barrier and help repair functions 
of various cells and their associated tissues. Owing to these abilities, 
many clinicians have also utilized exosome therapy as a means to 
prevent aging and especially cognitive function decline.877

Recent research indicates that exosomes control both the patho-
physiology of age- related illnesses and systemic aging. Exosome 
studies have undoubtedly focused on their capacity to preserve 
human health span. It is interesting to note that the biological use-
fulness of EVs varies depending on the conditions of the cell/tissue 
source. Therefore, EVs released by aging or diseased cells may have 
deleterious effects on receiving cells, while EVs released by young or 
healthy cells may encourage functional improvement.877 Therefore, 
it is important to comprehend the duality of EVs and fully under-
stand that the cell source may shift their positive benefits from an 
antiaging intervention.877

For almost 60 years, there has been credible scientific backing 
for the once- mythological notion that youthful blood might have 
antiaging advantages. Even though these early parabiosis trials 
were fascinating, until much more recently, it was unclear how 
fresh blood might have rejuvenating benefits.878 Therefore, it is be-
coming increasingly clear how extracellular vesicles and exosomes 

support a variety of biological processes, including aging.371,878,879 
There is already a significant and rapidly expanding body of evi-
dence that confirms the crucial role of EVs in regulating systemic 
aging and various age- related problems such as inflammation (the 
chronic inflammation that occurs with advancing age), cellular se-
nescence, metabolic dysfunction, cardiovascular disease, cancer, 
and neurodegeneration.371,878,880,881 Moreover, it is possible to uti-
lize age- related alterations in EVs as readily available indicators of 
aging.882

According to recent data, EVs undergo significant alterations as 
human's age (Figure 25).877 A comparable decline in the total amount 
of EVs circulating between young and elderly participants was ob-
served by several research groups.877,883 As a preventive measure 
to reduce risks, many patients who suffer from disorders that impair 
cognitive function may receive exosomes by IV, much as in the case 
of Parkinson's disease, multiple sclerosis, etc. These exosomes must 
be made from suitable sources and specifically targeted at immune 
function (immunosomes) in order to enhance functional recovery 
with the correct signaling molecules.

6.1.1  |  Blood- based antiaging therapies

Numerous research studies have demonstrated that blood- 
based therapy might help with deficiencies associated with aging. 
Heterochronic parabiosis, for example, has linked the circulatory 
systems of young and elderly mouse pairs, revealing a number of 
substances in young blood that prevent aging phenotypes and in 
old blood that promote aging.884–886 By stimulating satellite cells, 
exposure to a youthful circulatory system revitalizes the ability of 
muscles to regenerate and returns the proliferative ability of hepatic 
progenitors.887 Additionally, neurogenesis and related learning and 

F I G U R E  2 5  Changes to circulating 
extracellular vesicles (EVs) with age. 
Together, studies suggest that there 
may be an age- dependent decrease in 
the concentration of circulating EVs 
and concomitant changes to EV protein 
(colored oval within EVs) and EV nucleic 
acid (curled line within EVs) with age. It 
remains unknown whether these changes 
reflect altered secretion, uptake, or 
rerouting of EVs with age. Autophagy is 
an important regulator of aging and shares 
substantial regulatory overlap with EV 
biogenesis and degradation, but potential 
interactions between these relationships 
have not been thoroughly investigated. 
Reprinted with permission from Lananna 
et al.877
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memory abilities are impacted by heterochronic parabiosis, which 
enhances these capabilities in elderly mice.884–886

Studies have shown that, in addition to parabiosis, animal plasma 
obtained from exercise provides antiaging cognitive advantages,886 
suggesting that the plasma EV pool undergoes significant alterations 
including an increase in EVs when humans exercise.888 Together, 
these results indicate that EVs may play a role in the advantages of 
blood- based treatments to preserve normal physiological processes 
as people age. A recent exploratory clinical experiment (Clini calTr 
ials. gov) confirmed the favorable safety and tolerability of using 
young human plasma to treat individuals with Alzheimer's disease 
(NCT02256306).889 More thorough research is necessary to deter-
mine how much EVs may mediate the advantages and disadvantages 
of heterochronic parabiosis or other blood- based treatments.

6.1.2  |  Effects of EVs on health span and lifespan

EVs may have a significant role in directly regulating a mammal's lon-
gevity and health. Research demonstrates that the hypothalamus is 
the aging control center.890–892 Age- related deficits in movement, 
motor coordination, social interaction, and memory may be lessened 
by supplementing with EVs generated from hypothalamic neural 
stem cells.890

Another recent study showed that adipose tissue secretes extra-
cellular nicotinamide phosphoribosyltransferase (eNAMPT), a cru-
cial enzyme for NAD+ biosynthesis in animals, into the bloodstream 
in the form of EVs.893 In humans and mice alike, the amount of EV- 
contained eNAMPT in plasma declines with age and, surprisingly in 
mice, is a good indicator of life expectancy. Activity levels and sleep 
fragmentation were two of the age- related deficiencies that were 
ameliorated by adipose tissue- specific overexpression of NAMPT, 
which also prevented the age- related drop in eNAMPT levels and 
increased median lifespan by 13.4%. 20- month- old rats also showed 
improvements in insulin secretion, glucose tolerance, memory, and 
ocular function.893

Interestingly, at the conclusion of their study, female mice re-
ceiving weekly intraperitoneal injections of EVs carrying eNAMPT 
which were isolated from young mouse plasma had a longer median 
and maximum lifespan increase by 10.5% and 16.3%, respectively.894 
In addition, the administration of EVs resulted in the rejuvenation of 
both physical appearance and activity levels.894 The hypothalamus 
is one of the main destinations for EVs carrying eNAMPT released 
from adipose tissue. Simple NAD infusions have become increas-
ingly popular in standard IV clinics since it is now recognized that a 
systemic decrease in NAD+ availability is a major cause of systemic 
aging.895 Exosomes' capacity to have positive effects on NAD levels 
has several benefits for lifespan.

Investigating how exosomes affect longevity and health also has 
enormous potential for cancer prevention. This subject has been 
intensively studied in various review articles.371,881,896 However; 
it should be mentioned that EVs may supply elements that favor-
ably reinforce the relevant disease state in the context of aging, 

senescence, cancer, or other pathologies in addition to having the 
ability to significantly rejuvenate target tissues. This paradox may 
best be shown by research examining how EVs produced from 
BMSCs affects the course of multiple myeloma.753 Tumor develop-
ment in vivo was prevented by EVs obtained from normal BMSCs 
but encouraged by EVs derived from multiple myeloma BMSCs. This 
impact may have been mediated by changes in EV composition in 
MM, such as the enrichment of inflammatory molecules like IL6 and 
the reduction in tumor- suppressive miR- 15a.753

6.1.3  |  EVs and “Inflammaging”

EVs are well recognized for their significant roles in both immune 
system activation and inhibition.897,898 It is true that EVs released 
by cancerous or senescent cells cause telomere degradation and in-
flammation.899 Research has shown that the presence of irradiated 
cancer cells in cell culture medium resulted in a reduction of both 
telomere length and telomerase activity in the breast cancer epithe-
lial cells that received them.900 Remarkably, the introduction of EVs 
produced from youthful fibroblasts resulted in a decrease in cellular 
aging indicators, such as senescence markers, oxidative stress, lipid 
peroxidation, and inflammatory factors, in several organs of aged 
animals.901 A summary of all related benefits to Immunosome infu-
sions is found in Figure 26.

6.2  |  Bone regeneration

The skeletal system primarily comprises bone and cartilage, which 
are composed of many cellular and molecular constituents. The 
interplay and synchronization of these cellular and molecular com-
ponents is crucial for preserving homeostasis and effectively re-
juvenating bone and cartilage.902,903 Health issues related to the 
musculoskeletal system, mostly caused by osteoporosis, tumors, and 
fractures, have been more prevalent in recent years.904

Many cell types found in bone engage in bidirectional or multi- 
directional communication with each other (Figure 27). Exosomes 
have a significant role in the intricate network of cell communication 
due to their ability to modulate the immune system. Apart from their 
functions in osteogenic differentiation and bone formation, bone 
damage often results in the disturbance of nearby blood vessels, 
which may hinder the successive phases of bone regeneration.905 
Through the production of pro- angiogenic substances, MSCs inter-
act with endothelial cells, promoting angiogenesis.906

Based on the results of early clinical trials, MSCs have his-
torically been the most promising cell group (from autologous 
sources) to use in treating disorders affecting the bones and 
joints. MSCs may be extracted from a variety of tissues, including 
bone marrow, adipose tissue, and oral tissues including gingiva, 
periodontal ligament, and tooth pulp.907–909 MSCs, in particular, 
aid in tissue healing because of their capacity to migrate into dam-
aged tissues and owing to their trophic and immunomodulatory 
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effects.910,911 Additionally, MSCs have the capability for self- 
renewal and the ability to differentiate into osteoblasts, adipo-
cytes, and chondroblasts in vitro. These characteristics allow 
them to be increased to therapeutic numbers for many possible 
applications.912,913 However, regulatory concerns have restricted 
effectiveness of MSCs, even from autologous sources.914,915 Over 
the past decade, clinical researchers have instead concentrated 
their efforts on the utilization of exosomes produced from MSCs 
for bone regeneration.794,916,917

The processes of bone regeneration and resorption depend on 
interactions with the ECM and paracrine signaling between cells. 
Mechanical stimuli, as well as local and systemic hormonal modu-
lation, impact the network of cells. According to recent research, 
osteocyte mechanical stimulation results in the Ca2+- dependent re-
lease of EVs, including the bone- regulating proteins RANKL, OPG, 
and sclerostin.918 This finding suggests that the osteocyte's ability 
to coordinate tissue- level bone adaptation and control bone metab-
olism in response to mechanical stimuli is derived by EV release and 
regulation of RANKL, OPG, and sclerostin secretion.918

For the purpose of tissue regeneration, MSC- EVs have been 
studied on a wide variety of cell types found in bone. MSC- EVs 
have been shown to improve bone fracture,919–921 bone defect heal-
ing,916,922–927 facilitate repair in osteogenesis imperfecta,928 and 
have been studied in femoral head avascular necrosis brought on 
by steroids,929 osteochondral abnormalities,226,930,931 osteoarthritis 
(OA),210,233,238,240 and periodontal disease.932,933 An overview of the 
current knowledge between interactions among several cell types 
involved in bone and cartilage regeneration is presented below.

6.2.1  |  The functional outcome of MSC- derived 
sEVs in bone regeneration

Multiple animal models have shown that MSC- EVs stimulates neo-
vascularization and bone repair (Table 29). Out of these investi-
gations, the most often used approach for EV therapy is locally 
injecting native EVs in a liquid mixture.210,233,238,240,919,930–932 One 
study demonstrated positive outcomes on bone regeneration even 

F I G U R E  2 6  Extracellular vesicle theory of aging. Early in life, extracellular vesicles (EVs) serve as beneficial signaling molecules and 
promote tissue health. As senescent/damaged cells accumulate over the lifespan of an organism, these cells secrete EVs carrying detrimental 
cargo. These aging- promoting EVs circulate throughout the body, positively reinforcing aging- related tissue deterioration. At the same time, 
as an organism ages, the number of rejuvenating or supportive EVs decreases. Beneficial effects seen with EV treatments may then reflect 
a shift of this balance toward rejuvenating EVs and may be one strategy for circumventing age- related deterioration. Proteins are denoted 
by colored ovals and nucleic acids are denoted by curled lines. Examples of potential effector molecules found to have detrimental effects 
(top, aging) or beneficial effects (bottom, rejuvenating) are depicted along with supporting citation. Reprinted with permission from Lananna 
et al.877
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F I G U R E  2 7  Multiple cellular and molecular interactions during bone regeneration. Some of the representative cellular interactions and 
responsible molecules are illustrated in the figure. (1) MSCs—OB/osteocytes: MSCs commit to osteoblasts and terminally differentiate 
to osteocytes. The secretion of SDF- 1α, TGF- β and BMPs promotes the migration and differentiation of osteoblastic progenitor cells. (2) 
MSCs—Mo/Mϕ: MSCs regulate migration, proliferation, differentiation, and polarization of monocytes/macrophages via secretion of MCP- 1, 
M- CSF, PGE2 and IDO. (3) MSCs/OB—Mo/OC: MSCs/osteoblasts interact with the osteoclastic lineage via secretion of M- CSF, RANKL 
and OPG, which regulate the proliferation, differentiation, and activation of osteoclasts. (4) Mo/MΦ—OC: Macrophages differentially 
influence the activity of osteoclasts via secretion of pro-  or anti- inflammatory cytokines, depending on the Mϕ phenotypes. (5) MSCs—
EC: MSC- secreted VEGF and AGN promote angiogenesis via increased proliferation, migration, and tube formation of endothelial cells. 
AGN, angiostatin; BMPs, bone morphogenetic proteins; EC, endothelial cell; IDO, indoleamine 2,3- dioxygenase; IL- 10, interleukin 10; 
IL- 1β, interleukin 1β; M1 Mϕ, pro- inflammatory Mϕ; M2 Mϕ, anti- inflammatory Mϕ; MCP- 1, monocyte chemoattractant protein- 1; M- CSF, 
macrophage colony- stimulating factor; Mo, monocyte; Mϕ, macrophage; OB, osteoblast; OC, osteoclast; OPG, osteoprotegerin; PGE2, 
prostaglandin E2; RANK, receptor activator of nuclear factor- κB; RANKL, RANK ligand; SDF- 1α, stromal cell- derived factor 1α; TGF- β, 
transforming growth factor- β; TNFα, tumor necrosis factor- α; VEGF, vascular endothelial growth factor. Reprinted with permission from 
Wang and Thomsen.934

when a systematic tail vein injection was utilized.928 Commonly, EVs 
were loaded to various biomaterials including β- TCP,922,923 PLA,924 
decalcified bovine bone matrix scaffolds,935 or encapsulated in hy-
drogel226,916,920 or collagen sponges.933

These combined findings show that MSC- EVs directly support 
bone regeneration by interacting with bone cells, namely those be-
longing to the MSC- osteoblast- osteocyte lineage. MSC- Exos from 
diverse origins have been shown to impact osteoblast proliferation, 
migration, differentiation, and mineralization.916,922–926,929,936,937 
Additionally, current research has revealed that MSC- EVs up-
regulate VEGFA and VEGFR2 expression thereby supporting 
both osteogenesis and angiogenesis during the process of bone 
regeneration.924,927

One of the first vital stages of cell–surface interactions and 
bone- regenerating process associated with implanted prostheses is 
cell adhesion.938,939 MSC attachment to titanium surfaces was en-
hanced by implant surface- immobilized MSC- EVs, which also had an 
impact on adherent MSC behavior.940 Furthermore, MSC- EVs pro-
tected bone- forming osteoblasts from harm during challenged envi-
ronments such as during implant placement.

Several cargo components and recipient cell molecules have 
been investigated within EVs to determine the molecular mecha-
nisms during bone regeneration.936 MSC- EVs have been shown to 
transfer osteogenesis- related microRNAs to activate osteogenic 
differentiation. VEGF and RUNX2 levels increased, as did osteo-
genic differentiation.210 Another study linked the pro- osteogenic 
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activities of MSC- EVs to their enrichment of Wnt3a and targeting of 
the Wnt signaling pathway, one of the most important signaling path-
ways regulating osteogenic development.941 Previous authors 653  
demonstrated that MSC- EVs also increased MSC osteogenic dif-
ferentiation by activating the PI3K/Akt signaling pathway.942,943 A 
summary of data is found in Table 29. Furthermore, Part III of this 
publication series further highlights the number of studies on exo-
somes produced from tooth tissues for bone regeneration.

6.3  |  Cartilage/joint/tendon regeneration

In orthopedics, treating cartilage abnormalities such as osteoar-
thritis (OA) and osteochondral defects (OCD) continues to be very 
difficult and quite unpredictable. An estimated 654 million persons 
worldwide suffered from knee OA in 2020 and that number is only 
expected to increase.944

The two primary factors increasing the prevalence and incidence 
of OA are an aging population and rising obesity rates.945 Articular 
cartilage degrades as a result of OA, a chronic inflammatory condi-
tion that causes joint stiffness and discomfort.946 OA does not only 
affect the articular cartilage but also the synovium, subchondral 
bone, and ligaments around the joints.947 The development of OCDs 
occurs when OA- related cartilage lesions impact the subchondral 
bone.948 Based on the inflammatory component of OA, exosomes 
have been investigated as a means to repair bone cartilage, joints 
and tendons.

6.3.1  |  In vivo delivery and exosome uptake

Avascular and alymphatic tissue makes up cartilage.949 Therefore, 
exosomes are not appropriate for intravenous infusion for the 
treatment of cartilage abnormalities, unlike in other tissue injuries. 
Essentially, since intra- articular injection improves bioavailability 
and decreases off- target effects (as a whole for any biomaterial), 
exosome delivery to cartilage is performed locally. To date, all of 
the included clinical trials have therefore been performed by in-
jecting exosomes directly into the afflicted joint with or without 
a scaffold.950 To regenerate cartilage damage, several studies uti-
lized a single injection, while others performed a series of injec-
tions (Table 30). Since no studies examined the therapeutic effects 
of single versus numerous injections, it is still unknown if multiple 
injections are more advantageous than single injections for car-
tilage regeneration. Cosenza and colleagues210 as well as Wang 
et al.80 suggested that exosomes administered intraarticularly 
may be visibly kept within the cartilage tissue even 1 month post- 
injection. This is most likely because exosomes were directly ad-
ministered to the target site (cartilage is avascular and alymphatic, 
therefore exosomes are cleared slower). Exosomes may also re-
model resident or injured cells by transferring bioactive molecules 
that activate regenerative mechanisms, thereby inducing cellular 
reprogramming.951–953

Ng et al.954 conducted a comprehensive review on the use of 
exosomes in cartilage regeneration, resulting in a summary of 29 
studies (Table 30 and illustrated in Figure 28). Direct injection with-
out a carrier seems to be a method most preferred, although a few 
studies injected exosomes into the damaged cartilage tissues using 
a scaffold.226,239,955 A scaffold has been discussed as being capable 
of distributing the exosomes more evenly over time and has been 
shown to prolong the delivery of exosomes over a longer duration. 
Moreover, it has been suggested that the combination of exosomes 
with biomaterials might provide a synergistic impact, enhancing 
the process of cartilage regeneration. According to Liu et al.,955,956 
in situ hydrogel glue and iPSC- MSC- Exos promoted cartilage regen-
eration in combination better than either group alone. The group 
that underwent in situ iPSC- MSC exosome hydrogel tissue patch 
implantation displayed consistent and well- structured articular car-
tilage composition, supporting histological results. In vitro research 
further has shown that exosomes help chondrocytes proliferate and 
migrate, inhibit apoptosis and the production of pro- inflammatory 
markers.210,931,955–957

6.3.2  |  EVs for tendon repair

EVs and exosomes have also been utilized for tendon repair.967 In 
sports and physical activities, tendon injuries are common where 
the recovery from injury is slow when compared to other tissues 
owing to a lack of blood flow. With a high risk of re- injury and the 
creation of scar tissue, the outcomes of conservative therapies and 
surgical interventions are not optimal. With 4 million new cases glob-
ally each year, tendon and ligament injuries account for 30% of all 
musculoskeletal consultations and represent a substantial economic 
and social burden.968 Tendon healing has been documented when 
MSCs have been applied to damaged tendons. According to recent 
research, MSCs facilitated tendon healing owing to their secretion 
of EVs/exosomes.967

To date, nine investigations utilizing MSC- EVs have demon-
strated positive outcomes on tendon and ligament healing. Several 
benefits have been reported by clinicians using MSC- EVs from cell- 
based therapies when it comes to treating tendon and ligament 
disorders including minimal immunogenicity, good stability, no is-
sues with cell viability after implantation, no danger of uncontrolled 
activity or differentiation of transplanted cells, and no risk of per-
sistence as permanent grafts following treatment discontinuation. 
Because the cellular components are missing in EVs, platelet- rich 
plasma/fibrin (PRP/PRF) has been proposed as a delivery vehicle 
exhibiting benefits in treating tendon and ligament issues.969–973 
Numerous review articles have highlighted the impact of EVs 
for treating tendons and ligaments, including the use of platelet 
concentrates.969–973

The transplantation of rat EVs produced from bone marrow mi-
crovascular cells was shown to enhance the repair of the rat Achilles 
tendon 30 days after damage in a dose- dependent manner, result-
ing in improvements to the tendon architecture, fiber structure, 
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F I G U R E  2 8  Overview of the studies. The exosomes tested in the included studies were derived from human, murine, or rabbit amniotic 
fluid stem cells (AFSCs), embryonic stem cell- derived mesenchymal stem/stromal cells (ESC- MSCs), induced pluripotent stem cell- derived 
MSCs (iPSC- MSCs), bone marrow- derived MSCs (BMSCs), polydactyly BMSCs, synovial membrane- derived MSCs (SM- MSCs), infrapatellar 
fat pad- derived MSCs (IPFP- MSCs), umbilical cord- derived MSCs (UC- MSCs), chondrocytes, dendritic cells, platelet- rich plasma (PRP), and 
serum. The exosomes were administered to the osteoarthritic joint through intra- articular injection or scaffold implantation. The exosomal 
bioactive compounds played an important role in cartilage and subchondral bone repair and regeneration. Overall, exosome therapy 
restored joint function, reduced joint pain, and improved the joint macroscopic, histological, and biochemical features. Reprinted with 
permission from Ng et al.954
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and collagen type 1 expression.974 The BMSC- EV group exhibited 
decreased expression of collagen type III and increased vascular-
ity compared to both the PBS control group and the BMSC group, 
suggesting that the BMSC- EV group had superior healing quality.974 
Similarly, tendon recovery was faster in rats when fibrin glue was 
added to BMSC- EVs transplanted to the patellar tendon window 
incision than in either the fibrin glue alone or untreated groups. 
Evidence of this included more Col1a1 gene expression and better 
collagen fiber alignment 4 weeks after the damage.974 Yu et al.975 
showed that the biomechanical and histological regeneration of 
the rat patellar tendon was greatly enhanced by the injection of 
BMSC- EVs in fibrin glue, indicating that BMSC- EVs may improve the 
biomechanical characteristics of damaged tendons. Another study 
found that local distribution of BMSC- Evs in the hydrogel improved 
tendon- bone healing in mice, with greater fibrocartilage and bet-
ter biomechanical properties than the hydrogel- only and control 
groups.974

Intratendonous injections of exosomes from tendon- derived 
stem cells (TDSCs) was also shown to accelerate tendon regeneration 
both biomechanically and histologically in a collagenase- induced rat 
Achilles tendinopathy model.976 It has been shown that part of the 
mechanism by which repair occurs is via macrophage polarization 

and immune cell regulation.976 Previous research has shown that 
MSC- Exos have the ability to shift the macrophage response to ten-
don damage from an inflammatory M1 phenotype to a regenerative 
M2 phenotype via paracrine processes.977–979 Figure 29 and Table 31 
summarize and highlight the benefits of exosomes for tendon repair.

6.4  |  Cutaneous wounds

A number of studies and systematic reviews have now pointed to 
the benefit of exosomes on cutaneous wound healing.985–996 A study 
by Zeng and Liu pointed to a number of studies to date that have 
favored better healing with stem cell- derived exosomes.995 In that 
study, exosomes were investigated on the many phases of wound 
healing. It was found that exosomes improved the hemostasis phase 
by favoring faster blood clot formation,997 aided the inflammatory 
phase by decreasing inflammation and improving M2 macrophage 
polarization,128,998 stimulated the proliferative phase by targeting 
fibroblast activity, improving collagen type III formation,999 new 
vessel formation,784 and lastly enhanced the remodeling phase by 
minimizing scarring.720,779 (Table 32). Interestingly, a number of 
studies have further pointed to the benefit of exosomes on diabetic 

F I G U R E  2 9  Mechanisms of MSC- EVs on tendon repair. Reprinted with permission from Liu (2021).967
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wounds, burn healing, and post- irradiation (Table 33).994 A study by 
An et al.987 demonstrated that exosomes improved healing via the 
following four mechanisms:

• Control of inflammation and immune system
• Encouraging wound angiogenesis
• Accelerating the growth and regeneration of skin cells
• Controlling the process of collagen remodeling to prevent exces-

sive scar formation

In summary, previous studies have revealed that exosomes had 
a positive impact on fat grafting, diabetic ulcer wound healing, scar-
less wound healing, and could effectively be utilized in conjunction 
with carriers such as hydrogels or fibrin (Figure 30).987 Figure 31 
summarizes how exosomes assist during cutaneous wound healing.

6.5  |  Dermatology and skin regeneration

Much like the effects of exosomes on cutaneous wound healing, 
there are many benefits to utilizing MSC- Exos for dermatological 
conditions. Their ability to be utilized for skin healing has been pop-
ularized not only in medicine but also in the field of facial esthetics 
since it encompasses a multi- billion- dollar industry where specific 
exosomes for dermatological conditions (Dermasomes) have been 
utilized for skin health and antiaging benefits.

6.5.1  |  Atopic dermatitis

Often referred to as atopic eczema, atopic dermatitis (AD) is a com-
mon inflammatory skin condition marked by persistent, uncontrolla-
bly high inflammatory reactions.1024 About 8% of adults and 20% of 
children have been diagnosed with the condition.1025 Unfortunately, 
it remains unknown what exact molecular pathway leads to the 
pathogenesis of the illness. Major pruritus and erythematous lesions 
are the disease's primary symptoms having a major negative im-
pact on a patient's quality of life.1024 Pharmacological intervention, 
such as corticosteroids and calcineurin inhibitors, is the mainstay of 
therapy for AD. A number of negative side effects as well as the 
development of drug resistance have been reported. As a result, sev-
eral investigators have stated that the development of novel, more 
potent, and less hazardous treatments is critically needed in this 
field. MSCs have been useful in AD healing, much like in the repair of 
chronic wounds.1024 MSC- Exos provide a stronger treatment option 
for AD as they are more stable and have less immunogenicity than 
the cells from which they are isolated, yet they perform the same 
biological tasks.1026 This circumvents the majority of issues related 
to live MSC- based treatment options.

In recent years, greater Th2 cytokine levels have been pri-
marily linked to increased vulnerability to AD (inside- outside 
theory).186,1026,1027 Because of this, the majority of research has 
focused on lowering Th2- mediated immune responses. However, 

current research has shown a clear link between aberrant gene 
expression- driven epidermal barrier defects and immune re-
sponse dysregulation, such as increased Th2 cytokine levels. Cho 
et al. showed that human ADSC- Exos may provide a potential 
cell- free therapeutic approach for the treatment of AD.183 In an 
in vivo animal model, researchers found that ADSC- Exos reduced 
the production of various inflammatory cytokines, including IL- 4, 
IL- 23, IL- 31, and TNF- alpha. In an oxazolone- induced dermatitis 
model, Shin et al. found that subcutaneous ASC- exosome injec-
tion substantially decreased TSLP, IL- 5, IL- 13, TNF- , IFN- , and 
IL- 17.186

6.5.2  |  Psoriasis

The most prevalent chronic inflammatory skin condition, psoria-
sis, affects around 125 million individuals globally.1028 Impaired 
keratinocyte differentiation and proliferation are linked to the 
condition. Furthermore, it has been observed that the immune 
system cells massively invade troubled areas.1029 It manifests as 
red squamous plaques that are restricted to the head, elbows, 
knees, and sacroiliac area.1028 Unfortunately, the exact cause of 
psoriasis is still unknown. However, past studies indicate that 
the condition is influenced by T cells and dendritic cells. The 
immunology of the disease has been well explained by Lowes 
et al.1030 EVs have a role in the pathophysiology of psoriasis, 
just as they do in AD.1029 Research is still being done on the use 
of EVs as therapeutic agents to control psoriasis. On the other 
hand, Zhang and colleagues reported encouraging results using 
exosomes produced from human umbilical cord mesenchymal 
stem cells (huc- MSCs- Exo).1031 Injection of huc- MSCs- Exo sub-
cutaneously decreased the levels of IL- 17, IL- 23, CCL20, and 
STAT3/p- STAT3. Additionally, exosomes inhibited the maturation 
activation of dendric cells and prevented IL- 17's positive impact 
on keratinocytes.1031

6.5.3  |  Medical esthetics

People are now more than ever more conscious of their physical 
appearance. Consequently, self- esteem is often affected by appar-
ent skin aging processes, scars, or hair loss. This has spurred the 
growth of aesthetic medicine, which is continuously looking for 
novel, minimally invasive, and highly successful cosmetic interven-
tions. Increased research on exosome use for skin rejuvenation, scar 
removal, and hair loss has been spurred by promising results with 
exosomes in regenerative medicine (discussed later in this section). 
In a study titled: “Stem cell- derived exosomes: A groundbreaking 
development in cosmetic dermatology,” Shen et al. discovered that 
exosomes produced from stem cells play a critical role in several as-
pects of skin cosmetology, including wound healing, skin aging, and 
scar formation.1032 Today many commercial entities exist selling der-
mal exosomes (aka Dermasomes).
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TA B L E  3 3  Studies that evaluated an in vivo role for MSC- EVs in wound healing.

Study EV source Model Findings

Fang et al.784 Human
UC- MSC

Mouse skin wound
• Local injection

EVs reduced scar formation and myofibroblast 
accumulation

In vitro dermal fibroblasts EVs suppressed TGF- β induced myofibroblast 
formation. EVs were enriched in miR- 21, miR- 23a, 
miR- 125b, and miR- 145. miRNA delivery reduced 
TGF- β/SMAD2 signaling in fibroblasts

Hu et al.779 Human
AD- MSC

Mouse skin wound
• Local injection

EVs improved rate of wound healing, increased 
Col1 and Col3 mRNA on Day 3 and Day 5 post 
wounding, and decreased Col1 and Col3 mRNA 
on Days 7 and 14

Mouse skin wound
• Intravenous injection

EVs migrated to wound site (Days 5–14) and spleen 
and promoted wound healing

In vitro fibroblasts EVs promoted fibroblast proliferation and migration, 
increased mRNA for N- cadherin, COL1, COL3, 
and elastin

Zhang et al.1014 Human
AD- MSC

Mouse skin wound
• Local injection

EVs improved rate of wound healing, decreased scar 
size, and neoangiogenesis

In vitro fibroblasts EVs promoted fibroblast proliferation and migration, 
and increased mRNA for COL1, COL3, MMP1, 
FGF2, and TGF- β1. Fibroblasts had increased 
p- AKT. Application of PI3K/AKT inhibitor 
Ly294002 abrogated the EV- induced effects on 
fibroblasts

He et al.998 Human
BMSC

Mouse skin wound
• Intravenous injection

EVs promoted wound healing and polarization of 
macrophages to M2 phenotype

In vitro human monocytes/macrophages EVs promoted M2 macrophage polarization in part 
through transfer of miR- 223

Ren et al.1015 Human
AD- MSC

Mouse skin wound
• Local injection

EVs accelerated wound healing, re- epithelialization, 
collagen deposition, and neovascularization

In vitro fibroblasts, keratinocytes (HaCaT), and 
endothelial cells (HUVEC)

EVs promoted proliferation and migration, and 
stimulated AKT and ERK signaling

Cheng et al.1016 Human
UC- MSC

Mouse skin wound
• Local injection

EVs accelerated re- epithelialization and promoted 
collagen fiber maturation

In vitro dermal fibroblasts and keratinocytes 
(HaCaT)

EVs promoted proliferation and migration. The effect 
was blocked by miR- 27b inhibitor. Proposed miR- 
27b acts by suppressing ITCH, thereby activating 
JUNB/IRE1α

Jiang et al.1017 Human
BMSC

Mouse skin wound
• Local injection

EVs from MSCs with TSG- 6 overexpression (TSG- 
6- EVs) and knock- down (TSG- 6- KD- EVs). EVs 
reduced scar formation, reduced production of 
TGF- β1, Collagen I and III, and α- SMA protein, 
and suppressed SMAD2/3 signaling. TSG- 6- EVs 
enhanced the effect of EVs, the effect was lost 
in TSG- 6- KD- EVs, and when TSG- 6 neutralizing 
antibodies were present

Liu et al.1018 Mouse
BMSC

Mouse skin wound
• Topical in pluronic F127 hydrogel

Topical EVs accelerated wound healing, limited 
inflammatory infiltrate, and decreased scar size

In vitro mouse macrophages EVs polarized macrophages toward M2 phenotype. 
Conditioned media from EV treated macrophages 
promoted fibroblast proliferation and migration
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Study EV source Model Findings

Qiu et al.1019 Mouse
BMSC

Mouse skin wound
• Local injection

EVs from MSCs treated with EVs from neonatal 
serum and adult serum. MSC- EVs accelerated 
wound healing and promoted neoangiogenesis. 
Neonatal serum stimulated MSC- EVs showed 
more robust effect

In vitro endothelial cells (HUVECs) MSC- EVs promoted HUVEC proliferation, migration, 
and tube formation, and increased p- AKT and 
p- eNOS. Neonatal serum stimulated MSC- EVs 
showed more robust effect

Zhang et al.1004 Human
AD- MSC

Mouse skin wound
• Local injection

EVs promoted mouse wound healing, proposed to 
occur in AKT/HIF- 1α dependent fashion

In vitro HaCaT keratinocytes EVs promoted HaCaT keratinocyte proliferation

Zhao et al.1005 Human
UC- MSC

Mouse skin wound
• Local injection

EVs enhanced re- epithelialization and 
neoangiogenesis

In vitro keratinocytes (HaCaT) EVs stimulated keratinocyte proliferation, migration, 
and suppressed ROS induced apoptosis. 
Proposed effect was through suppression of AIF 
nuclear translocation and PARP- 1 activation

Li et al.1020 Human
AD- MSC

In vitro human hypertrophic scar fibroblasts EVs decreased collagen deposition, 
transdifferentiation of fibroblasts- to- 
myofibroblasts, and formation of hypertrophic 
scar. EVs were noted to express miR- 192- 5p, 
which can suppress IL- 17RA/SMAD axis

Diabetic wounds

Wang et al.721 Mouse
AD- MSC

Mouse diabetic wound
• Topical in complex hydrogel (Pluronic F127, 

oxidative hyaluronic acid, and Poly- l- lysine)

EVs improved wound healing and neovascularization. 
The effect was improved when EVs were loaded 
in complex hydrogel

Li et al.714 Mouse
BMSC

Mouse diabetic wound
• Local injection

EVs from MSCs overexpressing lncRNA H19 (H19- 
EVs). Only H19- EVs promoted wound healing, 
decreased inflammatory infiltrate, and increased 
granulation tissue formation

In vitro human fibroblasts from diabetic foot 
ulcers and health control

H19- EVs reduced miR- 152- 3p expression in 
fibroblasts from diabetics and increased PTEN 
expression

Shi et al.723 Mouse
AD- MSC

Mouse diabetic wound
• Local injection

EVs accelerated wound healing, increased 
angiogenesis, suppressed apoptosis, and 
increased autophagy markers SIRT1 and LC3. The 
effects were further enhanced with EVs from 
mmu_circ_0000250 overexpressing MSCs

In vitro endothelial cells (HUVECs) EVs promoted HUVEC survival under high glucose 
conditions and increased autophagy. This was 
enhanced by loading with mmu_circ_0000250, 
which was shown to increase SIRT1 mediated 
autophagy

Yang et al.726 Human
UC- MSC

Mouse diabetic wound
• Topical in Pluronic F127 hydrogel

EVs accelerated wound healing and angiogenesis, 
increased expression of VEGF and TGF- β1

TA B L E  3 3  (Continued)

(Continues)
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Study EV source Model Findings

Pomatto et al.1021 Human
BMSC
AD- MSC

Mouse diabetic wound
• Topical in carboxymethylcellulose

AD- MSC- EVs, but not BMSC- EVs, promoted the rate 
of wound healing. Comparative in vivo analysis of 
scar and angiogenesis was not performed

In vitro fibroblasts, keratinocytes, and 
endothelial cells

BMSC- EVs promoted proliferation of keratinocytes 
and endothelial cells, and promoted viability of 
fibroblasts, keratinocytes, and endothelial cells. 
AD- MSC- EVs promoted only the proliferation 
of endothelial cells. Protein and miRNA 
analysis indicated BMSC- EVs are enriched for 
proliferative factors, whereas AD- MSC- EVs are 
enriched in pro- angiogenic factors

Ti et al.128 Human
UC- MSC

Rat diabetic wound
• Local injection

EVs from LPS preconditioned MSCs (LPS Pre- EVs) 
decreased inflammatory cell infiltration and 
polarized macrophages toward M2

In vitro human monocytes (THP- 1) LPS Pre- EVs induced M2 polarization. EVs 
transferred Let- 7b, reducing TLR- 4 expression 
and NF- kB activation

Li et al.718 Human
AD- MSC

Rat diabetic wound EVs from MSCs overexpressing NRF2 (NRF2- EVs). 
Endothelial progenitor cells (EPC) + NRF2- EVs 
promoted wound healing better than EPC + AD- 
MSC- EVs, and both were better than EPC alone 
or control

In vitro human epithelial progenitor cells (EPC) EVs decreased EPC senescence under high glucose 
conditions. NRF2- EVs inhibited inflammatory 
cytokines and ROS

Ding et al.710 Human
BMSC

Rat diabetic wound
• Local injection

EVs from deferoxamine stimulated MSCs (DFO- 
EVs). EVs promoted wound healing and 
neoangiogenesis, and DFO- EVs were more 
effective

In vitro endothelial cells (HUVECs) DFO- EVs were more potent stimulators of HUVEC 
proliferation and tube formation than EVs. DFO- 
EVs proposed to transfer miR- 126 to HUVECs, 
which suppresses PTEN, and thereby activates 
AKT signaling

Liu et al.724 Human
BMSC

Rat diabetic wound
• Local injection

EVs from MSCs treated with melatonin (MT- EVs). 
EVs promoted wound closure, Collagen I and III 
expression, and M2 macrophage polarization; 
MT- EVs enhanced the effect of EVs

In vitro mouse macrophages (RAW264.7) MT- EVs were more potent than EVs at polarizing 
macrophages to M2 phenotype

Yu et al.725 Human
BMSC

Rat diabetic wound
• Local injection

EVs from MSCs treated with atorvastatin (ATV- EVs). 
EVs promoted wound healing and angiogenesis. 
ATV- EVs were more effective

In vitro endothelial cells (HUVECs) EVs promoted proliferation, migration, and tube 
formation, increased VEGF secretion, and 
activated AKT/eNOS signaling. ATV- EVs produce 
a larger magnitude effect compared to standard 
EVs. ATV- EVs proposed to work by upregulating 
miR- 221- 3p in endothelial cells

Burn wounds

Shafei et al.711 Human
AD- MSC

Mouse burn wound
• Topical in alginate hydrogel

EVs accelerated wound closure, increased 
epithelial thickness, collagen deposition, and 
neovascularization

TA B L E  3 3  (Continued)
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6.5.4  |  Potential capacity of stem cell- derived 
exosomes in skin aging

Aging skin is caused by both external and internal factors. Age de-
pendency and natural aging are referred to as intrinsic aging, which 
is influenced by genes, while external aging, sometimes referred to 

as photoaging, is caused by environmental variables.1033 UVB light is 
the most powerful environmental element that causes skin photoag-
ing. Cell damage is caused by ultraviolet B induced DNA mutations 
and oxidative stress.1034,1035

The ECM and dermal fibroblast activity are important factors of 
youthful skin. Studies show that reductions in collagen type I and III 

Study EV source Model Findings

Zhang et al.1022 Human
iPSC- MSC

Rat burn wound
• Local injection

EVs accelerated re- epithelialization, reduced scar 
width, promoted collagen maturation, and 
stimulated neoangiogenesis. Effects depended on 
EV transfer of Wnt4

In vitro fibroblasts and endothelial cells 
(HUVECs)

EVs stimulated proliferation and migration, 
stimulated Collagen I and III, and elastin 
secretion, and promoted tube formation

Li et al.135 Human
UC- MSC

Rat burn wound
• Intravenous injection

EVs reduce inflammation following burn wounds. 
EVs transfer miR- 181c and reduce TLR4 signaling

In vitro mouse macrophages (RAW264.7) EVs suppress LPS- induced macrophage inflammation

Note: Reprinted with permission from Bray et al.992

TA B L E  3 3  (Continued)

F I G U R E  3 0  Representative photographs shown of full- thickness excision wound area of the rat treated with PBS (control) or hBMSCs- 
Exos. Reprinted with permission from Jiang et al.1000
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synthesis and fragmentation of collagen fibrils define the molecular 
structure of aged skin.1036 One of the most significant ECM proteins that 
provides tissues a younger, more full appearance is collagen. The key to 
skin elasticity is elastin.1037 But as fibroblasts age, their capacity to pro-
liferate and synthesize collagen is diminished.1038 Furthermore, the ele-
vated production of matrix metalloenzymes expedites the degradation of 
collagen, ultimately resulting in the formation of wrinkles and other visi-
ble signs of skin aging.1034 Numerous researchers have shown that MSC- 
Exos play a significant role in mitigating skin aging and deterioration.1039

Exosomes have been shown to have a greater impact on fibroblast 
senescence than other constituents.901 Exosomes produced from 
human- induced pluripotent stem cells (iPSCs), for instance, have the 
ability to prevent HDFS from aging. iPSCs- Exos have the ability to con-
trol the amount of MMP- 1/3 and enhance the production of type I 

collagen in senescent HDFS.1034 MMP- 1, functioning as a collagenase, 
participates in the production of a secretase enzyme that breaks down 
interstitial collagens I, II, and III.1040 Multiple studies have shown a cor-
relation between the increase in fibroblast growth and the activation 
of collagen production, which is influenced by the presence of TGF- β 
and PDGF.1034,1041 Previous studies have shown that human dermal fi-
broblasts take up MSC- Exos and stimulate cell migration and synthesis 
of skin collagen I and elastin.1042 Zhang and colleagues showed that 
exosomes produced from ADSCs enhanced fibroblasts' levels of type 
I and type III collagen and accelerated wound healing via the PI3K/
Akt signaling pathway.1014 These investigations demonstrate that stem 
cell- derived exosomes have significant potential use in postponing the 
aging of the skin by stimulating the production of collagen. Figure 32 
highlights some benefits of exosomes on skin healing.

F I G U R E  3 1  Role of mesenchymal stem cell- derived extracellular vesicles (MSC- EVs) in wound healing. (A) MSC- EVs in hemostasis. MSC- 
EVs contain pro-  and anticoagulant factors, which balance and regulate blood coagulation. (B) MSC- EVs in inflammation. MSC- EVs support 
anti- inflammatory processes, reducing reactive oxygen species (ROS) synthesis, alleviating apoptosis, and inducing macrophage phenotype 
change from pro- inflammatory (M1) to anti- inflammatory (M2). (C) MSC- EVs in proliferation. MSC- EVs stimulate fibroblast migration and 
proliferation to the wound site, resulting in raised levels of extracellular matrix (ECM) components synthesis. Also, MSC- EVs can promote 
vascularization. (D) MSC- EVs in remodeling. Bone marrow MSC- EVs (BMSC- EVs) increase collagen I production, smooth muscle actin (SMA) 
and fibroblast differentiation to myofibroblast; however, they decrease collagen III synthesis. Besides, BMSC- EVs boost new cutaneous 
appendage formation. Adipose mesenchymal stem cell extracellular vesicles (AdMSC- EVs) act opposite and lead to scar reduction. Reprinted 
with permission from Narauskaite et al.1023
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6.5.5  |  Stem cell- derived exosomes in repair, 
regeneration, and angiogenesis

Inflammation, hyperplasia, and remodeling are all part of the intri-
cate and dynamic process of skin wound healing. Type M2 polari-
zation of macrophages regulates inflammation. Exosomes released 
by human mesenchymal stem cells are capable of lowering neutro-
phil counts and preventing the recruitment of macrophages during 
the inflammatory phase. Therefore, exosomes from human MSCs 
may lessen the inflammatory response and are crucial for skin re-
pair and regeneration during the proliferative stage because they 
encourage fibroblast migration, proliferation, and endothelial cell 
creation.114 Bin and colleagues found that huc- MSC exosomes acti-
vate the Wnt4/β- catenin signaling pathway to promote endothelial 
cell migration, proliferation, and formation.114 Huc- MSC- Exos also 
promoted β- catenin nuclear translocation and activity via the Wnt4 
pathway, hence increasing fibroblast migration and proliferation.1002 
Jieyuan discovered that the angiogenic activities of endothelial cells 
might be facilitated by exosomes released from endothelial progeni-
tor cells via the Erk1/2 signaling pathway, ultimately stimulating cu-
taneous wound healing and regeneration.1044

Exosomes generated from human umbilical cord blood (UCB- 
Exos) have been shown to inhibit phosphatase and tensin homo-
log (PTEN) and sprout homolog 1 (Spry1), hence promoting wound 
healing and reducing scarring. These effects could be connected to 
UCB- Exos high expression of miR- 21- 3p.1045 Exosomes produced 

from menstrual blood- derived mesenchymal stem cells were shown 
by Dalirfardouei to promote neoangiogenesis via VEGF. Accordingly, 
the acceleration of epithelial regeneration in mice was directly linked 
to the overexpression of the NF- κB p65 subunit and the activation 
of the NF- κB signaling pathway.720 These findings imply that exoso-
mal treatment created from stem cells could be a potential therapeu-
tic strategy and that administering stem cell- derived exosomes may 
improve endothelial cells' angiogenic potential, fibroblast migration, 
and proliferation.

6.5.6  |  Potential capacity of stem cell- derived 
exosomes in reduced scar formation

Scar development takes place mostly during the wound remodeling 
period. Early gestation fetuses are observably capable of scarless 
wound healing as compared to adult wounds.999 The ultimate ob-
jective of cosmetic dermatology is to achieve scarless recovery. 
Scarless tissue differs from scar tissue in many ways. It is charac-
terized by the presence of fine reticular collagen, a lower degree of 
crosslinking, less inflammation, and a reduced number of myofibro-
blasts. The ratios of TGF- β3 to TGF- β1, type III to type I collagen, and 
MMPs to matrix metalloproteinase tissue inhibitors (TIMPs) were all 
greater in scar- free tissue.999

Activated fibroblasts replace the injured epithelial or endothelial 
cells during the process of tissue regeneration and repair after injury. 

F I G U R E  3 2  Main composition of exosomes and their functions on skin injuries. Despite the different origin and mode of biogenesis, 
exosomes display a similar appearance, and common composition. Exosomes are featured by tetraspanins, receptors or cell- type specific 
proteins, lipids, adherin proteins, intracellular trafficking proteins. Deep analysis of extracellular vesicle composition reveals that they 
convey various cargoes, including nucleic acids, proteins (biogenesis elements, chaperones, and signaling pathway molecules) and lipids, 
which all vary widely between cells and conditions. The vast information will directly affect the fate and function of exosomes in skin 
injuries. Exosomes participate in multiple cutaneous diseases including laceration, burn, aging, diabetic wound healing, scar formation, skin 
autoimmune disease, and skin cancers, through different biological pathways. Reprinted with permission from Shi et al.1043
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106  |    MIRON et al.

Fibroblasts have the capacity to overproduce fibronectin, hyaluronic 
acid, type I and III collagens, and other ECM components, which may 
result in scarring and matrix overgrowth.1046 Exosomes have been 
shown in several studies to have a significant role in preventing the 
development of scars (Figure 33).720,1047

During wound healing, HDFs develop into myofibroblasts. 
Following wound healing, a significant fraction of myofibroblasts 
undergo apoptosis. Myofibroblasts, however, are still active and 
multiplying in hypertrophic scar patients.1048 Research has shown 
that human ADSC- Exos have the ability to control the ratios of TGF- 
β3 and collagen type III to type I: TGF- β1, MMP3, and TIMP- 1 by 
inhibiting fibroblast development into myofibroblasts.999

Chen et al.1048 demonstrated that by preventing the function 
of miR- 200C3p in fibroblasts, lncRNAasLNCS5088 from M2 mac-
rophage exosomes may contribute to the development of scars. 
This provides evidence that exosomes may facilitate intercellular 
communication in the management of hyperplasia in scarring.1048 
Therefore, stem cell- derived exosomes have shown to be a success-
ful noninvasive scar reduction therapy. Nevertheless, further stud-
ies are required to fully understand how stem cell- derived exosomes 
contribute to the reduction of scars.999,1017

6.6  |  Dental regeneration

A number of systematic reviews have now investigated the use of 
exosomes for the treatment of various dental tissues.1050–1060 In 

fact, part 3 of this 3- part series is dedicated entirely to the use of 
exosomes in dentistry. In that systematic review, a total of 944 ar-
ticles were identified using exosomes in the dental field for either 
their regenerative/therapeutic potential or for diagnostic purposes 
derived from salivary exosomes. In total, 113 research articles were 
selected for their regenerative potential (102 in vitro, 60 in vivo, and 
49 studies were both). Therapeutic exosomes were most commonly 
derived from dental pulps, periodontal ligament cells, gingival fibro-
blasts, stem cells from exfoliated deciduous teeth, and the apical 
papilla have all been shown to facilitate the regeneration of a num-
ber of tissues including bone, cementum, the periodontal ligament, 
nerves, orthodontic tooth movement, and temporomandibular joint 
disorders, among others. Results demonstrate that the use of ex-
osomes led to positive outcomes in 100% of studies. In the bone 
field, exosomes were found to perform equally as well or better than 
rhBMP2. Periodontitis animal models were treated with simple gingi-
val injections, and benefits were even observed when the exosomes 
were administered intravenously. Exosomes are much more stable 
than growth factors commonly utilized in the dental space and, as 
such, were shown to be far more resistant to degradation by peri-
odontal pathogens found routinely in a periodontitis environment. 
Comparative studies in the field of periodontal regeneration found 
better outcomes for exosomes even when compared to their native 
parent stem cells. In total, 47 diagnostic studies have revealed a role 
for salivary/crevicular fluid exosomes in the diagnosis of birth de-
fects, cardiovascular disease, diabetes, gingival recession detection, 
gingivitis, irritable bowel syndrome, neurodegenerative disease, oral 

F I G U R E  3 3  Exosomes derived from multiple sources could regulate wound healing by affecting effector cells. The exosomes from 
various sources, including MSCs, keratinocytes, endothelial cells, immune cells, and body fluid, could regulate the wound healing process 
through different mechanisms. Especially, the UBE2O mRNA in saliva- exos, the miR- 135a in amnion- derived MSC- exos, the MALAT1 
and mmu_circ_0000250 in adipose- derived MSC- exos, and the H19 lncRNA in bone marrow- derived MSC- exos played positive roles 
in enhancing the functions of main effector skin cells to accelerate wound healing. The miR- 20b- 5p in exosomes of patients plasma and 
miR- 15a- 3p in exosomes from patients blood inversely impaired the functionality of the endothelial cells, exerting healing delay effects. 
Mesenchymal Stem Cells, MSCs. Reprinted with permission from Xiong et al.1049
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lichen planus, oral squamous cell carcinoma, oro- pharyngeal can-
cer detection, orthodontic root resorption, pancreatic cancer, peri-
odontitis, peri- implantitis, Sjögren syndrome, and various systemic 
diseases. Hence, dental exosomes (Periosomes) were described as 
possessing “remarkable” potential, serving as a valuable tool with 
significant advantages for dental clinicians.

6.7  |  Erectile dysfunction

A study by Khodamoradi et al. 2022 titled: “Exosomes as Potential 
Biomarkers for Erectile Dysfunction, Varicocele, and Testicular 
Injury”, examined the possibility of using exosomes as biomarkers 
for a number of ailments, including erectile dysfunction.1061 It was 
determined that exosomes are a viable therapeutic method since 
they may contain cargo such as specific medications and therapeutic 
compounds. As discussed earlier (Section 5.1.8), erectile dysfunc-
tion is a blood flow issue which is the reasoning behind its asso-
ciation with diabetes specifically as well as other noncommunicable 
diseases such as smoking, cardiovascular diseases, and obesity.701 
Therefore, the use of exosomes in the treatment of arterial inflow 
or venous outflow problems will undoubtedly have a positive ef-
fect concerning erectile dysfunction. Additionally, exosome therapy 
for several male sexual and reproductive diseases has been tested 
in a number of clinical trials.1061 Gaining insight into the significant 
function of exosomes in the reproductive system may provide new 
opportunities for developing novel treatment approaches and di-
agnostic markers.1062 This may be a promising method for manag-
ing conditions including testicular damage, varicocele, and erectile 
dysfunction.1061

6.8  |  Hair regrowth

Alopecia is a prominent reason for seeking dermatological consulta-
tions. However, the management of this condition continues to be 
challenging. Androgenic alopecia is the predominant cause of non-
scarring hair loss, which affects around 80% of Caucasian men and 
50% of women by the age of 70. On the other hand, central centrifu-
gal cicatricial alopecia is the leading cause of hair loss among African 
Americans.1063 Patients with alopecia have severe psychological 
effects.1063

Because alopecia is so common, a lot of research has been 
done with the aim of developing safe and efficient therapies. 
Topical minoxidil and oral/topical finasteride are two FDA- 
approved therapies that may partially stop hair loss but not fully 
stimulate hair growth. Additionally, side effects and difficulty 
sticking to regular treatment regimens may further restrict the 
usage of these drugs.1063 Although low- level laser treatment has 
FDA approval as well, its effectiveness is unknown.1064 Patients 
may be able to have surgical therapy via hair transplantation, 
but the expense may prevent them from doing so.1064 Therefore, 
current research is focused on regenerative therapies that not 

only stop hair loss but also encourage growth. In many clinical 
trials, platelet- rich plasma injection therapy (PRP), a minimally in-
vasive treatment, has been shown to improve hair density and 
volume.1065

In a study titled: “Exosome Therapy in Hair Regeneration: A 
Survey of the Literature on the evidence, difficulties, and prospects 
for the future”, Kost et al. thoroughly examined the exosomes' ca-
pacity for regenerative hair growth.1063 Exosome therapies have 
been shown in preclinical trials to have distinct advantages in re-
generative medicine and hair loss therapy. Clinical investigations 
support the safety of using exosomes in medicine, although there is 
a shortage of information regarding the effectiveness and safety of 
exosome treatment for alopecia.1063

The majority of preclinical data supporting the use of exo-
somes in alopecia comes from exosomes produced by dermal 
papilla cells (DPCs), a collection of specialized mesenchymal cells 
found at the base of hair follicles (HFs).1066 They have been shown 
to be essential for controlling the creation, development, and cy-
cling of HF.1067 Studies in mice have demonstrated that injecting 
DPC exosomes accelerates the start of HF anagen while slow-
ing down HF catagen. Immunohistochemistry studies revealed 
elevated amounts of β- catenin and Sonic Hedgehog (Shh) in the 
treated skin, which control the hair cycle, as well as H&E- stained 
tissue sections revealing anagen VI phase in the treated animals. 
Treatment of outer root sheath cells with DPC exosomes further 
confirmed the overexpression of β- catenin and Shh10 in vitro. 
There is evidence that DPC- exosome therapy enhances the mi-
gration and proliferation of cells found in the outer root sheath, 
namely those cells found in the hair follicle bulge.1067 Similar to 
what Kwack et al. found when they subcutaneously gave DPC 
exosomes to mice, exosomes have been shown to promote pro-
tracted anagen of hair follicles.1068 Research in mice with alopecia 
areata suggests that DPC exosomes may reduce inflammation in 
hair follicles and stop hair loss.1069

In addition, DPCs are critical for HF stem cell differentiation. 
Epithelial cells near the follicular base die during catagen and tel-
ogen, but the DP stays alive and moves up to the HF bulge. There, 
it releases signals that initiate the anagen phase by stimulating the 
differentiation of HF stem cells and regenerating HFs.1070 Yan et al. 
showed that the co- culture of HF stem cells with DPCs stimulated 
HF stem cell development. Additionally, transmission electron mi-
croscopy observation revealed that DPC exosomes were adhered to 
the surface of HFSCs during co- culture.1071 Ultimately, they found 
that 111 miRNAs were expressed differently in DPC exosomes than 
in DPCs, suggesting that DPC exosomes are important for HF regen-
eration.1071 It is worth mentioning that DPC exosomes have demon-
strated the ability to influence ADSCs, causing their transformation 
into DPC- like cells that produce genes related to hair growth, such as 
β- Catenin and hair- inducing miRNAs.1072

There are a number of other exosome sources known to exist 
for hair growth treatment. In vitro, the maintenance of hair human 
dermal papilla cells was shown using exosomes derived from hair 
outer root sheath cells.1073 Furthermore, compared to a control 
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group, exosomes from the outer root sheath increased markers of 
hair growth induction by a ratio of 2.1, 1.7, and 1.3, respectively.1073

Lastly, exosomes produced by immune cells have also shown 
potential in the therapy of alopecia. In a mouse model of alopecia 
areata, exosomes from myeloid- derived suppressor cells, which in-
hibit T cell growth, increased FoxP3 and arginase 1 levels to pre-
vent T- cell hyperreactivity.1074 Additionally, in a mouse model and 
in vitro studies using human hair follicles, macrophage exosomes 
have shown noticeably higher amounts of hair- inductive indicators 
of DPCs.1075 It has also been shown that exosomes produced by the 
bacterium Leuconostoc holzapfelii, which was isolated from human 

scalp tissue, regulate hair development via the Wnt/β- catenin signal 
transduction pathway.1076

Zhou et al.1067 found that in mice models, DP cell exosomes de-
rived from healthy human scalp specimens sped up the beginning of 
anagen and postponed catagen, leading to higher levels of β- catenin 
and Shh. Accordingly, human dermal papillae exposed to activated 
human dermal fibroblasts (hDFs) release the non- Wnt ligand Norrin 
via stimulated extracellular vesicles (st- EVs).1077 Frizzled- 4 (Fzd4), the 
particular receptor for Norrin given by hDF, is thought to promote 
the β- catenin pathway's subsequent activation, which leads to the 
observed increased hair follicle development ex vivo (Figure 34).1077

F I G U R E  3 4  St- EVs improve human hair growth. (A) Schematic representation of DP cell treatment by EVs isolated from DF stimulated 
by 2GFs. (B) Individual HFs were dissected from adult human scalp tissue and placed in culture in the presence of PBS (nontreated [NT]), 
cyclosporin A (10−7 M), ctrl- EVs, or st- EVs (5 × 109 particles per milliliter) and two different concentrations of bFGF and PDGF- AA named 
2GF- dose1 and 2GF- dose2 at D0 and D4. Pictures of follicles were taken at three points (D0, D4, and D7) and the length of each follicle 
was measured over time. (C) Quantification of the length of hair fibers overtime relative to NT. Data represent experiments performed on 
different donors at Days 4 and 7 following HF extraction (D4/D7): NT, ctrl- EVs, st- EVs, and cyclosporin A were obtained from four donors at 
D4 and three donors at D7; 2GF- dose1 and 2GF- dose2 were obtained from three donors at D4 and two donors at D7 and are expressed as 
mean ± SD. *p < 0.05 and ***p < 0.001 compared with NT HFs using one- way analysis of variance followed by Dunnett's multiple comparison 
test for D4 and Kruskal–Wallis test followed by Dunn's multiple comparison test for D7. 2GF, two growth factors; bFGF, basic fibroblast 
growth factor; D0/4/7, Day 0/4/7; DF, dermal fibroblast; DP, dermal papilla; EVs, extracellular vesicles; HF, hair follicle; PDGF- AA, platelet- 
derived- growth factor A; st- EVs, EVs from stimulated DF. Reprinted with permission from Riche et al.1077
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When combined, research indicates that exosomes from differ-
ent tissue sources may be very advantageous for hair regeneration 
and rejuvenation inside the HF dermal papilla, outer root sheath, and 
HF bulge cells.

6.9  |  Spinal cord injury and intervertebral 
disc repair

A potentially fatal and catastrophic lesion to the spinal cord, spinal 
cord injury (SCI) results in either temporary or permanent alterations 
to the cord and partial or whole loss of motor, sensory, and auto-
nomic functioning.1078,1079 SCI commonly results in paralysis, some-
times known as quadriplegia or paraplegia, with sensory impairment 
occurring below the site of the damage.1080 In most cases, it causes 
patients and healthcare systems to bear very heavy psychological 
and financial costs.1081,1082 It also has adverse effects on most fun-
damental body processes, including breathing, the operation of the 
bowel and bladder, hormone production, and sexual function. This 
is because the peripheral nerve system and brain are no longer con-
nected.1083 The prevalence and incidence of SCI are estimated to 
be 236–4187 per million persons globally, with up to 770 000 new 
cases annually. Males under the age of 30 are more likely to have SCI 
than females.1084–1086

The first mechanical insult, which may be produced by physical 
forces including contusion, compression, transection, or stretching 
of the spinal column, often leading to disruption of the spinal cord 
and results in primary damage.1087–1091 An instantaneous mechanical 
damage to the spinal cord is referred to as a primary injury since it 
is an irreversible procedure.1092,1093 A series of secondary injuries 
follow the initial damage, worsening the spinal cord's health.1094,1095 
Secondary injury occurs shortly after the initial mechanical injury 

and is characterized by local vascular damage, ionic changes, throm-
bosis, edema, ischemia, progressive hemorrhage, oxidative stress 
caused by the release of free radicals, lipid peroxidation, excitotox-
icity, and cell death facilitated by apoptosis and cell necrosis.1079 
Moreover, the inflammatory response and excessive growth of glial 
cells, which occur after the subsequent suppressive environment 
and scar tissue, impede the regrowth of nerve fibers and restrict the 
effectiveness of treatment.1096,1097

Recovery from SCI remains significantly restricted, even though 
recent therapeutic advancements in SCI care have shown some 
improvement in patients' quality of life.1098,1099 For the purpose of 
treating SCI, three main groups of pathologic targets may be dis-
tinguished. First, at the site of the original trauma, surgical decom-
pression, and the removal of mechanical spinal cord compressing 
material.1079,1100–1104 Second, anti- inflammatory therapies for the 
area around the damaged spinal cord.1105–1107

Third, the ultimate objective for treating spinal cord injuries is 
axonal regrowth at the location of the damage.1083 Following the 
initial SCI, the damaged lesion is heavily invaded by macrophages, 
which help to create a cavity of injury (COI) surrounding the site of 
injury, stopping neuronal regrowth.1108–1111 Scarring interferes with 
axonal regrowth,1112 and the COI lesions that were filled with fluid 
prevent axons from traversing the liquid- filled COI without the aid 
of bridge- like structures.1113 Furthermore, granulomatous infiltra-
tion surrounding the injured spinal cord, known as arachnoiditis, aids 
in the development of a mature scar devoid of astrocytes or other 
glial cells.1097 Patients with SCI continue to have a dismal progno-
sis, a high death rate, and a noticeably shorter life expectancy.1114 
Figure 35 highlights the phases of injury.1115

Astrocytes are crucial to the process of SCI because they may 
either impede or facilitate the central nervous system's (CNS) re-
covery.1116–1120 A1 and A2 reactive astrocyte phenotypes are 

F I G U R E  3 5  Schematic diagram for damage stages and responses in spinal cord injury. Reprinted with permission from Kim et al. 
2021.1080
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pre- existing and are brought on by ischemia and neuroinflamma-
tion. A1 astrocytes may cause neuronal and oligodendrocyte death 
because of their neurotoxic effects on myelin, synapses, and neu-
rons. They are often generated just after SCI that is triggered by IL- 
1, TNF- alpha, and C1q.1121 On the other hand, by upregulating the 
production of certain neurotrophic factors, A2 astrocytes provide 
a protective effect.1116 As a result, one possible therapeutic option 
for SCI might be selective suppression of A1 astrocytes. Moreover, 
it has recently been shown that red blood cells (RBCs) around SCI 
lesions are eliminated by reactive astrocytes via phagocytosis. This 
process, known as astrocytic erythrophagocytosis, is thought to aid 
in the quick evacuation of dispersed RBCs from the area of injury 
to stop macrophage aggregation and the ensuing harmful inflamma-
tion. MicroRNAs (miRNAs) have been implicated in tissue damage 
and regeneration processes in recent times, and several miRNAs 
have garnered interest as possible targets for the treatment of SCI.

6.9.1  |  Regenerative potential of stem cell- derived 
extracellular vesicles in spinal cord injury

Spinal cord injury is a severe ailment that is progressive and very 
difficult to treat, requiring urgent medical treatment owing to its 
intricate pathophysiology and impact on social status and financial 
load. A paper published recently by Herbert et al.1122 found that the 
mechanism of action of exosomes on spinal cord injury involves at 
least eight processes including (1) tissue sparing and neuroprotec-
tion, (2) alleviation of oxidative stress, (3) induction and progression 
of angiogenesis, (4) pericyte role restoring integrity of the blood–
spinal cord barrier, (5) combating endoplasmic reticulum stress, (6) 
modulation of inflammatory response, (7) activation of autophagy, 
and (8) attenuation of apoptosis. Interestingly, animal studies have 
demonstrated significant benefit when utilized typically within 
1 hour of injury but also following subsequent IV infusions up to 
21 days (Tables 34 and 35). Noteworthy, protocols could be devel-
oped within an early time frame for athletes playing contact sports 
such as rugby or American football, where the likelihood of injury is 
more significant. Protocols have been proposed and are in develop-
ment to improve patient outcomes following trauma. Figure 36 high-
lights the benefits of exosomes in SCI.

6.9.2  |  Use of exosomes in intervertebral disc 
degeneration

In today's world, low back pain (LBP) is a common health issue 
that has serious socioeconomic ramifications.1157,1158 According to 
epidemiological data, 80% of individuals will, at some point in their 
lives, have lower back discomfort.1159 LBP is thought to be one of 
the main factors limiting the amount of labor that individuals under 
45 may be capable of.1160,1161 In the United States, the direct cost of 
treating LBP is estimated to be over 30 billion US dollars, while the 

indirect socioeconomic losses are estimated to be around 100 billion 
US dollars.1162

Previous studies1162–1165 found that the most common cause of 
LBP currently is IVD. Despite the fact that the exact cause of IVD is 
still unknown, age, metabolic diseases, mechanical stress, trauma, 
illness, diet, and genetic susceptibility are some of the contributing 
variables.211,1160

Currently, bed rest, the use of nonsteroidal anti- inflammatory 
medicines (NSAIDs) and other analgesics, lumbar discectomy, and 
interbody fusion are the major clinical treatments for LBP.1162 
Nevertheless, these methods just concentrate on providing tem-
porary relief for the symptoms rather than directly addressing 
the underlying cause, resulting in the inability to halt or stop the 
advancement of IVDD.212,1166 Hence, innovative therapeutic ap-
proaches are required for the treatment of IVDD. Recently, thera-
pies based on MSCs and exosomes derived from MSCs have shown 
promising benefits and may have practical applications.1165,1167–1170

Noor et al.1171 found that exosomes produced from MSCs not 
only have an essential function in tissue repair and regeneration but 
also possess a longer- lasting, more powerful, and easier- to- maintain 
role when compared to parent cells. While the use of MSC- Exos 
in IVD therapy is still in its infancy, there is rising interest in this 
approach. An increase in oxidative stress, decreased ECM content, 
inflammation, and cell death are the pathophysiological character-
istics of IVD. Targeting these four aspects of the illness, MSC- Exos 
may help to improve all symptoms related to IVD. The results of pre-
vious research on IVD regeneration and repair utilizing exosomes 
produced from MSCs are compiled in Table 36. In 2022, research 
by Lu et al.1172 compiled 16 research studies and discovered that 
MSC- Exos were obtained from various cell sources for the treat-
ment of IVD. These sources included human- induced pluripotent 
stem cells (1 study), unspecified tissues (2 studies), BMSCs (10 stud-
ies), ADSCs (1 study), umbilical cord MSCs (1 study), and placenta- 
MSCs (1 study). In a preclinical model of IVD, MSC- Exos exhibited 
comparable therapeutic benefits despite variable tissue sources.1172 
These effects are primarily attributed to the restoration of extra-
cellular matrix integrity, promotion of cell proliferation, reduction of 
cell death, regulation of inflammatory response, and attenuation of 
oxidative stress.1172

6.10  |  Vascular regeneration

Several pathologies affecting the vasculature, particularly the mi-
crovasculature, lead to a lack of physiological homeostasis control 
of patency and adequate perfusion to meet tissue metabolic needs. 
Most diseases involving failing organs and tissues include microvas-
cular dysfunction as an essential underlying component. Vascular 
decreased angiogenic potential density, endothelial dysfunction, ER 
stress, mitochondrial dysfunction, oxidative stress, increased senes-
cence, and apoptosis are pathogenic variables that contribute to this 
dysfunction.1188–1190
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Many therapeutic settings now use pharmacologic treatments 
that focus on a limited aspect to alleviate symptoms of pathology 
rather than adopting a complete strategy to tackle the underlying 
cause. In response to this issue, much attention has been directed 
to cellular treatments and cell- free therapies, such as exosomes, 
which can address the complex causes of vascular and microvascu-
lar dysfunction.1188

Furthermore, Kawasaki disease, antineutrophil cytoplasmic au-
toantibody (ANCA)- associated vasculitis, giant cell arteritis, Behçet's 
disease, and other multisystem autoimmune diseases are included in 
the diverse group of multisystem autoimmune disorders known as 
systemic vasculitis.1191,1192 Thrombosis, vascular stenosis/occlusion, 
aneurysm development, or bleeding are frequent complications of 

vasculitis, which is defined by inflammation in specific- sized arter-
ies.1193 Patients continue to face issues like early death, recurrence, 
co- morbidities, and a lower quality of life. Despite advances in ear-
lier diagnosis and novel immunotherapies in recent decades,1194 the 
therapeutic potential of exosomes has attracted increased atten-
tion, and studies in this area are ongoing.1195

7  |  INFEC TIOUS DISE A SES

It is interesting to note that exosomes have been effectively used to 
treat a variety of infectious disorders. Exosomes were first used to 
treat infectious disorders like hepatitis in an effort to replace tissues 

TA B L E  3 5  List of publications on EVs' therapeutic effect in SCI.

EVs sources Routes Models ↑ Score Proposed mechanisms

Rat BMSC iv Contusion 4.5 at Week 4 Anti- apoptosis, anti- inflammation, 
pro- angiogenesis1149

Rat BMSC iv Contusion 4.5 at Week 4 neuroprotection, reduce A1 astrocytes, anti- 
inflammation, anti- apoptosis1129

Rat BMSC iv Contusion 3 at Week 4 Anti- microglia and A1 neurotoxic reactive 
astrocytes, anti- inflammation, anti- apoptosis, 
reduce scar, pro- angiogenesis1150

Rat BMSC iv Hemisection 3 at Week 4 Inhibit complement activation1123

Rat BMSC iv Contusion 2 at Week 4 Anti- apoptosis1125

Rat BMSC iv Hemisection 6 at Week 4 Anti- apoptosis1136

Rat BMSC iv Contusion 6 at Week 4 Inhibit pericyte migration, decrease BSCB 
permeability1133

Rat BMSC (miR- 133b- enriched) iv Compression 3 at Week 2 Decrease RhoA expression, axon growth1139

Rat BMSC (miR- 29b- enriched) iv Contusion 11 at Week 8 Neuroprotection1144

Rat BMSC (miR- 126- enriched) iv Contusion 7 at Week 4 Anti- apoptosis, pro- neurogenesis, 
pro- angiogenesis1147

Rat BMSC (hypoxic) iv Contusion 4 at Week 4 Macrophage polarization1142

Human BMSC iv Contusion 3 at Week 2 Decreases reactive microglia and astrocytes1151

Human UC- MSC iv Contusion 2 at Week 8 Macrophage polarization, anti- inflammation1146

Human adipose- MSC iv Contusion 5 at Week 4 Attenuate NLRP3 inflammasome activation1131

Rat- NSC it Compression 6 at Week 4 Anti- inflammation1128

Rat- NSC it Contusion 7 at Week 4 Inhibit NLRP3 inflammasome complex 
formation1152

Rat- NSC (14- 3- 3t- enriched) iv Contusion 4 at Week 4 Enhance autophagy, anti- apoptosis, 
anti- inflammation1153

Rat- NSC (IFG- 1- stimulated) iv Contusion 5 at Week 4 Anti- apoptosis, anti- inflammation1134

Mouse NSC iv Contusion 4 at Week 4 Activate autophagy, anti- apoptosis, anti- 
inflammation, anti- microglia1126

Mouse pericytes iv Contusion 3 at Week 2 Improve microcirculation, protect BSCB, 
anti- apoptosis1154

Human BMSC (PTEN siRNA) in Full transection 7.5 at Week 8 Anti- inflammation, anti- scarring, pro- angiogenesis, 
axon growth1155

Note: Reprinted with permission from Guo et al.1148

Abbreviations: ↑ Score, increased mean BBB or BMS locomotor score from EVs treatment groups, compared to untreated controls; BM, bone 
marrow; BSCB, blood–spinal cord barrier; in, intranasal; it, intrathecal; iv, intravenous; MSC, mesenchymal stem/stromal cells; NSC, neural stem cells; 
UC, umbilical cord.
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and organs that the viruses had damaged.1196 Globally, morbidity 
and mortality have been significantly attributed to infectious ill-
nesses; pneumonia and respiratory infections are among the leading 
causes of death globally.1197 Finding novel therapeutic approaches 
to fight infections and repair organ and tissue damage caused by in-
fections is essential given the rising frequency of infectious disease 
outbreaks and the lack of efficient therapies.1198

Coronavirus disease 2019 or COVID- 19 was one of the leading 
clinical uses of exosomes where numerous clinical trials were started 

to minimize the ‘cytokine storm’ leading to many injuries/deaths. The 
global impact of the COVID- 19 pandemic may be attributed to the 
emergence of a new virus known as severe acute respiratory syn-
drome coronavirus 2 (SARS- CoV- 2) belonging to the coronavirus 
family. This infectious agent has affected a significant number of 
individuals on a global scale.1199,1200 Acute respiratory distress syn-
drome (ARDS) brought on by COVID- 19 dramatically raises death 
rates in patients who are older or have chronic illnesses such as 
diabetes, heart, lung, or kidney problems. No effective treatment 

F I G U R E  3 6  Therapeutic effects of exosomes derived from different MSCs in the treatment of SCI. MSCs can be obtained from bone 
marrow, the umbilical cord, the amniotic membrane, and adipose tissue. Exosomes derived from MSCs have anti- inflammatory and anti- 
apoptotic effects, as well as inhibit A1 astrocytes, promote axonal regeneration and macrophage polarization, and protect the BSCB from 
spinal cord injury. Reprinted with permission from Liu et al.1156
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medicine has been identified for COVID- 19, with the exception of 
three drugs: camostat mesylate, favipiravir, and remdesivir, which 
acts as an agent against the Ebola virus.1201 It has been shown that 
SARS- CoV- 2 infection- induced a cytokine storm that may cause 
ARDS and eventually multiple crucial organ failures. About 80% of 
COVID- 19- affected individuals have minor symptoms that are re-
stricted to the upper respiratory tract, yet in 20% of cases, serious 
illness results.1202 There have been dozens of clinical studies focused 
on the use of exosome therapy for the treatment of COVID- 19 in the 
past 3 years alone, as well as a growing number for the management 
and mitigation of “long- COVID.”1203–1222

Despite the fact that there are currently a number of vac-
cines available to immunize people, scientists worldwide are 
constantly researching potential treatment approaches to treat 
infected populations due to the daily discovery of new informa-
tion regarding the structure, pathogenicity, transmission mech-
anism, and immunological characteristics of the SARS- CoV- 2 
virus.1203–1222

7.1  |  Treatment of COVID- 19 using exosomes

As mentioned previously, there is no specific/effective vaccine/
therapeutic option for combating the negative effects/side effects 
of COVID- 19 such as the cytokine storm. Previous studies have 
showed the potential of exosomes for treating SARS coronavirus in-
fection.1203–1222 In a study by Kuate et al.,1223 it was demonstrated 
that exosomes carrying SARS coronavirus spike S protein was suc-
cessful in inducing neutralizing antibody titers. These results indi-
cated that exosomes can be utilized for treating SARS coronavirus 
infection.1223

A hot topic in the COVID- 19 research world is using MSCs in 
treating the disease. Particularly, exosomes derived from these 
cells have attracted even more attention because they are much 
safer. Various studies have investigated the efficiency and safety 
of using exosomes derived from MSCs in treating patients with 
COVID- 19. For example, Vikram et al. tested the therapeutic po-
tential of bone marrow MSC- Exos in 24 patients infected with 
SARS- CoV- 2 and moderate to severe ARDS.1224 Introduction of 
exosomes to patients was shown to be safe and led to signifi-
cant improvement in the clinical status and oxygenation. A recent 
clinical trial has investigated the efficacy of inhalation MSC- 
Exos in alleviating the post- infection symptoms of COVID- 19 
(NCT04276987).

It has further been shown that MSC- Exos have the ability to pro-
mote the survival of alveolar macrophages and change their phe-
notype from pro- inflammatory (M1) into the anti- inflammatory (M2) 
polarization.1225,1226 The implication of these findings is that exo-
somes can be a viable alternative to their parental cells. Different 
studies have found that MSC- Exos in the inflammatory environment 
of ARDS were responsible for reprogramming macrophages from 
M1- M2 polarization and also improving their phagocytosis effects 
and oxidative phosphorylation.1227–1229

In totality, various studies have generally concluded the follow-
ing four main advantages with using exosomes for the management 
and treatment of patients with COVID- 19:

1. Protection and proliferation of lung epithelial cells

Preclinical research conducted by many groups has shown that 
exosomes have a protective function. In one research article, it was 
shown that lung epithelial cells were protected from oxidative stress- 
induced cell death by miR- 21- 5p administration via MSC- Exos.1230 It 
was also shown by a different research group that the surface of 
MSC- Exos expressed Alpha- 1- antitrypsin (AAT). Due to its strong in-
hibitory properties against neutrophil- derived proteolytic enzymes, 
the anti- inflammatory and immunomodulatory properties of AAT 
plays a vital role in preserving lung epithelial cells.1231

2. Reversal of lung inflammation

The pro- inflammatory response may be a key factor in the patho-
physiology of CoVs, according to data from very ill patients. Release of 
pro- inflammatory cytokines and chemokines is seen in macrophages, 
dendritic cells, and respiratory epithelial cells during the early stages 
of CoV infection.1232,1233 However, throughout the subsequent phases, 
these cells exhibit diminished secretion of antiviral factors, namely in-
terferons (IFNs), while displaying elevated levels of pro- inflammatory 
cytokines, such as interleukin- 1β (IL- 1β) and IL- 6, as well as chemok-
ines including CCL- 2, CCL- 3, and CCL5. The delayed but heightened 
presence of pro- inflammatory substances leads to the occurrence of 
a “cytokine storm,” which has the potential to cause organ damage. 
Consequently, this phenomenon represents a significant issue that 
contributes to the severity of the illness.1234 Immunosuppressive drugs 
are given to these individuals, which is unavoidably linked to a higher 
risk of infection.1235 Due to their established ability to modulate the 
immune system, MSCs and their exosomes that are derived from them 
have been studied in a number of preclinical and clinical contexts.

An interestingly comparable state is seen in lung illness linked 
with graft- versus- host disease (GvHD).1236,1237 MSC- Exos have been 
proven in an early clinical trial to reduce grade IV GvHD patients' 
symptoms.740 Despite the fact that there is little information on 
exosomes' powerful immunomodulatory function in a therapeutic 
setting. This first investigation strengthens the possibility that exo-
somes might help treat lung damage caused by “cytokine storms.”

3. Polarization of lung macrophages

As previously reported, a cytokine storm is produced during a viral in-
fection as a result of an inadequate immune response, which exacerbates 
lung damage. The lungs' pro- inflammatory macrophages play a major 
role in mediating this.1238 Exosome- derived therapy may be a novel way 
to treat nCOV- associated pathogenicity, according to some preclinical 
research assessing the impact of MSC- Exos on lung macrophages in di-
verse lung injury models. These investigations have shown that exosome- 
derived proteins and a number of miRNAs, including miR- 145, facilitate 
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the regeneration and repair of lung tissue.130 MSC- Exos may potentially 
influence the phenotype and function of DCs that infiltrate the lung by 
promoting the production of immunosuppressive cytokines such as 
TGF- β and IL- 10, which shields the lungs from the systemic immune re-
sponse that is initiated by DCs and detrimental to macrophages.1239

4. Reduction in pulmonary edema and lung protein 
permeability

Increased protein permeability and alveolar inundation, which 
culminate in pulmonary edema, are results of infection- induced 
perturbation of the lung endothelial and epithelial barrier.1240 
Consequently, this impairs the ability of the lungs to exchange air. In 
a recent study, the authors evaluated the impact of systemically de-
livered MSC- Exos in a mouse model of acute lung damage caused by 
Escherichia coli endotoxins.775 These exosomes were shown to lower 
lung water extravascularly by 43% while also lowering lung protein 
permeability and pulmonary edema.775 Later, using human donor 
lungs that were unsuitable for transplantation, the team showed that 
these exosomes could restore alveolar fluid clearance (AFC) in an 
ex vivo lung perfusion model. The capacity of MSC- Exos to internal-
ize into injured host cells was somewhat facilitated by their CD- 44- 
dependent mechanism.1241

Therefore, the injection of MSC- Exos has a great potential to re-
pair the patient's damaged lungs via a variety of pathways, and as 

such, it may be a viable therapeutic nanomedicine intervention for 
patients in critical condition (Figure 37).

8  |  C ANCER THER APY

There is no question that the use of exosomes in the field of cancer 
has overwhelmingly been utilized as early detection biomarkers.1243 
Since exosomes are more stable than proteins and hormones in 
the blood, many research groups have favored using exosomes as 
early biomarkers for cancer detection and disease progression.1243 
Interestingly, since exosomes can also carry signaling molecules, 
they have more recently been utilized as therapeutic options. The 
use of exosomes as therapeutic regenerative agents is the main topic 
of this section. Exosomes may also be effectively used as drug deliv-
ery vehicles to treat a variety of malignancies.

8.1  |  Breast cancer

In a paper titled: “Exosomes as Emerging Drug Delivery and Diagnostic 
Modality for Breast Cancer: Recent Advances in Isolation and Application,” 
Kumar and colleagues shed light on the potential use of exosomes for the 
diagnosis and treatment of breast cancer.1244 Lung cancer is the most 
common cancer worldwide, with breast cancer coming in second.1244 

F I G U R E  3 7  Schematic representation showing the potential role of MSCs- derived exosomes in combating COVID- 19 Infection. Panel (A) 
synergistic effect of the drug and exosomes may be utilized as an effective approach against the virus. Various hydrophobic and hydrophilic 
drugs with antiviral properties can be packaged into exosomes for its delivery to the target site. Panel (B) The therapeutic cargo present in 
Exosomes aids in the reduction in inflammation, cellular repair, alveolar fluid clearance, and other damage caused to the lung during viral 
infection. Reprinted with permission Pinky et al.1242
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Chemotherapy, immunotherapy, radiation, and surgery are all used to treat 
breast cancer. Chemotherapy has been the mainstay of cancer treatment 
among these medicines; nonetheless, it comes with a number of adverse 
effects, including nephrotoxicity, hair loss, vomiting, and neurotoxicity. 
Novel medication delivery techniques that avoid the mentioned negative 
effects and deliver the right pharmaceuticals to the intended spot have 
emerged as a result of these disadvantages. Exosomes are thought to be a 
newly developed, innovative drug delivery mechanism that offers a flexible 
platform for both medication administration and diagnostics.

Exosomes are being used in clinical studies to treat breast cancer. 
These trials are based on several reports that show enormous scientific 
effort that produced favorable results.1244 The present human exosome 
experiments are mostly focused on discovering possible exosomal bio-
markers in various bodily fluids (particularly blood and urine) for early 
cancer diagnosis, even if the notion remains far from practical reality. 
Proteomic analysis of 72 breast cancer patients' exosomes obtained 
from the cerebral fluid is part of an ongoing clinical investigation on exo-
somes used to diagnose leptomeningeal metastatic breast cancer.1244 
In a related clinical investigation; exosomes were extracted from breast 
cancer patient's blood and urine samples in order to measure the 
stress protein (HSP 70), which is thought to be a tumor biomarker.1244 
Exosomes are being considered for use in chemotherapy in addition to 
their use as biomarkers.1244 To measure the expressed HER2 and HER3 
dimers over the isolated exosomes, for example, has allowed scientists 
to identify HER2 type breast cancer. This is because the HER2 recep-
tors are also discovered to be overexpressed on the surface of exo-
somes. Exosome loading may also be used to determine the impact of 
pembrolizumab on the tumor microenvironment in a similar manner.1244

While this field is still in its infancy, there is tremendous upside 
currently for the use of exosomes in breast cancer therapy. Future 
years of research should lead to novel discoveries and will likely gar-
nish mainstream momentum in the coming decade.

8.2  |  Colorectal cancer

Globally, colorectal cancer (CRC) is the second most common cause 
of cancer- related deaths. It is a cancer that emerging from the colon 
or rectum.1245 Of all CRCs, 72% are caused by colon cancer and 28% 
by rectal cancer.1246 An adenocarcinoma originating from the colon's 
and/or rectum's glandular epithelial cells accounts for about 90% of 
colorectal cancer cases. The greater death rate associated with CRC 
is mostly caused by its advanced stage of diagnosis. 64% of CRC 
patients survive for 5 years, compared to only 12% of those with 
metastases.1247

In a study titled: “The therapeutic potential of stem cell- derived 
exosomes in the ulcerative colitis and colorectal cancer,” Guo et al.1248 
discovered that exosomes produced from different MSC sources, such 
as olfactory ecto- MSCs (OE- MSCs), human umbilical cord- derived 
MSCs (hUC- MSCs), human ADSCs, and human BMSCs, demonstrated a 
protective function against ulcerative colitis (UC) and colorectal cancer 
(CRC). It has been discovered that exosomes from OE- MSCs, ADSCs, 
hBMSCs, and hUC- MSCs, can improve experimental UC by suppress-
ing inflammatory cells such as macrophages and Th1/Th17 cells, lower-
ing the expression of pro- inflammatory cytokines, and stimulating Treg 
and Th2 cells' anti- inflammatory function and increasing the expres-
sion of anti- inflammatory cytokines. Furthermore, it has been shown 
that tumor- suppressive miRs (miR- 3940- 5p/miR- 22- 3p/miR- 16- 5p) 
included in hUC- MSC- Exo and hBMSC- Exo inhibit the growth, migra-
tion, and invasion of colorectal cancer cells via controlling the RAP2B/
PI3K/AKT signaling pathway and ITGA2/ITGA6.1248

Consequently, and to summarize, MSC- Exos have positive ef-
fects on UC and CRC by means of two distinct processes, namely 
immune response modulation and antitumor response induction, re-
spectively. Table 37 highlights these interactions and the advantages 
of exosomes over their parent MSCs.

MSC MSC- derived exosome

Therapeutic 
effects

Cancer immunotherapy, 
regeneration medicine, and 
immunomodulation

Cancer immunotherapy, 
regeneration medicine, and 
immunomodulation

Drug and nucleic 
acid delivery

Only limited drugs could be 
internalized by MSC, such as 
paclitaxel and gemcitabine, 
transfection efficiency is a 
major limitation for nucleic 
acid delivery

Promising carriers for all type of 
drugs, also for nucleic acid with 
increased efficiency compared 
to MSC

Target tissue Injured site Injured site

Immunogenicity Can be allogenic for the immune 
system

Non- immunogenic

Clinical 
application in 
CRC

Preclinical and clinical application Currently in preclinical applications

Production Undergo senescence after only 
a few passages, expensive to 
have large- scale production

No senescence and easy to 
generate a large- scale 
production for clinic application

Note: Reprinted with permission from Guo and colleagues.1248

TA B L E  3 7  Major differences between 
MSC and MSC- derived exosome in 
colorectal cancer.
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8.3  |  Gastric cancer

The prognosis for gastric cancer (GC), a frequent malignant tumor 
that affects human health, is poor, and it often has an obscure origin. 
It is the fourth most frequent cancer overall and the third leading 
cause of cancer- related deaths globally. Approximately 1.089 mil-
lion new cases and 768 000 deaths of GC occur each year.1249 
Interestingly, various research groups have found that exosomes 
play an important role in the invasion and metastasis of gastric 
cancer and can be, therefore, used as very early detection tool for 
diagnosis.1250 Age- standardized five- year survival rates for GC are 
estimated to be between 20 and 40 percent because of delayed di-
agnosis, a dismal prognosis, and ineffective treatment.1251,1252 In a 
paper titled: “Exosomes and Exosomal circRNAs: The Rising Stars 
in the Progression, Diagnosis and Prognosis of Gastric Cancer,”1250 
Lu and colleagues discussed the potential of exosomes as new bio-
markers in the field and thoroughly point to their potential as future 
applications as mainly diagnosis markers but with the ability to be 
utilized as therapeutic options once their implication and cargo are 
fully understood.

8.4  |  Osteosarcoma

The most frequent bone tumor that affects children and teenag-
ers is osteosarcomas. In a study titled: “Exosomes as Efficient 
Nanocarriers in Osteosarcoma: Biological Functions and Potential 
Clinical Applications,” Yang et al.1253 overviewed the state of exo-
some research in the field of osteosarcomas, emphasizing both the 
biological roles of osteosarcoma exosomes and their use as thera-
peutic targets and diagnostic indicators in the disease.

Exosomes have significant roles in osteosarcomas, indicating 
that they may be explored as therapeutic targets as well. The os-
teosarcoma derived exosomal biomarkers mentioned above could 
also be utilized as therapeutic targets of osteosarcomas. According 
to Baglio et al., functional TGF- b molecules are present in the exo-
somes secreted by osteosarcomas, and these molecules enhance 
IL- 6 expression, thereby promoting osteosarcoma growth and me-
tastasis formation. Combining TGF- b inhibitors with IL- 6 blocking 
agents has been shown to halt osteosarcoma progression while 
lowering drug resistance.1254 Notaro et al. have recently shown that 
the synthetic agonist of cannabinoid receptors, WIN, significantly 
increased the number of exosomes released. Additionally, isolated 
exosomes from WIN- treated cells had strong anti- migratory effects 
on osteosarcoma cells that were not receiving treatment, suggesting 
that WIN- treated cells may provide a novel therapeutic agent for 
osteosarcoma therapy.1255

Additionally, exosome- derived RNAs may be used as osteo-
sarcoma therapeutic targets, according to recent research. Zhang 
et al.1256 showed that miR- 206 generated from BMSC exosomes 
might enter osteosarcoma cells and halt the growth of the tumor 
by focusing on TRA2B. Exosome- derived miR- 101 has been shown 
in research by Zhang et al.1257 to have metastasis- inhibitory 

characteristics in osteosarcomas. Ye et al.1258 found that patients 
with osteosarcomas have many dysregulated exosome- derived 
miRNAs. Wang et al.1259 demonstrated that the exosome- derived 
miR- 1228 might promote osteosarcoma invasion and migration 
by downregulating the mRNA expression of SCAI in osteosarco-
mas. These studies, among others, highlight the potential for novel 
therapeutic targets for osteosarcomas with the use of exosomes. 
Furthermore, an additional review article focuses on the unique 
structure and relevant characteristics of exosomes as promising 
nanocarriers for osteosarcoma treatment.1260

9  |  OTHER THER APEUTIC USES OF 
E XOSOMES

Lastly, there have been a number of other uses of exosomes for vari-
ous illnesses that fall into random categories. Within this section, 
the therapeutic use of exosomes will be briefly mentioned regarding 
its use for the management of infertility, obesity, and sleep apnea.

9.1  |  Infertility

In a study titled: “Mesenchymal Stem- Cell Derived Exosome Therapy 
as a Potential Future Approach for Treatment of Male Infertility 
Caused by Chlamydia Infection,” Izadi et al.1261 studied the use of 
exosomes on male infertility following infection. Unfortunately, 
male fertility, sperm function, and the reproductive tract are all 
negatively impacted by microbiological sexually transmitted infec-
tions (STIs). Since STIs often have no symptoms and may lead to 
serious side effects, including fibrosis, scarring, and urogenital in-
flammation, optimal treatments should be performed to prevent the 
noxious effect of STIs on male fertility.1261 Chlamydia trachomatis 
stands out as the prevailing bacterial sexually transmitted infection 
(STI) that often presents without symptoms, and that may have an 
effect on male fertility and sperm quality. The therapeutic potential 
of exosomes derived from MSCs has attracted increasing attention 
in recent years. These exosomes are of interest because they may 
modulate immunity, reduce inflammation, neutralize free radicals, 
and promote tissue repair. Importantly, they provide these benefits 
without the potential drawbacks associated with traditional stem 
cell transplantation- based treatments. Exosome therapy, being a 
noninvasive modality, has shown encouraging outcomes in terms of 
its potential to facilitate the regeneration of impaired sperm and the 
treatment of asthenozoospermia.1261

Exosomes have shown promise in restoring spermatogenesis 
and sperm regeneration in animal studies. One study found that 
exosomes derived from amniotic fluid could restore sperm pa-
rameters like motility and concentration, as well as the number of 
spermatocytes and spermatogonia, and ultimately male fertility.1262 
Exosomes have also been shown to increase post- thaw sperm pa-
rameters and have a protective impact against oxidative stress 
caused by the cryopreservation procedure and sperm cryoinjuries 
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(such as cell membrane damage and DNA damage).1263,1264 It is in-
teresting to note that treating spermatozoa with MSC- Exos might 
enhance sperm sticky and fusogenic qualities by shuttling adhesion 
molecules, including CD44, CD29, CD54, and CD106, in addition 
to increase sperm characteristics after frozen–thawed sperm.1265 
Furthermore, a number of clinical experiments (NCT01159288, 
NCT03608631, and NCT01294072) have shown that exosomes 
may be loaded with medications or bioactive molecules for thera-
peutic purposes (NCT04276987, NCT03437759, NCT04213248, 
and NCT04602442).1266

In conclusion, exosomes have been shown to have a significant 
impact in mitigating the effects of infection, including inflammation, 
cell damage, fibrogenesis inhibition, and scar formation.

9.2  |  Obesity

Obesity is distinguished by the presence of low- grade, persistent in-
flammation, which contributes to the development of insulin resist-
ance and diabetes.1267 The presence of obesity has been associated 
with the onset and advancement of certain autoimmune disorders, 
such as thyroid autoimmunity, inflammatory bowel disease, pso-
riasis, psoriatic arthritis, and rheumatoid arthritis. The aforemen-
tioned issue poses a significant risk to public health, exceeding the 
magnitude of both the ongoing opioid crisis and the prevalence of 
cancer. In addition to the deposition of excess adipose tissue and 
a reduction in the body's resting metabolic rate, obesity is also as-
sociated with an elevated prevalence of type- 2 diabetes mellitus, 
hypertension, atherosclerosis, hyperlipidemia, and cardiovascular 
disease.1268,1269

By decreasing regulatory T cells (Tregs), raising Th17 and Th1 
immune responses, and producing inflammatory cytokines, these 
illnesses are caused by a change in self- tolerance that promotes a 
pro- inflammatory immune response.1267 Therefore, in order to cre-
ate treatments that lower the risk of autoimmune disorders and 
other immunological issues, it becomes imperative to understand 
the immunological alterations that result in this low- grade inflam-
matory milieu. Patients that are obese and have a high BMI release a 
large amount of microvesicles and exosomes from their adipocytes 
and immune cells.1267 While presently much research is focused on 
understanding these secreted exosomes during pathogenesis,1267 
eventually, exosomes could be engineered to lower inflammation 
and potentially reverse some of the compounding negative effects 
of obesity on overall health.

9.3  |  Sleep apnea

In the review article titled: “The Mystery of Red Blood Cells 
Extracellular Vesicles in Sleep Apnea with Metabolic Dysfunction,” 
the role of red blood cell exosomes was revealed as a contributing 
factor to sleep apnea and overall body inflammation.1270 Humans 
sleep for around one- third of their lives, making it an essential 

component of living. It is obvious that inadequate sleep, particularly 
in the form of psychiatric problems like depression or stress, may 
lead to poor mental performance, daytime lethargy, and decreased 
attentiveness.1271 Both genders are affected by sleep- disordered 
breathing (SDB), which is often linked to a broad range of co- morbid 
illnesses in many organ systems.1272

OSA has become a significant public health issue, and mounting 
data indicates that untreated OSA may contribute to the onset of a 
number of illnesses, including neurological disorders as well as fail-
ing organs.1267,1270 Moreover, OSA may cause blood oxygenation to 
drop and the sleep cycle to become fragmented. Free radicals, or 
ROS, have the capacity to generate and combine with NO to create 
peroxynitrite, which reduces NO's bioavailability. The characteristic 
of OSA, hypoxia, is a decrease in tissue oxygen saturation that im-
pacts several cell types, with cell- to- cell communication being essen-
tial to the result of this interaction. Although mostly known for their 
function as oxygen and nutrition carriers to tissues, red blood cells 
(RBCs) also play important roles in viscosity, blood rheology, redox 
regulation, and systemic NO metabolism control. It has been shown 
that RBCs enhance cardiac damage and cause endothelial dysfunc-
tion.1270 Exosomes, which are released by RBCs in both healthy and 
pathological circumstances, may be essential for the identification of 
hypoxic situations and for facilitating their restoration. The molecu-
lar connections between alterations in RBC functional characteris-
tics and cardiovascular disease are extensive. Thus, increasing our 
understanding of the pathophysiological significance of RBC- EVs 
and their methods of generation may aid in clarifying the nature of 
circulating EVs and facilitating their use in therapeutic settings.

10  |  DISCUSSION AND CONCLUSIONS

The present scoping review highlights the many applications of ex-
osomes across many fields of medicine. Exosomes are among key 
paracrine effectors secreted by MSCs and due to their biological 
cargo, which is similar to parental cells, and their ability to preserve 
healing properties, they are considered as an attractive candidate 
to replace MSCs in treating various diseases and affecting many or-
gans (Figure 38).1273 Nontoxicity, low immunogenicity, high stability, 
easy storage, and the potential to be produced as an off- the- shelf 
product are several benefits of exosomes compared to their cellular 
counterparts that led to their expanding clinical application as new 
therapeutic surrogates.1274

Recent research conducted by Hosseini et al., the authors em-
phasized five significant benefits of exosomes compared to their 
parent cells. These included1205:

• The analysis of exosomes' activity and their originating cell 
demonstrates that exosomes may have the same effect by either 
a distinct or comparable mechanism, and in several instances, 
they are far more potent.1275 Del Fattore et al. demonstrated that 
MSC- Exos had superior immunomodulatory capabilities com-
pared with the parent cells. It was shown that MSC- Exos, which 
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likely have different characteristics than parent cells, modify the 
ratio of Treg/Teff cells in P- MSCs and raise the levels of anti- 
inflammatory cytokines, such as IL- 10.1276

• Exosomes, because of their diminutive size, may easily traverse 
narrow blood vessels and even the blood–brain barrier. In con-
trast, MSCs are prone to being lodged in the lungs and causing 
pulmonary embolism and infarction, particularly after intravenous 
administration.1277 Because of their enormous size (and 25 mL in 
suspension), inosine- labeled MSCs showed a significant initial up-
take when injected intravenously and trapped a substantial num-
ber of cells in the lungs.1278

• Exosomes generated from MSCs, whether autologous or alloge-
neic, pose no threat since they do not include MHC class I or II on 
their surface. A recent prospective non- randomized cohort trial 
was conducted to assess the safety and therapeutic effective-
ness of exosomes produced from allogeneic BMSCs in COVID- 19 
patients.1224 All safety objectives were satisfied after 72 h of a 
single intravenous injection of exosomes, and no adverse effects 
were noted. While 24 individuals were observed, 17 (or 71% of 
the total) made a full recovery. The ability to restore patients' ox-
ygenation further improved under these simple clinical settings. 
An increase in lymphocyte and neutrophil counts, as well as a 

decrease in acute phase reactants, C- reactive protein, and ferri-
tin, were all indicators of immune reconstitution in the laboratory 
results. Along with that discovery, scientists also announced that 
exosomes produced from MSCs are a promising new treatment 
option for severe COVID- 19.1224 As mentioned before, there is 
still cause for worry about MSCs' aberrant differentiation and 
spontaneous transformation.

• Exosomes are harvested much simpler and much more affordable 
to produce and freeze- store grade- clinical exosomes in accor-
dance with GMP standards.1279 As an example, quality control for 
exosome manufacture might begin with the donor competence 
analysis and be used throughout the whole process. Another ex-
ample of a closed- loop system would be the possibility of com-
pletely automating some manufacturing operations, such as final 
concentration and vial filling. Every batch of exosomes is tested 
for size, homogeneity, number, and positive and negative indica-
tors in the final product.1280

• Effortless manipulation of exosomes and the ability to design 
them enables the creation of a diverse array of products custom-
ized for specific purposes using a variety of direct and indirect 
methods. Enhancing the therapeutic efficacy of exosomes may be 
achieved by including medicinal medicines within the exosomes 

F I G U R E  3 8  Biological mechanisms of MSC exosomes. (A) Immunomodulatory effects of MSC exosomes. (B) Reactions of MSC exosomes 
in response to oxidative stress. (C) Interactions between tumor cells and MSC exosomes. (D) Applications of MSC exosomes in regenerative 
medicine. CCL, C- C motif ligand; CXC, C- X- C motif chemokine; DCs, dendritic cells; I/R, ischemia/reperfusion; IFN- γ, interferon γ; IL, 
interleukin; NK cells, natural killer cells; ROS, reactive oxygen species; TGF- β, transforming growth factor beta; Tregs, regulatory T cells. 
Reprinted with permission from Shen and Chen.747
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are deriving them from various sources depending on the clinical 
indications.129,1281

To date, over 600 clinical trials (registered, ongoing, and com-
pleted) worldwide using EVs in diagnostic and therapeutic capac-
ities will pave way to their future use in standard clinical practice. 
Many open questions remain including the exact signaling mole-
cules required in various exosomes for the treatment of various 
illnesses. For instance, exosome content may be vastly different 
in signaling molecules to treat Parkinson's disease versus osteo-
arthritis of the knee. While these open questions remain, positive 
outcomes from various MSC- sourced exosomes have shown ben-
efit across practically all fields of medicine. Figure 39 depicts the 
future clinical challenges toward commercializing and utilizing exo-
somes in every day clinical practice. The number of studies (over 
5000 publications yearly) and human clinical trials will certainly 
pave way toward a tremendous future of clinical practice using 
exosomes.
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the individual patient by harvesting autologous stem cells, expanding, and modifying them, producing EVs, and infusing them back to the 
same patient. In this process, the stem cells can also be genetically modified, and their EVs may undergo further modification by loading 
them with therapeutic molecules. Finally, EVs need to undergo quality control and be stored for future administration. Reprinted with 
permission from Riazifar et al.1282
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