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Abstract

Background and 
Aims

Increasing data suggest that stress-related neural activity (SNA) is associated with subsequent major adverse cardiovascular 
events (MACE) and may represent a therapeutic target. Current evidence is exclusively based on populations from the U.S. 
and Asia where limited information about cardiovascular disease risk was available. This study sought to investigate whether 
SNA imaging has clinical value in a well-characterized cohort of cardiovascular patients in Europe.

Methods In this single-centre study, a total of 963 patients (mean age 58.4 ± 16.1 years, 40.7% female) with known cardiovascular 
status, ranging from ‘at-risk’ to manifest disease, and without active cancer underwent 2-[18F]fluoro-2-deoxy-D-glucose 
positron emission tomography/computed tomography between 1 January 2005 and 31 August 2019. Stress-related neural 
activity was assessed with validated methods and relations between SNA and MACE (non-fatal stroke, non-fatal myocardial 
infarction, coronary revascularization, and cardiovascular death) or all-cause mortality by time-to-event analysis.

Results Over a maximum follow-up of 17 years, 118 individuals (12.3%) experienced MACE, and 270 (28.0%) died. In univariate ana
lyses, SNA significantly correlated with an increased risk of MACE (sub-distribution hazard ratio 1.52, 95% CI 1.05–2.19; 
P = .026) or death (hazard ratio 2.49, 95% CI 1.96–3.17; P < .001). In multivariable analyses, the association between SNA 
imaging and MACE was lost when details of the cardiovascular status were added to the models. Conversely, the relationship 
between SNA imaging and all-cause mortality persisted after multivariable adjustments.

Conclusions In a European patient cohort where cardiovascular status is known, SNA imaging is a robust and independent predictor of 
all-cause mortality, but its prognostic value for MACE is less evident. Further studies should define specific patient popula
tions that might profit from SNA imaging.
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© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.
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Structured Graphical Abstract

Evidence based on populations from the U.S. and Asia suggests that stress-related neural activity (SNA) associates with adverse
cardiovascular events. What is the clinical value of SNA imaging in a well-characterized cohort of cardiovascular patients in Europe?

In a European patient cohort where cardiovascular status was known, SNA imaging was a robust and independent predictor of all-cause 
mortality, but not of major adverse cardiovascular events. Patients with manifest cardiovascular disease profited less from SNA imaging.

SNA imaging might be useful in a primary prevention setting targeted at younger and healthier individuals exposed to cardiovascular risk 
factors, but less so in secondary prevention.
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In a well-characterized European population (Switzerland) including patients with known comorbidities, SNA imaging is a predictor of MACE and all- 
cause mortality. However, after adjusting for baseline characteristics, the association between SNA imaging and MACE is lost, and SNA only remains 
a strong and independent predictor of all-cause mortality. 18F-FDG-PET, 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography; BMI, 
body mass index; CVRF, cardiovascular risk factor; HR, hazard ratio; lAmygA, left amygdala activity; MACE, major adverse cardiovascular events; 
SHR, sub-distribution hazard ratio; SNA, stress-related neural activity; vmPFC, ventromedial prefrontal cortex.

Keywords Psychological stress • Stress-related neural activity • Amygdala • Ventromedial prefrontal cortex • Haematopoietic 
tissue activity • MACE • Mortality • 18F-FDG-PET/CT

Introduction
Despite a thorough understanding of cardiovascular disease (CVD) 
pathophysiology and improved control of cardiovascular risk factors 
(CVRFs), CVDs remain the leading cause of death worldwide.1

Consequently, novel approaches aim to improve CVD risk 

stratification, notably research on the brain–heart axis.2 Indeed, the 
brain and the heart are connected through numerous neurological, hor
monal, and immune pathways,2–4 Recent studies emphasized the role of 
the amygdalae, a region involved in processing stress responses, in pre
dicting subsequent cardiovascular (CV) events,5–7 with amygdala meta
bolic activity (AmygA) serving as a surrogate for stress-related neural 
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activity (SNA). 2-[18F]fluoro-2-deoxy-D-glucose positron emission 
tomography/computed tomography (18F-FDG-PET/CT) reliably quanti
fies AmygA and enables simultaneous estimation of arterial inflammation 
and haematopoietic tissue activity.

Despite the suitability of 18F-FDG-PET to investigate the brain–heart 
connection, its clinical value is unclear. Current evidence is exclusively 
based on U.S.4,6–11 and Asian5,12–14 populations, with limited informa
tion about CVD status and comorbidities. This constraint is significant 
given the numerous factors influencing SNA, especially in CV patients. 
Besides stress-related disorders,15 age,16,17 sex,16 obesity, diabetes, 
pre-existing atherosclerotic disease, or recent myocardial infarction 
are all linked with SNA.14,17–20 Moreover, socioeconomic and lifestyle 
variables, including education, alcohol consumption, and physical exer
cise, also influence SNA, suggesting that social disparities affect health 
through neurobiological mechanisms6,8–10,14. Medications, particularly 
statins or anti-inflammatory drugs, negatively correlate with SNA.4,21

Factors potentially affecting SNA increase with comorbidities, such as 
in patients with chronic inflammatory diseases or with heart failure 
(HF), with recent evidence linking reduced SNA and arrhythmic events 
risk.4,12

Given the many parameters influencing SNA, especially in the typical 
aged CV patient, this study sought to evaluate the incremental prognostic 
value of SNA imaging over a detailed patient history, baseline laboratory 
measurements, and cardiac imaging findings in a real-world European 
scenario.

Methods
Study design and population
Patients who underwent clinically indicated whole-body 18F-FDG-PET and 
echocardiography within a 6-month time frame at the University Hospital 
Zurich, Switzerland, between January 2005 and August 2019 were screened 
for inclusion in this single-centre, retrospective, longitudinal, observational 
imaging study that evaluated the relationship between SNA and subsequent 
major adverse cardiovascular events (MACE) or all-cause mortality 
(Figure 1). At the University Hospital Zurich, the standard acquisition field 
of view includes the brain, whether patients are addressed for cancer-, 
infection-, or inflammatory-related indications. The main indications for 
18F-FDG-PET were cancer suspicion, follow-up of patients with cancer his
tory, fever of unknown origin/suspected infection, or inflammatory disor
ders. The main indications for echocardiography were periodic control 
for known ischaemic or structural heart disease and repeat assessment in 
patients with cancer history and potentially cardiotoxic anticancer treat
ments. Amongst these patients, n = 4172 patients ≥ 18 years were se
lected. The pre-defined inclusion criteria at the time of 18F-FDG-PET 
imaging were (i) absence of cancer and/or remission from cancer for at least 
one year before imaging, (ii) absence of acute or chronic infection, (iii) ab
sence of acute inflammatory or autoimmune disease, (iv) incomplete acqui
sitions precluding brain exploration, and (v) unstable medical conditions. 
Patients whose 18F-FDG-PET images could not be analysed due to insuffi
cient image quality, patients who did not provide informed consent, and pa
tients for whom follow-up information was missing (n = 127) were also 
excluded. The latter sample did not differ in terms of baseline characteristics 

Screening for patients who underwent 
whole-body 18F-FDG-PET

and echocardiography 
within a 6-month time frame at the 

University Hospital Zurich, Switzerland
(January 2005 to August 2019)

N= 12’680

1369 patients

1090 patients

963 patients included in the analysis:
- MACE (n=118, 12.3%)
- All-cause mortality (n=270, 28.0%)

• Cardiac death (n=32)
• Non-cardiac death (n=238)

- 2544 patients excluded due to active cancer/metastasis/ongoing cancer treatment
- 248 excluded because of confirmed infection following 18F-FDG-PET
- 11 patients excluded because of absence of consent

- 159 patients excluded due to tracer uptake of unknown origin on 18F-FDG-PET
- 120 patients excluded due to unfeasible brain assessment on 18F-FDG-PET (stroke/brain 

tumour/brain atrophy in the amygdala region/poor image quality)

- 127 patients excluded due to missing follow-up information

4172 patients undergoing
whole-body 18F-FDG-PET 

and echocardiography 
within 6 months

- Removal of duplicates, i.e. individuals who underwent several 18F-FDG-PET or 
echocardiographies within 6 months of 18F-FDG-PET imaging, n=8508 

Figure 1 Flowchart depicting patient recruitment and exclusion. 18F-FDG-PET, 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography; 
MACE, major adverse cardiovascular events
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(age, sex, comorbidities, and CVRFs) from patients included in the analysis. 
Patients were not selected based on their CVD status. To ensure adequate 
follow-up information for the study endpoints, patients, their next of kin, or 
their legal representative were contacted by phone. When the mortality 
status was uncertain, the Swiss National Death Register was consulted. 
Finally, 963 patients [392 (41%) women] were included in the study 
(Figure 1).

The study was approved by the Cantonal Ethics Committee Zurich (BASEC 
2017–01112), and all patients included gave written informed consent.

Data acquisition and definitions
Patient data were retrieved using hospital electronic medical records. Individual 
charts were reviewed to collect vital signs, CVRFs, presence and current status 
of CVD, medication, cardiac imaging findings derived from transthoracic 
echocardiography, laboratory parameters including routine inflammatory 
parameters, serum levels of N-terminal pro-brain natriuretic peptide 
(NT-proBNP), glucose, and renal function parameters, as well as socio- 
demographic data comprising civil status and professional skill level as per the 
International Standard Classification of Occupations.22 Collected data and their 
definitions are summarized in Supplementary data online, Table S1.

Image acquisition and analysis
18F-fluorodeoxyglucose positron emission tomography 
with computed tomography
18F-FDG-PET was performed on two PET/CT scanners (Discovery VCT or 
Discovery RX, GE Healthcare, Milwaukee, WI, USA) using standardized 
clinical protocols. Briefly, patients were asked to fast for ≥4 h before 
18F-FDG injection. After measuring glucose level, 18F-FDG was adminis
tered via a peripheral vein at a dose of 1.3–1.8 MBq/kg based on body 
mass index (BMI) (minimal and maximal activities: 90 and 300 MBq, respect
ively), and the tracer uptake time was set to 45–60 min. A non-gated, 
non-contrast-enhanced CT scan (120 keV, ∼50 mAs) from the skull to mid- 
thigh was obtained for attenuation correction of PET images and anatomical 
localization of 18F-FDG uptake. Following CT acquisition, the correspond
ing PET images were acquired in 3D mode over 10 min scanning cranially to 
caudally. PET data were recalculated to provide images of standardized up
take values (SUV) based on total body weight and injected dose. Using a 
dedicated workstation (AW 5.0 GE Healthcare, Milwaukee, WI, USA) 
and software (PMOD software, version 4.003, PMOD Technologies Ltd) 
PET/CT images were fused, and a comprehensive assessment was per
formed to quantify 18F-FDG uptake in different tissues.

Measurement of stress-related neural metabolic activity
Stress-related neural activity was quantified using validated meth
ods.16,21,23,24 One fully trained nuclear medicine specialist (N.M.) and one 
fully trained radiologist (A.R.) blinded to clinical information assessed 
18F-FDG brain uptake. After cropping the whole-body PET scan for the 
skull, the brain gyri were segmented using the Maximum Probability Atlas 
in the NEURO tool of PMOD. Regions of interest (ROIs) corresponding 
to the right (rAmygA), left amygdala (lAmygA), and ventromedial prefrontal 
cortex (vmPFC, a counter-regulatory centre under stressful conditions11) 
were identified. 18F-FDG accumulation was measured as the mean standar
dized 18F-FDG uptake value (SUVmean) for each ROI. The primary meas
ure for SNA (meanAmygA) was defined as the average of the SUVmean of 
bilateral AmygA. Given the influence of amygdala laterality in emotion pro
cessing,25–27 right and left AmygA were analysed separately [SNA (lAmygA) 
and SNA (rAmygA)]. To reduce inter-individual variability, AmygA must be 
corrected to a background brain region not involved in stress processing, i.e. 
the cerebellum or the temporal lobes.9,10 While this approach helps to 
standardize AmygA measurements, it does not account for the activation 
of other cerebral regions during mental stress, such as the prefrontal cor
tex.28,29 Recent studies point to an amygdala-vmPFC interplay for MACE 
prediction, with the vmPFC acting as a counter-player to the amygdala dur
ing psychological stress.6,11 As such, vmPFC activation during mental stress 

triggers the parasympathetic system and inhibits the sympathetic sys
tem.30,31 Given that the amygdala-to-vmPFC ratio might account for a po
tential cardioprotective effect of the vmPFC, not captured by the 
AmygA-to-background variable, AmygA (individually and averaged) was 
corrected for vmPFC activity (SUVmean) in our primary analysis (SNA 
[AmygA/vmPFC]).11 Still, to compare how different reference regions affect 
the association between AmygA and outcomes, we performed a supple
mentary analysis where AmygA was corrected for temporal lobe activity 
(AmygA/temp). We tested four parameters, namely, averaged bilateral 
SNA (meanAmygA/vmPFC), left SNA (lAmygA/vmPFC), left SNA 
(lAmygA/temp), and right SNA (rAmygA/vmPFC). More details are pro
vided in Supplementary data online, Figures S1 and S2. Details regarding 
the measurement of haematopoietic activity (HTA) in the bone marrow 
and spleen, echocardiography assessment, and laboratory parameters are 
provided in Supplementary Material.

Follow-up and study outcomes
Follow-up data were collected through telephone interviews with the pa
tients, their next of kin, or their legal representative. Hospital records 
and clinical documents were screened for confirmation. The composite pri
mary study outcome was MACE, including non-fatal stroke, non-fatal myo
cardial infarction, coronary revascularization, and CV death.32 Major 
adverse cardiovascular events adjudication was performed by one cardiolo
gist (C.G.) and one cardiac imaging radiologist (A.R.), blinded to imaging 
data. The secondary endpoint, all-cause mortality, comprised CV and 
non-CV death. The last follow-up date was 1 October 2022, with censoring 
for patients not reaching the endpoints during the study period.

Statistical approach
Details are provided in Supplementary Material. Briefly, to identify cut-points 
in SNA (lAmgyA/vmPFC and lAmygA/temp), we performed a classification 
and regression tree (CART) analysis for time-to-event data based on the all- 
cause mortality endpoint using the cart command in Stata MP/18.33 Bivariate 
and multivariable analyses were performed to investigate the association 
between SNA (AmgyA/vmPFC) [as continuous and as dichotomized vari
ables (high vs. low based on CART analysis)] and time-to-event outcomes, 
where SNA (lAmgyA/vmPFC) had a linear effect on time-to-MACE and 
time-to-death. We performed Fine and Gray’s proportional sub-distribution 
hazards models for time-to-MACE, assuming that non-CV death was a com
peting risk, and we applied Cox regression models for all-cause mortality. To 
explore the impact of competing variables on the association between SNA 
(lAmgyA/vmPFC) and our study endpoint, we built five different models, de
fining the covariables a priori: we first evaluated the impact of basic demo
graphic variables on the association between SNA (lAmgyA/vmPFC) and 
MACE/all-cause mortality (Model 1). Next, we assessed the effect of 
CVRFs, cardiac and non-cardiac comorbidities, as well as sociocultural vari
ables on the association between SNA (lAmgyA/vmPFC) and MACE/all- 
cause mortality (Model 2), followed by medication (Model 3), laboratory 
parameters (Model 4), and cardiac imaging findings (Model 5). All statistical 
tests were performed using Stata MP/18 (StataCorp, 2023, College 
Station, TX, USA). To compare baseline characteristics between patients 
with high and low SNA (lAmgyA/vmPFC) or between those who experi
enced the study endpoints (MACE and all-cause mortality), we performed 
a χ2 test for categorical variables and an independent t-test of Mann– 
Whitney U test for continuous variables, depending on the distribution.

Results
Demographic and clinical characteristics of 
the study population
Overall, 963 individuals (mean age 58.4 ± 16.1 years, 41% female) met 
the inclusion criteria and were followed for a median of 5 years (IQR: 
3–9 years, Figure 1). Amongst them, 340 (35.3%) patients had known 
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CVD, including CAD (18.9%) and/or structural heart disease (22.3%). A 
total of 355 (36.9%) patients had a cancer history, while 34 (3.5%) pa
tients had chronic inflammatory disease. The most common cancers 

were lymphoma (48.5%), melanoma (13.6%), head and neck cancer 
(13.1%), breast cancer (13%), and lung cancer (7%). Cardiovascular 
risk factor prevalence was high as indicated in Table 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 1 Patient’s baseline characteristics stratified by stress-related neural activity (lAmygA/vmPFC)

Patient’s characteristics Total (n = 963) SNA (lAmygA/vmPFC) P-value

Lowa (n = 656) Higha (n = 307)

Age (years)—mean (SD) 58.43 (16.07) 55.66 (16.53) 64.36 (13.24) <.001

Sex 1.00

Male 571 (59.29%) 389 (59.30%) 182 (59.28%)

Female 392 (40.71%) 267 (40.70%) 125 (40.72%)

BMI (kg/m2)—mean (SD) 25.59 (5.10) 25.42 (5.03) 25.93 (5.23) .18

Socioeconomic variables

Living situation .42

Partnership/married 553 (57.42%) 371 (56.55%) 182 (59.28%)

Living alone 410 (42.58%) 285 (43.45%) 125 (40.72%)

Occupation skill level .28

Low 794 (87.54%) 536 (86.73%) 258 (89.27%)

High 113 (12.46%) 82 (13.27%) 31 (10.73%)

Comorbidities

Comorbidities—non-cardiac 98 (10.18%) 56 (8.54%) 42 (13.68%) .014

Comorbidities—cardiac 340 (35.31%) 207 (31.55%) 133 (43.32%) <.001

Known CAD 182 (18.90%) 108 (16.46%) 74 (24.10%) .005

Known structural or valvular heart disease, arrhythmia 215 (22.33%) 123 (18.75%) 92 (29.97%) <.001

History of cancer 355 (36.86%) 264 (40.24%) 91 (29.64%) .001

Chronic inflammatory disease 34 (3.53%) 21 (3.20%) 13 (4.23%) .42

Cardiovascular risk factors

Obesity 134 (16.54%) 81 (14.81%) 53 (20.15%) .055

Diabetes 189 (19.65%) 108 (16.49%) 81 (26.38%) <.001

Dyslipidaemia 289 (30.04%) 185 (28.24%) 104 (33.88%) .076

Hypertension 446 (46.36%) 277 (42.29%) 169 (55.05%) <.001

Family history of CAD 127 (13.20%) 88 (13.44%) 39 (12.70%) .75

Smoking 492 (51.14%) 329 (50.23%) 163 (53.09%) .41

Medication

Blood pressure/heart failure medication 214 (22.22%) 121 (18.45%) 93 (30.29%) <.001

Antiplatelet/anticoagulants 158 (16.41%) 89 (13.57%) 69 (22.48%) <.001

Anti-inflammatory drugs 201 (20.87%) 119 (18.14%) 82 (26.71%) .002

Antiarrhythmics 17 (1.77%) 8 (1.22%) 9 (2.93%) .060

Antidepressants 55 (5.71%) 26 (3.96%) 29 (9.45%) <.001

Antidiabetic medication 48 (4.98%) 22 (3.35%) 26 (8.47%) <.001

Statins 111 (11.53%) 62 (9.45%) 49 (15.96%) .003

BMI, body mass index; CAD, coronary artery disease; lAmygA, left amygdala activity; SNA, stress-related neural activity; vmPFC, ventromedial prefrontal cortex. 
aBased on cut-points defined by a classification and regression tree analysis (CART) for time-to-event data with high lAmygA/vmPFC ≥ 0.727.
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Laboratory measurements and 
echocardiography findings
Within 6 months of 18F-FDG-PET, all patients underwent transthoracic 
echocardiography. Mean left ventricular ejection fraction (LVEF) was 
58.0 ± 9.9%. Left ventricular hypertrophy was diagnosed in 103 patients 
(12.7%), while wall motion abnormalities, diastolic dysfunction, or valvu
lar heart disease were detected in 6.9%, 28.5%, and 19.8% of patients, 
respectively (Table 2). Mean LVEF did not differ significantly between pa
tients with and without cancer history (57.9 ± 8.2% vs. 58.1 ± 10.8%, 
P = .802). Circulating inflammatory markers comprising C-reactive pro
tein, neutrophils, and lymphocytes, measured within 6 days and within 
12 months of 18F-FDG-PET, respectively, are depicted in Table 2.

Relation between stress-associated neural 
activity and adverse events
During follow-up, 118 patients (12.3%) experienced MACE, and 270 
(28.0%) died. Table 3 lists baseline variables in the overall study popula
tion stratified by study endpoints.

Amongst the 270 patients who died, 238 (88%) died from non-cardiac 
causes, and 32 due to cardiac disease (11.8%). Stress-related neural 

activity (lAmygA/vmPFC) was significantly higher in patients who experi
enced MACE than in those who did not (P = .039) (Figure 2A, Table 3). In 
contrast, SNA (meanAmygA/vmPFC) and SNA (rAmygA/vmPFC) did 
not differ significantly between individuals with and without MACE 
(P = .071, and P = .176,  respectively) (Figure 2A, Table 3).

In patients who died from any cause during follow-up, SNA 
(meanAmygA/vmPFC), SNA (rAmygA/vmPFC), and SNA (lAmygA/ 
vmPFC) were all significantly higher than in survivors (P < .001) (Figure 2B, 
Table 3). Based on CART analysis, individuals with SNA (meanAmygA/ 
vmPFC) ≥ 0.719, SNA (rAmygA/vmPFC) ≥ 0.722, and SNA (lAmygA/ 
vmPFC) ≥ 0.727 were defined as having high SNA and all others as having 
low SNA (Table 3). Given that dichotomized SNA (lAmygA/vmPFC) 
showed the strongest associations with study endpoints (Table 3), only 
SNA (lAmygA/vmPFC) was used for further analysis. Kaplan–Meier survival 
curves for MACE and all-cause mortality yielded significant group differences 
between individuals with high vs. low SNA (lAmygA/vmPFC) (Figure 3). We 
observed a 1.5-fold higher risk for MACE (sub-distribution hazard ratio 
[SHR] 1.52 [95% CI: 1.05–2.19], P = .026) (Figure 3A, Table 4) and a 
2.5-fold higher risk for all-cause mortality (hazard ratio [HR] 2.49 [95% CI: 
1.96–3.17], P < .001) (Figure 3B, Table 4) in the high SNA (lAmygA/ 
vmPFC) group compared to the low SNA (lAmygA/vmPFC) group.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Cardiac imaging findings and laboratory values within 6 (12) months of 18F-FDG-PET stratified by 
stress-related neural activity (lAmygA/vmPFC)

Patient’s characteristics Total (n = 963) SNA (lAmygA/vmPFC) P-value

Lowa (n = 656) Higha (n = 307)

Echocardiography/MRI findings

LV hypertrophy 103 (12.68%) 67 (12.25%) 36 (13.58%) .59

LVEF (%)—mean (SD) 58.00 (9.91) 58.32 (9.53) 57.34 (10.59) .19

LV wall motion abnormalities 66 (6.85%) 36 (5.49%) 30 (9.77%) .014

LV diastolic dysfunction 274 (28.45%) 173 (26.37%) 101 (32.90%) .036

Valvular heart disease 191 (19.83%) 112 (17.07%) 79 (25.73%) .002

Inflammation markers (within 6 days of 18F-FDG-PET)—median (IQR)

CRP (mg/L) 6.90 (2.00–34.00) 4.15 (1.20–16.00) 9.90 (4.10–57.00) <.001

WBC—neutrophiles (1000/μL) 3.92 (2.50–6.14) 3.47 (2.39–5.26) 4.85 (2.96–7.68) <.001

WBC—lymphocytes (1000/μL) 1.22 (0.73–1.84) 1.20 (0.72–1.89) 1.28 (0.77–1.78) .80

18F-FDG bone marrow uptake (SUVmax) 2.26 (0.68) 2.22 (0.61) 2.33 (0.81) .040

18F-FDG splenic uptake (SUVmean) 1.81 (2.31) 1.71 (0.50) 2.01 (4.04) .069

Inflammation markers (within 12 months of 18F-FDG-PET)—median (IQR)

CRP (mg/L) 87 (20–186) 75 (15–170) 113 (32–214.00) <.001

WBC—neutrophiles (1000/μL) 10.18 (6.60–16.09) 9.47 (6.22–15.87) 11.47 (7.54–16.35) .003

WBC—lymphocytes (1000/μL) 2.00 (1.46–2.74) 1.98 (1.44–2.65) 2.09 (1.53–2.84) .042

Laboratory values (within 12 months of 18F-FDG-PET)—median (IQR)

Creatinine (μmol/L) 93 (78–132) 90 (76–118) 112 (84–189) <.001

Non-fasting glucose (mmol/L) 5.50 (5.00–6.20) 5.30 (5.00–5.90) 5.90 (5.30–6.90) <.001

NT-proBNP (ng/L) 544 (144–2879) 344 (100–1688) 1394 (269–6990) <.001

18F-FDG-PET, 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography; CRP, C-reactive protein; lAmygA, left amygdala metabolic activity; LV, left ventricle; LVEF, left ventricular 
ejection fraction; MRI, magnetic resonance imaging; NT-proBNP, N-terminal pro-brain natriuretic peptide; SNA, stress-related neural activity; vmPFC, ventromedial prefrontal cortex; 
WBC, white blood cell count. 
aBased on cut-points defined by a classification and regression tree analysis (CART) for time-to-event data with high lAmygA/vmPFC ≥ 0.727.
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Correlation of baseline and clinical 
variables with stress-related neural 
activity (lAmygA/vmPFC)
Unadjusted linear regression analysis exploring the association between 
baseline/clinical parameters and SNA (lAmygA/vmPFC) revealed strong 
correlations of age (standardized β coefficient [95% CI] = .298 [0.244, 
0.352], P < .001), hypertension (β = .181 [0.121, 0.240], P < .001), 
blood pressure/HF medication (β = .153 [0.092, 0.215], P < .001), 
inflammatory markers [C-reactive protein (β = .282 [0.186, 0.379], 
P < .001), neutrophils (β = .156 [0.044, 0.268], P = .006)], and creatin
ine (β = .155 [0.092, 0.219], P < .001) with SNA (lAmygA/vmPFC). 
A full list is provided in Supplementary data online, Table S2.

Clinical variables according to stress- 
related neural activity (lAmygA/vmPFC)
To explore the association between SNA (lAmygA/vmPFC) and baseline 
characteristics, the population was stratified according to dichotomized 
(high vs. low) SNA (lAmygA/vmPFC). Individuals with high SNA 
(lAmygA/vmPFC) were significantly older (64.4 ± 13.2 years vs. 55.7 ±  
16.5 years, P < .001) and had a higher prevalence of CVRFs and comorbid
ities than individuals with low SNA (lAmygA/vmPFC, Table 1). Moreover, 
individuals on medical therapies such as blood pressure/HF medication 
(30.3% vs. 18.5%, P < .001), antiplatelet/anticoagulant compounds 
(22.5% vs. 13.6%, P < .001), anti-inflammatory drugs (26.7% vs. 18.1%, 
P = .002), antidepressants (9.5% vs. 4.0%, P < .001), antidiabetic medica
tion (8.5% vs. 3.4%, P < .001), or statins (16.0% vs. 9.5%, P = .003) were 
more frequently in the high SNA (lAmygA/vmPFC) than in the low SNA 
(lAmygA/vmPFC) group (Table 1).

Conversely, individuals with cancer history were more often in the low 
SNA (lAmygA/vmPFC) group than those without cancer history (40.2% 
vs. 29.6%, P = .001, Table 1), while there was no in-between-group differ
ence in individuals with chronic inflammatory disease or according to sex, 
BMI, or socioeconomic status (Table 1).

Echocardiography and laboratory 
parameters according to stress-related 
neural activity (lAmygA/vmPFC)
Table 2 depicts group differences in echocardiography and laboratory 
parameters at the time of 18F-FDG-PET between individuals with high 
vs. low SNA (lAmygA/vmPFC). Compared to individuals with low SNA 
(lAmygA/vmPFC), individuals with high SNA (lAmygA/vmPFC) more 
often had left ventricular wall motion abnormalities (9.8% vs. 5.5%, 
P = .014), left ventricular diastolic dysfunction (32.9% vs. 26.4%, P = .036), 
or valvular heart disease (25.7% vs. 17.1%, P = .002) (Table 2). Further, in
dividuals with high SNA (lAmygA/vmPFC) had higher levels of C-reactive 
protein within ±3 days from 18F-FDG/PET (9.9 [4.1–57.0] mg/L vs. 4.2 
[1.2–16.0] mg/L, P < .001), neutrophils (4.9 [3.0–7.7]/µL vs. 3.5 [2.4– 
5.3]/µL, P < .001) as well as a trend towards higher bone marrow or 
splenic activity, indicated by 18F-FDG uptake, (bone marrow: 2.33 ±  
0.81 SUVmax vs. 2.22 ± 0.61 SUVmax, P = 0.04; spleen: 2.01 ± 4.04 
SUVmean vs. 1.71 ± 0.50 SUVmean, P = .069) than individuals with low 
SNA (lAmygA/vmPFC). Creatinine levels (112 [84–189] µmol/L vs. 90 
[76–118] µmol/L, P < .001), non-fasting glucose (5.9 [5.3–6.9] mmol/L 
vs. 5.3 [5.0–5.9] mol/L, P < .001), and NT-proBNP (1394 [269–6990] 
ng/L vs. 344 [100–1688] ng/L, P < .001) were all significantly higher in 
the high SNA (lAmygA/vmPFC) group compared to the low SNA 
(lAmygA/vmPFC) group (Table 2).
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Unadjusted association of baseline and 
imaging variables with study endpoints
The association between baseline variables, SNA (lAmygA/vmPFC), 
and study outcomes was assessed using Fine and Gray’s proportional 
sub-distribution hazards models for MACE and Cox regression 
models for all-cause mortality. Unadjusted associations between all 
baseline and imaging variables with study endpoints are depicted in 
Table 4.

Prognostic value of stress-related neural 
activity (lAmygA/vmPFC) for the 
prediction of major adverse cardiovascular 
events and all-cause mortality
The association between SNA (lAmgyA/vmPFC) and the primary study 
endpoint MACE was lost when information about basic demographic 

variables (age, sex, BMI, and heart rate, Model 1: adjusted SHR 1.41 
[95% CI: 0.92–2.17], P = .118), age, sex, CVRFs, sociocultural variables, 
and comorbidities (Model 2: adjusted SHR 1.28 [95% CI: 0.84–1.97], 
P = .250), age, sex, and medication (Model 3: adjusted SHR 1.19 [95% 
CI: 0.81–1.76], P = .376), age, sex, and laboratory parameters (Model 4: 
adjusted SHR 1.33 [95% CI: 0.85–2.07], P = .207), or age, sex, and echo
cardiography findings (Model 5: adjusted SHR 1.18 [95% CI: 0.77–1.82], 
P = .445) were added to the model (Figure 4A).

Conversely, the relationship between SNA (lAmgyA/vmPFC) and 
the secondary outcome of all-cause mortality remained robust after 
multivariable adjustments in all five models (Figure 4B). In fact, SNA 
(lAmgyA/vmPFC) remained a strong and independent predictor of all- 
cause mortality after adjustment for demographic variables (Model 1: 
adjusted HR 1.95 [95% CI: 1.46–2.60], P < .001), or when adding to 
age and sex CVRFs, sociocultural variables, and comorbidities (Model 
2: adjusted HR 1.83 [95% CI: 1.37–2.45], P < .001), medication 
(Model 3: adjusted HR 1.89 [95% CI: 1.47–2.42], P < .001), laboratory 

A

B

Figure 2 Analysis of SNA (AmygA/vmPFC) vs. study outcomes based on bilateral, right, and left amygdala activities, for (A) MACE, and (B) all-cause 
mortality. MACE, major adverse cardiovascular events; SNA, stress-related neural activity; vmPFC, ventromedial prefrontal cortex
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parameters (Model 4: adjusted HR 1.78 [95% CI: 1.33–2.40], P < .001), 
or echocardiography findings (Model 5: adjusted HR 1.83 [95% CI: 
1.37–2.46], P < .001). The full models are depicted in Table 5.

Notably, similar associations between SNA and MACE or SNA 
and all-cause mortality were observed in multivariable models 
when SNA was normalized to the temporal lobe (lAmygA/temp) 
instead of the vmPFC. These data are presented in Supplementary 
data online, Table S3. The association between SNA (lAmgyA/ 
vmPFC) and all-cause mortality was stronger than the one between 
SNA (lAmygA/temp) and all-cause mortality, as evidenced by 
C-statistics.

Discussion
Previous studies have provided important insights into the mechanisms 
linking psychological stress to MACE.7,8 Notably, the SNA axis emerges 
as a target for pharmacologic or non-pharmacologic (e.g. stress reduction 
techniques) approaches to interrupt transmission along it. Consequently, 
SNA imaging using 18F-FDG-PET could guide CV risk stratification and/or 
monitoring of therapeutic interventions.14,17 However, the value of SNA 
imaging in the presence of routinely obtained parameters in CV care is 
currently unknown. To address this issue, we evaluated the incremental 
long-term prognostic value of SNA imaging over detailed clinical, 

Figure 3 Unadjusted cumulative incidences of (A) MACE, and cumulative hazard of (B) all-cause mortality. 18F-FDG-PET, 2-[18F]fluoro-2-deoxy-D-glucose 
positron emission tomography; HR, hazard ratio; lAmygA, left amygdala activity; MACE, major adverse cardiovascular events; SHR, sub-distribution hazard 
ratio; SNA, stress-related neural activity; vmPFC, ventromedial prefrontal cortex
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Table 4 Time-to-event analysis depicting the bivariate association between baseline variables, laboratory parameters, 
imaging findings, stress-related neural activity (lAmygA/vmPFC), and outcomes

Factors MACE All-cause mortality

Crude SHR (95% CI) P-value Crude HR (95% CI) P-value

Age (years) 1.03 (1.02, 1.05) <.001 1.04 (1.03, 1.05) <.001

Sex (male vs. female) 1.38 (0.94, 2.02) .097 1.24 (0.97, 1.58) .093

BMI (kg/m2) 1.00 (0.97, 1.04) .826 0.98 (0.95, 1.01) .151

Heart rate (×10 b.p.m.) 0.97 (0.86, 1.09) .556 1.09 (1.01, 1.17) .030

Socioeconomic variables

Living alone vs. living not alone 1.02 (0.71, 1.46) .911 0.73 (0.57, 0.93) .012

Low occupation skill level 1.41 (0.74, 2.69) .300 1.95 (1.21, 3.15) .006

Comorbidities

Known comorbidities—non-cardiac 1.26 (0.72, 2.20) .426 1.40 (0.97, 2.01) .071

Comorbidities—cardiac 1.82 (1.27, 2.62) .001 1.45 (1.14, 1.85) .003

History of cancer 0.74 (0.49, 1.11) .141 0.82 (0.63, 1.07) .149

Chronic inflammatory disease 1.02 (0.37, 2.80) .969 0.73 (0.35, 1.56) .420

Cardiovascular risk factors

Obesity 0.89 (0.50, 1.58) .694 0.90 (0.62, 1.32) .596

Diabetes 2.20 (1.49, 3.23) <.001 1.46 (1.10, 1.93) .009

Dyslipidaemia 2.22 (1.55, 3.19) <.001 0.95 (0.73, 1.24) .696

Hypertension 1.78 (1.24, 2.58) .002 1.27 (1.00, 1.61) .050

Family history of CAD 1.23 (0.75, 2.02) .412 0.72 (0.48, 1.07) .101

Smoking 1.74 (1.20, 2.51) .004 1.10 (0.86, 1.39) .456

Medication

Blood pressure/heart failure 1.08 (0.70, 1.66) .726 1.79 (1.38, 2.32) <.001

Antiplatelet/anticoagulants 1.12 (0.69, 1.81) .641 1.36 (1.003, 1.85) .048

Anti-inflammatory drugs 0.89 (0.56, 1.43) .629 1.41 (1.07, 1.87) .016

Antiarrhythmics 1.00 (0.24, 4.12) .999 2.00 (0.99, 4.05) .054

Antidepressants 1.48 (0.74, 2.93) .264 1.66 (1.06, 2.59) .026

Antidiabetic medication 1.30 (0.60, 2.81) .500 1.53 (0.95, 2.47) .081

Statins 0.90 (0.49, 1.65) .734 1.39 (0.98, 1.95) .063

Echocardiography/MRI findings

LV hypertrophy 1.34 (0.77, 2.33) .299 1.75 (1.24, 2.47) .001

LVEF (%) 0.97 (0.96, 0.99) .001 0.98 (0.97, 0.99) <.001

LV wall motion abnormalities 1.44 (0.77, 2.70) .250 2.00 (1.37, 2.93) <.001

LV diastolic dysfunction 1.84 (1.28, 2.65) .001 1.27 (0.98, 1.63) .068

Valvular heart disease 0.97 (0.61, 1.54) .892 1.19 (0.90, 1.58) .231

Inflammation markers (within 6 days of 18F-FDG-PET)

CRP (mg/L) 1.001 (0.998, 1.005) .467 1.002 (0.999, 1.005) .313

WBC—neutrophiles (1000/μL) 1.049 (1.003, 1.097) .038 1.044 (1.001, 1.089) .044

WBC—lymphocytes (1000/μL) 0.989 (0.968, 1.011) .319 1.009 (1.000, 1.019) .052

Continued 

12                                                                                                                                                                                                     Mikail et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/advance-article/doi/10.1093/eurheartj/ehae162/7643174 by U
PD

 E-Library user on 11 April 2024



biological, and echocardiography findings in a real-world European 
scenario. Our longitudinal analysis, conducted in a well- 
characterized, large population with extended follow-up, is the first 
to show that the association between SNA and MACE is lost when 
details of the CV history, laboratory parameters, cardiac imaging find
ings, or sociocultural characteristics are known. Conversely, the rela
tionship between SNA and all-cause mortality remains robust after 
multivariable adjustments. Our data emphasize that age, comorbid
ities, medical therapies, and inflammation modify the effect of SNA 
on CV endpoints (Structured Graphical Abstract). These findings, 
thus, provide insights into the clinical value of SNA imaging in a real- 
world setting consisting of typical frail and older CV patients.

While our results confirm previous evidence reporting an influence 
of age,23,34 socioeconomic and lifestyle variables6,8–10,14, CVD risk factors 
and disease states,14,17–20 inflammation,7,17,35 or pharmacological treat
ments4,21,36 on SNA, our findings diverge from prior investigations showing 
an independent association between SNA and MACE.5,7,8 Several explana
tions for this apparent contradiction can be considered. First, to the best of 
our knowledge, this is the first study investigating the prognostic role 
of SNA in a European population, while other studies included U.S.4,6,7,9– 

11,17,18 and South Korean13,14,20 populations. Geographical differences 
may be relevant as socio-environmental factors such as noise exposure 
and socioeconomic disparities increase CV mortality through enhanced 
SNA,8,10 and could partly explain the heavier CV burden of SNA in these 
countries compared to Switzerland.37 Second, our population is unique 
in terms of inclusion criteria and well-characterized health status. 
Participants in previous studies were healthier,5–9,17 attributes rarely seen 
in clinical cardiology, thereby limiting these findings’ generalizability. 
Conversely, we have investigated patients with conditions affecting glucose 
metabolism and SNA, including medical therapies, systemic inflammation, 
active comorbidities, and cardiac conditions, and have controlled for these 
variables in our models. Notably, our study cohort comprised patients with 
reduced LVEF and rhythm disorders, who were recently shown to have 
reduced, and not increased, AmygA.12 Additionally, the Swiss Federal 

Department for Health Affairs covers a variety of 18F-FDG-PET indications 
exceeding oncological contexts.38 Thus, our population could reflect a 
wider variety of clinical scenarios and better depict the prognostic value 
of SNA imaging in a real-world setting. Third, methodological differences 
regarding MACE definition might have partly accounted for the weaker as
sociation between SNA and MACE seen in our analysis, with previous stud
ies using the less restrictive Framingham Heart Study criteria.6,39 Fourth, 
differential definitions of SNA might account for the observed inconsisten
cies between studies. While we used the lAmygA/vmPFC ratio to reflect 
SNA, thereby capturing a potential cardioprotective effect of the brain 
missed by other approaches,6,11 most previous reports defined SNA as 
the ratio between AmygA and metabolic activities in other brain regions 
such as the temporal lobe or the cerebellum.5,7–10,18 Nevertheless, analysis 
of our data by using SNA (lAmygA/temp) instead of SNA (lAmygA/vmPFC) 
yielded similar results.

Unlike in previous studies where ICD codes were used to identify 
MACE,6 we have thoroughly assessed outcomes by systematically per
forming phone calls, consulting clinical records, and interrogating death 
registries. This rigorous approach allowed us to obtain a more com
plete assessment and reduced the risk of event misclassification. 
Similarly, socioeconomic factors were evaluated at an individual level 
and not derived from zip code or neighbourhood status.8 Our results 
suggest that the prognostic value of SNA imaging for MACE may 
hold true before the development of CVDs and less so after CVDs 
have occurred. If confirmed, this hypothesis would highlight the import
ance of initiating early preventive measures to reduce SNA before CVD 
onset, such as meditation or physical exercise.14,40,41

Another finding of our study is that SNA remains predictive of all-cause 
mortality even after correcting for baseline clinical, biological, and cardiac 
structural abnormalities. To the best of our knowledge, the association 
of SNA with all-cause mortality has not yet been explored. Indeed, given 
the wealth of data linking CV health to stress, previous studies have focused 
exclusively on the impact of SNA on MACE.5–8 Yet, stress impairs health 
beyond CVDs, with a greater risk of death, including from unnatural causes, 
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Table 4 Continued  

Factors MACE All-cause mortality

Crude SHR (95% CI) P-value Crude HR (95% CI) P-value

Inflammation marker (within 12 months of 18F-FDG-PET)

CRP (mg/L) 1.000 (0.999, 1.002) .896 1.002 (1.001, 1.003) <.001

WBC—neutrophils (1000/μL) 0.993 (0.978, 1.008) .353 1.000 (0.991, 1.009) .942

WBC—lymphocytes (1000/μL) 0.967 (0.905, 1.033) .324 1.004 (0.995, 1.012) .425

Lab values (within 12 months of 18F-FDG-PET)

Creatinine (μmol/L) 1.001 (1.000, 1.002) .124 1.002 (1.002, 1.003) <.001

NT-proBNP (ng/L) × 10 000 1.124 (0.997, 1.267) .055 1.208 (1.119, 1.305) <.001

Non-fasting glucose (mmol/L) 1.013 (0.991, 1.036) .251 1.026 (1.004, 1.048) .018

18F-FDG-PET imaging parameters

18F-FDG uptake bone marrow (SUVmax) 0.61 (0.43, 0.87) .007 0.83 (0.67, 1.03) .096

18F-FDG splenic uptake (SUVmean) 1.07 (1.06, 1.08) <.001 0.89 (0.68, 1.17) .410

High SNA (lAmygA/vmPFC) 1.52 (1.05, 2.19) .026 2.49 (1.96, 3.17) <.001

18F-FDG-PET, 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography; BMI, body mass index; b.p.m., beats per minute; CAD, coronary artery disease; CRP, C-reactive protein; HR, 
hazard ratio; LV, left ventricle; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro-brain natriuretic peptide; SHR, sub-distribution hazard ratio; WBC, white blood cell count.
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in patients with stress-related disorders.42 The widening survival curves 
over time for high vs. low SNA and the robustness of the association be
tween high SNA and all-cause mortality following multivariable adjustment 
highlights the strength of this link.

Currently, there is no consensus on how to quantify SNA using 
18F-FDG-PET. However, approaches to correct AmygA to a remote 
cerebral activity, such as the cerebellum, the temporal lobes, or the 
vmPFC, have increasingly been applied.4,7,11 Normalizing to remote tissue 

Figure 4 Multivariate analysis adjusted for baseline clinical characteristics, laboratory measures, and cardiac imaging findings, for (A) MACE, and (B) 
all-cause mortality. BMI, body mass index; CVRF, cardiovascular risk factor; HR, hazard ratio; MACE, major adverse cardiovascular events; SHR, sub- 
distribution hazard ratio
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activity helps to overcome the inter-variability issues introduced in SUV 
measurement by differences in injected radiotracer activities, PET/CT 
camera characteristics, and inter-individual metabolism.43 Accordingly, 
the European Association of Nuclear Medicine recommends using semi- 
quantitative measures, i.e. ‘SUV relative to a normal brain region’.43 The 
rationale behind choosing the cerebellum and the temporal lobes is 
that these regions are not involved in the neural stress loop and reliably 
depict baseline brain activity. Conversely, the vmPFC’s role in attenuating 
stress responses is increasingly acknowledged.44–46 As such, the ratio of 
AmygA and vmPFC metabolic activity is thought to reflect an interaction 
between functionally connected neural regions that promote vs. regulate 
the stress response. Notably, in our study, both SNA corrected for 
vmPFC metabolic activity as well as SNA corrected for temporal lobe 
metabolic activity produced comparable results. While these findings 
underline the reproducibility of measurements across different brain re
gions, it is notable that SNA (lAmygA/vmPFC) showed a stronger associ
ation with all-cause mortality than SNA (lAmygA/temp). This observation 
is consistent with previous studies, where using vmPFC activity to adjust 
for AmygA yielded a stronger association between SNA and clinical out
comes than adjusting for other background cerebral activity.11 Thus, we 
present novel evidence for the detrimental role of an imbalance in the 
AmygA/vmPFC interplay resulting in excess mortality. It should also be 
noted that the prefrontal cortex itself might directly affect CV health, in
dependently from the amygdala. A recent study focusing on the rostro
medial prefrontal cortex (rmPFC), a region adjacent to the vmPFC, in 
CAD patients, showed that a higher increase in rmPFC activity after acute 
mental stress was associated with a higher risk of MACE.28 The 

independent involvement of the prefrontal cortex in mental 
stress-associated CV outcomes warrants further study.

Furthermore, there is currently a lack of clarity regarding the signifi
cance of brain laterality when studying SNA.47 Our study is the first to 
present a comparative analysis between bilateral and unilateral AmygA 
and their association with MACE. We found a stronger association be
tween lAmygA and MACE or overall mortality than for meanAmygA 
and rAmygA. This apparent laterality in SNA and its adverse impact is 
novel and robustly supported by previous reports suggesting a more 
prevalent role of left amygdala in emotion processing.48–51

An unexpected finding of our analysis was that, although HTA in the 
bone marrow and SNA were positively correlated, bone marrow activ
ity and our study endpoints were inversely correlated. Conversely, a 
positive association was observed between splenic activity and clinical 
outcomes. Accordingly, increased splenic 18F-FDG uptake, but not 
bone marrow 18F-FDG uptake, was associated with an increased 
MACE risk in patients with a recent myocardial infarction.52 This finding 
can be attributed to the spleen’s larger leucocyte reservoir and its ac
tivation state, which may more closely reflect the pro-inflammatory 
state of circulating leucocytes.52,53 Additionally, 18F-FDG uptake in 
the vertebrae might not solely reflect bone marrow activity but also 
the activity of osteoblasts, stromal cells, and mesenchymal/haematopoi
etic stem cells.54 Moreover, although previous mediation analyses have 
convincingly shown that enhanced bone marrow activity mediated the 
effect of SNA on atherosclerosis and MACE, a direct effect of bone 
marrow activity on arterial inflammation and/or CV outcomes was 
missing.5,7,13 Such a direct link between enhanced bone marrow activity 
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Table 5 Associations between stress-related neural activity (lAmygA/vmPFC) and outcomes: multivariable analysis 
with adjustment for various confounding factors

MACE All-cause mortality

Adjusted  
SHR (95% CI)

P-value Adjusted HR  
(95% CI)

P-value

Model 1: age, sex, BMI, and heart rate

SNA (lAmygA/vmPFC): per unit change 3.00 (0.26, 34.79) .381 7.48 (1.51, 37.19) .014

SNA (lAmygA/vmPFC): high vs. lowa 1.41 (0.92, 2.17) .118 1.95 (1.46, 2.60) <.001

Model 2: age, sex, CVRFs, cardiac and non-cardiac comorbidities, and sociocultural variables

SNA (lAmygA/vmPFC): per unit change 2.33 (0.18, 30.20) .517 4.57 (0.85, 24.54) .076

SNA (lAmygA/vmPFC): high vs. lowa 1.28 (0.84, 1.97) .250 1.83 (1.37, 2.45) <.001

Model 3: age, sex, and medication

SNA (lAmygA/vmPFC): per unit change 2.44 (0.33, 18.31) .385 6.14 (1.67, 22.50) .006

SNA (lAmygA/vmPFC): high vs. lowa 1.19 (0.81, 1.76) .376 1.89 (1.47, 2.42) <.001

Model 4: age, sex, and laboratory parameters

SNA (lAmygA/vmPFC): per unit change 1.52 (0.15, 15.05) .722 3.74 (0.88, 15.90) .074

SNA (lAmygA/vmPFC): high vs. lowa 1.33 (0.85, 2.07) .207 1.78 (1.33, 2.40) <.001

Model 5: age, sex, and cardiac imaging findings (echocardiography)

SNA (lAmygA/vmPFC): per unit change 1.95 (0.15, 25.83) .612 7.97 (1.55, 40.90) .013

SNA (lAmygA/vmPFC): high vs. lowa 1.18 (0.77, 1.82) .445 1.83 (1.37, 2.46) <.001

BMI, body mass index; CVRF, cardiovascular risk factor; HR, hazard ratio; lAmygA, left amygdala metabolic activity; MACE, major adverse cardiovascular events; SHR, sub-distribution 
hazard ratio; SNA, stress-related neural activity; vmPFC, ventromedial prefrontal cortex. 
aCut-point defined by classification and regression tree analysis (CART) with high lAmygA/vmPFC ≥ 0.727.
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and arterial inflammation was recently shown in healthy individuals, sug
gesting that bone marrow activity is an early phenomenon contributing 
to atherosclerosis initiation and progression.35 Accordingly, in type I 
diabetic patients with more advanced atherosclerotic disease, a nega
tive correlation between bone marrow activity and osteoprotegerin, 
a pro-inflammatory cytokine, was recently observed.55 Similarly, bone 
marrow activity did not correlate with arterial or systemic inflammation 
in stroke survivors,13 during an acute coronary syndrome,56 following 
anti-inflammatory treatment,20 and showed alterations over time.4,57

Observational and preclinical studies have also reported that aging cor
relates inversely with osteogenesis and bone haematopoiesis within 
bone.58 Altogether, these inconsistencies indicate that, albeit critical, 
HTA is merely one link in the complex loop bridging SNA and CV out
comes, subjected to high variability depending on age and disease state.

Intriguingly, we have observed in our cohort that patients with cancer 
history were more often in the low SNA (lAmygA/vmPFC) group than 
individuals without cancer. This seemingly paradoxical finding highlights 
the complexity of factors interfering with SNA. A recent study in breast 
cancer survivors showed a negative correlation between received social 
support, SNA, and inflammation, with left amygdala reactivity and 
C-reactive protein levels lowering as social support increases.50

Similarly, a reduced SNA might improve cancer survivors’ outcomes 
by lowering systemic inflammation,59 a central element of the brain– 
heart axis.2 Moreover, cancer is a traumatic experience resembling post- 
traumatic stress disorders.60 Consequently, the amygdala volume in 
cancer survivors with intrusive recollection is reduced, which might, in 
turn, affect SNA intensity.61 Furthermore, anticancer treatments such 
as radiation could have altered SNA in this subgroup.62 Lastly, this unex
pected result could indicate a selection bias in our cohort, corresponding 
to a subgroup with lower SNA. Indeed, in a recent study on patients re
ferred for cancer staging, SNA independently predicted mortality and 
cancer progression, with significantly lower progression-free survival in 
the upper SNA tertile group than in control patients.63

Our study has several limitations. First, baseline clinical information 
was obtained from the hospital’s database of patients who underwent 
clinically indicated 18F-FDG-PET (mainly evaluation of newly discovered 
lesions or cancer monitoring/follow-up), thus possibly limiting our re
sults’ generalizability. Nonetheless, the association between SNA and 
outcomes remained significant in the non-oncological subgroup, sug
gesting that this has not affected our main results. Second, while we 
are the first to study the association between SNA and adverse out
comes in a European, mainly Caucasian, population, results obtained 
from a Swiss study sample might not be applied to other geographical 
regions given the impact of the socioeconomic environment on SNA.8,9

Third, lifestyle factors such as alcohol consumption and physical exer
cise that modify SNA could not be obtained in our study.6,14 Fourth, 
although we report the prevalence of depression in our sample, per
ceived stress was not assessed. Thus, the relation between emotional 
status, SNA, and adverse outcomes could not be analysed. Fifth, the 
number of all-cause mortality events in our population is significantly 
higher than the one of MACE, resulting in potential differences in the 
power analysis. Nevertheless, the MACE event rate in our study is high
er than in comparable studies,6–10 making it unlikely that a lack of power 
accounted for the missing link between SNA and MACE. Finally, the risk 
of type 1 error occurring cannot be excluded, given the large number of 
conducted statistical tests. These limitations are substantially counter
balanced by several important innovations, including the unique data 
obtained from a large, real-world European study sample, the novel 
finding of laterality in SNA, as well as the observed robust association 
between SNA and all-cause mortality.

By illuminating that older individuals with CVDs profit less from SNA 
imaging, our study suggests that the prognostic value of SNA for MACE 
prediction largely depends on the population. Our results, together 
with previous reports, indicate that SNA imaging might be useful in a 
primary prevention setting in younger and healthier individuals with 
CVRFs but less so in secondary prevention. In this context, it will be im
portant to determine the impact of aging itself and age-associated con
ditions on SNA. Conversely, SNA imaging may prove useful in patients 
with established CVD to predict all-cause mortality prior to high-risk 
procedures such as transcatheter aortic valve replacement. Hence, fu
ture studies need to determine which patient subgroups could benefit 
from routine SNA imaging as a diagnostic and/or monitoring tool. The 
question also arises at what stage SNA is still modifiable (timing hypoth
esis) and when active interventions, such as stress reduction techniques 
or pharmacological targeting of SNA, may be an effective prevention or 
treatment for CVD. Finally, the role of the prefrontal cortex in exerting 
potential cardioprotective effects needs to be further defined in future 
studies.
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