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The purpose of this study was to examine a nonparametric approach to
mapping kinetic parameters and their uncertainties with data from the
emerging generation of dynamic whole-body PET/CT scanners. Meth-
ods: Dynamic PET 18F-FDG data from a set of 24 cancer patients stud-
ied on a long-axial-field-of-view PET/CT scanner were considered.
Kinetics were mapped using a nonparametric residue mapping (NPRM)
technique. Uncertainties were evaluated using an image-based boot-
strapping methodology. Kinetics and bootstrap-derived uncertainties
are reported for voxels, maximum-intensity projections, and volumes of
interest (VOIs) corresponding to several key organs and lesions. Com-
parisons between NPRM and standard 2-compartment (2C) modeling
of VOI kinetics are carefully examined. Results: NPRM-generated
kinetic maps were of good quality and well aligned with vascular and
metabolic 18F-FDG patterns, reasonable for the range of VOIs consid-
ered. On a single 3.2-GHz processor, the specification of the bootstrap-
ping model took 140min; individual bootstrap replicates required
80min each. VOI time-course data were much more accurately repre-
sented, particularly in the early time course, by NPRM than by 2C
modeling constructs, and improvements in fit were statistically highly
significant. Although 18F-FDG flux values evaluated by NPRM and 2C
modeling were generally similar, significant deviations between vascu-
lar blood and distribution volume estimates were found. The bootstrap
enables the assessment of quite complex summaries of mapped kinet-
ics. This is illustrated with maximum-intensity maps of kinetics and their
uncertainties. Conclusion: NPRM kinetics combined with image-
domain bootstrapping is practical with large whole-body dynamic
18F-FDG datasets. The information provided by bootstrapping could
support more sophisticated uses of PET biomarkers used in clinical
decision-making for the individual patient.
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High-resolution dynamic whole-body PET scanning enhances
the ability to map metabolic characteristics of tissue, particularly in
the context of cancer. The current focus has been on dynamic PET
studies with 18F-FDG using the well-established Huang–Sokoloff
2-compartment (2C) modeling framework (1–3). Although 2C
modeling has had widespread application in PET imaging, far
beyond the brain setting in which it was developed, the biochemi-
cal understanding of the transporters involved in the metabolism
of 18F-FDG and their distribution across normal and cancerous tis-
sues has evolved in the years since the Huang–Sokoloff construct
was proposed (4–7). The temporal and spatial resolutions of
emerging scanners have transformed the ability to objectively
assess the accuracy of the 2C framework to represent 18F-FDG
time-course data across the diverse tissues encountered in the
human body. In this context, the assessment of 18F-FDG kinetics
based on more flexible nonparametric analysis approaches (8,9)
may be necessary. The most recent implementation of the non-
parametric voxel-level analysis scheme (9) is particularly effi-
cient, largely because of an extensive reliance on quadratic
programming techniques, and its nonparametric aspect provides
an ability to apply an image-domain bootstrapping process for
evaluation of statistical uncertainties in derived kinetic maps and
associated biomarkers (10,11). Uncertainties in diagnostic infor-
mation recovered from PET scans could augment decision-
making for individual patients that is based on complex nonlinear
radiomic metrics derived from a kinetic map.
The volume of data produced by a dynamic 18F-FDG PET study

on a state-of-the-art scanner with a long axial field of view (FOV) is
a practical computational challenge for voxel-level analysis of
kinetics. The bootstrap uncertainty assessment requires that com-
prehensive voxel-level analyses be applied to multiple simulated
datasets, each created to match the full character and extent of the
original data. This significantly adds to the computational challenge
involved.
The work here uses a series of dynamic 18F-FDG data acquired

on a long-axial-FOV scanner (2) to investigate the approach.
Apart from the demonstration of the practical feasibility of
kinetic mapping with uncertainty evaluation, the analysis allows
regional comparisons between nonparametric and 2C modeling
results in terms of both derived kinetics and accuracy of data
representation.
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MATERIALS AND METHODS

An extended materials and methods description is provided in the
supplemental materials (supplemental materials are available at http://
jnm.snmjournals.org) (12).

Patient Scans and Volumes of Interest (VOIs)
The data considered arise from a set of 24 patients with different

types of cancer who participated in an institutionally approved 18F-
FDG PET/CT study at Bern University Hospital (KEK 2019-02,193).
Details of the study were reported previously (2). In summary, PET
scanning was conducted on a Biograph Vision Quadra scanner (Sie-
mens) with a 106-cm axial FOV and a nominal in-plane resolution of
3.3mm in full width at half maximum (13). Data were acquired in list
mode starting 15 s before an intravenous bolus injection of 18F-FDG
(with activity of �3 MBq/kg of patient weight) to the left or right arm,
followed by flushing with 50mL of saline solution. The plasma glucose
level was measured for each patient. Emission data were acquired for
65min and binned into 62 contiguous time frames with durations of
23 10 s, 303 2 s, 43 10 s, 83 30 s, 43 60 s, 53 120 s, and 93 300 s.
Images were reconstructed with a voxel size of 1.653 1.653 1.65mm3.
Low-dose CT scans (voltage, 120kV; tube current, 25mA; CARE
Dose4D and CARE kV [Siemens]) were acquired as part of the examina-
tions. The CT images were reconstructed with a voxel size of
1.523 1.523 1.65mm3.

Automated segmentation algorithms based on CT and PET were
used to define VOIs corresponding to several tissue structures, includ-
ing gray and white matter in the brain, liver, lungs, kidneys, spleen, and
bones (2). A further set of 49 VOIs corresponding to tumor tissue was
identified by an experienced nuclear medicine physician. Finally, a VOI
placed in the descending aorta was used to define the whole-blood arte-
rial input function (AIF) used for kinetic analyses (2). Further scanning
and study protocol details are available in the supplemental materials.

Parametric Imaging Techniques
Tissue Residue and Kinetic Parameters. When the Meier–Zierler

(14) formalism is followed, the analysis assumes the PET-measured
time course for a tissue region is represented as a convolution between
the local AIF, Cp, and the regional tissue residue function. Kinetic para-
meters are defined in terms of this residue (Fig. 1). Large-vessel vascu-
lar blood and distribution volumes (Vb and Vd, respectively) are
evaluated as areas under the tissue residue. The apparent rate of reten-
tion or flux (Ki) of the tracer, measurable by PET over the scan duration,
is the height of the residue at the end of the acquisition period. Also, the
mean transit time of the tracer in the tissue and extraction fraction are
defined as ratios of amplitude and integral measurements. A variety of
approaches might be used to approximate the residue: a nonparametric
method is used here. Patlak analysis uses a constant residue (15). Com-
partmental model forms, for example, the 1-compartment Kety–
Schmidt (16) model for water and the 2C Huang–Sokoloff (17) model
for 18F-FDG in the brain, represent residues by positive linear combina-
tion of exponentials. In the 6-parameter 2C model, there is additive
adjustment for an arterial signal. By adding a sharp residue element to
the 2-exponential form, a Meier–Zierler residue is also available for
this model. This allows residue-defined metabolic parameters for the
extended compartmental model to be evaluated via the decomposition
shown in Figure 1 (18). Supplemental materials provide a review of
how Meier–Zierler residue parameters link with rate constants in the
2C model.
Nonparametric Residue Mapping (NPRM) of Kinetics. NPRM

approximates the voxel-level residue by the positive linear sum-of-
basis elements that have been selected by a cross-validation–guided
analysis of a comprehensive collection of time courses produced by
segmentation of all the available data in the study (10,18). Individual

basis elements are of the form mkðtÞ5
Ð t
0 RkðsÞCpðs2DkÞds for k of 1,

2,… , K. Here, Rk is the basis element residue and Dk is its associated
delay factor. Note that cross validation is used to select the number of
basis elements (K). Given the basis set, PET-measured voxel-level
time-course data over the available set of J time frames,
fzðtjÞ, j51, 2, . . . ,Jg, is expressed as

zðtjÞ5a1m1ðtj2dÞ1 . . .1aKmKðtj2dÞ1єðtjÞ: Eq. 1

Here, d and (a1, a2,… , aK) are the unknown voxel-level delay and basis-
amplitude parameters, respectively, and є (t) represents (random) model
error. A weighted least-squares criterion, with weights proportional to the
product of the frame duration and the decay correction factor used to convert
raw counts to decay-corrected tracer activity, is used for optimization of the
unknown parameters. For any delay, the optimal set of a coefficients is
found by quadratic programming. A crude grid search is used to optimize
delay (10).
Bootstrap Assessment of Uncertainty. Model residuals across N

voxels and J time frames, fziðtjÞ2ẑ iðtjÞ, i51, . . . ,N; j51,2, . . . ,Jg, are
used to construct an image-domain data generation process (DGP) for
bootstrapping. The DGP generates data according to

z�i ðtjÞ5ẑ iðtjÞ1є�i ðtjÞ, Eq. 2

where ẑðtjÞ5â1m1ðtj2d̂Þ1 . . .1âKmKðtj2d̂Þ and the simulated error pro-
cess, e*, mimic the stochastic character of analysis residuals. Analysis of
bootstrapped datasets arising from the DGP leads to a set of bootstrapped
kinetic parameter values at each voxel. The SD of these values estimates the
voxel-level SE of the kinetic parameter. Similarly, the SEs for more com-
plex quantities, such as the maximum-intensity projection (MIP) for a
kinetic map, are created as the SD of the bootstrapped MIPs of the kinetic
parameter (Fig. 2). Numeric studies (10,11) have shown that image-domain
DGP bootstrapping matches the accuracy of the much more computationally
intensive list-mode bootstrapping approach of Haynor andWoods (19).

The number of bootstrap simulations impacts the accuracy of the
SEs it produces (20); this is discussed in the supplemental materials.

Statistical Analysis
NPRM kinetic analysis with 25 bootstrapped simulations is evalu-

ated for each of the studies in the series. Results are examined in 4 sepa-
rate ways. Technical details with formulas are in the supplemental
materials.
Representation of VOI Time-Course Data. Mean VOI time-

course data are compared with the corresponding mean VOIs of the
fitted voxel-level time courses, ẑðtjÞ, in Equation 2. Mean VOI time-
course data are also analyzed using the nonparametric model and the
Huang–Sokoloff 2C model including a fractional Vb and delay of the

FIGURE 1. Meier–Zierler tissue residue (R) with decomposition into vas-
cular (Rb), in-distribution (Rd), and extracted (Re) components. Decomposi-
tion was used to define indicated metabolic parameters. MTT 5 mean
transit time; Ext5 extraction fraction.
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AIF. To facilitate fitting, a wide range of delays of65min is allowed in
the NPRM and 2C analysis of the VOI time-course data. The Broyden–
Fletcher–Goldfarb–Shanno algorithm as implemented in the optim
function in R (R Foundation for Statistical Computing) is used for opti-
mization of the 2C model; more details are shown in the supplemental
materials and Supplemental Figure 1.

Results of alternative analyses for a sample case are presented graph-
ically. Formal comparisons are focused on the weighted-residual-sums-
of-squares misfit achieved with alternative analyses. The mean relative
difference between alternative representations of VOI time-course data
and the associated SD is evaluated for each VOI type considered.
VOI Kinetics. Means and SDs of VOI-averaged NPRM kinetics are

reported for each VOI type. Kinetics based on nonparametric and 2C
analyses of VOI mean time-course data are similarly summarized.
Deviations between alternative VOI kinetic values are summarized, and
their statistical significance is evaluated using the pairedWilcoxon test.
DGP Model. The bootstrap DGP is expressed in more detail as

z�i ðtjÞ5ẑ iðtjÞ1ŝeĉ iŵ jє
�
i ðtjÞ, Eq. 3

where the random errors, є�i ðtÞ, are in units of SD and ŝe is an overall scale
of the model error. In Equation 3, the factors ĉ i and ŵ j are scale-free quanti-
ties representing the relative uncertainty across voxels (i) and time frames
(j). As the PET-measured activity scales with dose, the DGP error scale (ŝe)
should also scale with dose; this is examined graphically. The overall axial
pattern variation is described by the scale factor ĉ i. In a uniform cylindric
phantom, this has a familiar U-shaped pattern related to scanner sensitivity
(10). With a patient in the scanner, the distribution of activity and attenua-
tion is far from uniform. Physiologic patient motions, such as breathing,
may also impact axial variation. Skewness is a key feature of iteratively
reconstructed PET data. A histogram of scaled residuals shows how the
DGP captures this aspect. After adjustment for spatial scale factors, the
3-dimensional power spectrum of the normalized residual process provides
insight into the effective resolution of the scanning. Coordinatewise auto-
correlation functions associated with the spectrum give insight into the
actual resolution of the scanner. Again, physiologic movements may well

lead to the actual resolution’s deviating from
what might be predicted on the basis of static
phantom measurements.
SEs of VOI Kinetics. In theory, uncer-

tainty in parameters recovered by kinetic
model fitting should be proportional to the
scale of the residual model error, but it may
also be a function of the relevant sensitivity
matrix for the model. We examine the relation
between the bootstrap assessment of mean
VOI kinetic SEs and suitable explanatory fac-
tors including the weighted-residual-sums-of-
squares fit of the VOI and the mean VOI
kinetic values. For each kinetic parameter,
linear regression analysis on a logarithmic SE
scale is applied. Adjustment of this regression
analysis based on the VOI type and the kinet-
ics are explored. Regression predictions of
SEs are graphically compared with the true.
Correlation values are also summarized.

RESULTS

Illustration
Sample kinetic MIP maps with associ-

ated SEs obtained using the NPRM tech-
nique and bootstrapping are shown in
Figure 2. A video of all coronal MIP maps
is provided as Supplemental Video 1. Note
that the dataset is the same as that used in a

previous report (2). The results are of high quality and are well
aligned with the vascular and metabolic 18F-FDG patterns expected
for key organ structures such as the brain, liver, kidneys, spleen,
etc. (2). The uncertainties of Vb, Vd, distribution flow (Kd), and Ki

are generally higher for regions with larger magnitudes for the
kinetic variable. This is perhaps related to the fact that these para-
meters, which are linear functions of the fitted voxel-level residue,
ultimately scale with the magnitude of the time-course data. Mean
transit time and extraction fractions deviate somewhat from this
pattern. This is likely to be related to the fact that both the mean
transit time and extraction fraction are defined in terms of ratios of
the Vd, Kd, and Ki variables and, as a result, do not necessarily scale
with the scale of the voxel time course. The large blood vessels are
seen to impact the structure of the MIP uncertainty for several para-
meters. The algorithms developed allow kinetic mapping, including
the bootstrapping process, to be achieved in a timely fashion. On a
single 3.2-GHz processor, the compute time for the NPRM kinetic
analysis including the definition of the DGP is 140min; each boot-
strap replicate took 80min.

Statistical Analysis
Representation of VOI Time-Course Data. The full time course

as well as the time course over the first minute of data acquisition
are shown in Figure 3. Average VOI time-course data are fit directly
using the nonparametric and 2C models; averages of voxel-level
fits are also provided. This gives a reference to the results reported
previously (2). Although the 2C fitting of some VOIs is reasonable,
for example, gray and white matter, there are clearly some VOIs
where 2C modeling is substantially inferior (e.g., kidney, liver,
bone, and bladder). The data fit achieved by the VOI averaging of
the voxel-level nonparametric fit is quite good overall and espe-
cially over the first 1min of acquisition. However, it is important to
appreciate that almost half of the total number of frames occur in

FIGURE 2. MIP maps of NPRM kinetic parameters and associated SE. SEs are based on SD of
MIP results for each of 25 bootstrap replications. Top row shows CT images for selected cross sec-
tions through volume and PET MIP maps at indicated times. K 5 9 basis elements were determined
for data by NPRMmethodology. MTT5 mean transit time; Ext5 extraction fraction.
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the first 80 s. For this example, over the first minute, differences
between the VOI average of the voxelwise 2C fits and the fit of the
2C model to the mean of the VOI time-course data are quite pro-
nounced. In contrast, differences between the corresponding non-
parametric fits are much smaller.
Quantitative summaries of the nonparametric fitting of VOI time-

course data and comparisons with direct analysis of the mean VOI
time-course data using nonparametric and 2C analysis are presented in
Table 1. Although values from the weighted-residual-sums-of-squares
fit for VOIs are similar based on the VOI average of voxel-level non-
parametric fits or by direct fitting of the VOI time-course data, there is
a marked increase in weighted-residual-sums-of-squares fits when the
VOI time course is approximated using the best-fitting 2C model. VOI
time-course fitting by the nonparametric model is consistently
improved by averaging voxel-level nonparametric fits; the percent
improvement is a modest 50%. VOI time-course fitting by the 2C
model is substantially worse than the nonparametric fitting. The mean
percent improvement here is almost 390%.
VOI Kinetics. VOI kinetics are reported in Table 2. Statistically

significant deviations between the kinetics recovered by alternative
methods are largely linked to early time-course parameters (Fig. 1),

particularly for Vb. Deviations between voxel-averaged parameters
and values recovered from nonparametric and 2C analysis of the
VOI time course are much smaller for nonparametric analysis than
for 2C analysis. However, it is noteworthy that, for most VOIs, Ki

is quite similar in magnitude across all 3 analyses. This might be
because flux is a late-time-course parameter (Fig. 1), and alternative
methods fit the late time course quite similarly (Fig. 3).
DGP Model. Figure 4 and Supplemental Figure 2 show an

expected linear relation between the scale of the DGP and study
dose; the linear correlation of 0.68 is highly significant. The axially
averaged spatial scale of the DGP increases toward the top and bot-
tom of the patient in the FOV. As expected, the increased scale is
not just a function of the nominal sensitivity but is clearly impacted
by patient-specific factors including the varying uptake, attenuation,
and perhaps any impacts of small patient movements. The skewed
nature of random fluctuations in the DGP model, which vary on the
basis of the data coefficient of variation, are fully consistent with pat-
terns for iteratively reconstructed PET data (10,21). The full width at
half maximum of the autocorrelation functions in each direction is on
the order of 2–3mm. The coordinatewise autocorrelation functions
show greater spatial persistence in the x (perpendicular to scanning
bed) and z (axially) directions (Supplemental Fig. 3). This could align
with involuntary patient movements during scanning.
SEs of VOI Kinetics. SEs of VOI kinetics (voxel-level nonpara-

metric) are well approximated using a log-linear model that
accounts for the VOI type, the VOI mean kinetics, and the residual
weighted root mean square error of the voxel-level nonparametric
fit of the VOI time course (Fig. 5; Supplemental Fig. 4). The overall
correlation between the bootstrap-measured SE and the SE values
predicted by log-linear modeling is 0.96, which is also quite high
for individual kinetic parameters.

DISCUSSION

This work demonstrates the practicality of using image-domain
bootstrapping for the construction of patient-specific uncertainty
assessment in kinetics variables for voxel, VOI, and more complex
derived quantities such as MIPs from a whole-body dynamic 18F-
FDG PET study. This development creates an opportunity to

FIGURE 3. Results of alternative fitting of VOI data used in Figure 2.
Data are points, and line colors correspond to methods used. Full time
course is on left; first minute is on right. GM5 gray matter; NP5 nonpara-
metric; WM5 white matter.

TABLE 1
VOI Time-Course Fitting Across 24 Studies

Region Size (3103 voxels)* Voxel-NP VOI-NP VOI-2C Voxel-NP vs. VOI-NP Voxel-NP vs. VOI-2C

GM 122.56 23.3 0.0260.06 0.046 0.14 0.0960.26 356 50 1616 216

WM 18.86 7.0 0.0260.04 0.026 0.02 0.0660.20 256 32 1416 117

Lung 434.56 124.2 0.0660.27 0.086 0.69 0.1060.29 706 76 4486 690

Liver 233.06 66.1 0.0860.08 0.076 0.08 0.5560.30 466 39 8656 453

Spleen 42.86 48.5 0.1060.11 0.116 0.16 0.1360.09 696 40 646 87

Kidney 40.56 10.7 0.2760.26 0.356 0.56 1.8361.29 836 45 8806 576

Bladder 234.96 81.6 0.0460.10 0.076 0.77 3.2563.04 8876 783 18,2666 14,809

Bones 306.26 82.7 0.00260.003 0.0026 0.003 0.00760.01 356 23 3276 206

Tumor 2.56 7.4 0.2160.25 0.236 0.51 0.6763.77 286 31 2316 250

*1 voxel 5 1.6531.653 1.65mm3.
Mean 6 SD of weighted residual sums of squares (WRSS) deviations between VOI time course and VOI average of voxelwise (voxel-

NP), direct NP (VOI-NP), and 2C (VOI-2C) fits are shown. Last 2 columns show mean 6 SD of percent deviations between WRSS of voxel-
NP and VOI-NP fits and also between voxel-NP and VOI-2C values.

GM 5 gray matter; WM 5 white matter.
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incorporate uncertainty about a PET-derived kinetic biomarker that
might be used to guide a clinical decision for a patient. This could
be particularly helpful in cases where the biomarker value is close
to a boundary between alternative treatment options.
Bootstrap reliability depends both on the number of bootstrap

simulations (NB) used and on the accuracy of the representation of
the data used in the DGP (20). Computational resources dictate the
choice of NB. The results here are based on just an NB of 25, but for
the data in Figure 2, a 4-fold increase in NB leads to little qualitative
change in derived voxel-level SE (Supplemental Fig. 5). Table 1
clearly demonstrates the benefit of using a nonparametric methodol-
ogy in the DGP. Relative to the well-established 2C 18F-FDG
model, substantial and highly significant improvements in data rep-
resentation are achieved using the nonparametric approach. These
benefits are mostly associated with the ability of the nonparametric

technique to capture the highly resolved early time-course pattern
of data from the current generation of PET scanners. The generally
more modest deviations between nonparametric and 2C fits beyond
the early time period, say after 1min, suggest that the deficiencies
in the 2C model may primarily relate to the lack of sophistication in
the representation of the vascular components of blood–tissue
exchange (22). The high temporal resolution of the scans here, as
well as the use of a bolus injection, contributes to the ability to scru-
tinize the 2C model in ways that have likely not been possible in the
past. The VOIs here are large and heterogeneous—far from the
assumption of homogeneous well-mixed compartments that
underly the 2C model. However, it is notable that our previous
work (23) reported significant discrepancies between 2C and non-
parametric representation of dynamic 18F-FDG brain data in
healthy subjects using much smaller and highly homogeneous

TABLE 2
VOI Kinetics Recovered Using Different Methodologies

Method Region Vb (mL/g) Vd (mL/g) Kd (mL/min/g) Ki (mL/min/100g) MTT (min) Ext (%)

Voxel-NP GM 0.0560.01 0.886 0.26 0.166 0.03 3.016 0.81 5.806 1.64 18.386 5.18

WM 0.0360.01 0.646 0.27 0.106 0.03 1.096 0.33 6.616 2.04 12.306 4.12

Lung 0.1860.04 0.096 0.03 0.036 0.01 0.076 0.04 3.176 0.77 3.176 1.82

Liver 0.0960.04 0.866 0.08 0.546 0.11 0.236 0.08 1.776 0.41 0.576 0.38

Spleen 0.2160.09 0.426 0.09 0.416 0.14 0.236 0.16 1.396 0.54 1.146 2.09

Kidney 0.2560.07 1.206 0.34 0.496 0.11 0.426 0.25 2.626 0.60 1.226 0.97

Bladder 0.0060.01 0.546 0.32 0.046 0.03 1.466 1.13 6.736 2.85 19.116 11.36

Bones 0.0360.02 0.226 0.07 0.086 0.02 0.276 0.08 3.546 0.79 4.666 1.32

Tumor 0.0860.05 0.656 0.38 0.196 0.08 2.336 1.59 3.626 1.57 12.936 6.44

VOI-NP GM 0.0460.01* 0.586 0.16* 0.136 0.03* 3.256 0.89* 4.536 1.19* 20.136 5.42

WM 0.0260.01* 0.586 0.31† 0.096 0.03 1.106 0.38 5.996 2.25† 10.966 4.37

Lung 0.1760.04† 0.086 0.03‡ 0.036 0.02 0.086 0.04† 2.436 0.65* 2.666 1.48

Liver 0.0560.04* 0.836 0.07‡ 0.536 0.13 0.286 0.08* 1.646 0.39* 0.576 0.24

Spleen 0.1860.09† 0.396 0.11‡ 0.466 0.17‡ 0.296 0.19* 0.916 0.22* 0.866 1.38‡

Kidney 0.2360.08 1.196 0.37 0.516 0.15 0.306 0.26‡ 2.466 0.82 0.626 0.51*

Bladder 0.0060.01* 0.446 0.29† 0.036 0.03* 1.616 1.21† 13.856 11.15* 33.876 26.48*

Bones 0.0160.01* 0.176 0.08* 0.086 0.03 0.296 0.07* 2.246 0.50* 3.806 0.90†

Tumor 0.0760.04* 0.456 0.34* 0.186 0.09‡ 2.486 1.62* 2.626 1.59* 13.276 7.68

VOI-2C GM 0.0360.01* 0.566 0.23 0.096 0.02* 3.126 0.87† 5.916 1.71‡ 26.416 6.41*

WM 0.0260.01* 0.556 0.16 0.056 0.01* 1.136 0.32 11.006 3.23* 18.656 4.48*

Lung 0.1560.04* 0.096 0.03‡ 0.046 0.01† 0.076 0.04‡ 1.186 1.44* 1.706 0.83*

Liver 0.0260.01* 0.886 0.09* 0.536 0.13 0.236 0.08* 1.686 0.33 0.456 0.21*

Spleen 0.1160.05* 0.496 0.12* 0.616 0.18* 0.216 0.21* 0.736 0.32* 0.696 1.97*

Kidney 0.1560.05* 1.256 0.36‡ 0.426 0.11† 0.216 0.22‡ 2.816 1.18‡ 0.526 0.54

Bladder 0.0060.00 0.056 0.10* 0.016 0.02* 1.636 0.95 1.666 5.36* 86.896 29.33*

Bones 0.0060.00* 0.206 0.06† 0.086 0.03 0.266 0.07* 2.656 0.65* 3.536 0.94‡

Tumor 0.0560.05* 0.346 0.19 0.176 0.10 2.386 1.50‡ 1.806 1.26† 16.836 18.38

*P , 0.001.
†P , 0.01.
‡P , 0.05.
MTT 5 mean transit time; Ext 5 extraction fraction; voxel-NP 5 VOI-averaged voxel kinetics; GM 5 gray matter; WM 5 white matter;

VOI-NP 5 VOI time course kinetics obtained by NP; VOI-2C 5 VOI time-course kinetics obtained by 2C.
Values are mean 6 SD.
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VOIs. Similar to what is reported in Table 2 for gray and white mat-
ter, the discrepancies primarily impact the accuracy of the initial
phase of the 18F-FDG tissue residue—Vb especially—but have
much less impact on several other variables including flux and Vd.
However, statistically significant differences between voxel non-
parametric and VOI 2C parameters do not imply that parameters are
unrelated. For example, Figure 6 and Supplemental Figure 6 show
pairwise plots and summary correlations for the 18F-FDG metabolic
rate (MR) flux scaled by the plasma glucose in Equation 4. The strong
linear dependence in Figure 6 emphasizes the importance of differenti-
ating statistical and practical significance. Calculated Ki based on non-
parametric or 2C analysis would likely yield similarly effective
diagnostic values. Indeed, it is well appreciated that even simpler
assessments of 18F-FDG flux by Patlak analysis and SUV are also
highly effective.
The nonparametric technique here uses a linear basis, but the

structure and number of elements involved are adapted to the full
4-dimensional dynamic data and guided by cross validation to

prevent overfitting (10). The accuracy and stability of a kinetic
mapping procedure are best evaluated numerically, which was
reported previously (24)—studies based on a 2-min constant infu-
sion injection of 18F-FDG and a temporal sampling protocol in
which the shortest time frames were 20 s in duration, providing
mean-square-error performance characteristics of NPRM and 2C
kinetic mapping of 18F-FDG PET data as a function of the study
dose and as a function of whether the underlying ground truth is
governed by a compartmental model or not. In this study, the accu-
racy of the flux is largely unaffected by whether a 2C or an NPRM
mapping technique is used. Across other kinetic variables, when the
ground truth is noncompartmental, the NPRM approach is much
better. Remarkably, when the ground truth is a 2C model, the
NPRM continues to outperform the 2C approach, especially for
variables such as Vb and Vd. Further study of the mean-square-error
performance would clearly be useful, particularly in settings where
the ground truth, study protocol, and scanning methods are similar
to those encountered with the current generation of whole-body
18F-FDG PET studies.
VOI values of 3 variables, FDG metabolic rate (MRFDG), distri-

bution volume (DV), and vascular blood flow (BF), are compared
with literature reports. Each variable is directly obtained by simple
scaling of our summary kinetic values: Ki, Vd, and Vb.

MRFDG5mglcKi; DV5Vd; BF5
Vb

t�=2
: Eq. 4

Here, mglc is the plasma glucose concentration and t* is the value
used to define the vascular component in the decomposition of the
Meier–Zierler residue in Figure 1. In a cancer setting, 18F-FDGMR
is by far the most clinically important of these variables. Note that
we do not try to use 18F-FDG as a means to evaluate the glucose
MR, as described in Phelps et al. (17). Barrio et al. (6) expressed
considerable doubt on the ability to do this in the context of cancer
applications. Consideration of the Vb variable is motivated by

FIGURE 4. Bootstrap DGP from Equation 2: DGP scale (ŝe) vs. injected
dose per unit tissue voxel (A), axially averaged scale (B), error distribution
(histogram) with comparison to standard gaussian (purple line) (C), and
box plot of directional (x, perpendicular to scan table; z, axial) autocorrela-
tion function (ACF) across all studies (D).

FIGURE 5. Prediction of VOI kinetic SEs (vertical axis) via log-linear
model prediction (ŜE, horizontal axis) formula indicated. Correlation for
logarithmic SE value is 0.96 and for raw scale is 0.88. WRSS 5 weighted
residual sums of squares; Ext5 extraction fraction.

FIGURE 6. Overall relation between 18F-FDG MR Ki computed using
nonparametric (NP) voxel (horizontal axis) and 2C (vertical axis) analysis.
Best-fit linear regression is shown as solid line.
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interest in deriving potentially useful additional diagnostic informa-
tion related to tissue vascularity from 18F-FDG (1,25,26). There is
no intention of questioning PET 15O-H2O as the gold standard for
Vb determination. Our Vb formula is an application of the central
volume theorem (14) based on an assumed mean transit time in the
vasculature of t*/2 (here, 7.5 s) for the collection of tracer atoms
whose tissue transit time in the local voxel is less than 15s.
Table 3 compares the VOI averages of 3 variables to those in the

literature. For 18F-FDG MR and Vd, the values are seen to be in the
range reported using 2C and Patlak analyses (27). Vb values are
compared with those in reports based on PET 15O-H2O and
dynamic susceptibility contrast MR techniques. The results for the
NPRM approach are remarkably similar to those in the literature,
particularly given that the study group here is older and unhealthy
(28). Further examination of the Vb variable could be merited. Via-
bility of conducting PET 15O-H2O on this scanner was previously
demonstrated (29). Note that some of the deviation in Table 3 may
be related to scaling differences between the use of whole-blood
activity as an AIF (like ours) and other analyses that used the arte-
rial plasma activity time course as an AIF.
Although our focus has been on parameters that have tradition-

ally been used to quantify 18F-FDG PET dynamics, the nonpara-
metric technique provides a possibility to also evaluate a summary
of the arrival pattern of 18F-FDG at the voxel level. A sample
amplitude-weighted average of voxel-level basis element delay as
shown in Equation 1 is shown in Figure 7. There is early arrival of
the signal to the lung and much more delayed arrival to the bladder
and more peripheral regions (1). More detailed consideration of the
18F-FDG arrival pattern may be worthwhile.

CONCLUSION

NPRM kinetic analysis together with bootstrap assessment of
uncertainty is practically feasible in the context of large-scale long-
axial-FOV 18F-FDG PET data. This provides an ability to incorpo-
rate patient-specific uncertainty measures of kinetic biomarkers
recovered from dynamic PET to support clinical decisions.
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KEY POINTS

QUESTION: Is it feasible to map kinetics together with uncertainty
in long-axial-FOV dynamic 18F-FDG PET studies?

PERTINENT FINDINGS: NRPM analysis together with image-
domain bootstrapping is a suitable methodology for mapping
kinetics.

IMPLICATIONS FOR PATIENT CARE: The ability to derive uncer-
tainties in complex kinetic biomarkers could enhance patient-
specific decision-making for guiding treatment of cancer patients.
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