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Background:  Resting-state network (RSN) functional 
connectivity analyses have profoundly influenced our 
understanding of the pathophysiology of psychoses and 
their clinical high risk (CHR) states. However, conven-
tional RSN analyses address the static nature of large-
scale brain networks. In contrast, novel methodological 
approaches aim to assess the momentum state and tem-
poral dynamics of brain network interactions.Methods:  
Fifty CHR individuals and 33 healthy controls (HC) 
completed a resting-state functional MRI scan. We 
performed an Energy Landscape analysis, a data-driven 
method using the pairwise maximum entropy model 
(MEM), to describe large-scale brain network dynamics 
such as duration and frequency of, and transition between, 
different brain states. We compared those measures be-
tween CHR and HC, and examined the association be-
tween neuropsychological measures and neural dynamics 
in CHR.Results:  Our main finding is a significantly 
increased duration, frequency, and higher transition rates 
to an infrequent brain state with coactivation of the sa-
lience, limbic, default mode, and somatomotor RSNs in 
CHR as compared to HC. Transition of brain dynamics 
from this brain state was significantly correlated with 
processing speed in CHR.Conclusion:  In CHR, temporal 
brain dynamics are attracted to an infrequent brain state, 
reflecting more frequent and longer occurrence of aber-
rant interactions of default mode, salience, and limbic 
networks. Concurrently, more frequent and longer oc-
currence of the brain state is associated with core cogni-
tive dysfunctions, predictors of future onset of full-blown 
psychosis.

Key words: dynamic functional connectivity/psychosis/co
gnitive dysfunction/network/energy landscape/prodromal 
state

Introduction

Despite low prevalence rates, psychoses are amongst 
the highest causes for disability-adjusted life years due 
to their manifestation early in life and generally low re-
mission rates.1 First-episode psychotic disorders are 
often preceded by a prodromal phase characterized by a 
range of symptoms related to clinical high risk (CHR), 
as well as other mental health problems and psychosocial 
deficits. During this phase, individuals may seek help.2,3 
The prodromal phase provides a promising starting point 
for indicated prevention efforts that aim to reduce CHR 
symptoms and prevent the progression to frank psychosis.4 
Within 1 year, about 15% of CHR patients will convert 
to psychosis, whereas another 10% will convert within 
the following 2 years.5 Even though the majority of CHR 
patients do not go on to develop psychosis, neurobiolog-
ical data on brain functions suggest that many findings 
in psychosis can be traced back to CHR states, though 
with lower effect sizes.6,7 Thus, the CHR status may offer 
a window into the pathophysiology of psychosis, with 
fewer confounders than those that may be more evident 
in fully-manifest psychosis (and therefore, potentially a 
more reliable point of measuring symptoms), such as 
physical disorders, lifestyle differences, nicotine abuse, 
age effects, or medication status. From a neurobiological 
perspective, the disconnection hypothesis of psychosis8 
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suggests a failure of functional integration in distrib-
uted neuronal systems that heavily depend on abnormal 
synaptic transmission. At a system level, abnormal syn-
aptic transmission may cause aberrant, eg, increased or 
decreased, interactions among brain networks. The aber-
rant interactions result in maladaptive cognitive processes 
and failures in predictive coding, leading to aberrant sali-
ence and giving rise to positive psychotic symptoms.

Resting-state fMRI (magnetic resonance imaging) 
provides a measure of brain activity at rest and allows 
for the addressing of the states of large-scale brain 
networks. Research on resting-state fMRI networks has 
revealed functionally integrated clusters of brain areas, 
such as the default mode network (DMN) related to in-
ternally oriented attention, and deactivated during task 
performance; the frontoparietal network (FPN) involved 
in top-down regulation of various cognitive operations; 
the dorsal attention network (DAN) important for 
guiding attention; the salience network (SAN) involved in 
monitoring relevance of events; the visual network (VIN) 
involved in visual processing; the limbic network (LIN) 
responsible for emotion regulation and memory perfor-
mance; and the somatomotor network (SMN) relevant 
for coordination and integration of motor activity.9 Many 
studies have investigated resting-state connectivity in psy-
chosis and found reduced connectivity in most of these 
networks, but also increased connectivity in the SAN and 
DMN, eg.10,11 According to the disconnection hypothesis, 
these primarily functional aberrations are caused by ge-
netic alterations12 and, more importantly, would already 
be evident before the onset of fully-manifest psychosis, 
such as in CHR individuals.2,11

Conventional resting-state functional connectivity 
analysis addresses the static nature of the coactivation of 
multiple brain areas. Here, it is presumed that the nature 
of interactions is stable over time, ie, during a recording 
session. In contrast, several approaches such as dynamic 
functional connectivity13 and stochastic dynamic causal 
modeling,14 address temporal dynamics of brain net-
work interactions and the variation of interactions over 
time. These approaches provide further information 
complementary to conventional functional connectivity 
analysis. Using dynamic functional connectivity anal-
ysis, previous studies identified altered neural dynamics 
in CHR.15,16 Energy landscape analysis is a data-driven 
method derived from statistical physics using the pairwise 
maximum entropy model (MEM) to estimate large-scale 
brain network dynamics such as frequency and duration 
and/or shift between different brain states.17 In short, 
a brain state tends to go downhill being attracted by 
local minimum attractors (basins), whereas other times 
it goes uphill due to random fluctuations (paths and 
trajectories), and often shifts to another basin, forming 
an energy landscape.18 The local minimum attractors 
(basins) could represent common mental states, and the 
temporal changes in whole-brain neural activity patterns 

(paths and trajectories) could be related to mental flexi-
bility, together forming the mental set. Besides details of 
modeling approaches, the advantage of the energy land-
scape method over conventional dynamic functional con-
nectivity analysis is the time resolution of dynamics. The 
conventional dynamic functional connectivity analysis 
requires substantial time points to calculate connectivity, 
and the long time window (often exceeding 20 s) works as 
a temporal smoothing to estimate the dynamics of brain 
network interactions.13 In contrast, energy landscape 
analysis is capable to assign the state of brain dynamics 
for each individual time point, allowing it to address 
more precise dynamics of brain network interactions.19 
In addition, capturing higher time resolution of brain 
dynamics allows to assess metastable states in brain net-
work interactions.20 The optimal brain network dynamics 
traveling the energy landscape is important for healthy 
brain functioning, and is altered in psychiatric diseases, 
particularly in psychosis.21 Thus, energy landscape anal-
ysis has the potential to determine relatively stable and 
dominant patterns of neural activity as local minima, 
as well as the dynamics of transition between the local 
minima in high-dimensional data without an a priori 
hypothesis.19 Importantly, the energy landscape analysis 
method has recently been adopted to evaluate brain dy-
namics in clinical populations such as autism spectrum 
disorders22, major depression,23 epilepsy,24 Alzheimer’s 
disease,25 or chronic schizophrenia.21

Neurocognitive deficits are regarded as a core compo-
nent of psychosis,26 and neurocognitive impairments often 
develop during the prodromal period and early after a 
first diagnosis of psychosis,27–29 finally leading to a stable 
pattern of pronounced deficit in patients with chronic 
schizophrenia. Thus, with regard to neurocognitive 
functioning, the years prior to the onset of psychosis are 
critical. First-episode psychosis and CHR patients have 
impairments in various cognitive domains, including ex-
ecutive functioning, working memory, processing speed, 
verbal learning and memory, and premorbid intelligence 
quotient (IQ).30 Amongst cognitive domains, verbal 
memory, and processing speed show the most signif-
icant deficits in CHR patients, and are associated with 
altered fronto-temporal functional and structural con-
nectivity.29–35 Based on our own previous work and the 
work of others, processing speed appears to have a key 
role in mediating other cognitive functions, being highly 
predictive for psychosis conversion.29,31,35

Therefore, we investigated resting-state brain network 
dynamics in adolescents and young adults with CHR and 
healthy controls (HC) using energy landscape analysis. 
We expected that RSN that are involved in aberrant sa-
lience and positive psychotic symptoms (eg, limbic and 
salience networks) would show increased likelihood (eg, 
increased duration/frequency and higher transition into 
states) of simultaneous activity, whereas RSN involved 
in optimal neurocognitive processing (eg, FPN, DAN) 
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would be deactivated/show lower likelihood of occur-
rence in psychosis/CHR patients compared to controls. 
Consecutively, we hypothesized that these brain states 
would show associations with positive symptoms (eg, 
hallucinations, delusions), processing speed and delayed 
recall of a verbal memory task.

Methods

Study Participants

Patients Fifty CHR (26 females, mean age 18.5 years) 
seeking help for mental problems at the Bern Early 
Recognition and Intervention Centre for Mental Crisis 
(FETZ Bern; www.upd.ch/fetz; for further details see36) 
between January 2019 and June 2021 were included 
in the study (table 1). All participants, and in the case 
of minors, their legal guardians with the child’s assent, 
gave written informed consent for their coded clinical 
data to be used in scientific analyses and publications 
(Cantonal Ethics Committee Bern ID 2018-00951). The 
FETZ Bern is the only early detection and interven-
tion center for psychosis in the Canton of Bern (1.035 
mil population), Switzerland, screening approximately 
80 patients per year (ages 8–40 years) according to 
European Psychiatric Association (EPA) guidelines.3,4 
The FETZ Bern targets persons with putative psychotic 
symptoms or CHR symptoms between 8 and 40 years 
of age. Exclusion criteria for a CHR state are (1) past 
clinical diagnosis of any psychotic disorder according 
to DSM and ICD, (2) diagnosis of delirium, dementia, 
amnestic or other neurological disorders, and (3) general 
medical conditions affecting the central nervous system. 
Subjects of the CHR group fulfilled at least one of the 
EPA criteria. Present DSM-IV non-substance-related 

axis-I disorders, including affective, anxiety, eating, 
somatoform, obsessive–compulsive, posttraumatic stress 
disorder, and substance use disorders were assessed using 
the Mini-International Neuropsychiatric Interviews 
(MINI/MINI-Kid37,38). At the time of first analysis of the 
data, the FETZ Bern recruitment of CHR patients was 
still ongoing.

Healthy Controls Thirty-three healthy participants (17 
females, mean age 20.0) were included in the study (table 
1). They were recruited via advertisements, and did not 
show any CHR criterion nor psychosis nor any other 
mental disorder according to ICD-10/DSM-IV. HC un-
derwent the same psychopathological assessments as 
described for CHR patients.

Psychopathological and Neurocognitive Assessments

CHR Assessments CHR symptoms and criteria ac-
cording to the EPA3(p) were employed as semi-structured 
clinical interviews. Two major sets of CHR criteria were 
used for the assessment of this state: (1) ultra-high risk 
(UHR) criteria, ie, attenuated (APS) or brief  intermit-
tent psychotic symptoms (BIPS) and genetic risk and 
functional decline (GRFD); and (2) basic symptom 
(BS) criteria, ie, cognitive disturbances (COGDIS) and 
cognitive-perceptive basic symptoms (COPER).2,3 The 
two symptomatic UHR criteria APS and BIPS include 
positive symptoms of psychosis where some insight into 
their abnormal nature is still present.39 BSs are subtle, 
subjectively experienced subclinical disturbances mainly 
in perception and cognition where insight is also present, 
which can usually be assessed from age 8 onwards.40 UHR 
criteria41 were evaluated with the Structured Interview for 
Psychosis-Risk Syndromes [SIPS]42 and the early version 

Table 1. Demographic Data

CHR HC t-value/Chi-squared P-value

Number 50 33
Age, years 18.5 (3.8) 20.0 (5.1) −1.41 .161
Sex m/f 24/26 16/17 0.000 1
Highest ISCED (1/2/3/n.a) 1/36/10/3 6/12/14/1 14.35 .002
Medication
y/n; CPx

8/42; 17.4 (56.0) —

SOFAS score 58.0 (12.3) 87.9 (4.1) −13.25 <.001
SIPS P1 3.5 (1.2) 1.0 (0.4) 11.39 <.001
SIPS P2 2.4 (1.5) 0.1 (0.3) 8.37 <.001
SIPS P3 0.7 (1.1) 0.1 (0.2) 3.53 <.001
SIPS P4 3.4 (1.3) 0.2 (0.7) 12.80 <.001
SIPS P5 0.8 (1.0) 0.2 (0.6) 2.89 .004
SIPS pos total 10.8 (3.7) 1.6 (1.4) 13.50 <.001
VLMT del. rec. 48.4 (31.7) 60.2 (27.5) −1.71 .092
DST 72.0 (18.9) 85.0 (19.5) −3.16 .002

Note: CHR, clinical high risk; HC, healthy controls, age in years, sex m, male; f, female; ISCED, international standard classification of 
education, levels 1/2/3/not applicable. Antipsychotic medication: number yes/no; CPx, chlorpromazine equivalents (mean ± sd); SOFAS, 
social and occupational functioning; SIPS, structured interview for psychosis-risk syndromes, positive symptoms scores (P1–P5); VLMT, 
verbal learning and memory test, percentiles; del. rec., delayed recall (after 20 min); DST, digit symbol substitution test, number correct.
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of the Comprehensive Assessment of At-Risk Mental 
States [CAARMS].43 The SIPS/CAARMS assesses the 
presence of APS, BIPS, and GRFD.

Basic symptom criteria44 including COPER and 
COGDIS were assessed using the Schizophrenia 
Proneness Instruments (SPI-A/SPI-CY).45,46 The basic 
symptoms are self-experienced subclinical disturbances 
in thought, speech and perception, that are barely 
perceived by others. The basic symptom criteria are 14 
such disturbances that can be allocated to COGDIS 
and/or COPER. Additionally, the Mini-International 
Neuropsychiatric Interview (MINI) for adults37 and 
its version for children38 were used to assess DSM-IV 
diagnoses. All interviewers underwent intensive training 
for 3 months prior to diagnosing patients according to the 
respective criteria and continuing supervision of ratings 
during the diagnostic process from co-author CM.

Neuropsychological Assessment The neurocognitive bat-
tery in the FETZ Bern examines neurocognitive domains 
which have previously been found to be impaired in CHR 
and psychotic patients.36,47 For the present study, age-
adjusted norms for the following assessments were used.

To assess verbal memory, the German version of the 
Verbal Learning and Memory Test (VLMT)48 was used. 
The VLMT is a brief, easily administered, pencil-and-
paper measure evaluating immediate memory span, 
learning capacity, susceptibility to interference, and rec-
ognition memory. It consists of 15 nouns (List A) that 
are read aloud for five consecutive trials (Trial 1: im-
mediate memory span), and each trial is followed by 
a free-recall test. On completion of Trial 5 (Trials 1–5: 
learning capacity), an interference list of 15 words (List 
B) is presented, followed by a free-recall test of that list. 
Immediately after this, delayed recall of the first list is 
tested (Trial 6) without further presentation of the words. 
After a 20-min delay period, the participant was again 
required to recall words from List A (Trial 7). After this, 
a matrix array was tested, in which the individual must 
identify List A words from a list of 50 words (recogni-
tion memory) containing all items from List A and B and 
20 words phonemically or semantically similar to those 
in List A and B. Correct answers are used as outcome 
variables (max. 15 in the Trials 1, 6, 7, List B, and recog-
nition memory and max. 75 sum of Trials 1–5 [learning 
capacity]). For the present study, we focused on delayed 
recall (eg, in accordance with33,49).

Processing speed was measured using the Digit Symbol 
Substitution Test (DST),50 a subtest of the WISC-IV51 
and WAIS-III.52 The DST is a paper-pencil test in which 
subjects match symbols to numbers according to a key 
from 1 to 9. The task is to draw the symbols in boxes 
under numbers as fast and as accurately as possible. The 
number of correct symbols after 120 s is counted. The 
maximum number of correct symbols can be 119 for 
children and 133 for adults.

MRI Acquisition and Preprocessing

All MRI data was acquired by a 3T Siemens Prisma 
scanner (Siemens, Germany) with a customized 
32-channel head coil. We acquired the whole-brain 
T1-weighted image by magnetization-prepared 2 rapid 
acquisition with gradient echo (MP2RAGE) sequence 
with following parameters: Echo time = 2.98 ms; repeti-
tion time = 5000 ms; Inversion time 1/2 = 700/2500 ms; 
flip angle 1/2 = 4/5°; number of slices = 176; field of 
view = 256 × 256 mm; slice thickness = 1mm; voxels 
size = 1 mm isotropic voxel.

Resting-state fMRI was acquired with T2*-weighted 
2D multi-band echo planar imaging (EPI) with the 
following parameters: Echo time = 37 ms; repetition 
time = 1300 ms; flip angle = 52°; number of slices = 60; 
slice thickness = 2.2 mm; gap between slices = 0 mm; field 
of view = 230 × 230 mm; voxel size = 2.2 × 2.2 × 2.2 mm; 
multi-band acceleration factor = 4. We acquired 300 
volumes for each subject. First five volumes are auto-
matically discarded to achieve equilibrium of magneti-
zation. While measuring resting-state fMRI, participants 
were instructed to open eyes and to “think about what-
ever comes to mind.” To reduce the risk of falling asleep 
during resting-state fMRI measurement, we performed 
a resting-state fMRI scan at the beginning of the entire 
measurement (approx. 50 min).

We used SPM12 (Wellcome Department of Cognitive 
Neurology, https://www.fil.ion.ucl.ac.uk/spm/) and 
CAT12 toolbox (http://www.neuro.uni-jena.de/cat/)) for 
preprocessing of MRI data. Using CAT12 toolbox, we 
first segmented a T1 image into grey matter (GM), white 
matter (WM), and cerebrospinal fluid (CSF) images in 
the native space as well as obtained parameters to nor-
malize the native T1 image to the standard brain of the 
Montreal Neurological Institute (MNI) space. Then, EPI 
images are realigned to the first image to correct for head 
movements in the scanner, and then applied slice timing 
correction. The corrected EPI images were coregistered to 
anatomical T1 image in the native space and normalized 
into the MNI space using parameters obtained from 
the T1 image processing. We applied spatial smoothing 
to the normalized images (2 mm isotropic voxel) with a 
Gaussian kernel of full-width half-maximum at 6 mm. 
We also normalized the segmented GM image to indi-
vidually specify voxels in the GM for extraction of blood 
oxygen level-dependent (BOLD) time series. Further, we 
also normalized the segmented CSF and WM images to 
extract the non-neural signals of CSF and WM regions.

fMRI Signal Extraction from Brain Networks

We extracted the time series of BOLD from 400 regions 
of interest (ROIs) defined in Schaefer2018_Parcellations 
and classified them into seven functionally independent 
networks53 (figure 1A), VIN, SMN, DAN, SAN, SAN, 
FPN, and DMN (figure 1B). The BOLD time course of 
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each network is calculated by averaging BOLD signal time 
courses in the 400 ROIs corresponding to each network. 
To remove non-neural signal sources from the BOLD time 
course of the seven networks, we used linear regression 
with nine regression parameters, including six motion 
parameters, average signals over the CSF, WM, and whole-
brain. To create subject-specific CSF and WM masks, the 
subject-specific normalized CSF and WM images were 
thresholded at 0.95 (95% of the posterior probability 
of CSF or WM, respectively). Then, the subject-specific 
whole-brain mask was created by adding the subject-
specific CSF, WM, and GM images and thresholding at 
0.95. Finally, we performed band-pass temporal filtering 
(0.01–0.1 Hz). Although scrubbing EPI volumes to remove 
those with excessive head movement (censoring based on 
frame-wise displacement) is recognized as beneficial for 
correlation measures in functional connectivity analysis, 
the impact of head movement has yet to be investigated in 
energy landscape analysis. Furthermore, we implemented 
global signal regression to minimize the influence of head 
movement. Therefore, we did not employ scrubbing in our 
current analysis.

Pairwise MEM Fitting

We fitted the pairwise MEM to the preprocessed fMRI 
data according to previous studies17,19,22,55 by using the 
Energy Landscape Analysis Toolkit (https://sites.google.
com/site/ezakitakahiro/software).19 For each network 
BOLD time course of each participant, we binarized the 
BOLD time course thresholded at its average value. Here, 
we regarded the BOLD activity larger/smaller than the 
time-averaged threshold as active/inactive (+1/0) (figure 
1C). We then concatenated those binarized BOLD sig-
nals from all participants in the same group for each 
network activity. In this method, the activity pattern at 
time t in each network i is specified by a N-dimensional 
binary vector Vt =

[
σt
1,σ

t
2, . . . ,σ

t
i , . . . ,σ

t
N

]T
 where σt

i  is 
the binarized activity (either active [+1] or inactive [0]) 
and N (= 7) is the number of the networks. Note that the 
number of possible activity patterns is 2N and that the kth 
brain activity pattern is described by Vk (k = 1, 2, . . . ,  
2N). In the MEM, the frequency of the brain activity 
pattern Vk obeys the Boltzmann distribution56 (figure 
1D), P (Vk ) = e−E(Vk )/

∑2N
l=1 e

−E(Vl ), where E(Vk) 

Fig. 1. Procedures of energy landscape analysis. (A) Region of interests (ROIs) from Schafer atlas54, (B) BOLD signals of seven 
functionally different brain networks were extracted, and (C) they were binarized by the mean of each time series. (D) The distribution of 
the frequency of activity patterns is fitted by a pairwise MEM model, and (E) the energy landscape is constructed from the MEM model.
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represents the energy for activity pattern Vk defined by 
E (Vk ) = −

∑N
i=1 hiσi − (1/2)

∑N
i=1

∑N
j=1 Jijσiσj.

Here, we calculated hi and Jij by maximum likeli-
hood estimation to adjust the model-based activation 
of network i, 〈σi〉model and the model-based pairwise 
interaction between networks i and j, 

〈
σiσj

〉
model to-

ward the empirical activation of network i and j, 
〈
σiσj

〉
, respectively. Here, 〈σi〉model =

∑N
i=1 σi (Vl)P (Vl) and 〈

σiσj
〉
model =

∑2N
l=1 σi (Vl)σj (Vl)P (Vl). Note that this 

energy value does not mean any biological energy. It is 
rather a statistical index, which indicates the occurrence 
probability of each brain activity pattern. That is, activity 
patterns with lower energy values tend to occur more 
frequently.

After fitting the data to the pairwise MEM model, we 
calculated two metrics to evaluate goodness of fit. First, 
we calculated the accuracy measure in the same manner 
as the previous studies.19,22,55

rD = (D1 −D2)/D1

where D1 and D2 represent the Kullback–Leibler di-
vergence between the MEM and data in the first-order 
model (the MEM is restricted to have no interaction 
term, ie, Jij = 0 for all i and j) and in the second-order 
model (the MEM considering interaction term) respec-
tively. We obtained rD = 1 when the pairwise MEM per-
fectly reproduces the empirical distribution of activity 
patterns while rD = 0 when the pairwise interaction does 
not contribute to improving the fitting. Second, we calcu-
lated Pearson’s correlation coefficient between empirical 
appearance probability and model appearance proba-
bility P(Vk) to evaluate the similarity of occurrence be-
tween the empirical data and fitted model.

Energy Landscape Analysis

We calculated the energy landscape (disconnectivity 
graph) as performed in previous studies19,22,55 (figure 
1E). The energy landscape is defined as a graph of 
brain activity patterns Vk with the corresponding en-
ergy E(Vk) fitted in the pairwise MEM. Brain activity 
patterns are regarded as neighbors if  they differ in only 
one active/inactive brain region. Then local minimums 
were identified as those activity patterns whose en-
ergy values were smaller than all of  their neighboring 
patterns. Thus, local minimum patterns are more likely 
to appear than all their neighboring patterns. We ex-
haustively searched for local energy minima, then 
we summarized all brain activity patterns into local 
minimum basins, a family of  brain activity patterns 
constituted by patterns neighboring to a local min-
imum pattern, in a data-driven manner. These basins 
were computed as follows: First, we select one network 
activity pattern, and evaluate if  there is any neigh-
boring pattern with a smaller energy value. If  there is 

no neighboring pattern with a smaller energy value, we 
define the pattern as a local minimum pattern; other-
wise, we search for a neighboring pattern with smaller 
energy. We iterate the search process until it reaches a 
local minimum pattern. We then assign the initial state 
to the basin of  the local minimum. We iterated the pro-
cedure for all patterns in the pairwise MEM. In this 
way, we assigned all 2N patterns to a single local min-
imum basin. For each branch of  the dysconnectivity 
graph, we further categorized local minimum basins 
with higher occurrence into a major state (state 1 and 
state 2) and local minimum basin with lower occur-
rence into minor states (state 3 and 4) to perform direct 
comparisons between HC and CHR (figure 2).

Calculation of Representative Feature Metrics of the 
Energy Landscape Analysis

In the current study, we focused on the following three 
metrics that characterize the brain dynamics from the 
energy landscape analysis: Mean duration, occurrence, 
and transition frequency. The first parameter is the mean 
duration of  each state, representing how long each state 
continues. For each state, we averaged the duration of 
all appearances. The second parameter is the occurrence 
of  the brain state, representing how often each brain 
state happens per second. The number of  occurrences 
is divided by the entire length of  the resting-state fMRI 
session (390 s). The third parameter is the transition 
frequency, which shows how many times a brain state 
transits from one brain state to another brain state per 
one time step. The number of  each transition type is di-
vided by the entire time points of  the resting-state fMRI 
session (300). These three metrics are calculated for 
each participant based on the group-level energy land-
scape. Then, we compared these parameters between the 
groups.

Associations Between Brain Dynamics and Symptoms 
and Cognition

To investigate how brain dynamics were associated with 
psychopathological and neuropsychological measures, 
we calculated Spearman’s rank correlation coefficients 
between three brain dynamics parameters and SIPS total 
scores in the CHR group, exclusively. Further, we cal-
culated Spearman correlations with the VLMT delayed 
recall and the DST. Here, results are reported uncor-
rected and false discovery (FDR) corrected for multiple 
comparisons.

Random-Walk Simulation of Brain Dynamics

To validate the characteristics of  the brain dynamics ac-
quired from the empirical data, we performed a random-
walk simulation in the energy landscape as performed 
in previous studies.19,22,55 We numerically simulated the 
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movement of  the brain activity patterns using a Markov 
chain Monte Carlo method with the Metropolis–
Hastings algorithm.57,58 In this method, any brain ac-
tivity pattern Vi could move only to a neighboring 
pattern Vj with probability Pij = min

[
1, eE(Vi)−E(Vj)

]
 

derived from the pairwise MEM model. For each group, 
we performed a single session of  the random-walk sim-
ulation with 108steps. An initial pattern was randomly 
chosen, and the time trajectory of  activity patterns was 
obtained. Then, the activity patterns were assigned to 
the brain states constituted by local minimum basins. 
For each group, we calculated the three classes of 
parameters (mean duration, occurrence, and direct 
transition frequencies), as described in “Calculation of 
representative feature metrics of  the energy landscape 
analysis”. Finally, we compared these model-based 
parameters with those from the empirical data.

Statistical Analysis

To compare beha Patients and HC vioral, demographic, 
and neuroimaging data between the HC and CHR 
groups, we performed a two-sample t-test and Chi-square 
test. For the association between neuroimaging and clin-
ical data in CHR, Pearson’s correlation efficient was cal-
culated. We corrected for multiple testing’s with false 
discovery rate correction.

Results

Sample Demographics

Patients and HC did not differ in sex or age (table 1). 
Eight CHR patients (16%) were on antipsychotic medi-
cation. Psychosocial functioning was significantly lower 
in CHR than in HC (P < .001). Significant differences 
were detected in SIPS scores and cognitive performance 
(overall univariate models, see table 1). SIPS positive 
total scores were significantly higher in CHR than in HC 
(P < .001). Similarly, DST performance was significantly 
lower in CHR than in HC (P = .002). Finally, delayed 
recall in VLMT was not significantly different between 
CHR and HC, but close to significant (P = .09).

Accuracy of Fitting of a Pairwise MEM to fMRI Data

We first evaluated the validity of the pairwise MEM 
model fitting for each group. We found a high accuracy 
of models fitted to the empirical fMRI data for HC and 
CHR (HC: 97.1%, CHR: 98.0%). This high accuracy 
of model fitting was also confirmed by correlations be-
tween the probability of each brain activity pattern ac-
quired from the empirical data and that numerically 
derived from the pairwise MEM model for HC and 
CHR groups (Supplementary figure S1). As shown in 
Supplementary figure S1, empirical and model-derived 

Fig. 2. Identifications of the local minimum and the comparison of the energy-landscape structures. (Upper) Disconnectivity graphs of 
energy-landscape structure. Lower energy reflects more stable and more frequent occurrence of a local minimum pattern, while higher 
energy reflects less stable and less frequent occurrence. (Bottom) The activity patterns corresponding to local minimum described in the 
disconnectivity graphs. Both disconnectivity graphs and brain activity patterns of local minimum are identical between HC and CHR 
(bottom). Based on the similar hierarchal structures of the energy landscapes across the groups, we summarized the local minima A 
and C to the major state 1 (magenta) and the local minima D and F to the major state 2 (cyan). Furthermore, we summarized the local 
minimum B to the minor state 3 (green), and the local minimum E to the minor state 4 (orange).
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occurrence probabilities of brain activity patterns are 
highly correlated (r > .99), indicating that the pairwise 
MEM was well fitted to the empirical fMRI data with 
high accuracy for HC and CHR groups.

Identification of Local Minimum Basins and the 
Comparison of the Energy Landscape Structures

Next, we identified local minimum brain activity patterns 
that constitute local minimum basins and their energy 
landscape (disconnectivity graph) for HC and CHR 
(figure 2). The local minimum brain activity patterns 
were identical between HC and CHR. Six local minimum 
basins (basin A–F) were identified in HC and CHR.

The disconnectivity graphs for the HC and CHR 
groups were also identical between HC and CHR. As 
shown in figure 2, each energy landscape had two main 
branches. One main branch of the disconnectivity graphs 
consisted of basin A, B, and C, while the other branch 
consisted of basin D, E, and F.

Each main branch also had two sub-branches. One sub-
branch included two local minimums with lower energy 
(higher occurrence), while the other sub-branch included 
one local minimum with higher energy (lower occur-
rence). Based on such hierarchal characteristics and the 
similarity of the energy landscape structures across the 
two groups, we could consider the two pairs of the basins 
(higher occurrence) to be two main states, classifying 
basin A and C to main state 1, and basin D and F to main 
state 2. We also classified remaining local minimums with 
higher energy (lower occurrence) to minor states: basin B 
to state 3, and basin E to state 4 (figure 2). This simplifi-
cation of the structures of energy landscapes allowed us 
to directly compare the characteristics of the brain dy-
namics across the groups.

Characterization of the Brain Dynamics

We compared the mean duration and occurrence of 
each brain state in HC and CHR. As was shown in 
figure 3, the duration and occurrence of  state 4 were 
significantly longer and higher in CHR than those in 
HC (two-sample t-test: t(81) = 3.276, P = .0016 and 
t(81) = 4.247, P < .0001, respectively). The random-
walk simulation confirmed that the duration and oc-
currence of  state 4 were longer in CHR than in HC 
(Supplementary figure S2).

We also compared the direct transition frequency 
among the brain states across the three groups (figure 
4). We found that the direct transition frequencies from 
state 2 to state 4 and from state 4 to state 1 were signif-
icantly higher in CHR than in HC (two-sample t-test: 
t(81) = 3.276, P = .0016 and t(81) = 3.867, P = 0.0002, 
respectively). Furthermore, the random-walk simulation 
revealed that both of the direct transition frequencies 

Fig. 3. Group comparison of the duration and occurrence of the brain states The duration (left) and occurrence (right) of state 4 were 
significantly longer and more frequent in CHR than in HC respectively (duration: t(81) = −3.20, P = .0020; occurrence: t(81) = −4.20, P 
< .0001).

Table 2. Association Between Energy Landscape Parameters and 
Clinical Scales

Occurrence 
state 4

Duration 
state 4

Transi-
tion 2–4

Transi-
tion 4–1

SIPS pos. 
tot.

0.041 0.122 0.190 −0.033

VLMT del. 
rec.

−0.121 0.234 −0.328# 0.265

DST −0.314# 0.048 −0.300# −0.412*

Note: SIPS, standard interview for psychosis-risk syndromes, 
positive symptoms scores (p1–p5); VLMT, verbal learning and 
memory test, percentiles; del. rec., delayed recall (after 20 min); 
DST, digit symbol test.
*Survived FDR correction for multiple testing (P (FDR < .05)).
#P < .05 uncorrected for multiple comparison.
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(from state 2 to state 4, and from state 4 to state 1) were 
higher in CHR than in HC (Supplementary figure S3), 
validating the results of our empirical data.

Associations Between Brain Dynamics and Symptoms

Finally, we examined the association between brain dy-
namics and behavioral measures including psychopath-
ological and neuropsychological assessments. We looked 
at the correlation of behavioral assessment with measures 
related to state 4 (occurrence, duration, and transition) 
in CHR. We found no significant correlations with total 
positive SIPS score (P > .05, table 2). In neuropsycholog-
ical measures, significant correlations were detected be-
tween delayed recall of the VLMT and direct transition 
from state 2 to state 4 (P(uncorrected) = .023) (table 2).  
Further, significant correlations were detected with per-
formance in the DST and transitions from state 2 to state 
4 (P(uncorrected) = .036) and significant correlations 
between occurrence of state 4 (P(uncorrected) = .027), 
transition from state 2 to state 4 and transition from state 
4 to state 1 (P(uncorrected) = .003) (table 2). However, 
only the correlation between transition of 4 to 1 and DST 
survived correction for multiple testing (P(FDR) = .039, 
figure 5, table 2). These results suggest that stronger at-
traction to state 4 is associated with more severe impair-
ment in processing speed.

Discussion

This study addressed the temporal dynamics of brain 
networks by applying energy landscape analysis to 
resting-state fMRI data. A significantly longer duration 
and higher occurrence of state 4 in CHR as compared to 
HC was found. Further, transition from state 2 to state 
4, as well as transition from state 4 to state 1 was signifi-
cantly more frequent in CHR compared to HC.

The results suggest that brain dynamics in CHR tend 
to be attracted to state 4. Once the brain dynamics fall 
into state 4, they remain for a longer time in state 4. 
Importantly, state 4 is characterized by the deactivation 
of FPN, DAN, and VIN, and the activation of DMN, 
LIN, SAN, and SMN networks.

The significance of investigating brain network 
dynamics is uncovering the metastability of brain 
networks.20 The dynamics of brain networks are funda-
mentally shaped by the structural connections of neural 
networks and the patterns of neuronal activity. In psy-
chiatric illnesses, dysfunctional synaptic connections 

Fig. 4. Group comparison of the direct transition frequency across the brain states The direct transition frequency from state 2 to state 
4 (left), and that from state 4 to state 1 (right) were significantly more frequent in CHR than in HC (the direct transition frequency from 
state 2 to state 4: t(81) = −3.27, P = .0020; the direct transition frequency from state 4 to state 1: t(81) = −3.72, P ≤ .001 respectively).

Fig. 5. Association between processing speed and energy 
landscape dynamics Scatter plot depicts the relationship between 
direct transition frequency from state 4 to 1 (X-axis) and 
processing speed measured by digit symbol test (DST) (Y-axis), 
showing significant negative correlation (P(FDR) = .039).
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may skew neural transmission within these networks. 
Consequently, such dysfunctional connections could lead 
to altered brain dynamics in psychiatric disorders. This 
alteration may manifest as either an extended or abbre-
viated duration of specific brain states or as changes in 
the propensity or frequency of transitions between brain 
states.

In addressing the dynamics of  brain network 
interactions, dynamic functional connectivity analysis 
has been extensively utilized. A major limitation of 
conventional dynamic functional connectivity analysis 
is the necessity for a prolonged time window to com-
pute the connectivity matrix, which results in a loss of 
the temporal resolution of  the dynamics.13 However, 
a recent advancement, known as leading eigenvector 
dynamics analysis (LEiDA), has overcome this limita-
tion.59 It extracts phase information from neural time 
series—particularly fMRI BOLD time series—and 
assigns phase lags between brain regions to determine 
dynamic functional connectivity. This method enables 
the estimation of  dynamic functional connectivity at 
each time point, thereby providing a detailed temporal 
resolution of  brain network dynamics, akin to energy 
landscape analysis. Despite these similarities, there is 
a significant distinction between the LEiDA approach 
and energy landscape analysis. LEiDA models the dy-
namics of  whole-brain activity as an accumulation of 
bivariate interactions, whereas energy landscape anal-
ysis considers interactions among brain regions collec-
tively to define the dynamics of  whole-brain activity. 
Consequently, EL does not reduce whole-brain dy-
namics to a series of  bivariate interactions but captures 
a more holistic and integral nature of  whole-brain 
interactions within brain networks. However, EL is lim-
ited by the number of  brain areas that can be included 
when estimating parameters for the pairwise MEM, 
whereas LEiDA offers scalability regarding the number 
of  brain regions included.

Comparing the local minimum states of the en-
ergy landscape with correlations of the seven networks 
(Supplementary figure S4), strong positive and negative 
correlations (|r| > .3) were consistent with major states 
(states 1 and 2) of the energy landscape. In contrast, in 
state 4, the coactivation of DMN and SMN, coactivation 
of DMN and SAN, and the co-deactivation of FPN and 
VIN are inconsistent with correlations of resting-state 
networks, suggesting that these three interactions char-
acterize minor states of network interactions, and pro-
longed state 4 reflects psychotic states including CHR.

Using a data-driven approach this finding strongly 
supports current hypotheses on the pathogenesis of  psy-
chosis.8 Involvement of  the salience,60,61 limbic,62 DMN,10 
or somatosensory networks63 have separately been 
demonstrated in the pathophysiology of  chronic schizo-
phrenia. However, a coactivation of  these RSNs has not 
been previously demonstrated, and never in CHR states. 

In CHR, we found brain dynamics are more frequently 
attracted to the minor state 4, and a more frequent tran-
sition from state 4 to state 1 was correlated with poorer 
performance of  the DST. While these results might 
seem counterintuitive, it is important to note that brain 
states are transient and continuously fluctuate. Thus, an 
increased transition from state 4 to state 1 could be in-
dicative of  a more frequent occurrence of  state 4. This 
observation suggests that not only the stability of  brain 
states but also the dynamic transitions between them 
play a crucial role in understanding brain function and 
cognition. In particular, the minor states we observed by 
the energy landscape analysis were masked by the major 
states in conventional functional connectivity analysis. 
For instance, the DMN is typically anti-correlated with 
the SAN and SMN (Supplementary figure S4). However, 
coactivation of  the DMN, SAN, and SMN is evident in 
state 4 (figure 2). This indicates that the brain’s ability 
to switch between different states is potentially vital 
for cognitive functions, particularly processing speed, 
emphasizing the importance of  neural flexibility, and 
adaptability. Among neurocognitive functions, proc-
essing speed shows the strongest impairments in people 
with psychosis, is a predictor of  long-term psychosocial 
functionality, and has been associated with conversion 
to psychosis in CHR individuals.29,64,65 More impor-
tantly, processing speed appears to be a superordinate 
factor controlling other cognitive domains and thus, 
may lie upstream of  the generalized neurocognitive 
impairments seen in psychosis or CHR. Several authors 
have therefore suggested processing speed as a main 
target for cognitive treatment interventions.65 Vice versa 
our data indicate that targeting brain dynamics may 
help to activate or modulate cognitive functions. In a 
therapeutic context, interventions targeting the modu-
lation of  specific brain states or their transitions could 
potentially be effective. However, our hypothesis of  an 
association with positive symptoms was not confirmed 
in the present sample.

A meta-analysis of functional disconnection in schizo-
phrenic patients revealed hyper-connectivity between the 
LIN and SAN networks.66 While LIN and SAN might be 
involved in aberrant salience, the role of the DMN is less 
clear. DMN activity is deactivated during task perfor-
mance, thus increased activation might contribute to cog-
nitive impairments (eg, dream-like states).10 The finding 
on the SMN is fitting to recent observations that motor 
symptoms are a reliable biomarker, can be detected early 
in psychosis development, and are independent of medi-
cation side effects, which is reflected in recent activities to 
include motor symptoms in the ICD-11 and the research 
domain criteria (RDoC) framework.67–70

An important note regarding methodological varia-
tions among previous studies in energy landscape anal-
ysis is the definition of brain networks. The current study 
and a study by Yamashita et al,71 used the seven networks 
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of Schaefer’s parcellation. In contrast, other studies used 
different parcellation, or focused on a particular brain 
structure such as subcortical structure, or DMN. In ad-
dition, the TR of the fMRI sequence also has a great 
impact on the time resolution of brain dynamics. While 
recent multi-band sequence measures less than a second 
TR, older data sets utilize TR longer than 2 s.19

Limitations of current study include the following: 
First, the cross-sectional analysis provided group 
differences, but the association between the onset of 
psychosis and the alteration related to state 4 is not es-
tablished. Longitudinal data is required to address this 
question in future studies. In the CHR cohort, 16% of 
patients received antipsychotics, which could affect en-
ergy landscape metrics. Longitudinal follow-up is needed 
to how the current results could impact on long-term 
clinical outcomes, such as conversion. Moreover, with re-
gard to symptomatic and cognitive measures, only DST 
but not VLMT survived correction for multiple testing, 
which dampens the generalizability/validity of these 
results.

The lack of a first-episode psychosis group is another 
limitation of our study. However, with regard to CHR 
status, the most recent meta-analysis indicated 35% 
of CHR individuals convert to full-blown psychosis 
within a 10-year period.5 Thus, we predict that about 
17 individuals in our CHR group would convert to full-
blown psychosis in the long term. Importantly, from those 
CHR individuals who do not convert to psychosis, only a 
minority of 7%–25% will remit at follow-up. In contrast 
more than 75% will suffer from continuing attenuated 
psychotic symptoms, deterioration of pre-existing mental 
disorders with significant functional impairments, and/or 
newly emerging non-psychotic mental disorders such as 
bipolar disorder, substance use, or borderline disorder.72 
These observations have led to the recent adaptation of 
a broader clinical high at-risk mental state (CHARMS) 
model supporting the view that CHR is a pluripotent and 
heterotopic early marker for severe mental disorders.73,74 
This view is in line with transdiagnostic and/or dimen-
sional approaches to psychiatry, such as the “Research 
Domain Criteria” (RDoC, NIMH)75 and the Hierarchical 
Taxonomy of Psychopathology (HiTOP).76 The finding 
of involvement of limbic and salience systems and of 
the DMN in a brain state more frequently observed in 
help-seeking CHR patients does well integrate with a 
transdiagnostic view as these resting-state networks seem 
to be involved in several mental disorders.77–79 Thus, lon-
gitudinal studies of larger samples will have to clarify 
whether our findings are specific for psychosis or, rather, 
are a marker of general psychopathology indicative of 
various mental disorders.

Conclusions

In CHR, a brain state with coactivation of RSNs that 
are involved in aberrant salience and other positive 

symptoms may occur more frequently and remain for 
longer time periods. The same brain state is characterized 
by the deactivation of RSN involved in cognition, and 
was negatively associated with processing speed in CHR. 
The current study provides new perspectives on CHR 
that aberrant brain dynamics in CHR account for the im-
pairment of core cognitive functions in CHR.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin Open online.
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