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Abstract Analog methods (AMs) have long been used for precipitation prediction and climate studies.
However, they rely on manual selections of parameters, such as predictor variables and analogy criteria.
Previous work showed the potential of genetic algorithms (GAs) to optimize most of the AM parameters. This
research goes one step further and investigates the potential of GAs for automating the selection of the input
variables and the analogy criteria (distance metric between two data fields) in AMs. Our study focuses on the
prediction of daily precipitation in central Europe, specifically Switzerland, as a representative case.
Comparative analysis against established methods demonstrates the superiority of GA‐optimized AMs in terms
of predictive accuracy. The selected input variables exhibit strong associations with key meteorological
processes that influence the generation of precipitation. Further, we identify a new analogy criterion inspired by
the Teweles‐Wobus criterion, which consistently performs better than other Euclidean distances and could be
used in classic AMs. In contrast to conventional stepwise selection approaches, GA‐optimized AMs display a
preference for a flatter structure characterized by a single level of analogy and an increased number of variables.
Overall, our study demonstrates the successful application of GAs in automating input variable selection for
AMs, with potential implications for application in diverse locations and data exploration to predict alternative
predictands. In a broader context, GAs could be used to perform input variable selection in other data‐driven
methods, opening perspectives for a broad range of applications.

Plain Language Summary Analog methods (AMs) predict precipitation by searching for similar
past meteorological situations. However, setting up these methods requires manual selection of meteorological
variables and how to compare them. Genetic algorithms (GAs) can already optimize some of AM parameters,
and our study goes further to explore whether GAs can automatically select the variables and comparison
metrics. Our results indicate that AMs improved by GAs outperform other AMs in predicting rainfall. The
chosen variables strongly relate to important weather processes influencing rainfall. We also identified a new
criterion for measuring the similarity of meteorological situations, which outperforms others used in traditional
methods. Unlike conventional stepwise approaches, GAs prefer a simpler structure with a single level of
analogy. In summary, our study demonstrates that GAs simplify the process of choosing variables for AMs, with
potential applications in various locations and data exploration for local weather prediction. Additionally, such
approaches can be extended to select relevant variables in other data‐driven methods.

1. Introduction
Analog methods (AMs) are statistical techniques grounded in the intrinsic connections between meteorological
predictors, typically at a synoptic scale, and local weather patterns (Lorenz, 1956, 1969). AMs look for similar
meteorological situations in the past to that of a target date of interest. They provide a conditional prediction based
on the observed predictand values at these analog dates. Daily precipitation has often been the predictand of
interest, either in the context of operational forecasting (e.g., T. Hamill & Whitaker, 2006; Bliefernicht, 2010;
Marty et al., 2012; Horton et al., 2012; T. M. Hamill et al., 2015; Ben Daoud et al., 2016), climate change studies
(e.g., Dayon et al., 2015; Raynaud et al., 2016), or past climate reconstruction (Caillouet et al., 2016). AMs are
also used for other predictands, such as precipitation radar images (Foresti et al., 2015; Panziera et al., 2011),
temperature (Caillouet et al., 2016; Delle Monache et al., 2013; Jézéquel et al., 2017; Raynaud et al., 2016), wind
(Delle Monache et al., 2013; Delle Monache et al., 2011; Vanvyve et al., 2015; Alessandrini, Delle Monache,
Sperati, & Nissen, 2015; Junk, Delle Monache, Alessandrini, Cervone, & von Bremen, 2015; Junk, Delle
Monache, & Alessandrini, 2015), and solar radiation or power production (Alessandrini, Delle Monache, Sperati,
& Cervone, 2015; Bessa et al., 2015; Raynaud et al., 2016). Although deep learning methods nowadays become
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more and more popular in the context of forecasting, postprocessing and downscaling (e.g., Chapman et al., 2022;
Leinonen et al., 2020; Miralles et al., 2022; Otero & Horton, 2023), AMs are still relevant and offer the benefit of
interpretability.

Some AMs combine different predictors together using weights in the calculation of the distances between the
target and the analog situations (e.g., Keller et al., 2017; Meech et al., 2020). Others may consist of a stepwise
selection of similar meteorological situations based on multiple predictors organized in different consecutive
levels of analogy, each of which conditions the subsequent selection. The similarity between two situations is
computed using an analogy criterion (distance metric) over a relevant spatial domain. For each level of analogy, a
certain number of analogs are selected (Bontron, 2004; Obled et al., 2002).

Stepwise AMs for predicting precipitation commonly have a first level of analogy based on the atmospheric
circulation. The variable of interest is the geopotential height (Z) at various pressure levels and specific times
throughout the day (Table 2; Obled et al., 2002; Horton et al., 2018). Bontron (2004) introduced a second level of
analogy based on a moisture index that is the product of the relative humidity at 850 hPa and the total precipitable
water (RM3 method in Table 2). Other consecutive studies selected different pressure levels (Horton et al., 2018,
method RM4 in Table 2) or added a wind component to the moisture index (Marty, 2010). Ben Daoud et al. (2016)
inserted an additional level of analogy between the circulation and the moisture analogy based on the vertical
velocity at 850 hPa (methods RM6 in Table 2) and named it ”SANDHY” for Stepwise Analog Downscaling
method for Hydrology (Ben Daoud et al., 2016; Caillouet et al., 2016).

To calibrate the method, a semi‐automatic sequential procedure (Ben Daoud et al., 2016; Bontron, 2004;
Radanovics et al., 2013) has often been used to optimize the size of the domain and the number of analogs.
However, predictor variables, vertical levels, temporal windows (time of day), and analogy criteria were manually
selected. This manual selection requires the comparison of numerous combinations and a comprehensive
assessment of some parameter ranges. Moreover, the sequential calibration procedure successively calibrates the
different levels of analogy, and thus it does not handle parameters inter‐dependencies. Considering these limi-
tations, Horton et al. (2017) introduced a global optimization of the AM using genetic algorithms (GAs). Using
this approach, an automatic and objective selection of the temporal windows, the vertical levels, the domains, and
the number of analogs became possible, improving the prediction skills of the method (Horton et al., 2018). A
weighting of the predictor variables has also been introduced. The only parameters left for manual selection were
the meteorological variables and the analogy criteria.

Selecting predictors for precipitation prediction with AMs in Europe has been the focus of multiple studies aiming
to improve prediction skills (Ben Daoud et al., 2016; Bontron, 2004; Gibergans‐Báguena & Llasat, 2007; Obled
et al., 2002; Radanovics et al., 2013). Thus, the relevant predictors are likely to be known nowadays and supported
by expert knowledge. However, transferring AMs to a region with different climatic conditions or to another
predictand would involve reconsidering the selected meteorological variables. This work aims to test a fully
automatic optimization of all AM parameters, including the selection of the meteorological variables and even the
analogy criteria, using GAs. GAs have already been used for input variable selection (IVS) in other contexts
(D'heygere et al., 2003; Huang et al., 2007; Cateni et al., 2010; Gobeyn et al., 2017).

GAs have also been used in the context of AMs for other tasks, such as the selection of optimal vertices in an
unstructured grid approach to reduce computational resources when working with high‐resolution data (Hu &
Cervone, 2019). An alternative approach to IVS, proposed by Hu et al. (2023), is to compress multiple predictors
into latent features using a deep learning network and then select the analogs in this latent space. This approach
eliminates the need for the prior selection of predictors; however, it sacrifices the advantage of interpretability
provided by an analogy computed on the original variables.

Here, we seek to assess the potential of GAs for input variable selection in the context of the analog method.
Moreover, we want to test the GAs' ability to jointly select the distance metric in addition, that is, the analogy
criterion. To compare with well‐established AMs, daily precipitation in central Europe, specifically in
Switzerland, has been chosen as predictand. Also, as is often the case, the AMs were optimized in the perfect
prognosis framework, using predictors from reanalyses. This work focuses mainly on the proof of concept of
automatic IVS for AMs rather than the details of the case study.

The paper is organized as follows. Section 2 describes the data sets, the fundamentals of AMs, the characteristics
of the GAs implementation, the software used, and the details of the experiment setup. Section 3 presents the
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results of different analyses, such as the selection of the best predictor variable, the relevance of various AM
structures, and the accuracy of the optimized methods. Section 4 discusses some findings of the work. Finally,
Section 5 summarizes the main contributions of the work and open perspectives for applications of the developed
approach.

2. Material and Methods
2.1. Data

The target variable (predictand) is daily precipitation derived from the RhiresD gridded data set from MeteoS-
wiss (2021). It is a daily aggregation (from 06 UTC of day D to 06 UTC of day D + 1) at a 1 km resolution with
data from 1961 onward. It is produced using an interpolation scheme between gauging stations (Frei &
Schär, 1998). The gridded data were spatially aggregated across 25 catchments of about 200 km2 (Table 1). These
catchments were chosen to cover the different climatic regions of Switzerland (Schüepp & Gensler, 1980), as
illustrated in Figure 1.

As is often done in the context of the perfect prognosis framework, we used variables provided by global
reanalyses. Although most reanalysis provides good quality data in Europe, differences still exist, and the choice
of the reanalysis data set can impact the accuracy of the AM even more substantially than the choice of the
predictor variables (Horton & Brönnimann, 2019). Thus, it was considered advisable to test some of the following
analyses with another reanalysis to assess the robustness of the selected variables.

Table 1
Characteristics of the 25 Selected Catchments in Switzerland

Id Name of the river Climatic region Area (km2) Mean elevation (m a.s.l.)

1 L’Allaine Eastern Jura 209.1 571

2 Ergolz Eastern Jura 150.3 589

3 L’Orbe Western Jura 209.3 1,229

4 La Birse Western Jura 203.3 920

5 La Broye Western Plateau 184.5 791

6 Murg Central Plateau 184.8 658

7 Aabach Central Plateau 180.0 562

8 Töss Northeastern Plateau 189.3 745

9 Sense Western alpine north slope 179.6 1,238

10 La Sarine Western alpine north slope 200.8 1,779

11 Weisse Lütschine Western alpine north slope 165.0 2,149

12 Emme Central alpine north slope 206.9 1,151

13 Engelberger Aa Central alpine north slope 204.3 1,654

14 Linth Eastern alpine north slope 195.7 1,959

15 Sitter Eastern alpine north slope 162.2 1,069

16 Dranse d’Entremont Valais 154.2 2,340

17 La Navisence Valais 210.5 2,541

18 Lonza Valais 161.7 2,370

19 Doveria Southern Alps 170.5 2,241

20 Ticino Southern Alps 208.5 2,019

21 Verzasca Southern Alps 187.4 1,656

22 Valser Rhein North and Central Grisons 185.8 2,215

23 Plessur North and Central Grisons 207.7 1,928

24 Mera Southern Alps 190.6 2,142

25 Flaz Engadine 193.1 2,599
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The main reanalysis used in this work is ERA‐Interim (ERA‐I, Dee et al., 2011), which was produced by the
European Center for Medium‐RangeWeather Forecasts (ECMWF) and covers the period from 1979 to 2019. The
forecast model uses a hybrid sigma‐pressure vertical coordinate on 60 layers and has a T255 horizontal resolution

Table 2
Some Analog Methods Listed by Increasing Complexity

Method Preselection First level Second level Third level References

RM1 ±60 days Z1000@12hr Bontron (2004)

Z500@24hr

RM2 ±60 days Z1000@06hr Horton et al. (2018)

Z1000@30hr

Z700@24hr

Z500@12hr

RM3 ±60 days Z1000@12hr MI850@12 + 24hr Bontron (2004)

Z500@24hr

RM4 ±60 days Z1000@30hr Horton et al. (2018)

Z850@12hr MI700@24hr

Z700@24hr MI600@12hr

Z400@12hr

RM5 T925@36hr Z1000@12hr MI925@12 + 24hr Ben Daoud et al. (2016)

T600@12hr Z500@24hr MI700@12 + 24hr

RM6 T925@36hr Z1000@12hr W850@06–24hr MI925@12 + 24hr Ben Daoud et al. (2016)

T600@12hr Z500@24hr MI700@12 + 24hr

Note. The analogy criterion is S1 for Z and RMSD for the other variables. The predictors are described by meteorological
variables (e.g., Z), pressure levels (e.g., 1,000), and time windows (e.g., 12hr UTC). Multiple time steps can be considered.
For example, ’MI850@12 + 24hr’ indicates that the moisture index is being considered at 12 and 24hr UTC. In the case of
’W850@06–24hr’, all 6‐hourly time steps between 6 and 24hr UTC are being used. Z, geopotential height; T, air temperature;
W, vertical velocity; MI, moisture index.

Figure 1. Location of the 25 selected catchments in Switzerland along with the climatic regions (dashed lines) and the river
network (source: SwissTopo, HADES).
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(about 79 km) and a 30 min time step. The output variables have a grid resolution of 0.75°. This work started
before the release of ERA5, the successor of ERA‐I.

The Climate Forecast System Reanalysis (CFSR, Saha et al., 2010a), provided by NCEP, was used for the first
experiment to compare the results obtained with ERA‐I. The model used to produce CFSR has a horizontal
resolution of T382 (about 38 km) and 64 levels on sigma‐pressure hybrid vertical coordinates. The period covered
is 1979 to August 2019, and the output variables have a spatial resolution of 0.5°.

Finally, ERA5 (Hersbach et al., 2019) was used for the last analysis. ERA5 provides more variables and a higher
spatial (0.25°, but used here at 0.5°) and temporal resolution (hourly, but used here at a 3‐hourly time step). ERA5
assimilates considerably more data than ERA‐I and provides, among others, more consistent sea surface tem-
perature and sea ice, improved representation of tropical cyclones, better balance of evaporation and precipitation,
and improved soil moisture. ERA5 also relies on more appropriate radiative forcing and boundary conditions
(e.g., changes in greenhouse gases, aerosols, SST, and sea ice) (Hersbach et al., 2019).

2.2. Analog Methods

AMs are based on the rationale that two similar synoptic situations may produce similar local weather (Lor-
enz, 1956, 1969). It thus consists of extracting past atmospheric situations similar to a target date. Selected
predictor fields define this similarity. The analogy is defined by.

1. The selected meteorological variables (predictors).
2. The vertical levels at which the predictors are selected.
3. The spatial windows (domains) over which the predictors are compared.
4. The hours of the day at which the predictors are considered.
5. The analogy criteria (distance metric to rank candidate situations).
6. Possible weights between the predictors.
7. The number of analog situations Ni to select for the level of analogy i.

AMs usually start with a seasonal preselection to cope with seasonal effects (Lorenz, 1969). The seasonal pre-
selection is often implemented as a moving window of 120 days centered around the target date (Ben Daoud
et al., 2016; Bontron, 2004; Horton et al., 2012; Marty et al., 2012). Alternatively, the candidate dates can be
preselected based on similar air temperatures at the nearest grid point (Ben Daoud et al., 2016, methods RM5 and
RM6 in Table 2). In this work, we used the temporal moving window to reduce the number of potential candidate
dates and, thus, the computing time.

The first level of analogy in AMs for precipitation is often based on the atmospheric circulation using the geo-
potential height (Z) at different pressure levels and hours of the day (Table 2). The distance (analogy criterion)
between two Z fields is calculated on the vector components of the gradient, that is, using the difference between
adjacent grid cells, rather than comparing absolute values. The Teweles–Wobus criterion (S1, Equation 1,
Teweles & Wobus, 1954; Drosdowsky & Zhang, 2003) was identified as the most suitable by different studies
(Bontron, 2004; Guilbaud & Obled, 1998; Wilson & Yacowar, 1980; Woodcock, 1980). It is defined as follows:

S1 = 100
∑
i
|Δẑi − Δzi|

∑
i
max{|Δẑi|,|Δzi|}

(1)

where Δẑi is the gradient component between the ith pair of adjacent points from the geopotential field of the
target situation, and Δzi is the corresponding gradient component in the candidate situation. The gradient com-
ponents are computed in both the latitude and longitude directions. S1 ranges from 0 to 200. The smaller the S1
values, the more similar the shape of the pressure fields and therefore the atmospheric circulation. S1 was
developed to verify prognostic charts (Teweles & Wobus, 1954). It was computed using pressure differences
between stations arranged in north‐south and east‐west lines. The ”difficulty coefficient” (the denominator) re-
duces the influence of the seasons and the strength of the weather systems on the score.

After selecting a certain number of analog dates based on Z, subsequent steps can be added to subsample a lower
number of analog situations based on other predictors. The method developed by Ben Daoud et al. (2016) has, for
example, three levels of analogy (and a preliminary level for the preselection) where each level subselects a
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smaller number of analog situations from the candidates provided by the previous level (RM6method in Table 2).
For other predictors than the geopotential height (e.g., for moisture variables), classic criteria representing
Euclidean distances between grid point values are used.

The output of the AM is a probabilistic prediction for the target day. It is provided by the empirical conditional
distribution of the Ni predictand values corresponding to the Ni dates selected at the last level of analogy.

2.3. Genetic Algorithms

Genetic Algorithm (GA) is a global optimization technique inspired by genetics and natural selection
(Holland, 1992). It belongs to the family of evolutionary algorithms and comprises different operators such as
natural selection, couples selection, chromosome crossover, mutation, and elitism. These operators act on
parameter sets of the problem to optimize by mixing, combinations, and random modifications. GA aims to
combine, over time, the strength of different parameter sets and to explore the parameter space while converging
toward the global optimum. The optimization starts here with 2,000 random parameter sets (as defined in Sec-
tion 2.2) and is stopped when the best parameter set cannot be improved after 30 iterations.

A variant of GA has been tailored to optimize AMs by Horton et al. (2017). All the parameters of the method,
except the meteorological predictor variables and the analogy criteria, have already been successfully optimized
using GAs (Horton et al., 2018). All parameters were optimized jointly on the different levels of analogy. The use
of GAs provided for the first time an objective and global optimization of AMs, resulting in gains in prediction
accuracy. To bring the optimization further, the selection of the predictor variables and the analogy criteria were
performed here by GAs.

The reason why the predictor variables and analogy criteria were left out in the previous GA‐AM setup by Horton
et al. (2017) is the different nature of these variables. The parameters optimized so far by Horton et al. (2017) were
quantitative variables, that is, numerical values (e.g., location and size of the spatial windows or the number of
analogs), which have a notion of continuity. However, the parameters characterizing the selected predictors or
analogy criteria are entries in a list of possible variables/criteria that can be considered as categorical variables as
there is no relationship among entries. They are treated as arrays of independent values by the algorithm.
Therefore, the mutation operator relying on a search radius in the parameter space (Horton et al., 2017) cannot be
applied. Instead, a simple random sampling was used for these parameters when selected for mutation. In addition
to the increased difficulty due to the higher number of parameters to optimize, this aspect will likely slow down
the optimization.

In GAs, the mutation operator changes a parameter value (gene) if this parameter was selected to mutate (all
parameters have a certain mutation probability). The new value assigned depends on the rules of the mutation
operator applied. This operator enables the optimization to explore new areas of the parameter space and was
shown to have the greatest impact on the success of AM optimizations (Horton et al., 2017). Thus, as suggested in
Horton et al. (2017), five variants of this operator were used in parallel optimizations (see details in Appendix B):
three variants of the non‐uniform mutation (Michalewicz, 1996), the multiscale mutation, and the chromosome of
adaptive search radius. The non‐uniform mutation aims to reduce the magnitude of the search in the parameter
space with the evolution of the population to transition from the exploration of the whole parameter space to the
exploitation of local solutions. This operator has three controlling variables, which makes it difficult to adjust, and
thus is used with three different configurations. The multiscale mutation considers both exploration and
exploitation in parallel. It has no controlling parameters and no evolution during the optimization. The chro-
mosome of adaptive search radius was introduced by Horton et al. (2017) and is inspired by the non‐uniform
mutation. It takes an auto‐adaptive approach by adding two chromosomes, one for the mutation rate and one
for controlling the search magnitude (see details in Horton et al., 2017). Therefore, it has no controlling pa-
rameters, is thus easier to use, and automatically transitions from the exploration phase to exploitation.

2.4. Software

The optimization of AMs with GAs is implemented in the open‐source AtmoSwing software (https://atmoswing.
org/) (Horton, 2019a) that has been used for this work. AtmoSwing is written in object‐oriented C++ and has
been optimized for computational performance. It scales well on HPC infrastructures, as the different members of
the GAs populations, that is, the various parameter sets, can be assessed in parallel using multiple independent
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threads. However, due to the increasingly large number of assessments needed by GAs with the increasing
complexity of the problem, a further reduction in computing time became necessary. Indeed, while applying AMs
to perform a prediction for a single target date is a very fast and light process, GAs require a substantial amount of
parameter assessments over long calibration periods.

Despite being simple methods, AMs require many comparisons of gridded fields during the calibration phase.
For example, this work used a 24‐year calibration period. For each target day, a gridded predictor needs
to be compared to about 2,820 candidate situations (24*120–60, using a 120‐day temporal window minus
60 days in the target year that are excluded). Over the entire calibration period, this amounts to about 2.47⋅107

(24*365*2,820) field comparisons per predictor of the first level of analogy. Here, one optimization required, on
average, about 200 generations made of 2,000 individuals, which brings the average number of grid comparisons
to about 1 ⋅ 1013 per predictor of the first level of analogy. The comparison of the gridded predictors—that is, the
calculation of the analogy criteria—was identified by profilers as the most time‐consuming task, despite using the
efficient linear algebra library Eigen 3 (Guennebaud et al., 2010).

A first attempt to reduce the computing time was based on storing the whole history of the optimization in memory
and looking up for similar already‐assessed parameters to a newly generated parameter set. However, this approach
turned out to be even more time‐consuming after several generations and led to memory issues for long optimi-
zations. Finally, computation using graphics processing units (GPUs) was implemented for this study in a new
version of AtmoSwing, v.2.1.2 (Horton, 2019b). The calculation of the analogy criteria has been written using
NVIDIA's CUDA. The details of the implementation and the results of a benchmark experiment can be found in
Appendix A.When optimizing the methods using ERA5 at a 3‐hourly time step and 0.5° resolution, the difference
is substantial. One generation (2,000 evaluations) took 8 tomore than 10 hr using 20CPU threads, while 50–80min
were needed using 3 CPU threads and 3 GPU devices (NVIDIA GeForce703 RTX 2080).

2.5. Experimental Setup

The experiments were carried out over a 30‐year period, from 1981 to 2010, divided into a calibration period (CP)
and an independent validation period (VP). An additional test period (TP), covering the years 2011–2017, was
allocated to evaluate the accuracy of the optimized methods on unseen data (Section 3.4). To reduce the impact of
potential inhomogeneities in the time series, the selection of the validation period (VP) was evenly distributed
over the entire series (as in Ben Daoud, 2010). A total of 6 years was used for the VP by selecting one year out of
every five (explicitly: 1985, 1990, 1995, 2000, 2005, 2010). The archive period (AP), where the analog dates are
being retrieved, is the same as the CP. The VP is also excluded from the AP (days from the VP were never used as
candidate situations for the selection of analogs), as well as a period of±30 days around the target date to exclude
potential dependent meteorological situations. Unless stated otherwise, all results are presented for the VP.

The GAs optimized all parameters of the method. Only the AM structure (number of analogy levels and pre-
dictors) was not optimized. Different structures were tested in Section 3.2. For each level of analogy and each
predictor, the following parameters were optimized within the corresponding ranges.

1. Meteorological variable: see Section 2.5.1.
2. Vertical level: see Section 2.5.1.
3. Temporal windows (time of the day): from day D 00 UTC to D + 1 06 UTC (cf. precipitation accumulation

period, Section 2.1)
4. Spatial window (domain): latitudes = [35, 55], longitudes = [− 10, 20]. The spatial windows differ between

predictors, even within the same level of analogy.
5. Analogy criterion: see Section 2.5.2.
6. Weight [0, 1] with a precision of 0.01 (0.05 for Experiment 2). The optimizer can turn off a variable by setting

its weight to zero.
7. Number of analogs: varies according to the structure, but with an overall range of [5, 300] and a step of 5. The

optimizer can turn off a level of analogy by setting its number of analogs to the same value as the previous level
of analogy.

The CRPS (Continuous Ranked Probability Score; Brown, 1974; Matheson & Winkler, 1976; Hersbach, 2000)
was used to assess the accuracy of the predictions and is the objective function used by the GAs. It evaluates the
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predicted cumulative distribution functions F(y), here of the precipitation values y associated with the analog
situations, compared to the single observed value y0 for a day i:

CRPSi =∫

+∞

0
[Fi( y) − Hi ( y − y0i )]

2dy, (2)

where H( y − y0i ) is the Heaviside function that is null when y − y0i < 0, and one otherwise; the better the pre-
diction, the lower the score. The CRPS was here computed using the rectangle approximation based on the
discrete precipitation values provided by the analog dates.

2.5.1. Meteorological Variables

The meteorological variables were considered for different types of vertical levels: surface or entire atmosphere
(to capture, for example, the moisture content of an entire air column), pressure levels (1,000, 950, 900, 850, 800,
700, 600, 500, 400, 300, 200 hPa, to capture the vertical structure), potential temperature levels (290, 300, 310,
320, 330, 350, 400 K, necessary to include potential vorticity), and potential vorticity levels. The selected var-
iables are listed in Table 3. The optimization can pick any variable on any level type and value, as long as it is
available. Precipitation variables from reanalyses were not considered potential predictors. Precipitation is often
considered as a predictor in AMs used in a post‐processing context (where the same precipitation product is used
for training and then predicting). However, AMs targeting downscaling tasks or alternative forecasts to NWP
models do not rely on precipitation, as a method developed in the perfect prognosis context (using reanalyses data
sets that can potentially assimilate precipitation data) would then be difficult to use in other contexts (using other
model outputs) due to the high uncertainties and the biases associated with precipitation predicted by an NWP or a
climate model.

The variables were standardized (using the overall climatology) on‐the‐fly by AtmoSwing when loaded from
files. Standardization has no impact on the selection of analog situations for a single predictor, but it makes the
combination of predictors within one level of analogy more balanced, as they might have very different orders of
magnitude and units. It allows for a more effective optimization of the weights between predictors.

2.5.2. Analogy Criteria

During the optimization, the GAs can select different analogy criteria for the different predictors, with the aim of
identifying the best criteria per predictor. These are then combined using weights to provide a single analogy
distance value. The most common analogy criteria in AMs are the Root Mean Square Deviation (RMSD) and the
Teweles–Wobus criterion (S1, see Section 2.2). Other criteria were made available to the GAs in order to explore
potential new characterizations of the analogy metrics. Two of these criteria are new and are derived from S1. The
potential criteria made available to the GAs are the following.

1. RMSD: the Root Mean Square Deviation.
2. MD: the Mean Absolute Difference, or Mean Absolute Error. It differs from the RMSD in that the differences

are not squared.
3. S1: the Teweles–Wobus index as defined in Equation 1 from Section 2.2. It consists of a comparison of the

gradients, mainly used for the geopotential height.
4. S2: inspired by the Teweles–Wobus index, we introduced a new criterion based on the second derivative of the

fields instead of the gradients:

S2 = 100
∑
i
|∇2x̂i − ∇2xi|

∑
i
max{|∇2x̂i|,|∇2xi|}

(3)

where ∇2x̂i is the second derivative between the ith triplet of adjacent points from the predictor field of the target
situation, and ∇2xi is the corresponding second derivative in the candidate situation. Please note that it differs
from the S2 index from Teweles and Wobus (1954).
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Table 3
Selected Variables for ERA‐I, CFSR, and ERA5 for Different Types of Vertical Levels

Variable Id
Unit ERA‐I CFSR ERA5

Levels: PL PT PV SC PL PT PV SC PL SC

CIRCULATION VARIABLES

Geopotential height Z gpm • • • • • •

Geopotential height anomaly ZA gpm •

Zonal wind U m s− 1 • • • •a • • • • •a

Meridional wind V m s− 1 • • • •a • • • • •a

Pressure PRES Pa • • •c • ••c •c

Vertical velocity W Pa s− 1 • • • • •

Divergence D s− 1 • • •

Vorticity VO s− 1 • •

Potential vorticity PV m2 s− 1 K kg− 1 • • • •

Stream function STRM m2 s− 1 •

Velocity potential VPOT m2 s− 1 •

Montgomery potential MONT m2 s− 2 •

Montgomery stream function MNTSF m2 s− 1 •

MOISTURE VARIABLES

Relative humidity RH % • • • • •

Specific humidity SH kg− 1 • • •

Total column water TCW kg m− 2 • •

Total column water vapor TCWV kg m− 2 • •

Cloud water CWAT kg m− 2 •

Surface moisture flux IE kg m− 2 s− 1 •

TEMPERATURE VARIABLES

Temperature T K • •b • • • • •b

Potential temperature PT K •

Dewpoint temperatured DT K •a

Sea surface temperature SST K •

0° C isothermal level DEG0L m • •

RADIATION VARIABLES

Surf. net solar radiation SSR J m− 2 • •

Surf. solar rad. downwards SSRD J m− 2 • •

Surf. net thermal radiation STR J m− 2 • •

Surf. thermal rad. downwards STRD J m− 2 • •

Surf. latent heat flux SLHF J m− 2 •

Surf. sensible heat flux SSHF J m− 2 •

Top net solar radiation TSR J m− 2 •

Top net thermal radiation TTR J m− 2 •

STABILITY INDICES

Convective avail. pot. energy CAPE J kg− 1 • • •

Convective inhibition CIN J kg− 1 • •

Best (4 layer) lifted index 4LFTX K •

Surface lifted index LFTX K •
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5. S0: as with S2, this new criterion is derived from S1 and is processed on the raw grid values. It differs from the
MD mainly in that it is normalized by the sum of the maximum values instead of the number of points:

S0 = 100
∑
i
|x̂i − xi|

∑
i
max{|x̂i|,|xi|}

(4)

where x̂i is the ith point from the predictor field of the target situation, and xi is the corresponding point in the
candidate situation. The reason for adding such a criterion was accidental, as it was an erroneous implementation
of S2. However, it turned out to be relevant (see Sections 3 and 4).

6. DSD: difference in standard deviation over the spatial window. It is a non‐spatial criterion, as the location of the
features does not matter.

7. DMV: absolute difference in mean value. It is also non‐spatial, as the means are computed over the spatial
window before comparison.

2.5.3. Design of Experiments

The input variable selection with GAs has been assessed in sequential steps. First, GAs were used to identify the
single best predictor variables and their associated analogy criteria for each catchment (Section 3.1). The
objective was to assess the consistency of the selected variables in the most straightforward configuration. Then,
since AMs can be made of different levels of analogy with multiple predictors, the second experiment assessed the
accuracy associated with different structures and the ability of GAs to deal with these, using a limited number of
catchments (Section 3.2). Based on these results, the third experiment performed the input variable selection for
each catchment (Section 3.3). For all experiments, the GAs used the CRPS of the precipitation prediction as the
objective function. The selection of the meteorological variables and the analogy criteria, along with the other
parameters, is thus done to improve the accuracy of the AM.

3. Results
3.1. Best Single Variables

The first experiment evaluates the use of GAs to select a single predictor variable and analogy criterion for each
catchment. The selection has been performed using ERA‐I (Figure 2) but also CFSR for comparison (Figure 3),
with six optimizations per catchment and data set. The six optimizations were based on different mutation op-
erators (the five variants but twice the chromosome of adaptive search radius). The purpose of using two rean-
alyses is to assess the consistency and possible differences in the variable selection between two data sets.

One of the first elements that can be seen for both data sets is the dominance of the S0 criterion, selected 60% of the
time for ERA‐I and more than 55% of the time for CFSR, along with the other criteria based on Teweles–Wobus
(Figure 4). The other analogy criteria were rarely selected, if at all. The same applies to the RMSD, commonly

Table 3
Continued

Variable Id
Unit ERA‐I CFSR ERA5

Levels: PL PT PV SC PL PT PV SC PL SC

Lapse rate LAPR K m− 1 •

OTHERS

Cloud cover CC (0–1) •

Low cloud cover LCC (0–1) •

Total cloud cover TCC (0–1) •

Snow depth SD m of w.e. •

Note. PL = pressure levels, PT = pot. temp. levels, PV= pot. vorticity levels, SC = single level, surface, or total column. aAt
10 m. bAt 2 m. cAt mean sea level. dMoisture and temperature variable.
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used in analog methods. The GAs could better predict using S0 as a metric for the Euclidian distance between the
predictor fields. This result is further discussed in Section 4.

The variable selection results show some variability per catchment but similar accuracy. Although GAs can, in
theory, identify the global optimum, this search is highly time consuming for such complex problems, and we
have to stop the optimizations at a good‐enough solution. These factors explain the variability that can be
observed in the results. Nevertheless, this variability provides information about alternative variables with almost
the same predictive accuracy.

Figures 2 and 3 demonstrate that the optimal variables can vary across different regions. Figure 5 illustrates this
information spatially for the ERA‐I variables. In terms of similarities, the vertical velocity (W) at 700 and 800 hPa
is the most frequently selected for both data sets and is quantified using the S0 criteria. Upward vertical winds at
these levels are typically associated with precipitation generation. Within the southern Alpine climatic region
(catchments 19, 20, 21), Z (based on the S1 criterion) emerges as the best single predictor for ERA‐I, which is not
so clear with CFSR. Heavy precipitation events in this region are primarily the result of orographic effects related
to sustained southerly advection of moisture‐laden air masses (Massacand et al., 1998). Other regional clusters
can be observed using ERA‐I, such as the meridional wind V (with S1) in the eastern part of Switzerland, also
likely related to the southerly advection, STR(D) (surface net thermal radiation and surface thermal radiation
downwards) in northern Switzerland (see the discussion in Section 4), and the second derivative of Z (with S2) for
several catchments at similar latitudes. The second derivative of Z is also frequently selected for CFSR. While
cloud water (CWAT) is often chosen from CFSR, it is not available directly in ERA‐I.

Figure 2. Best single variable selected (ordinate; see Table 3 for the variables abbreviations) from ERA‐I for the 25 catchments (abscissa). The colors represent the
analogy criteria, and the size of the dots is proportional to the accuracy of the resulting method (the larger the dots, the better), within a range of 5% of the best result
(those with lower accuracy are hidden).

Figure 3. Same as Figure 2 but for CFSR.
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3.2. Assessment of AM Structures

The analysis of different AM structures (Section 2.5.3) aims to identify the
best performing structures, that is, the optimal number of analogy levels and
predictors. We first considered one to four levels of analogy, with one to four
predictors per level. Five optimizations were performed for each of these 16
structures with the different mutation operators. As this assessment requires
80 optimizations, it was performed on only four catchments (L’Allaine (1),
Sitter (15), Doveria (19), Flaz (25)). These were selected to maximize the
diversity of climatic conditions represented. A complementary analysis was
performed on two catchments (L’Allaine (1) and Doveria (19)) to explore the
use of up to eight predictors on one and two levels of analogy. These ex-
periments also allowed comparing the performance of the mutation operators
for different problem complexities.

Even though the structure is provided to the GAs, it can still evolve to a simpler version by assigning a zero weight
to some predictors or by setting the same number of analogs for two successive levels of analogy. This
simplification often happened, such as that no solution ended up with the structure 4 × 4 (four levels of analogy
with four predictors each). The best performing methods in the validation period were always made of one or two
levels of analogy (Figures 6 and 7). Although some AMs have up to four levels of analogy (Section 2.2), the use of
normalized variables and weights might here favor their combination in the same level of analogy. Methods with
fewer levels of analogy present less of a hierarchy among the predictors. However, not having a systematic
constraint by the atmospheric circulation, as in most AMs, results in more influence from other variables.
Although atmospheric circulation is often of primary importance for heavy precipitation events, there may be
situations where it is preferable to relax these constraints. Nevertheless, we cannot conclude that two levels of
analogy are the maximum to be considered, as the optimizer might have failed to optimize complex structures
satisfactorily.

The results also show notable performance differences between the mutation operators (Section 2.3). The
chromosome of adaptive search radius (option #1) provides the best performing parameter sets 76.3% of the time
for the calibration period and 62.5% of the time for the validation period (Figure B1). The second best is the non‐
uniform mutation with a mutation probability (pmut) of 0.1 (option #4), which is the best option for 11.3% of the
optimizations for the calibration period and 21.3% for the validation period. However, the same operator with a
mutation probability (pmut) of 0.2 (option #5; Gm,r = 100) is the worst‐performing option, with a success rate of

Figure 4. Frequency of the criteria selection for both reanalysis data sets.

Figure 5. Map of the best variables for ERA‐I for each catchment.
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Figure 6. CRPS scores obtained for different AM structures with up to four levels of analogy and four variables per level for four catchments in Switzerland. Lower
CRPS (yellow) represents a better accuracy. Five optimizations were started for each structure. The numbers inside the cells show the optimizations that ended with the
given structure. The numbers in parenthesis illustrate the number of optimizations gained by a simplification of an initially more complex structure (positive values) or
lost in favor of simpler structures (negative values).
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1.3% for the calibration period and 2.5% for the validation period. It quite well illustrates the difficulty of tuning
such operators and the risk of a badly configured mutation operator, and thus the benefit of an auto‐adaptive
option such as the chromosome of adaptive search radius with no controlling parameters. Moreover, the latter
usually performed better for more complex AM structures.

3.3. Full Optimization

The third experiment used different AM structures to perform the full input variable selection for each catchment.
Only the chromosome of adaptive search radius has been used because of its higher performance.

3.3.1. Using Variables From ERA‐I

Based on the previous results, three AM structures were selected: 1 level of analogy with 8 (1× 8) or 12 predictors
(1 × 12), and 2 levels with 6 predictors (2 × 6) (Section 2.5.3). Two optimizations were performed by structure
and catchment. The structure with two levels of analogy (2 × 6) turned out to be simplified by the GAs to a single
level of analogy (1 × 6) for several catchments. Consequently, this structure resulted in lower accuracy as fewer
predictors were used. Therefore, only structures with a single level of analogy (1 × 8 and 1 × 12) are further
analyzed here.

Figure 7. Same as Figure 6 for different AM structures with up to two levels of analogy and eight variables per level for two
catchments in Switzerland.
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Figure 8 shows the different variables selected for each catchment along with the analogy criteria (color) and the
weights (size). Figure 9 synthesizes the 30 most often selected variables and the associated analogy criteria,
temporal windows, and spatial windows across catchments. These results again show a strong dominance of the

Figure 8. Selected variables (see Table 3 for the variables abbreviations) from ERA‐I for the 1 × 8 and 1 × 12 structures for
the different catchments. The colors represent the analogy criteria, and the size of the dots is proportional to the weight given
to the predictor within the range [0.02, 0.2]. Variables that were never selected with a weight equal to or larger than 0.05 are
not represented.
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S0, S1, and S2 analogy criteria, the others being only rarely selected, including RMSD. S0 is most often selected.
The properties of S0 are further discussed in Section 4.

Vertical velocity (W) at 700 hPa (and sometimes at 600 or 800 hPa) is the most frequently selected variable, also
for the catchments that previously selected another best single variable (Section 3.1). Those with higher eleva-
tions and located in the southern part of the country additionally selected W at 500 hPa or even higher.

The surface solar radiation downward (SSRD) is the second most selected variable and is mainly relevant when
compared in terms of gradients (S1) rather than absolute values. Other radiation variables occupy the fourth and

Figure 9. Statistics of the 30 most selected variables from ERA‐I for the 1 × 8 and 1 × 12 structures for the different catchments (100 optimizations) along with the
analogy criteria, the temporal window (30 = next day at 06 UTC; some radiation variables were considered at 15 UTC), and the spatial windows (longitudes and
latitudes). The extent of Switzerland is shown in gray on the plots of the spatial windows.
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fifth ranks, such as surface thermal radiation downwards (STRD) and surface net thermal radiation (STR). These
are mainly relevant when compared in terms of absolute values (S0), although there is a non‐negligible repre-
sentation of the S1 criteria (see discussion on radiation variables in Section 4).

CAPE is the third most selected variable, and the total column water (TCW) is the sixth variable. In the ninth
position comes the meridional wind at 10 m, but using S1 or even S2. The derivative of the wind can be informative
on the location of frontal systems and convergence or divergence zones. Then comes the meridional wind on the
PV level. The 2 m temperature has the twelfth position and is compared in terms of gradients (S1), which can
reflect the position of fronts. Follows the geopotential height (Z) at 700 and 600 hPa compared primarily using the
second derivatives of the fields (S2). The curvature of the geopotential height helps to identify and characterize
synoptic‐scale features, such as ridges and troughs in the atmosphere. A bit further down on the list, SLP is also
compared in terms of its second derivative. Other variables such as RH, PV, D, and U also populate the 30 best
variables.

The optimal spatial windows (Figure 9) cover Switzerland most of the time, with different extents depending on
the variables. For example, while the medians of the optimal domains for W and CAPE are slightly larger than
Switzerland, PV is here considered over a larger domain. The 2 m temperature (T2m) is characterized by unusual
longitudinally extended domains, with the main body in southern Switzerland extending to the northern Medi-
terranean. Thus, it likely represents information at a synoptic scale, such as the location of fronts, rather than local
conditions. Note that SST was also in the pool of potential variables, but has never been selected as relevant.

The optimal temporal windows (time of day) show substantial variability between the predictor variables. At the
lower end of the range is TCW, which is considered better at the beginning of the precipitation accumulation
period (06 UTC). The top of the range (06 UTC the next day, corresponding to the end of the accumulation period)
was favored by the divergence (D at 285°K) and some low‐level W (W900 and W950) or Z (Z900). It should be
noted here that the radiation variables used were cumulative variables that were not decomposed prior to the
analysis. Therefore, most of the selected temporal windows correspond to the beginning of the accumulation
period, that is, 15 UTC.

3.3.2. Using Variables From ERA5

A similar experiment has been carried out using ERA5 and a single method structure (1 × 12). ERA5 has been
used at a 3‐hourly time step, which may be more relevant than 6‐hourly when considering radiation variables, and
at a 0.5° spatial resolution. The potential analogy criteria were limited to S0, S1 and S2 and the spatial domains
were slightly reduced (latitudes = [39, 55], longitudes = [− 4, 20]). If previously the weights could be null for a
predictor, a minimum of 0.01 was enforced here to force the GAs to select a relevant predictor. Finally, some
predictors, often selected in the previous experiment, were forced: W700 (with S0 criterion), CAPE (with S0
criterion), TCW (with S0 or S1 criteria); leaving nine predictors unconstrained.

In addition, only the variables found relevant when using ERA‐I were selected as potential predictors, thus
decreasing the pool of variables. Also, potential temperature levels and PV levels were not considered further.
However, cloud cover variables were added to the potential predictors to assess whether the radiation variables
served as a proxy for cloud cover. Therefore, this experiment should not be considered a complete exploration of
ERA5 as it builds on the results obtained for ERA‐I.

The selected variables from ERA5 are shown in Figures 10 and 11. When compared with the ERA‐I results, TCW
gained importance, as it was the most selected variable here. Similarly, the relative humidity at 1,000 and
1850 hPa increased in importance as if its relevance improved in ERA5. There were also changes in the radiation
variables, with the added top (top‐of‐atmosphere) net thermal radiation (TTR) taking the fourth slot and being
completed by other ones in the top 30 variables: top net solar radiation (TSR), surface latent heat flux (SLHF),
surface net thermal radiation (STR), surface solar radiation downwards (SSRD), and surface net solar radiation
(SSR). These variables are likely highly correlated, and the selection could be reduced. It can also be noted that
these variables are still often considered in terms of gradient (using S1), even though cloud cover variables were
made available (see discussion on radiation variables in Section 4). As for cloud cover variables, different ones
were selected in the top 30: low cloud cover (LCC) and cloud cover (CC) at 600, 1,000, and 1500 hPa. Although
LCC was most often considered in terms of gradients, the absolute values of the other cloud cover variables were
mostly selected. The importance of low‐level PV also increased compared to ERA‐I. Conversely, the geopotential
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height was only selected at 500 hPa in the top 30 predictors, SLP is no longer among the best, and the presence of
the divergence variables also decreased.

The optimal spatial domains are comparable with those selected for ERA‐I, including the 2‐m temperature
extension to the south. Regarding the temporal windows, TCW is again mainly selected between 6 and 12 UTC,
and RH at different times of the day. PV is often selected at the end of the day, along with W at 1,000 hPa, the
surface latent heat flux (SLHF), and the 2‐m temperature (T2m). The other variables are mainly selected during
the daytime.

3.4. Accuracy of the Optimized Methods

To assess the relevance of the methods optimized in this work, their accuracy has been compared to the
benchmark methods (Section 2.2). Figure 12 shows the CRPS skill score and the Brier skill scores for different
thresholds (1 mm, 10 mm, 50 mm) using the simplest RM1 method (for the CP) as reference. The best opti-
mization result per catchment was selected based on the VP score. The scores for the test period (TP) were then
calculated from unseen data for these selected parameter sets.

The skill scores are shown for the first single variable selection from ERA‐I (ERA‐I GAS 1 × 1), and the full
optimizations using ERA‐I (ERA‐I GAS 1 × 8, 1 × 12) or ERA5 (ERA5 GAS 1 × 12). One can see in Figure 12
that the selection of a single best variable (GAS 1 × 1) shows similar accuracy to the RM1method. Obviously, the

Figure 10. Selected variables (see Table 3 for the variables abbreviations) from ERA5 for the 1× 12 structure for the different
catchments. The variables that were forced into the AM are marked with a rectangle. The colors represent the analogy
criteria, and the size of the dots is proportional to the weight given to the predictor within the range [0.02, 0.2]. Variables that
were never selected with a weight equal to or larger than 0.05 are not represented.
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skill of a single variable remains lower than that of more complex AMs. The other optimized methods (GAs 1 × 8
or 1× 12) show a higher CRPSS than the benchmark methods. Thus, despite having a single level of analogy, they
outperform complex stepwise AMs in terms of CRPS. Brier skill scores for the prediction of the precipitation
occurrence (threshold of 1 mm) of the optimized methods show values similar to those of RM6 when ERA‐I is
used and some further improvements when ERA5 is used. Brier skill scores of the optimized methods show
similar skill to the best benchmark methods for a threshold of 10 mm, but lower values for a threshold of 50 mm.

Figure 11. Statistics of the 30 most selected variables from ERA5 for the 1 × 12 structure for the different catchments (50 optimizations) along with the analogy criteria,
the temporal window (30= next day at 06 UTC), and the spatial windows (longitudes and latitudes). The extent of Switzerland is shown in gray on the plots of the spatial
windows.
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Figure 12. Skill scores (CRPSS and Brier skill score) of the different benchmark and optimized methods on the calibration,
validation, and test periods for the 25 catchments. The skill scores use the RM1 method on the CP as a reference. An LxP
code represents the structures, with L being the number of levels of analogy and P being the number of predictors per level.
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This can result from either an underestimation or an overestimation of the prediction. The GAs optimized the
methods by minimizing the CRPS only, and a combined objective function that also accounts for the Brier score,
for example, could be used instead to improve other properties of the resulting AMs. The gain obtained by using
ERA5 instead of ERA‐I may be due to higher spatial and temporal resolutions or better variables (Horton, 2021).

Some differences can be observed between the three splits (CP, VP, TP), also for the benchmark methods.
However, there is no clear trend, and the distributions remain relatively close. These differences can have multiple
origins: the presence of stronger precipitation events in some splits, inhomogeneities in the quality of the predictor
variables, or just natural variability. The three splits of the method optimized with ERA5 provide very similar
results, which can be due to its higher quality, the variables selected, or just luck. Anyway, the selection of the
predictor variables and the analogy criteria by GAs, along with all other parameters, provides AMs that prove
relevant and consistent among different periods. No overfitting from the GAs can be observed.

Rank histograms have been computed for some catchments. Figure 13 shows such a plot for the Ergolz catchment.
Other catchments show similar results, that is, that the prediction by AMs tends to be over‐dispersive without
presenting a clear bias. This observation is not specific to these results, but is a common behavior of AMs.

An additional experiment has been attempted by forcing the predictor variables (along with their vertical level and
their time) and the analogy criteria and letting the GAs optimize the weights between these variables, along with
the spatial domains. To this end, 26 of the most commonly selected ERA5 variables were provided to the
optimizer, organized in a single level of analogy (1× 26). The results are shown in Appendix C. This approach did
not provide the best accuracy (not shown), which can be due to non‐optimal choices made to homogenize the
vertical levels or times of the day, for example, In addition, this approach is not computationally efficient, as it
requires loading variables that barely play a role in the selection of analog situations. Therefore, we do not
recommend using this strategy.

The predictions provided by the optimized AMs for the strongest precipitation event of the test period are
illustrated for some catchments in Figure 14. While most of these heavy precipitation events were captured
satisfactorily by the optimized AMs, few were underestimated in some catchments as shown in Figure 14
(bottom), where the two worst predictions are shown.

4. Discussion
The primary objective of this study was to assess the relevance of GAs in selecting input variables for AMs. The
results demonstrated that GAs could identify pertinent predictors and analogy criteria. However, caution is due
when extrapolating the use of these selected predictors to different contexts, as their applicability may not be
universally optimal. In fact, the compilation of potential variables must be tailored to the specific requirements of
the AM application. For example, in forecasting applications, only meteorological variables deemed reliably
predicted should be included. In the context of climate impact studies, the selection is constrained by the limited

Figure 13. Rank histogram for the prediction by the optimized AM for the Ergolz catchment on both the calibration and test periods. The frequencies were averaged over
a boostrapping of 1,000 realizations to smooth out the effect of the random rank attribution of the zero precipitation cases.
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Figure 14. Illustration of predictions for the strongest precipitation event of the test period for several catchments. The
predictions provided by the AMs are illustrated by their whole range as well as some quantiles often considered in
operational forecasting.
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availability of meteorological variables compared to the extensive output provided by reanalysis and NWP
models. Furthermore, it is crucial to exercise discretion in selecting variables that exhibit a causal relationship
with the predictand of interest and avoid undesirable covariability. Essentially, adapting the pool of potential
variables to the application at hand is fundamental for a robust use of the optimized AM.

Radiation variables were often selected as relevant predictors. When using ERA‐I, SSRD is the second most
selected variable, and STRD and STR are the fourth and fifth. When using ERA5, TTR is the fourth most
important variable. As these variables were selected so often, they did provide useful information for precipitation
prediction, but their role is not easily interpretable. Hereafter, we propose some hypotheses about the information
that can potentially be retrieved from these variables. First, STR values for days with high precipitation values
show positive anomalies, meaning that the long‐wave radiation from the atmosphere towards the surface is
anomalously high (vertical fluxes are positive downward). Thermal radiation emitted by clouds and the atmo-
sphere contributes to the downward STR. It is possible that the thermal radiation flux towards the surface is
increased due to a high concentration of water vapor in the lower atmosphere and/or the presence of low clouds
(with a higher cloud base temperature). Therefore, it can be used as a proxy for the presence of low clouds. Low
clouds can interact with the topography, and this interaction might not be reflected in the vertical motion in ERA‐I
due to the relatively coarse spatial resolution of the orography in the reanalysis. The information from STR would
then compensate for missing local processes at some locations, which potentially have a better representation in
ERA5.

Then, SSRDwas selected as a relevant predictor, but with the analogy criteria comparing the gradients rather than
the absolute values, meaning that the pattern of SSRD matters more than its values. Gradients in SSRD could be
an indication of the presence of fronts or thunderstorm clouds. Finally, in ERA‐5, TTR anomalies are selected.
They can be a proxy for high cloud tops with lower temperatures and, therefore, might provide information on the
cloud thickness. Further research is needed to explore these hypotheses.

The triplet S0, S1 and S2 dominate the selection of analogy criteria. The S1 score originally developed by Teweles
andWobus (1954) to verify prognostic charts was then used because it penalizes forecasters who tend to be overly
conservative by forecasting weak systems too often. The rationale behind this lies in the denominator, which is
determined by the sum of the maximum gradients of either the forecast or the observation. Consequently,
forecasting a weaker system incurs a greater penalty than forecasting a stronger one. However, it should be noted
that this approach may lead to the opposite effect, as forecasters may find it safer to predict stronger systems with
larger gradients, thereby inflating the denominator (Thompson & Carter, 1972). This can be transposed to the
AM, where stronger gradients in Z from analog situations are preferred over weaker ones.

The S0 and S2 criteria share a key characteristic with S1 by imposing heavier penalties on weaker fields.
Consequently, the analog selection based on S0, S1, and S2 exhibits asymmetry, favoring the selection of analog
fields close to the target but tending towards greater rather than weaker values (see Appendix C). The inherent
asymmetry of S0, S1, and S2 proves advantageous for prediction. Optimal analog situations are skewed toward
being slightly stronger than weaker. Considering that the CRPS is strongly influenced by heavy precipitation
events, this suggests a hypothesis: given the potential underrepresentation of large precipitation events in the
archive, AMs benefit from selecting stronger predictor fields, often associated with higher precipitation. This
selection bias may function as a compensatory mechanism for the underrepresentation of intense precipitation
events. These assumptions would need to be further investigated.

5. Conclusions
The objective of the work was to assess the ability of GAs to select the input variables of the analog method along
with the analogy criteria. The experiment was successful, as the selected predictors provided better accuracy (in
terms of CRPS that was used as the objective function for the optimizations) than the benchmark methods,
without overfitting. In addition, most of the selected variables can be related to the meteorological processes
involved in precipitation generation. For example, among the most selected variables are: the vertical velocity
(W) at 700 hPa (along with other levels), the total column water (TCW), the convective available potential energy
(CAPE), radiation variables, the potential vorticity (PV), the relative humidity (RH), cloud cover variables, wind
components, the geopotential height, air temperature, and the divergence.

Water Resources Research 10.1029/2023WR035715

HORTON ET AL. 23 of 30

 19447973, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035715 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [13/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The selection of analogy criteria also proved fruitful, as there were clear trends toward a dominant criterion
for a given variable. The unexpected result was the success of the criterion S0, inspired by the Teweles‐
Wobus criterion. This new S0 turned out to be the most often selected analogy criterion for the charac-
terization of Euclidean distances. Three analogy criteria were most often selected and all are derived from
the Teweles‐Wobus criterion; one is based on the raw point values, another on the gradients, and the third
on the second derivative of the fields. All of them are normalized by the sum of the largest point (pair)‐
wise values from the target or the candidate fields. This normalization makes the criteria asymmetrical, so
that higher values are preferred to lower ones. These new criteria should be further investigated and could
be used in classic AMs.

Another unexpected result is the preferred structure for analog methods. While most benchmark methods build on
a stepwise selection of predictors with successive levels of analogy subsampling from the previous one by using
different predictors, here, the GAs preferred a flatter structure, mainly with a single level of analogy, but more
variables. The benchmark methods most often start with selecting candidate analogs using the geopotential height
and then narrowing down the selection using vertical velocity or moisture variables. A primary difference with the
benchmark methods is that the variables are standardized here and weights are used (and optimized) to combine
them in a given level of analogy. These two elements make the combination of variables with different value
ranges easier. However, it cannot be excluded that deeper structures can provide better results, but that GAs did
not find these solutions.

Such optimization is computationally intensive. The new GPU‐based computations brought notable time
improvement, particularly for high‐resolution data. Other approaches could be considered to decrease the
computation time, such as a faster exploration of the data set using a smaller period for data pre‐screening, or the
division of the whole period into smaller batches. An alternative could be to reduce the number of days with small
precipitation amounts, as they have a small impact on the CRPS, while weighting their contributions by using a
weighted CRPS approach.

This work opens new perspectives for input variable selection in the context of the analog method. While the
variables selected in these experiments may not be transferable to other contexts, the approach was proven
successful and can be applied to other data sets. The potential variables must be chosen wisely with respect to the
intended application. Such an approach can, for example, be used to select the relevant variables to predict
precipitation for a new location, or as a data mining technique to explore a data set to predict a new predictand of
interest. Using GAs to perform input variables selection can be applied to other data‐driven methods, opening
perspectives for a broad range of applications.

Appendix A: GPU Implementation and Benchmark
Several GPU implementations were tested, with the most successful aiming to reduce the data copy to the device
while increasing the load of parallel processing. It consisted in copying the predictor data to the device and calling
the kernel (A kernel is a numerical function executed in parallel on the GPU) for every target date, thus assessing
all candidates for that target date in one call. The main benefit of this variant is that it allows overlapping—using
streams—the calculation of the analogy criteria on the GPU and other calculations on the CPU, such as the
extraction of the indices corresponding to the candidate dates (using a temporal moving window of 120 days) and
the sorting of the resulting analogy criteria.

Threads on the GPU are organized in dynamically defined blocks with a size from 32 to 1,024 threads. Here, every
candidate date is assigned to a different block, with internal loops for cases where the number of grid points is
greater than the number of threads in the block. All analogy criteria need a reduction step to synthesize a two‐
dimensional array into a single value. The reduction is part of the analogy criteria calculation and is thus also
done on the GPU. The threads are organized in groups of 32, called warps, which are synchronous and can access
each other's registers. The reduction on the device was performed with an efficient warp‐based reduction using the
CUDA shuffle instruction. Different block sizes were evaluated and the size of 64 threads was identified as
optimal as it leaves fewer threads inactive during the reduction. Access to the GPU's global memory has also been
kept to a minimum because of its higher latency.

The Google benchmark library was used to assess the computing time of different AM structures—single or two
levels of analogy and up to four predictors per level—along with various grid sizes. Figure A1 shows the results
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for the analogy criterion S1, with gradients pre‐processed using CPUs only (counted in the total time). The other
analogy criteria showed similar results. The task consisted of extracting analogs for 32 years using the other
31 years as archives for candidate situations within a 120‐day temporal window. It makes a total of 43.5 ⋅ 106 field
comparisons per predictor of the first level of analogy.

The experiment was carried out on the UBELIX cluster of the University of Bern, using the same node for the
whole benchmark and processing on a single NVIDIA GeForce RTX 2080 graphics card. The CPU processing—
using the linear algebra library Eigen 3 (Guennebaud et al., 2010)—was done on a single thread. Although
AtmoSwing can parallelize the calculation of the analogy criteria on multiple CPU threads, it uses a single thread
for this task when optimizing with GAs because it parallelizes the evaluation of the different individuals on
multiple threads. With GPUs, it still assesses the individuals on multiple CPU threads, each of them being able to
use a different GPU device to calculate the analogy criteria. It is thus parallelizing both on CPUs and GPUs.

The benchmark (Figure A1) shows that GPU computations are systematically faster than those on the CPU, and
this difference increases with the number of grid points. The GPU computations were 13 times faster on average
and up to 38 times faster (5.2 s instead of 3.3 min) when using 2,048 points. NWP model outputs and reanalyses
show an increase in spatial resolution; therefore, the impact on the computation time will become increasingly
important. When using CPU only, adding a predictor in the first level of analogy has a much higher impact on time
than adding a second level of analogy. It is explained by the fact that it needs to process the analogy criteria for the
whole archive for each predictor of the first level of analogy, while the second level has only a few candidate
situations to assess.

Appendix B: Performance of the Mutation Operators
As suggested in Horton et al. (2017), five variants of the mutation operator were used in parallel optimizations.

1. Chromosome of adaptive search radius (Horton et al., 2017)
2. Multiscale mutation (Horton et al., 2017)
3. Non‐uniform mutation (pmut = 0.1, Gm,r = 50, w = 0.1)
4. Non‐uniform mutation (pmut = 0.1, Gm,r = 100, w = 0.1)
5. Non‐uniform mutation (pmut = 0.2, Gm,r = 100, w = 0.1)

Figure A1. Computing time for the extraction of analogs over 32 years using the S1 criteria for different grid sizes and various
structures of AMs. An LxP code represents the structures, with L being the number of levels of analogy and P being the
number of predictors per level. Time is given for using (s) standard CPUs and (c) CUDA on GPUs (NVIDIA GeForce RTX
2080). Note the logarithmic axes.
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Where pmut is the mutation probability, Gm,r is the maximum number of generations (G) during which the
magnitude of the research varies, and w is a threshold chosen to maintain a minimum search magnitude when
G > Gm,r.

Figure B1 shows the performance of these five mutation operators for different AM structures and the different
catchments considered in Section 3.2. Overall, the chromosome of adaptive search radius has a success rate of

Figure B1. Performance of the five mutation operators (Section 2.3) for different AM structures and the different catchments considered in Section 3.2. The values
represent the number of optimizations for one mutation operator that resulted in the best performing AM. Results are shown for both calibration and validation. When
multiple operators obtain the same accuracy, they all get a point.
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76.25% in calibration and 62.5% in validation, the multiscale mutation 7.5%, and 8.75% respectively, and the non‐
uniform mutation with its different options: (3) 11.25% and 10%, (4) 11.25% and 21.25%, and (5) 1.25% and 2.5%
respectively.

Thus, it is quite clear that the chromosome of adaptive search radius obtains the best results, all the more so with
more complex structures, that is, more predictor variables. Although its success rate decreases slightly in vali-
dation, it remains much larger than the other options. The non‐uniform mutation shows notable variability of
performance depending on its options.

Appendix C: Analysis of the New S0 Criterialu
The S0 and S2 criteria have the same characteristic as S1, that is, they penalize weaker fields more heavily.
Consider a field F1 with values 50% lower than the target field (F), and another one, F2, with values 50%
higher. Then, S0(F, F1) = 50 and S0(F, F2) = 33.3 while the absolute differences between the target (F) and F1
or F2 are equal. F2 will then be selected as a better analog. To get the same S0 value, F2 would need to double
the target field values. The consequence is that the selection of analogs based on S0, S1 and S2 is not sym-
metrical, and these criteria tend to select fields that are close to the reference but preferably stronger than
weaker.

To further investigate the characteristics of S0, we considered a variation named here S0obs that uses the obser-
vation (here, target situation) values only for the denominator and not the maximum between observation and
forecast (here, candidate analog). It is then similar to MAPE (Mean Absolute Percent Error) and is symmetrical.
We performed a classic calibration of a simple AM using only W700 with (a) the S0 criteria, (b) the RMSD
criteria, and (c) the S0obs criteria. The calibration was performed separately for each setup. Using RMSD de-
teriorates the accuracy by 8.7% on average, and S0obs also deteriorates the accuracy by 9.8%. Thus, the asym-
metrical property of S0 is beneficial for the prediction.

We then considered the RM3 benchmark method and performed a classic calibration for the 25 catchments by
replacing one or the other criterion. When using S1obs (S1 normalized by the gradients of the observations only)
instead of S1 for Z, the accuracy deteriorates by 4.8% on average. However, when replacing the RMSD of the
second level of analogy (MI) with S0, there is a slight performance loss of 0.5%. As there is strong conditioning by
the first level of analogy that provides the sample of candidate analog dates to be subsampled on moisture
variables, the criterion of the second level of analogy has a lower impact.

The asymmetrical properties of S0, S1, and S2 are beneficial for the prediction. Analog situations are best
considered a bit stronger than weaker while being close to the target situation. The CRPS is mainly sensitive to
high precipitation values, even more so when the precipitation is not transformed (see Bontron, 2004, for pre-
cipitation transformation). Thus, one hypothesis is that large precipitation events being underrepresented in the
archive, AMs are better off selecting stronger predictor fields, often associated with higher precipitation. It might
then play a role of bias compensation for underrepresented high precipitation events. The reason for such behavior
should be further investigated.

Appendix D: An Attempt to Constrain the Algorithms
An additional experiment has been attempted by pre‐selecting the predictor variables (along with their vertical
level and their time) and the analogy criteria and letting the GAs optimize the weights between these var-
iables, along with the spatial domains. To this end, 26 of the most frequently selected ERA5 variables were
provided to the optimizer, organized in a single level of analogy. The results are shown in Figure D1 and
depict high weight values for W at 600 and 700 hPa. Surprisingly, Z700 based on S2 also has relatively high
weight values. However, these results turned out to be lower in terms of accuracy compared to the fully
optimized methods.
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Data Availability Statement
The precipitation data set, RhiresD (MeteoSwiss, 2021), used as predictand in the study, is available upon request
at MeteoSwiss (https://www.meteoswiss.admin.ch/) for research‐only purposes. The catchment extents
(Bühlmann & Schwanbeck, 2018) used for aggregating the precipitation can be downloaded from the Hydro-
logical Atlas of Switzerland website (https://hydromaps.ch/). The ERA‐Interim reanalysis (Dee et al., 2011) was
obtained from the ECMWFData Server at http://apps.ecmwf.int/datasets but has now been decommissioned. The
Climate Forecast System Reanalysis (Saha et al., 2010b, CFSR) is available for download from the NCAR
Research Data Archive at https://doi.org/10.5065/D69K487J. The ERA5 reanalysis (Hersbach et al., 2017,
Complete ERA5 global atmospheric reanalysis) is available for download from the Copernicus Climate Change
Service at https://doi.org/10.24381/cds.143582cf. The software used, AtmoSwing (Horton, 2019b), is open‐
source (CDDL‐1.0 license) and can be downloaded from GitHub at https://github.com/atmoswing/atmoswing.
AtmoSwing version 2.1.2 was used in the study and the corresponding source code is available on Zenodo at
https://doi.org/10.5281/zenodo.3559787.
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