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Simple Summary: Dexamethasone is frequently administered in brain tumor patients for symp-
tomatic relief. However, an increasing number of publications suggests that dexamethasone may lead
to worse outcome in patients with glioblastoma. Our study reviews all the published evidence and
aggregates the available data in a meta-analysis. We found that dexamethasone indeed significantly
reduces overall and progression-free survival in glioblastoma patients, even when accounting for
clinical status. Given the potential detrimental association of dexamethasone use on overall survival,
its administration to glioblastoma patients should be approached with caution.

Abstract: Objective: Glioblastomas are the most common primary central nervous system (CNS)
tumors. Although modern management strategies have modestly improved overall survival, the
prognosis remains dismal, with treatment side effects often impinging on the clinical course. Glioblas-
tomas cause neurological dysfunction by infiltrating CNS tissue and via perifocal oedema formation.
The administration of steroids such as dexamethasone is thought to alleviate symptoms by reducing
oedema. However, despite its widespread use, the evidence for the administration of dexamethasone
is limited and conflicting. Therefore, we aimed to review the current evidence concerning the use
and outcomes of dexamethasone in patients with glioblastoma. Methods: We performed a systematic
review and meta-analysis according to the PRISMA-P guidelines. We performed a restricted search
using the keywords “Dexamethasone” and “Glioblastoma” on PubMed, Web of Science, Cochrane
Library, and Academic Search Premier. We included studies reporting on overall survival (OS) and
progression-free survival (PFS) in glioblastoma patients receiving higher or lower dexamethasone
doses. The risk of bias was assessed using ROBINS-I. We performed a meta-analysis using a random
effects model for OS and PFS. Results: Twenty-two retrospective studies were included. Higher doses
of dexamethasone were associated with poorer OS (hazard ratio 1.62, confidence interval 1.40–1.88)
and PFS (1.49, 1.23–1.81). OS remained worse even when studies corrected for clinical status (1.52,
1.38–1.67). Conclusion: Despite the widespread use of dexamethasone in glioblastoma patients, its
use is correlated with worse long-term outcomes. Consequently, Dexamethasone administration
should be restricted to selected symptomatic patients. Future prospective studies are crucial to
confirm these findings.

Keywords: dexamethasone; dosing; glioblastoma; complications; evidence-based

1. Introduction

Glioblastoma is the most common primary malignant tumor of the central nervous
system (CNS), accounting for 48.6% of tumors, with an estimated incidence of 3.23 per
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100,000 persons per year [1]. According to the current WHO classification, glioblastomas are
among the most aggressive primary CNS tumors [2]. However, modern treatment strategies
have improved the prognosis, with a clinical course often impinged by treatment side
effects and cognitive decline. Standard treatment of glioblastomas consists of maximum
safe resection followed by adjuvant chemotherapy and radiotherapy [3]. As a result, the
survival rate for glioblastoma patients improved from 3.3 months to a median of 15 months
in the past 30 years [4]. Most glioblastomas show rapid growth, with diffuse infiltration
into healthy CNS tissue [5]. This growth is frequently associated with perifocal oedema.
Although, due to necrosis, neurological function within the center of the tumor is usually
irreversibly lost, neurological activity within the surrounding edematous tissue can be
temporarily alleviated by reducing oedema.

Dexamethasone is a synthetic glucocorticoid that was first described in 1958 [6].
Dexamethasone is known for its high glucocorticoid potency, weak mineralocorticoid
effects, and long biological half-life. The potent effects of dexamethasone administration
on symptoms in brain tumor patients were first described by Galicich et al. [7,8]. Since
then, dexamethasone has been widely used in patients with intracranial tumors. Steroids,
like dexamethasone, are believed to mitigate the symptoms experienced by intracranial
tumor patients owing to their anti-inflammatory properties. These properties facilitate the
reduction of perifocal edema and potentially enhance the integrity of the blood–brain bar-
rier. They achieve this through various mechanisms, including acting on the endothelium
and exerting a direct influence on the astrocytes surrounding the vessels, consequently
diminishing vasogenic perifocal edema. Administration of glucocorticoids may also im-
prove general neurological function by reducing intracranial pressure [9]. Palombi et al.
showed that administration of dexamethasone in glioblastoma patients leads to symp-
tomatic improvements, such as a significant reduction in headaches, vomiting, seizures,
and focal neurological deficits [10]. Villani et al. demonstrated a 20-point improvement in
the Karnofsky Performance Score for 43.8% of patients with grade II–IV gliomas receiving
dexamethasone [11].

Nonetheless, glucocorticoids are a class of drugs that affect various organ systems
with unwanted side effects. Short-term glucocorticoid administration is generally deemed
safe in most patients, even when given in substantial doses, such as in patients with acute
worsening of multiple sclerosis [12]. However, long-term administration of high doses of
glucocorticoids causes Cushing’s syndrome, which is associated with elevated cardiovascu-
lar risk, osteoporosis, and an elevated infection risk due to immunosuppression [13,14].

Although dexamethasone is widely used in patients with cerebral edema, it may not
always be beneficial. Administration of dexamethasone was widespread in patients with
traumatic brain injury until studies showed that its use was detrimental to outcomes [15].
More specifically, for glioblastoma patients, the use of dexamethasone has raised concerns.
Recent findings suggest a potential negative impact on both PFS and OS, pointing towards
a correlation with poorer long-term prognoses, making the routine use of this drug in this
patient group a subject of careful consideration [16–19]. As a result, we decided to compile
the currently available evidence on the impact of dexamethasone use in glioblastoma
patients in a quantitative review.

2. Materials and Methods
2.1. Search Strategy

We performed a systematic review and meta-analysis according to the PRISMA-
P guidelines. This review was not prospectively registered. In our meta-analysis, we
included studies reporting on the objective outcomes of patients with glioblastomas taking
dexamethasone, specifically their overall survival (OS) and progression-free survival (PFS).
For our literature review, we searched the following databases: PubMed, Web of Science,
Cochrane Library, and Academic Search Premier. All the results from all the databases
were included up to 1 September 2023. We searched for all publications that included the
keywords “dexamethasone” and “glioblastoma”.



Cancers 2024, 16, 1393 3 of 13

2.2. Screening

Two independent reviewers (PS and AER) screened all the abstracts. For the qualitative
discussion of the current evidence, we filtered all the publications that reported on the
effects of dexamethasone in glioblastoma patients, in glioblastoma animal models, or on
glioblastoma cells. For the quantitative part of the review, we selected all the publications
that reported on the overall or progression-free survival in patient groups with higher and
lower dexamethasone intake and those that provided data that could be used to extract
hazard ratios. For studies reporting on the same patient population, the most informative
study (either the most recent or the one with the largest population) was selected.

2.3. Data Collection

Data were collected from published reports by one reviewer (PS) and subsequently
confirmed by a second reviewer (AER). Data on OS and PFS were extracted for all available
studies. Data from the multivariable analysis were extracted from studies that provided
both univariable and multivariable analyses. We also extracted all the variables that were
part of the multivariable analysis. For Hagan et al. [20], we extracted the data from the
model adjusted for preoperative blood glucose. The bias of individual studies was assessed
using ROBINS-I [21] by two independent reviewers (PS and AER).

2.4. Analysis

We analyzed the OS and PFS based on the reported hazard ratios (HR) and confidence
intervals (CI). Most of the publications reported the effect sizes and variances of the OS and
PFS as hazard ratios with a corresponding confidence interval. In one case, the confidence
interval was calculated based on a reported standard error. If the publications only reported
Kaplan Meier plots, the HR and CI were calculated based on data extracted using Engauge
Digitizer. Statistical analysis was performed using the R programming language and its
metafor package. A random effects model was used to calculate the average effect size
across studies. Separate meta-analyses were performed for all studies reporting OS, all
studies reporting PFS, and all studies reporting OS that adjusted for clinical status (by group
matching or considering the Karnofsky performance score or ECOG performance status
in their multivariable analysis), respectively. Reporting bias was assessed using funnel
plots. Plots were created using the funnel function from R’s metafor package. Certainty
was assessed according to the GRADE working group’s criteria [22].

3. Results
3.1. Study Selection

Our literature search initially revealed 318 studies quantifying overall and progression-
free survival. After screening all the abstracts, 153 studies were retrieved for full review.
After the exclusion of ineligible studies, 22 studies were identified for the quantitative
review [17,18,20,23–40] (Figure 1).
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remained for the quantitative review. 
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Figure 1. PRISMA-P flowchart detailing the study selection process. Of the 331 studies quantifying
OS and PFS, 154 were retrieved for full review. After the exclusion of ineligible studies, 22 studies
remained for the quantitative review.

3.2. Study Characteristics

All the studies selected for quantitative review were retrospective analyses of glioblas-
toma patients receiving different doses of dexamethasone. The characteristics and the
quality assessment of these studies are shown in Table 1.
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Table 1. Details about all the studies included in this review. Abbreviations: PMID–PubMed ID, OS–overall survival, PFS–progression-free survival, KPS–Karnofsky
performance score, IDH–IDH mutation status, MGMT–MGMT mutation status, ECOG–ECOG performance status, EOR–extent of resection, BMI–body mass index,
RT–radiotherapy, ASA–ASA score, Charlson CI–Charlson comorbidity index, FMI–functional measure of independence.

First Author Year PMID Groups n (Patients) Survival Data Dexamethasone Dosing Adjusted Variables ROBINS-I Risk of
Bias Assessment

Liu EK 2023 36382106 89 OS Time-weighted dexamethasone dose
(mg/day)

Age, KPS, MGMT, blood glucose,
methylation subclass, subclass
glucose interaction

Moderate

McManus EJ 2022 35096403 170 OS More or less than 10 mg/d None Serious

Mistry AM 2021 34594571 360 OS More or less than 200 mg total in first
3 postoperative weeks

Age, KPS, IDH, MGMT,
temozolomide, RT, tumor
volume, EOR, blood glucose

Moderate

Garrett C 2021 34138894 87 OS and PFS Daily dexamethasone or not
None for OS, age, ECOG, gender,
BMI, IDH, temozolomide,
previous surgery, EOR for PFS

Moderate

Aldaz P 2021 33478100 285 OS and PFS Dexamethasone yes or no
postoperatively None Serious

Iorgulescu JB 2021 33239433 181 OS Low (1 and 2.5 mg/kg/d) or high
(10 mg/kg/d) doses

Age, KPS, MGMT, tumor
volume, EOR Moderate

Nayak L 2021 33199490 Cohorts A and B 80 OS
Any vs. no baseline dexamethasone
use in patients with
recurrent glioblastoma

None Serious

Lee C 2020 32648384 125 OS More or less than 2 mg/d after
initiation of radiochemotharapy Age, sex, ECOG, EOR Moderate

Lewitzki V 2019 31831026 152 OS Any vs. no dexamethasone
during radiotherapy

MGMT, recurrence,
salvage therapy Serious

Chiocca EA 2019 31413142 31 OS
More or less than 20 mg within
2 weeks postoperatively after
recurrent resection

None Serious

Hui CY 2019 30864102 319 OS and PFS More or less than 4 mg/d during
radiochemotherapy

Age, KPS, sex, race, EOR,
MGMT, RT Moderate

Dubinski D 2018 29349612 113 OS and PFS 12 mg dexamethasone vs. none
preoperatively None Serious

Díez Valle R 2018 29107723 131 OS Dexamethasone yes or no at
2 months postoperatively

Age, sex, KPS, MGMT, EOR, time
to surgery Moderate

Hagan K 2016 27438798 162 OS and PFS Dexamethasone yes or
no preoperatively Age, ASA, blood glucose Serious
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Table 1. Cont.

First Author Year PMID Groups n (Patients) Survival Data Dexamethasone Dosing Adjusted Variables ROBINS-I Risk of
Bias Assessment

Bhavsar S 2016 27396375 841 OS and PFS Dexamethasone yes or
no perioperatively Age, BMI, sex, ASA, Charlson CI Moderate

Shields LB 2015 26520780 73 OS Dexamethasone yes or no during
radiotherapy None Serious

Wong ET 2015 26125449 TTF therapy and
BPC chemotherapy 35 OS Dexamethasone over or less than

4.1 mg/d in recurrent glioblastoma None Serious

Tieu MT 2015 26015297 Derivation and
validation sets 359 OS Mean TWM dexamethasone dose per

mg during radiotherapy
Age, ECOG, blood glucose,
BMI, EOR Moderate

Derr RL 2009 19139429 191 OS Mean daily dexamethasone
dose per 10 mg/d Age, KPS, blood glucose Moderate

Tang V 2008 18500499 18 OS More or less than 8 mg/d upon
admission in rehabilitation FMI Serious

Odrazka K 2003 14628127 85 OS More or less than 2 mg/d before
radiotherapy Age, ECOG, EOR Moderate

Gundersen S 1996 9073058 495 OS Dexamethasone yes or no
on admission KPS, age, resection Moderate
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3.3. Risk of Bias in Studies

The risk of bias was determined to be either moderate or serious for all the included
studies Table 1. This is mainly because all the included studies were retrospective, with
only about half of them adjusting the clinical performance via multivariable analyses or
matching despite clinical status being considered a significant confounder for OS and PFS.

3.4. Results for Individual Studies

The hazard ratios and confidence intervals for all the studies are reported in Figures 2 and 3.
All the studies reported either no effect or a significantly negative effect of dexamethasone
intake on both overall and progression-free survival. No studies showed a positive effect
of dexamethasone intake on OS or PFS. Mistry et al. also reported that higher doses of
dexamethasone had a worse effect than medium or low doses [36].
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3.5. Results of Syntheses

The results for aggregate OS and PFS are shown in Figures 2 and 3. Administration of
dexamethasone had a possible significant negative impact on both OS (hazard ratio 1.62,
confidence interval 1.40–1.88) and PFS (HR 1.49, CI 1.23–1.81) in glioblastoma patients. In
addition, overall survival remained significantly worse, even when the studies corrected
for clinical status.

As we aimed to interrogate whether clinical status is a major confounder for survival
in glioblastoma patients receiving dexamethasone, we also performed an aggregate analysis
for overall survival, including only studies accounting for either the Karnofsky performance
score or ECOG through matching or multivariable analysis. The results are shown in
Figure 4. Even after accounting for clinical performance, dexamethasone intake had a
negative impact on overall survival (HR 1.52, CI 1.38–1.67).
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3.6. Reporting Biases

To assess the risk of bias in our study selection, we compared the study results using a
funnel plot for OS and PFS (Figure 5a,b). Despite the funnel plots showing some outliers,
no systematic bias could be visually perceived in the plots.
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3.7. Certainty of Evidence

Due to the retrospective observational nature and limited patient population of all the
included studies, the overall certainty of evidence for the effect of dexamethasone on OS
and PFS in patients with glioblastomas according to the GRADE criteria is low.

4. Discussion

Studies have shown that dexamethasone reduces perifocal edema in glioblastoma pa-
tients [7] and dexamethasone significantly reduces symptoms in glioblastoma patients [10,11].
Despite the widespread use of dexamethasone in glioblastoma patients, the association of
dexamethasone with overall and progression-free survival is overwhelmingly negative.
There are several potential explanations for this effect. First and foremost, glucocorticoids
may interfere with any immunomodulatory treatments [31,41], as well as radiation and
chemotherapy [18,23,29,32,42]. In addition, dexamethasone and other glucocorticoids
are immunosuppressors. As a result, the administration of dexamethasone can lead to
increased infectious complications [14,43].

Glucocorticoids also lead to impaired glucose tolerance. Hyperglycemia has been
shown to be an independent risk factor for overall and progression-free survival in glioblas-
toma patients [17,25]. Although the exact mechanisms still remain to be elucidated, one
possible explanation is the Warburg effect, which proposes that tumors meet their en-
ergy needs mainly through anaerobic glycolysis [44]. In vitro, unlike human astrocytes,
glioblastoma cells were shown to undergo apoptosis upon glucose withdrawal [45]. Other
detrimental effects of hyperglycemia, such as an increased risk of infection, may also
contribute to its negative impact on survival [46].

Preclinical studies have investigated possible mechanisms through which dexametha-
sone might impair survival in glioblastoma patients. Experimental models have shown
that dexamethasone increases invasiveness, tumor proliferation, and angiogenesis [47].
Dexamethasone also reduces temozolomide-mediated apoptosis in human glioblastoma
cells [48–50], possibly through O6-methylguanine-DNA methyltransferase (MGMT) up-
regulation, which results in an increased temozolomide resistance [51,52]. Interestingly,
some preclinical studies have found that dexamethasone can also reduce glioblastoma
invasiveness through various mechanisms [53–57].

While evidence is limited, studies indicate that the overall dose of dexamethasone
applied matters. Mistry et al. showed that the higher the dose of dexamethasone received,
the worse the survival, with a continuously increasing hazard ratio at cumulative doses
between 30 and 512 mg within the first 3 postoperative weeks after glioblastoma resection.
Patients with a cumulative postoperative dose below 75 mg had a median survival of
441 days, whereas patients who received more than 300 mg had a median survival of
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183 days [36]. This dose-dependent effect may also explain the outliers we see in the
funnel plots of our meta-analysis. The included studies use various cutoffs between
groups with high and low dexamethasone dosing, resulting in a variety of hazard ratios
even in studies with a large patient population. We aimed to account for this by using
a random effects model for our analysis. Our model accounts for the large variations in
dexamethasone dosing that occur in everyday clinical practice. Therefore, the aggregate
hazard ratio is harder to interpret but still supports the conclusion that the administration
of dexamethasone might reduce survival.

Our findings may also be affected by several different types of bias. The negative
effect of dexamethasone that we show could be exacerbated by publication bias. Although
the funnel plot analysis shows no significant skew, its interpretability is reduced due to
the significant differences between individual study protocols. Therefore, the contribution
of publication bias to our results cannot be definitely excluded. Our analysis may also
be affected by confounding variables. One possible explanation for the detrimental effect
of dexamethasone is that patients with worse clinical statuses and more advanced dis-
eases with worse outcomes will receive higher doses of dexamethasone. Most guidelines
suggest only administering dexamethasone in symptomatic patients and adjusting the
dose according to the patient’s symptoms, and a stable or increasing corticosteroid dose
is necessary for defining progressive disease in gliomas according to RANO criteria in
many cases [58]. Ideally, a prospective randomized trial could determine the effect of
dexamethasone on survival in glioblastoma patients. One such review has already been
launched and should be completed by 2026 under the “Restrictive Use of Dexamethasone
in Glioblastoma (RESDEX)” project. However, retrospective studies have already tried to
account for symptom differences through multivariable analyses. Our aggregate analysis of
these studies showed that dexamethasone still negatively impacts survival, independent of
patient’s symptoms. Mistry et al. also used matched control groups for the Karnofsky per-
formance score and other potential confounders such as tumor size [36]. Despite matched
groups, the administration of dexamethasone still significantly decreased OS and PFS.

Given the potential detrimental association of dexamethasone use on survival, careful
consideration must be given before administering dexamethasone to glioblastoma patients.
As the only proven benefit of dexamethasone is the reduction of symptoms, we believe
that dexamethasone should not be administered in asymptomatic patients or with a re-
strictive regimen. Even in symptomatic patients, alternative specific treatments may be
similarly effective without affecting survival. Headaches and nausea may be treated with
analgesics and antiemetics. Several non-steroidal drugs and drug combinations are also
being investigated as possible edema-reducing, glucocorticoid-sparing agents, such as
bevacizumab [59] and a combination of spironolactone, ecallantide, and clotrimazole [60].
However, one should consider that the use of drugs like bevacizumab is constrained due to
potential complications related to wound healing. Specifically, its administration must be
discontinued at least 28 days pre- and post-surgery, which can limit its daily use [61,62].
As for the postoperative period, the current high costs associated with bevacizumab may
render it limited for routine use in managing symptomatic patients. However, this might
change in the future.

5. Limitations

As a meta-analysis, our study is limited by the quality of the underlying studies. All
the included studies were retrospective. As a result, there was a significant potential for
selection bias, confounding variables, and other sources of bias that may have affected the
validity of the results. Additionally, the studies included in the analysis showed consider-
able heterogeneity in their methods used for measuring dexamethasone exposure and their
cutoffs for defining high and low dexamethasone doses, which reduces the interpretabil-
ity of our results and the effect sizes in our analysis. Despite these limitations, until the
publication of prospective trials, a systematic review of these publications represents the
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highest quality of evidence currently available concerning the use of dexamethasone in
glioblastoma patients.

6. Conclusions

Given the potential detrimental association of dexamethasone use on overall survival,
its administration to glioblastoma patients should be approached with caution. As the
only proven benefit of dexamethasone is the reduction of symptoms, we believe that
dexamethasone should not be administered in asymptomatic patients or with a restrictive
regimen and only after carefully weighing the expected symptomatic improvement against
the worsened prognosis. Nevertheless, this recommendation may be subject to change as
future prospective studies emerge.
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