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Abstract. Conventional laboratory analysis of soil properties is often expensive and requires much time if vari-
ous soil properties are to be measured. Visual and near-infrared (vis—NIR) spectroscopy offers a complementary
and cost-efficient way to gain a wide variety of soil information at high spatial and temporal resolutions. Yet,
applying vis—NIR spectroscopy requires confidence in the prediction accuracy of the infrared models. In this
study, we used soil data from six agricultural fields in eastern Switzerland and calibrated (i) field-specific (local)
models and (ii) general models (combining all fields) for soil organic carbon (SOC), permanganate oxidizable
carbon (POXC), total nitrogen (N), total carbon (C) and pH using partial least-squares regression. The 30 local
models showed a ratio of performance to deviation (RPD) between 1.14 and 5.27, and the root mean square
errors (RMSE) were between 1.07 and 2.43 gkg ™! for SOC, between 0.03 and 0.07 gkg~! for POXC, between
0.09 and 0.14 gkg™! for total N, between 1.29 and 2.63 gkg™"' for total C, and between 0.04 and 0.19 for pH.
Two fields with high carbonate content and poor correlation between the target properties were responsible for
six local models with a low performance (RPD < 2). Analysis of variable importance in projection, as well as of
correlations between spectral variables and target soil properties, confirmed that high carbonate content masked
absorption features for SOC. Field sites with low carbonate content can be combined with general models with
only a limited loss in prediction accuracy compared to the field-specific models. On the other hand, for fields with
high carbonate contents, the prediction accuracy substantially decreased in general models. Whether the com-
bination of soils with high carbonate contents in one prediction model leads to satisfying prediction accuracies

needs further investigation.

1 Introduction

The application of spectroscopy in the visible and near-
infrared (vis—NIR) range is increasing in soil science and re-
lated disciplines, with the main objective being to gain infor-
mation on the soil properties of more samples at lower costs
than with conventional laboratory methods. With a larger
sample size, the spatial or temporal resolution can be in-
creased, which allows conclusions about the within-field or
within-farm variability but might potentially also increase the
statistical power in agricultural experiments (Greenberg et
al., 2022). Despite its tendency to be less accurate compared
to mid-infrared (MIR) spectroscopy, vis—NIR spectroscopy

is widely applied because of less sample preparation, lower
costs and generally easier portability (Soriano-Disla et al.,
2014).

On-site vis—NIR measurements are therefore feasible, but
laboratory measurements with dried and sieved soil sam-
ples have so far shown higher accuracy (Allory et al., 2019;
Hutengs et al., 2019). In particular, soil properties related to
soil organic matter can be estimated appropriately by lab-
oratory vis—NIR spectroscopy (Angelopoulou et al., 2020).
In most cases, the focus is to provide soil information over
large areas (e.g., soil maps) where a high sample number is
present and only a moderate prediction accuracy is needed.
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Hence, large-scale spectral libraries have been developed to
further reduce the need for wet chemistry data. Due to the
high complexity within spectral libraries, the application of
a general model to a local context leads to high prediction
errors. Recent research shows that the localization of these
infrared models substantially improves the predictive perfor-
mance in a local context, for example by spiking (Brown,
2007; Li et al., 2020; Ng et al., 2022; Seidel et al., 2019;
Wetterlind and Stenberg, 2010; Zhao et al., 2021), memory-
based learning (Ramirez-Lopez et al., 2013), resampling al-
gorithms (Lobsey et al., 2017) or deep learning (Shen et al.,
2022). However, for analyzing small-scale variability (field
or farm level), a local model is often still the best choice be-
cause of its low prediction errors. Theoretically, developing
local models is supported by the finding that, in the vis—NIR
range, spectral features that influence specific soil properties
vary strongly between different datasets, which makes highly
heterogenous large datasets prone to insufficient model per-
formance (Angelopoulou et al., 2020; Grunwald et al., 2018).
The development of local spectral models has the main pur-
pose of coping with a large sample size at the local scale, but
such local models have no utility beyond the analysis of the
specific local dataset.

Spectral vis—NIR models developed from local datasets
showed a very high variability in model performance, rang-
ing from excellent models (Breure et al., 2022; Seidel et al.,
2019) to those with relatively poor model performance (Ca-
margo et al., 2022; Kuang and Mouazen, 2011). The reasons
for these different performances of local models are under-
studied and remain unclear. Among many different possible
modeling approaches, including support vector machine re-
gression, artificial neural networks, cubist and random forest,
partial least-squares regression (PLSR) is the most frequently
used model type to build spectral models with small datasets
(Alomar et al., 2021; Zhao et al., 2021).

The number of samples is crucial for local models , often,
only a limited number of samples with reference laboratory
data are available. Kuang and Mouazen (2012) showed that
local models improve with an increasing number of calibra-
tion samples and that a sample size of at least 50 provides ac-
curate prediction models. Some studies thus combined mul-
tiple target sites and developed a general model by combin-
ing all the local datasets to reach a larger sample size and
potentially better model performance (Kuang and Mouazen,
2011; Singh et al., 2022). In these studies, the general model
showed an intermediate performance, and the general predic-
tion error was between the best- and the poorest-performing
local model. However, these studies only calculated the over-
all prediction error of the general model; therefore, it is not
clear if the prediction for target sites with poorly perform-
ing local models could be improved by applying a general
model.

For vis—NIR spectroscopy application at local scales, it is
therefore very difficult to estimate the measurement accu-
racy for the predicted samples beforehand. This uncertainty
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is probably the main reason that hampers the application of
vis—NIR spectroscopy because researchers prefer to rely on
conventional lab measurements with a smaller sample size
(and smaller spatial resolution) where the measurement ac-
curacy is known before sampling and measurements are con-
ducted. Applying spectroscopy at the field or farm scale thus
bears the risk that the measurement accuracy (RMSE) may
be beyond the tolerable threshold, which might then bring a
whole project into question. Thus, in this paper, we analyze
the performance of field-specific (local) spectral models of a
field experiment conducted in six fields in eastern Switzer-
land and that of a general model combining the data from
all six fields to ascertain their influencing factors. We ask the
following questions:

1. To what extent do the prediction errors of local spectral
models differ from the lab measurement error?

2. Does a general model that includes several target sites
improve the prediction on a target site with a poor local-
model performance?

3. How do field and soil characteristics (e.g., field size, soil
texture, carbonate content, correlations of soil proper-
ties) of the target site relate to the performance of spec-
tral models?

By answering these questions, we want to provide insights
into the estimations of prediction accuracies for vis—NIR
studies at the local scale, with the objective of supporting
decision-making during the development of a sampling de-
sign and the planning of laboratory reference measurements
for subsequent calibration modeling.

2 Methods

2.1 Datasets from a cover-cropping experiment at six
field sites

We used datasets from six fields (A, B, C, D, E, F) of a
cover-cropping experiment in the Canton of Thurgau, eastern
Switzerland (paper in preparation). The six fields were up to
13 km apart from one another, and the soil type for all of them
was Eutric Cambisol that had developed on base moraine
(Table 1). The aim of the study was to compare the influence
of two different cover-cropping regimes on short-term soil
organic matter cycling. Each field had 39 differential-GPS
(dGPS)-referenced sampling points in an unaligned sam-
pling design. At each dGPS-referenced point, soil was sam-
pled three to four times at three depths (0-5, 5-10 and 10-
20 cm) during one long cover-cropping period (August 2019
to May 2020). Fields A, B, C and D had four sampling times,
resulting in 468 samples per field. Fields E and F had three
sampling times, resulting in 351 samples per field. All sam-
ples were dried at 40 °C to a constant weight (around 72 h)
and then gently crushed and sieved to 2mm. For the to-
tal sample size of 2574 samples, soil properties were esti-
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mated using vis—NIR soil spectroscopy, whereas 386 sam-
ples were analyzed conventionally by wet chemistry for sub-
sequent calibration modeling. These 386 samples for labora-
tory analysis were selected for each field separately using the
Kennard—Stones algorithm (Kennard and Stone, 1969) to en-
sure coverage of the whole spectral variability. Thereby, the
Kennard—Stones algorithm was run with two to seven prin-
cipal components, and the number of principal components
was chosen such that it covered at least 99 % of the spectral
variance and provided a reference sample selection that rep-
resented well the different sampling times, soil depths and
spatial distributions. The laboratory analysis comprised soil
organic C (SOC), total C, total N, permanganate oxidizable
C (POXC) (also called active C) and pH.

2.2 Chemical soil analyses and its accuracy

Total C and N concentrations were measured on a ground
aliquot by dry combustion (vario MICRO tube, Elementar,
Germany). Inorganic C was analyzed for each sample in trip-
licates through the dissolution of carbonate in a Scheibler ap-
paratus with 10 % HCI solution and the measurement of the
evolved CO; volume. SOC was then calculated as the differ-
ence between total C and the mean of the three measurements
for inorganic C. POXC was measured according to the Pro-
tocol of Weil et al. (2003), with the adaption of Lucas and
Weil (2012). In brief, 2.0 mL of 0.2 M KMnO4 was added to
2.5 g of soil, and after a reaction time of 10 min, the absorp-
tion of the liquid was measured at 550 nm with a spectropho-
tometer (UV-1800, Shimadzu Corporation, Japan). The mea-
surement of pH was done in a 0.01 M CaCl, solution.

To estimate the lab measurement error, we took three sam-
ples per field (in total 18) where we conducted the measure-
ments for total C, total N, POXC and pH in triplicates to cal-
culate a standard deviation. We estimated the lab measure-
ment error for SOC (o50c) according to Eq. (1):

_ [ 2 2
0s0oC = \/ OTotal C + Glnorganic C M

where oTotal ¢ 18 the standard deviation of the total C mea-
surement, and Opyorganic ¢ 18 the standard error of the inor-
ganic C measurement because inorganic C measurements
were done for all samples in triplicates. The measurement
errors of all 18 triplicates were then averaged to obtain the
overall lab measurement error for a soil property.

To characterize the spatial variability of soil texture in
the field, we measured grain size for 20 samples per field
(every second sampling point in 10-20 cm soil depth). Or-
ganic matter in the samples was oxidized with hydrogen
peroxide (H2O;), and then grain size was measured with
laser-diffraction analysis (LDA) after dispersion of the sam-
ple (22 mM sodium carbonate and 18 mM sodium hexaphos-
phate) using a Mastersizer 2000 (Malvern Panalytical, UK).
Since the LDA underestimates the clay content compared
to the standard grain size methods (Taubner et al., 2009),
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we measured one composite sample per field with the im-
proved integral suspension pressure method (ISP+; Durner
and Iden, 2021) on a PARIO Plus Soil Particle Analyzer
(METER Group, Germany and USA). We rescaled the mean
sand, silt and clay content of the LDA data to the mean of
the IPS+ method while keeping the coefficient of variation
constant (see Table S3 in the Supplement).

2.3 Spectral measurement and pre-processing of
spectra

All samples were measured with a vis—NIR spectrometer
(ASD FieldSpec 4 Hi-Res, Malvern Panalytical, USA) with
a sampling interval of 1.4nm from 350 to 1000nm and
1.1nm from 1000 to 2500 nm. The device then provides a
reflectance spectrum with a resolution of 1nm and 2151
wavelengths. Measurements were done with a contact probe,
containing an internal halogen bulb, which was in a fixed
position, and soil samples, placed in a petri dish of 1.5cm
height and 3 cm diameter, were lifted with a laboratory scis-
sor jack until coming into close contact with the probe to
ensure a stable measurement position. For each sample, five
petri dishes were filled to provide five replicate spectra per
sample. Each of these five replicates consisted of 30 inter-
nal repetitive scans that were automatically averaged by the
device’s internal RS3 software. Between samples, the contact
probe was carefully cleaned with water and ethanol. After the
five replicates of a sample, the calibration of the spectrometer
was checked with a 100 % reflectance white reference panel
(Spectralon, 12 x 12 cm, Labsphere, USA). The infrared data
of each sample were kept in two versions, once as reflectance
spectra, as provided by the spectrometer, and once as ab-
sorbance spectra using the log(1/reflectance) transforma-
tion. Several pre-processing options and their combinations
were tested on both the reflectance and the absorbance spec-
tra: (a) resampling of the spectra in an interval from 1 to
6 nm, (b) cutting of the beginning (350-400 nm) or the end
(2450-2500nm) of the spectra, (c) first- or second-order
derivative, (d) Savitzky—Golay (SG) smoothing in a third-
order polynomial with window sizes ranging from 5 to 51,
(e) gap segment derivative (GSD) with window widths be-
tween 5 and 51 and segment sizes between 1 and 21, (f) stan-
dard normal variate (SNV) combined with GSD, and (g) SG
smoothing combined with multiplicative scatter correction
(MSC). All applied pre-processing techniques are frequently
used in soil spectroscopy and are well described in Ellinger
et al. (2019). The pre-processing techniques from (a) to (g)
led to around 100 meaningful combinations that were tested
in model building, and the final pre-processing option was
selected based on the smallest RMSE.
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Table 1. Description of the datasets of the six different fields A to F. All fields were classified as Eutric Cambisol developed on base moraine.
Soil texture was measured with the improved integral suspension pressure method (ISP+).

Field Coordinates Elevation

Area

Mean soil texture Number of samples

(m above sea level) (ha) (sand/silt/clay) (%)

Spectroscopy ~ Wet chemistry
A 47°40'58" N, 08°45'54" E 420 0.84 Sandy loam (50/29/21) 468 70
B 47°40'54" N, 08°46'05" E 420  0.67  Sandy loam (44/35/20) 468 70
C 47°38'01” N, 08°57'02" E 600 0.44 Sandy loam (27/35/38) 468 70
D 47°38/43" N, 08°42'58" E 460 0.64 Clay loam (28/44/28) 468 70
E 47°38/49" N, 08°43'06” E 460 1.05 Sandy loam (30/48/23) 351 53
F 47°34/22"" N, 08°48'52" E 380 0.3 Sandy loam (39/43/18) 351 53

2.4 Development and evaluation of field-specific local

models

We used for all 30 local models (6 fields x 5 properties) a
PLSR modeling approach (Wold et al., 1983). Model per-
formance was assessed using the statistics of the hold-out
folds of each five-times-repeated five-fold cross-validation
because it was evaluated as a robust method for smaller
datasets (Kuhn and Johnson, 2013; Molinaro et al., 2005).
To avoid model overfitting, we set the maximum of latent
variables in the PLSR model to 12. For each number of la-
tent variables (1, 2, ..., 12) the dataset was randomly split
five times into five folds, of which four were used for model
training, and the remaining fold was held out and used for
model validation. The RMSE (Eq. 2) of the hold-out samples
was averaged among the five repeats, resulting in a cross-
validated RMSE per number of latent variables. The final
number of latent variables was then chosen according to
the “1-standard-error rule”, which means that, instead of di-
rectly choosing the number of latent variables with the small-
est mean RMSE, the most parsimonious (fewer latent vari-
ables) model within 1 standard error of the mean RMSE of
the optimal model was selected (Hastie et al., 2017). The 1-
standard-error rule was also applied during optimization of
pre-processing to avoid model overfitting. The final model
was trained using all training data with an optimized number
of latent variables.

A proper validation of a spectral model is very crucial
and is particularly important in this study where soil was re-
peatedly sampled at different depths at the same GPS point.
To analyze the correlation among the samples and define a
grouping factor for the cross-validation, we calculated the
mean Euclidean distance between all samples and compared
it with the mean distance (1) between samples at the same
GPS point but different depths, (2) between samples at the
same point and depth but different sampling times, and (3)
between samples at the same point but different depth and
sampling times (Fig. S1 in the Supplement). Thereby, we
observed that the soil samples from the three different soil
depths sampled at the same GPS point at the same sam-
pling time had a substantially lower mean Euclidean distance
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compared to the overall mean. Consequently, we grouped
the samples from the same GPS point at the same sampling
time and kept them in the same fold to avoid a too-optimistic
model evaluation during cross-validation.

Since we used a cross-validation approach at the field
scale, all models showed a very small bias (see Table 2). We
therefore do not discuss the bias in this paper and focus on
R?, RMSE and RPD (Eq. 3) for the evaluation and compar-
ison of different models. RMSE was calculated according to
Eq. (2), where y; is the prediction of the spectral model for
sample i, and y; is the actual measured value for the same
sample in the laboratory.

1 )
RMSE = \/;Z;’:] (vi — 31)

RPD compares the RMSE with the standard deviation (SD,
Eq. 3) of the data:

2

_SD
" RMSE’

3)

For all model performance parameters (R?, RMSE and RPD)
of the cross-validation, we calculated the uncertainty with
the standard deviation of the prediction of the hold-out folds
across the five repetitions.

To classify the model performance, we combined the
RPD-based classifications of Chang et al. (2001) and Zhang
et al. (2018). We considered spectral models with RPD < 1.4
to be poor, models with RPD between 1.4 and 2 to be approx-
imate, models with RPD between 2 and 3 to be accurate, and
models with RPD > 3 to be excellent. Even though in spec-
troscopy projects relating to local extent the RMSE is the
most important model performance parameter, RPD is the
best parameter to compare models of different scales. Model
metrics (R2, RMSE and RPD) mentioned in the text are
based on the cross-validation, and metrics for the model cal-
ibration in Table 2 are specifically labeled as Rczal, RMSE_4
and RPD,;.
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2.5 Development and evaluation of general models

In addition to the field-specific local models, we built general
models for the five soil properties that included all reference
samples (n = 386) of the six fields. Even though for this sam-
ple size an independent test set would be more suitable than
a cross-validation approach, we evaluated the model perfor-
mance using the hold-out samples in the five-times-repeated
10-fold cross-validation, keeping, as for the local models,
samples from the same GPS point and the same sampling
time in the same fold. The first reason for not using an inde-
pendent validation set is that the modeling approach of the
general model should be similar to the one of the local mod-
els to make them comparable. The second reason is that a
representative split of the dataset into a calibration and a val-
idation set according to the spectral variability would not re-
sult in an equal number of samples per field in the validation
set. Conversely, if we selected an equal sample size per field
for the validation set, we would not have been able to cover
the entire spectral variability. Evaluating the general mod-
els with hold-out samples of the cross-validation allowed us
to calculate not only the RMSE over all samples but also the
RMSE for the samples of each field individually. These field-
specific RMSE values of the general model could then be
compared with the RMSE values of the local models. Since
the only purpose of the general models was to increase mod-
eling efficiency for a specific combined dataset, we did not
group the samples according to fields during cross-validation
because the same share of samples from the same field would
also be in the prediction dataset. For the general models, we
cannot indicate uncertainties at a field-specific level since the
folds did not always contain the same number of samples per
field.

2.6 Model interpretation

To interpret spectral models, it is crucial to find relevant
spectral features that are consistently important for a cer-
tain soil property. To identify the most important wavelength
ranges in the final chosen models, we used the variable im-
portance in projection (VIP) method first published by Wold
et al. (1993) and evaluated by Chong and Jun (2005). The
VIP method can deal with multicollinearity and is therefore
suitable for the interpretation of spectral models as it was,
for example, applied by Baumann et al. (2021). Wavelengths
that have an above-average impact on the model have a VIP
score above 1. We classified spectral ranges in groups of VIP
scores between 1 and 1.5, 1.5 and 2, and above 2.

2.7 Assessment of site characteristics influencing model
performance

To understand the reasons for the varying performance of
the 35 developed spectral models, we studied the influence
of various site characteristics on the models. To do so, we
correlated the model performance parameters (R?, RPD and
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RMSE) with field size, soil texture and carbonate content and
with the correlation coefficients between SOC and total N
in the dataset. With six local datasets as independent vari-
ables it is hardly possible to apply statistical tests that could
potentially reject a null hypothesis. Therefore, we relied on
the interpretation of graphs and Pearson’s moment correla-
tion coefficients between soil properties and RMSE. Since
the RMSE values are estimates with uncertainties (standard
deviations; see Sect. 2.4), we used a Monte Carlo simula-
tion and reported the mean and standard deviation of the cor-
relation coefficients after 1000 iterations. For the identified
site characteristics that showed the strongest trends in terms
of model performance (carbonate content, correlation coef-
ficient between SOC and N and variability in clay content),
we looked for possible explanations in the spectral features.
Thereby, we relied on the VIP analysis of the trained models,
on the correlation coefficients between soil properties with
spectral variables and on the correlation matrices between
target variables.

2.8 Data organization

All analyses were performed in R version 4.0.3 (R Core
Team, 2020). The spectral datasets were analyzed using the R
package simplerspec version 0.2.0 (Baumann, 2019) in com-
bination with the packages prospectr version 0.2.1 (Stevens
and Ramirez-Lopez, 2020) and caret version 6.0-86 (Kuhn,
2020).

3 Results

3.1 Description of the datasets

A comparison of the data distribution between the six differ-
ent fields can be seen in Fig. 1, and the corresponding statis-
tics can be seen in Table S1 in the Supplement. The means
for SOC, total N and POXC differed between the six fields,
but the distribution was relatively similar for these three soil
properties. The density functions for total C and pH were
highly influenced by the spatial distribution of carbonate in
the soil: fields B, D and E contain samples with and with-
out carbonate, resulting in a broad distribution for both total
C and pH. All soil samples of fields A and C contained car-
bonate in varying concentrations, resulting in a broad distri-
bution for total C but a narrow distribution for pH. Field F
showed high and only slightly varying carbonate content and
therefore a very narrow distribution for total C and pH. Field
C had highest mean clay content, and field A had the high-
est mean sand content, whereas field F showed the highest
variability in soil texture.

3.2 Performance of spectral models

Based on RPD, 13 out of 30 local models showed an ex-
cellent performance (RPD > 3), 11 models an accurate per-
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Figure 1. Density plots of the reference samples for the five target properties (SOC, total C, total N, POXC and pH) and inorganic C. Fields
A to D each contained 70 samples, and fields E and F each contained 53 samples. Soil texture was analyzed in 20 samples per field.

formance (RPD > 2), 5 models an approximate performance
(RPD > 1.4), and 1 model a poor performance (RPD > 1.4;
Table 2). The six models without accurate performance were
SOC, POXC and pH in fields A and F.

However, the RMSE values of the local models for pH
of fields A (0.08 £ 0.02; mean = standard deviation) and F
(0.04 £0.01) were similar to or smaller than the RMSE
of the other three local models (between 0.08 +0.02 and
0.194+0.03) whose performances were classified as ac-
curate. Differently, the local models for SOC in fields
A and F with only approximate performance showed a
higher RMSE (2.43 £ 0.55 and 2.00 4 0.38 gkg™!) than the
other accurately performing local models for SOC (between
1.0740.19 and 1.59 +0.28 gkg~!). The five general models
all showed an accurate to excellent performance, with RPD
values ranging from 2.60 £0.43 to 4.16 + 0.47.

3.3 Influence of pre-processing on spectral variability

For all 35 models, pre-processing improved the models com-
pared to the raw spectra (see an example of pre-processing
optimization for total C in Table S2 in the Supplement).

https://doi.org/10.5194/s0il-10-231-2024

Although pre-processing was necessary for all models, we
highlight that several pre-processing options performed sim-
ilarly well within 1 standard deviation, and the differences in
RMSE were often relatively small (see Table S2 in the Sup-
plement). Figure S2 in the Supplement gives an overview of
the best-performing pre-processing techniques. Most times,
the first- or second-order derivatives improved the models
substantially. Most models performed best when the spec-
tra were reduced to every third wavelength and when mod-
els based on absorbance were a bit more frequently used
than models based on reflectance. The combined applica-
tion of SG filter and MSC was the most successful pre-
processing, while a single SG filter, GSD and SNV in com-
bination with GSD were of minor importance. Cutting of
the beginning (350-400) or end of the spectra (2450-2500)
sometimes improved the model performance, but since most
pre-processing steps reduce the beginning and end of the
spectra, it was not possible to evaluate the cutting. Similarly,
it was not possible to evaluate the window width chosen in
the SG filter because there is an interference with the resam-
pling interval. A detailed list of the selected pre-processing
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options of the final models and the corresponding metrics for
model performance can be found in Table 2.

The sensitivity of model performance to pre-processing
can be visualized with the biplots of principal component
analysis (PCA). Figure 2 shows the first three biplots of the
raw spectra and the spectra that were pre-processed accord-
ing to the general models of the five soil properties. The
raw spectra had a very high share of the explained vari-
ance (96.8 %) for the first principal component but hardly
any groups according to fields could be observed with the
first two principal components. All pre-processing options
used for the general models decreased the explained variance
for the first principal component (32.5 % to 39.6 %), and a
grouping according to fields could already be seen in the bi-
plot of the first two principal components. Thereby, in par-
ticular, field F (with the highest carbonate content) and field
C (with the highest clay content) often showed clear groups.
Nevertheless, in the pre-processing for pH, field E (with the
highest pH variability) shows a clear group in the first biplot,
and the pH variability is well represented with the first PC.

3.4 Comparison of general models with local models
and lab measurement error

The overall cross-validated model metrics of the general
model (filled black circle in Fig. 3) indicated a good per-
formance over all fields for all soil properties, but the field-
specific model evaluation showed distinct differences among
fields. The field-specific R? of the general models of fields B,
C, D and E was similar to the R? of the local model for SOC,
total C, total N and POXC (only a slight slope in Fig. 3). For
pH, only fields C, D and E showed similar R? in the local
and general models, while fields A, B and F showed clearly
higher R? in the local model. On the other hand, field F had
clearly lower R? in the general model than in the local model
for all soil properties except POXC. For field A, R? was simi-
lar between the local and the general models for SOC, total C
and POXC but clearly lower for total N and pH in the general
model.

The field-specific RPD of the general model was, on aver-
age, 31 % lower across all soil properties compared to the lo-
cal models (Fig. 3). All property—field combinations of fields
B, C, D and F showed at least an approximate (RPD > 1.4)
performance in the general models, whereas the seven poorly
(RPD < 1.4) performing property field combinations were all
from fields A and F. It can therefore be concluded that the
general models could not improve the low-performing local
models.

Field-specific RMSE of the general models was, on av-
erage, 47 % higher compared to the local models. How-
ever, there were substantial differences between the different
fields. For field F, the field-specific RMSE values in the gen-
eral models for SOC, total C, total N and pH (2.58 gkg_l,
0.17 gkg~! and 0.09) were much higher compared to those
of the local model (2.0040.38 gkg™!, 0.09+0.02 gkg™!
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and 0.04 £0.01, respectively; Fig. 3). Similarly, for total
N and pH, field A had a much higher RMSE in the gen-
eral model (0.22 and 0.14 gkg™!) than in the local model
(0.14 £0.03 and 0.08 £0.02). On the other hand, fields C
and E showed quite similar RMSE values in the local and in
the general model for all soil properties except total C.

The RMSE values of the best local models were close
to the overall lab measurement errors for SOC, total C and
total N, a bit higher for pH, and substantially higher for
POXC (Fig. 3). The RMSE values of SOC for fields B
(1.26 £0.36 gkg™!) and D (1.07 £0.19 gkg~!) were within
the standard deviation of the lab measurement error for SOC
(1.01 £0.40 gkg™"). The overall lab measurement error for
SOC was calculated from the measurement error for total C
and inorganic C; therefore. for fields B and D, with only
a little inorganic C, the lab measurement error for total C
(0.834+0.25 gkg™!) might be the better reference. However,
the RMSE of the local spectral models of all fields exceeded
the overall lab measurement errors between factors of 1.1 and
2.4 for SOC, 1.6 and 3.2 for total C, 1.3 and 2.0 for total N,
2.3 and 4.3 for POXC, and between 3.4 and 17.8 for pH. The
field-specific RMSE of the general model exceeded the over-
all lab measurement error between factors of 1.3 and 2.3 for
SOC, 2.2 and 5.2 for total C, 1.5 and 3.2 for total N, 2.8 and
4.6 for POXC, and between 8.3 and 19.9 for pH.

The VIP scores (Fig. 4) show that the most important
wavelengths were dataset specific. It can be seen that in
field B and, to a lower extent, in field F, the same wave-
lengths were important in all soil properties related to soil
organic matter (SOC, total C, total N and POXC), whereas
in the other fields, the VIP patterns of the different properties
were more distinct from each other. However, for all the ana-
lyzed soil properties, the wavelength ranges between 400 and
750 nm (visible), as well as between 1800 and 2450 nm, were
most important, while the range in between was of lower im-
portance. Nevertheless, some models had VIP scores above
2 in the range between 750 and 1800 nm.

Prediction performance in terms of RMSE and RPD of to-
tal C for fields E and F was particularly lower in the gen-
eral model than in the local model (Fig. 3). This finding can
be explained with the VIP analysis (Fig. 4) that showed for
the general model that the most important wavelength range
was between 2150 and 2450 nm, while for the local mod-
els of fields E and F, it was in the range of 500 to 1020 nm.
The local model for total N of field F showed very high
VIP scores (> 2) in a small specific range between 2345 and
2369 nm, but these wavelengths were not important in the
general model for total N (Fig. 4), which resulted in a much
lower prediction accuracy of total N for field F in the general
model compared to in the local model.

3.5 Site characteristics influencing model performance

We found an order of model performance with respect to
R? and RPD that is dependent on mean carbonate content,

https://doi.org/10.5194/s0il-10-231-2024
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Figure 2. Biplots of principal component analysis with the first four principal components for the raw spectra and the pre-processed spectra
according to the properties SOC, total C, total N, POXC and pH. The pre-processing is indicated in the figure, and, except for total N, it was
conducted on reflectance spectra (SG refers to Savitzky—Golay filter (m refers to order of derivative, w refers to window width), SNV refers
to standard normal variate, GSD refers to gap segment derivative (m refers to derivative, w refers to window width, s refers to segment size),
and MSC refers to multiplicative scatter correction).

https://doi.org/10.5194/s0il-10-231-2024

SOIL, 10, 231-249, 2024




240 S. Oberholzer et al.: Best performances of visible—near-infrared models

1.00 + - =
J,ﬁ\{ § l@ -i_v-—- s Tl é E“L\EI ®
J_\( i \L.‘AlE {
0.751 l ) —
I H |
o~ I J
0 0501 J_ T
X
0.251
000- T T T T T T T T T T
SOC SOC Total C Total C Total N Total N POXC POXC pH pH
(local (general (local (general (local (general (local (general (local (general
model) model) model) model) model) model) model) model) model) model)
6 _’_ T
I : i
o, i T
a4 l l i ;I\EI
4 g |
I g ; t R
7 ‘ g T —
= oL
SéC S(I)C Totlal C Totlal C Tot:aI N Tot:al N PdXC PO'XC pIH pIH
(local (general (local (general (local (general (local (general (local (general
model) model) model) model) model) model) model) model) model) model)
3.0+
41 0.20
— 25- —~~ —
2% E} =018
% % 7
1.54 24
= = =
¥ X oy 0.104
1.04
N o ¢
05 ; . : . ; : 0.051 . : h
SoC SOoC SOC Total C Total C Total C TotalN  TotalN  Total N
(local (general (lab (local (general (lab (local (general (lab
model) model) measurement model) model) measurement model) model) measurement
error) error) error)
0.20 Field
‘TA 604 e Al
2 0.151 A
o Ll 1
£ 40 @
= = _ 1 <= B
u = 0.10 W
| X C
= 0l L
o 20 0.051 D
B E
0- 0.001 Elg
T T T T T T X F
POXC POXC POXC pH pH pH
(local (general (lab (local (general (lab
model) model) measurement model) model) measurement
error) error)

Figure 3. R2, ratio of performance to deviation (RPD) and root mean square error (RMSE) calculated from the local models and field-
specifically calculated from the general model for the six fields (A-F) and the five soil properties (SOC, total C, total N, POXC and pH).
The error bars for the RMSE of spectral models represent standard deviations across the repeats in the cross-validation. The overall RMSE
of the general model is indicated with a filled black circle and the label “All”. The RMSE values are compared with the error of the lab
measurements (mean standard error of 18 triplicates indicated with standard deviation).
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Figure 4. Variable importance in projection (VIP) for the local models of fields A-F and the general model that combined the datasets of all

fields (All).

the correlation coefficient between SOC and total N, and
the coefficient of variation in clay content (Fig. 5). Fields
A and F which showed lower model performance in terms of
RPD with higher carbonate content, a lower correlation co-
efficient between SOC and total N, and higher variability in
soil texture (compare also with density plots in Fig. 1). How-
ever, in absolute prediction performance (RMSE), we only
found for SOC and pH substantial correlations (|r| > 0.46)
between RMSE and field characteristics (Fig. 6). Compared
to the three field characteristics mentioned above, we found
a weaker influence of the field size; the absolute contents of
sand, silt and clay; and/or the variability in the carbonate con-
tent on model performance (see Fig. S3 in the Supplement).
The influence of carbonate content on the model perfor-
mance of SOC is illustrated by plotting at each wavelength
the correlation coefficients between pre-processed spectral

https://doi.org/10.5194/s0il-10-231-2024

variables and inorganic C and SOC content (Fig. 7). The cor-
relation between SOC and spectral variables was higher in
fields B, D and E than in fields A, C and F, which also ex-
plains the better model performance. In field A, SOC and
carbonate content show a very similar correlation with spec-
tral variables across the whole vis—NIR range, which makes
it difficult to distinguish organic and inorganic C in field A,
resulting in an excellent performance of total C but much
lower performance for SOC (see Table 2). Even though the
correlation between spectral variables and SOC content in
field C was lower than in other fields (B, D and E), the
very different correlation pattern of carbonate content still
resulted in good model performance for SOC. In particular,
the ranges between 600 and 1200 nm and the peaks at 1680
and 2240 nm showed different spectral features for SOC and
carbonate, which corresponds to the high VIP scores at those

SOIL, 10, 231-249, 2024
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wavelengths for the SOC model in field C. In field F, corre-
lations for both carbonate content and SOC were relatively
weak, whereby carbonate content showed stronger correla-
tions with spectral variables, which probably masked the
spectral features of SOC, resulting, as for field A, in a bet-
ter model for total C than SOC.

The better model performance in fields B, D and E com-
pared to in fields A, C and F also coincided with a higher
correlation between SOC and total N (Fig. 5). In general,
correlation coefficients between target variables tended to be
higher in fields B, D and E compared to in fields A, C and
F (see Fig. 8 as an example and all correlation matrices in
Fig. S4 in the Supplement).

4 Discussion

4.1 Performance of local spectral models

Most of the developed local models showed an accurate
performance and confirm the suitability of vis—NIR spec-
troscopy in projects of local or single-plot extent. The per-
formance (based on RPD) of the two models for pH in fields
A and F, which were classified as only approximate or even
poor, respectively, can be explained by the low variability of

SOIL, 10, 231-249, 2024

pH in these datasets (see Fig. 1) and is supported by the fact
that these two models had the smallest RMSE values for pH
(Fig. 3). This explanation does not hold for the other three
local models that were also classified as only approximate
because SOC and POXC in field A, as well as SOC in field
F, showed a similar variability compared to in the other fields
(Fig. 1) but higher RMSE values. However, considering the
mean SOC concentration in fields A (22.443.7 gkg™!) and
F (28.6+2.7gkg™!) as well as the lab measurement er-
ror (1.00 £0.04 gkg™"), we argue that the RMSE values in
fields A (2.43+0.55gkg™") and F (2.004+0.38 gkg™!) are
probably, for many research projects, still acceptable, espe-
cially when taking into account that a higher sample size can
be analyzed for the same costs.

In agreement with literature (Soriano-Disla et al., 2014),
primary properties with a direct impact in the vis—NIR range,
like SOC, total C, total N and POXC, showed an RMSE
that was closer to the lab measurement error. On the other
hand, pH has only an indirect impact on the spectra and thus
showed a much higher RMSE compared to the lab measure-
ment error. but the RMSE for pH in the local models (be-
tween 0.04 & 0.01 and 0.19 % 0.03) is probably small enough
for most research purposes.
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4.2 Comparison of general models with local models

The general models could not improve the prediction of low-
performing local models. This finding is especially interest-
ing because, in this study, the general model was built with
datasets of six fields that were spatially close to one another

and the same parent material. However, the base moraine as
a parent material can be variable, which we mainly observed
in different soil textures and carbonate contents but also in
the high spectral variability (see PCA biplots in Fig. 2). In
this sense, we confirm the conclusions of Seidel et al. (2019)
and Ng et al. (2022), who suggested that the best solution is

(maximal distance of 13 km) and that had the same soil type
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Figure 7. Correlation graphs between spectral variables at each wavelength and SOC, as well as inorganic C, for the combined dataset (All)
and the individual fields (A-F). The spectra were pre-processed according to the chosen models for SOC.

always to develop a local model if enough samples (> 30)
are available. This conclusion is supported in this study by
the quite distinctive pattern of VIP scores between the dif-
ferent models (Fig. 4). The overall picture shows that the
wavelengths between 2000 and 2450nm followed by the
visible range between 400 and 700 nm were most impor-
tant for prediction of the investigated properties, which is in
agreement with the literature (Munnaf and Mouazen, 2022;
Soriano-Disla et al., 2014). Nevertheless, each local model
has distinct and site-specific features that could not be at-

SOIL, 10, 231-249, 2024

tributed to specific soil characteristics while being impor-
tant for the model development. The development of gen-
eral models where different locations are aggregated in one
dataset can save costs because the number of lab analyses
per location can be reduced, and less work is required for
model building. Depending on the research purpose and the
required measurement accuracy, the development of general
models can be a very suitable and cost-effective approach.
Nevertheless, this study showed that some fields (A and F)
can show a poor performance in general models; hence, it is
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field with strong correlations (field B) between the target variables. The correlation matrices for all fields can be found in the Supplement

(Fig. S4).

crucial to consider what locations or datasets are being com-
bined.

4.3 Pre-processing

The selection of the optimal pre-processing scheme was
crucial for model performance but was strongly dependent
on the dataset. Often, MSC was the best performing pre-
processing option, which was confirmed in some studies
(Cambule et al., 2012; Liu et al., 2019) but disproved in oth-
ers (Knox et al., 2015; Riefolo et al., 2020). We therefore
highly recommend considering MSC as a pre-processing op-
tion in spectral modeling but at the same time agree with
Barra et al. (2021) that there is no general pre-processing so-
lution that works for all datasets. The principal component
analysis with the combined dataset of all fields (Fig. 2) il-
lustrates this finding by the different groupings of individ-
ual field datasets due to different pre-processing. This leads
to the conclusion that studies that did not optimize the pre-
processing scheme for every soil property separately did
eventually not make full use of the spectroscopy, which has
been shown by other studies as well (Alomar et al., 2021;
Rodriguez-Febereiro et al., 2022; Singh et al., 2022). Nev-
ertheless, the property-specific optimization of spectral pre-
processing is a tedious process and constrains the fast and
cost-effective application of vis—NIR spectroscopy, but some
progress has recently been made by Mishra et al. (2022).

4.4 Site characteristics influencing model performance

We found higher model performance in fields with low car-
bonate content, high correlations between soil properties and
low variability in clay content. We want to discuss how these
identified important field characteristics influence or mask
spectral features.

https://doi.org/10.5194/s0il-10-231-2024

4.41 Mean carbonate content

We found an influence of carbonate content, with the low-
est performance of local spectral models in fields A and F.
Similar observations were made by Amare et al. (2013) and
McCarty et al. (2002), who argued that the absorbance bands
of carbonate mask those of SOC. Looking at the correlation
between spectral variables and inorganic C and SOC (Fig. 7),
we can confirm this finding but have to add that, on the local
scale, the relative intensity of absorption bands for carbon-
ate and SOC varied substantially between different datasets.
In this context, Reeves (2010), who showed that the spec-
trum of a soil sample varied greatly with its carbonate con-
tent, considered the prediction of SOC in soils with high car-
bonate content to be one of the open questions in vis—NIR
spectroscopy research. An important point missing in this
discussion is the measurement accuracy of SOC in the lab-
oratory, which is strongly influenced by the presence of car-
bonate and the method used (Goidts et al., 2009). If the soil
samples contain carbonate, often two measurements must be
conducted, and SOC is calculated as the difference between
total C and inorganic C. Especially with a high carbonate
content, the measurement error for the inorganic C content
can be a substantial share of the SOC content. The higher
lab measurement error with higher carbonate content might
be a possible explanation for the lower model performance
in soils with high carbonate content for SOC but not for the
other four soil properties where model performance (in terms
of RPD) still tended to be lower than in fields with little car-
bonate content (Fig. 5). This confirms the above-mentioned
observation of spectral interference between inorganic C and
organic matter and is additionally substantiated by the result
that most properties of fields A and F showed a poor per-
formance in the general models (Fig. 3). It is known that
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carbonate has many more defined peaks and less interfer-
ences with organic matter in the MIR than in the vis—NIR
(Reeves, 2010). Therefore, datasets that combine soil sam-
ples with high and low carbonate content might be better
predicted with MIR spectroscopy. However, while all sam-
ples of field F have a high carbonate content, field A shows
a broad range of carbonate contents, whereby the mean car-
bonate content (7.1 4 6.7 gkg™!) is only slightly higher com-
pared to the other fields. We therefore hypothesize that the
lower performance of field A compared to fields A, B, C and
D might also have additional reasons besides the field char-
acteristics explored in this study and requires more research.
The strong correlation between mean carbonate content and
RMSE (r = —0.68 £ 0.10; Fig. 6) can be explained by the
very low variability in pH in fields with high carbonate con-
tent. The narrow pH ranges in these fields consequently lead
to models for pH with low RMSE but also low RPD (see
Fig. 5).

4.4.2 Correlations between target variables

Reflectance measured with vis—NIR spectroscopy is a com-
bined effect of all constituents present in the soil sample
(Stenberg et al., 2010), and through processing and model-
ing, one tries to distinguish the absorption feature of one spe-
cific soil property from the other constituents of the sample.
Apart from pH, all our target variables were closely related
to soil organic matter, which was, therefore, for this study,
the most important soil constituent influencing the absorp-
tion features. In the case of high correlations between target
variables that form part of soil organic matter, the modeling
is easier because the same absorption features can be used
for modeling the different properties, which was the case for
field B (see VIP analysis in Fig. 4). On the other hand, a low
correlation between target variables makes it more difficult
to relate absorption features of organic matter to specific soil
properties, which probably contributed to the lower model
performance of fields A, C and F compared to fields B, D and
E. The literature shows that different soil properties related to
soil organic matter (e.g., SOC and total N) can show different
absorption features in the vis—NIR range (Chang and Laird,
2002; Kusumo et al., 2019), which is also supported in our
study (see VIP analysis in Fig. 4). However, we argue that
prediction accuracy improves substantially if target variables
related to soil organic matter are well correlated with each
other, which was also hypothesized by Martin et al. (2002)
in a one location field study.

4.4.3 Variability of clay content

Unlike Stenberg et al. (2010) and Heinze et al. (2013), we did
not find a better model performance with increasing mean
clay content in the dataset, which might also be explained

by the relatively small range in mean clay contents of be-
tween 18 % (field F) and 38 % (field C). However, we ob-
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served that fields A and F, with lower model performance,
also showed a higher variability in soil texture (see den-
sity plots in Fig. 1). We hypothesize that this observation is
mainly an effect of our sampling design and the specific agri-
cultural management and is therefore not generalizable. Clay
and soil organic matter are claimed to be modeled with a
high success rate with vis—NIR spectroscopy since they have
strong absorption features (da Silva-Sangoi et al., 2022). Un-
fortunately, soil texture was measured using different sam-
ples than the reference dataset for the spectral modeling, so
we cannot check for the correlation between soil texture and
target variables. However, in this study, the correlation may
be relatively low for the following reason: we took samples
from different depths (0-5, 5-10 and 10-20 cm) within the
past tillage layer and therefore expect that the soil texture
is homogenized across the sampling depth. Since all fields
are now under organic reduced-tillage management, the three
soil layers show quite distinct soil organic matter contents
(see Fig. S5 in the Supplement) but, very probably, similar
soil textures. Therefore, a high (horizontal) variability in soil
texture in a field (e.g., clay content) without a strong correla-
tion to organic matter could have added “noise” to the spec-
trum, which worsened the prediction accuracy in our specific
sampling design. Nevertheless, in untilled soils or more dis-
tinct depth segments, a high variability in soil texture may
not be a disadvantage in vis—NIR modeling because it might
also be correlated with organic matter.

5 Conclusions

This study investigated the impact of site characteristics on
vis—NIR modeling performances and compared a local and a
general modeling approach. Among the 35 models, 29 per-
formed accurately or even excellently, whereby the RMSE
was close to the lab measurement error, and achieved predic-
tion accuracies are probably, for many research purposes, ac-
ceptable. The local models with the lowest performance were
all from fields A and F, and we found three field characteris-
tics in their datasets that interfered with model performance.
Fields A and F had higher mean carbonate content, lower cor-
relation between target soil properties and higher variability
in soil texture compared to the other fields. The influence of
soil texture variability was mainly an issue in this specific
sampling design, whereas the influence of carbonate content
and correlation between soil properties can probably be gen-
eralized due to observed spectral features and VIP analysis.
Before starting a local vis—NIR project, testing for inorganic
C content can be done relatively easily, but it is almost im-
possible to know beforehand the correlations between dif-
ferent soil properties. One can only be aware of the correla-
tion issue and consider potential gradients of soil properties
while designing the sampling design, which is probably more
important and feasible in disturbed or agricultural soils than
in natural undisturbed soils. In terms of efficiency in data
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collection, we conclude that, in a region, several target sites
(or agricultural fields) with low carbonate contents can be
combined in a general model with only a minor reduction in
model performance. A general model for multiple target sites
then also allows us to reduce the number of wet chemistry
analyses. Whether or not several target sites with high car-
bonate content can be combined in one general model using
vis—NIR spectroscopy is a question that requires further re-
search. However, since carbonates show fewer interferences
with organic matter in the MIR than in the vis—NIR spectral
range, soil samples from sites with high carbonate content
might be better predicted with MIR spectroscopy. Yet, the
application of laboratory vis—INIR spectroscopy in projects
of local extent provides the opportunity to increase the spatial
or temporal resolution in a sampling design cost effectively
with only minor decreases in measurement accuracy.
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