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Summary

Plantwater uptake from the soil is a crucial element of the global hydrological cycle and essential

for vegetation drought resilience. Yet, knowledge of how the distribution ofwater uptake depth

(WUD) varies across species, climates, and seasons is scarce relative to our knowledge of

aboveground plant functions. With a global literature review, we found that average WUD

varied more among biomes than plant functional types (i.e. deciduous/evergreen broadleaves

and conifers), illustrating the importance of the hydroclimate, especially precipitation

seasonality, on WUD. By combining records of rooting depth with WUD, we observed a
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consistently deeper maximum rooting depth than WUD with the largest differences in arid

regions – indicating that deep taproots act as lifelines while not contributing to the majority of

water uptake. The most ubiquitous observation across the literature was that woody plants

switch water sources to soil layers with the highest water availability within short timescales.

Hence, seasonal shifts todeep soil layers occur across theglobewhen shallowsoils aredryingout,

allowing continued transpiration and hydraulic safety.While there are still significant gaps in our

understanding ofWUD, the consistency across global ecosystems allows integration of existing

knowledge into the next generation of vegetation process models.

I. Introduction

Plant transpiration (E ) represents on average 60% of terrestrial
evapotranspiration (Wei et al., 2017) and, therefore, significantly
contributes to the global water cycle (Sellers et al., 1997). Hence,
understanding how plants acquire water has implications for
predicting local and global hydrology, as well as mitigating climate
change impacts on freshwater reserves. The amount of water plants
transpire is limited by root water uptake (Kramer & Boyer, 1995).
However, we have a better understanding of the aboveground
processes involved in plant water use than those belowground due
to the difficulty of accessing roots. This important knowledge gap
has led to large predictive uncertainty in land surface and earth
system models (Sulis et al., 2019).

Tree roots have received increasing attention in recent years due to
their importance for plant drought tolerance, avoidance, and
mortality (Choat et al., 2018; Nardini et al., 2021).Multiple reviews
and meta-studies have investigated root distribution and depth
changes under drought (e.g. Weemstra et al., 2016; Laliberté, 2017;
Tumber-Dávila et al., 2022). However, root distribution alone
cannot be directly translated into the depth of water sources (Yang
et al., 2015; Bello et al., 2019) as plants can rapidly shift the uptake
depth as environmental conditions change. Plant water uptake is
determined by the combined distribution of root surface area and soil
water availability. Therefore, water uptake depth (WUD) is always a
distribution of water fluxes over depth. The average WUD can be
conceived as a flux-weighted mean depth. Since empirical studies of
WUD effectively measure a flux-weighed mean (Box 1), we adopt
this definition for this review. We still have little knowledge of how
WUD varies among biomes, functional groups, and seasons, and of
the link between WUD dynamics and aboveground drought
responses. To better understand tree responses to drought, including
E, growth and mortality risk, the dynamics of WUD have to be
considered (Choat et al., 2018; Carminati & Javaux, 2020).

Here, we provide the first global overview of woody plantWUD.
Our review includes 120 studies worldwide that assessed WUD of
trees and shrubs with isotopic tracers, soil water balance models,
root and stem sap flow measurements, or a combination thereof
(Box 1; Fig. 1; Supporting Information Table S1; Appendix A1).
We focused on six questions: (1)What is our current understanding
of the mechanisms of root water uptake? (2) How doesWUD vary
among biomes and plant functional groups, and (3) in relation to
rooting depth across species? (4) What is the effect of seasonal soil
water availability on WUD? (5) How does WUD affect E,
productivity, and mortality? (6) What is the state and potential in
simulating global WUD patterns in vegetation process models?

II. Mechanisms of root water uptake

Root water uptake is governed by how water and roots are
distributed across the soil profile and, therefore, is spatially and
temporally variable (Javaux et al., 2008). It occurs mainly via the
absorbent fine roots, which are thin, nonwoody tissues that are the
most permeable portion of the root system and have the greatest
capacity to absorb water (Kramer & Boyer, 1995; McCully, 1999;
Comas et al., 2013). By contrast, higher-order roots, coarse roots,
and transport fine roots, serve other functions, such as anchorage,
water transport, and storage (McCormack et al., 2015). Addition-
ally, root hairs and mycorrhizas associated with fine roots can
increase absorptive surface area and, hence, enhance water uptake
(Fig. 2; Weemstra et al., 2016; Carminati et al., 2017; Cai &
Ahmed, 2022).

Mechanistically, water flow from the soil into the root is driven
by the gradient in water potential between the soil (Ψsoil) and the
xylem of fine roots (Ψroot) (MPa), and depends on the hydraulic
conductance of the root-rhizosphere continuum (Ks–r (MPa);
Landsberg & Fowkes, 1978). Water uptake at a given depth and
time q(z, t) (m3 s�1) can be expressed as:

q z , tð Þ ¼ K s–r z , t ,Ψsoilð Þ � Ψsoil z , tð Þ�Ψroot z , tð Þð Þ Eqn 1

Based on this equation, we can see that root water uptake is
directly dependent on Ks–r, which is regulated by the hydraulic
conductance of the roots (Kr) and soil (Ks), and is primarily limited
by the lower of the two (Fig. 2; Carminati & Javaux, 2020). Kr and
Ks both decrease when the respective water potential becomesmore
negative, due to cavitation in the xylem or displacement of
water-filled soil pores with air, respectively (Sperry et al., 1998). In
wet soils, Ks is much larger than Kr and, therefore, not limiting to
Ks–r (e.g. in the deep soil layer in Fig. 2). As the soil dries, Ks drops
by several orders of magnitude and becomes a limiting element for
Ks–r (e.g. in the shallow soil layer in Fig. 2), and hence for plant
water uptake. The water potential at which the soil becomes
limiting for Ks–r depends on soil texture, with less negative water
potential in coarse-textured soils (Cai et al., 2022). Water
absorption by roots also depends on the root radial Kr, which
plants can modify by suberization and Casparian bands (Steudle&
Peterson, 1998), changing aquaporin activity (Maurel et al., 2008),
or altering the conductivity of the rhizosphere by growing new root
hairs (Carminati et al., 2017) and exuding mucilage (Carminati
et al., 2010). Roots with a high radial conductance (e.g. roots with
low suberisation) function as porous pipes with low axial
conductance, and thus a high water potential is needed along the
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root to drive axial water flow (Zwieniecki et al., 2003; Comas
et al., 2013). Conversely, roots with high axial conductance (i.e.
high suberization), have a low radial conductance, highlighting a
trade-off in the effective utilisation of root length for water
absorption and the root axial water transport. This trade-off can
constrain water uptake from deep soils by long roots, but this
trade-off in water uptake capacity and root length has rarely been
assessed (but see, for example Zwieniecki et al., 2003; Clément
et al., 2022 for corn, wheatgrass and alfalfa).

Root water uptake will further depend on Ψroot that declines
with greater E due to the higher water flux through the vascular
system, thus creating a greater water potential gradient from the soil
to the root and higher water uptake. Typically, Ψroot is more
negative thanΨsoil when E occurs, which provides the driving force
for water uptake. However, when E is minimal, Ψroot can be less
negative thanΨsoil, driving water flux from the root to the soil (i.e.
hydraulic redistribution; Fig. 2; Burgess et al., 1998; Jackson
et al., 2000). In ecosystems with woody plants with a dimorphic
root system, hydraulic redistribution seems to occur frequently,
resulting in soil rewetting during dry periods (Bleby et al., 2010;
Neumann&Cardon, 2012).During periodswhen the topsoil dries
out, access to soil nutrients can be limited, as soil nutrients are
usually concentrated in the topsoil, and soil moisture is the main
means for nutrient uptake (Ryel et al., 2008). Therefore, hydraulic
redistribution of humidity to the topsoil can increase nutrient
uptake, water availability for neighbouring shallow-rooted plants,
and can mitigate drought effects on mycorrhizal fungi (Querejeta
et al., 2003; Ryel et al., 2008).

Ψroot also varies significantly along the root system (Zareba-
nadkouki et al., 2013), with the least negative values near the root
tips. Under drought stress, a highly negative Ψroot can reduce Ks–r
via embolism (Fig. 2) and mechanical failure of the cortex that
causes lacunae formation and root shrinkage (Cuneo et al., 2016).
Fine roots are more susceptible to cavitation than coarse roots
(Sperry & Ikeda, 1997); therefore, root embolism during droughts
is usually greatest at the tip of the rooting system (Cuneo
et al., 2016). Root embolism may be partly reversible following a
rain event, but can be irreversible after severe droughts (Domec
et al., 2004), and thus lead to root mortality (Cuneo et al., 2016).
Considering Ψroot to be only a function of depth and time
implicitly assumes that all roots at a given depth have the samewater
potential, which is more an exception rather than the general case
(Pierret et al., 2007). Treating this complexity requires solving
water flow in the 3D root architecture (Javaux et al., 2008).

Finally, Ψsoil is composed of the matric potential, which is the
negative work to extract a unit of volume of water from the porous
soil matrix, the gravitational potential, that is proportional to soil
depth, and the osmotic potential (Hillel, 2003). The matric
potential has a prominent effect on root water uptake during soil
drying.While the hydrostatic pressure necessary to lift water by 1 m
is c. �0.01MPa, the matric potential can drop below �1MPa as
the soil dries, thus having a major impact on the pressure necessary
to extract water from the soil (Eqn 1). As the soil dries, the matric
potential decreases nonlinearly, which is described by a soil texture
specificwater retention curve (Karup et al., 2017). Typical values of
matric potential range from c.�0.01MPa at field capacity to values
below �1.5MPa at permanent wilting point (values are
approximations and soil texture specific; de Melo et al., 2023).
However, a permanentwilting point of�1.5 MPahas been defined
for crops, while natural vegetation in arid regions can tolerate more
negative soil matric potentials.

Although the theory above and Eqn 1 are well established, their
use is challenged by the lack of information on Ks–r and the
difficulty in measuring Ψroot. As a first approximation, Ks–r can be
assumed to scale with the fraction of roots absorbing water, thus

Box 1 Methods for estimating plant water sources.

The most effective and nondestructive measurement of water
uptake depth (WUD) is provided via the use of natural abundance
and tracer applications of the stable isotopes of oxygen (δ18O) and
hydrogen (δ2H) in plant and soil water (Ehleringer & Dawson, 1992;
Dawson & Ehleringer, 1998). Natural abundance applications make
use of the evaporative enrichment of δ18O and δ2H near the soil
surface,which leads to distinct isotopic compositions ofwater across
the soil depth profile (von Freyberg et al., 2020). Comparison of
xylemwaterδ18Oandδ2Hwith thatofdistinctwater sources, suchas
rainwater, soil water fromdifferent depths, and groundwater is used
to estimate changes in their contribution to E and thereby their
seasonal dynamics (White et al., 1985; Ehleringer&Dawson, 1992).
Exact calculations of the relative contribution of all the soil layers at a
specific moment in time rely on mixing models (e.g. IsoSource:
Phillips & Gregg, 2003 and MixSIAR: Parnell et al., 2010). These
models were developed more recently, resulting in fewer studies
providing absolute calculations ofWUD compared to the large body
of literature describing seasonal dynamics and species differences in
the use of distinct water sources (Supporting Information Table S1).

However, the natural abundance technique cannot identifyWUD
when the isotopic profile of soil water is homogenous due to low
atmospheric evaporative demand, high rainfall, or snowmelt. In
these cases, labelling studies with isotope tracers of hydrogen,
oxygen, and lithiumallowmeasurement ofWUD, as their signatures
have a distinct vertical gradient in the soil (reviewed in von Freyberg
et al., 2020). However, both the natural abundance and tracer
approaches are challenging due to spatial and temporal sampling
limitations. Both approaches require labour-intensive sampling
across soil depths that inherently limits the number of samples that
can be collected, which is further exacerbated by the effort and cost
of processing and measuring the samples in the laboratory.
Additionally, both approaches are difficult or impossible to employ
in soils with a high rock content that precludes digging holes. The
limited temporal resolution can be addressed via continuous in situ

monitoring of tree and soil water isotopic composition using laser
spectroscopy (Volkmann et al., 2016; Seeger & Weiler, 2021;
Gessler et al., 2022). However, this approach requires regular
monitoring and intensive installations in the field and, thus, is still
limited in spatial replication.

In addition to the stable isotope approaches,water balancemodels
can estimate WUD based on measurements of soil water potential
from different depths, often in combination with tree sap flux data
(Table S1, for example Markewitz et al., 2010; Pinto et al., 2014).
While this approach has been successfully used to assess
ecosystem-level water source dynamics, it does not allow identifica-
tion of individual tree WUD, as water use cannot be attributed to
specific individuals. The latter is possiblewith sapflowmeasurements
on roots at different soil depths to quantify their contribution to E

(e.g. Nadezhdina et al., 2008; Bleby et al., 2010), or with combined
measurements of stem sap flow, predawn foliar water potentials,
and vertical profiles of soil water potentials (Binks et al., 2022).
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scaling with the root length density. The root surface area, which
decreases exponentially with soil depth (Schenk, 2008; Fig. 2), is
thus an important factor controlling Ks–r and WUD. However,
simplifying Ks–r with root length density without considering the
distribution of water potential along the root system oversimplifies
the important hydraulic aspects discussed above, with important
consequences for modelling of WUD (see Section VIII).

III. Global variation of water uptake depth with
biomes and plant functional groups

WUD of woody plants has been studied in a wide variety of
ecosystems from tropical rainforests with high annual precipitation
to arid desertswith very little rainfall (Fig. 1).Most studies ofWUD
focus on seasonally water-limited systems, such as subtropical
forests with a pronounced monsoonal climate (i.e. dry and wet
seasons, for example Yang et al., 2015; Antunes et al., 2019),
semiarid, Mediterranean, and savanna-type woodlands with
extended droughts (e.g. Kulmatiski & Beard, 2013; Case
et al., 2020) or trees growing on limestone karst with a very low
water retention capacity (e.g. Swaffer et al., 2014; Wenping
et al., 2021). By contrast, temperate forests are somewhat
underrepresented (but see Bello et al., 2019; Brinkmann
et al., 2019 for recent exceptions) and boreal forests comprise only
two studies, one on larch and pine WUD in permafrost soils
(Sugimoto et al., 2002), and a drought experiment on boreal Scots

pine (Plamboeck et al., 1999). A better understanding of WUD
dynamics in boreal ecosystems is, therefore, critically needed,
because large-scale vegetation changes in boreal forests are driven by
their ability to acquire water from different soil depths (Sugimoto
et al., 2002).

We searched the literature for WUD records of trees and shrubs
that were quantified with isotopic tracers, soil water balance
models, or sap flowmeasurements (Box 1). From the 120 studies on
water uptake depth that we found, 49 studies (147 records of 125
species at 46 sites) calculated WUD numerically either with
Bayesian mixing models or direct inference (Tables S1, S2;
Appendix A1). WUD was most frequently reported as relative
contributions of the soil depths fromwhichwater was extracted and
analysed at a given date (exceptions: see Notes S1). To summarise
WUD across studies, we first harmonised the vertical distributions
by linearly interpolating relative contributions of WUD to a 1 cm
interval.We then calculated for each species at each site the average
WUD as the weightedmean of the soil depths during either the dry
or thewet season, as reported by the studies. Asweights, we used the
relative contribution of each soil depth. The result corresponds to
the average depth of water uptake (average WUD). From the
average WUD of each species at each site, we calculated means for
each biome and plant functional type.

We found that across seasons, temperate forests and humid
tropical forests show the shallowest WUD (mean of 42 and 46 cm,
respectively; Fig. 3b). Woodland and shrublands (comprising
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Fig. 1 This review includes 120 studies
worldwide that assessed water uptake depth
(WUD) of trees and shrubs with isotopic tracers,
soil water balance models, root and stem sap
flow measurements, or a combination there of
(Box 1). (a) Global distribution of the studies on
WUD included in this work (Supporting
Information Table S1; Appendix A1). Numbers
indicate multiple studies in locations that could
not be individually represented on the map. (b)
Mean annual temperature and precipitation of
the 120 studies. Colours indicate the biome type.
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many Mediterranean sites) exhibit a wide range of WUD but are
generally deeper than temperate and humid tropical forests (mean
of 55 cm). Trees from seasonal tropical forests and savannas show
similar WUD as temperate seasonal forests (55 cm), whereas
subtropical deserts and arid grasslands show the deepest water
uptake (mean of 144 and 166 cm, respectively). The deepestWUD
was found in the hyper-arid Gurbantunggut desert (Xinjiang,
China), where twoHaloxylon species take up to 96% of their water

from groundwater sources at c. 4 m during the dry season (Dai
et al., 2015), and in the hyper-arid subtropical Namib desert, where
Schachtschneider & February (2010) found up to 82% of tree
water uptake from groundwater table at 8 m depth during the dry
season. Hence, global WUD variation seems to be driven by
differences in regional climate.

Relatively few studies have been relating WUD to plant
functional type (but see, for example Hasselquist et al., 2010; Nie
et al., 2011; Knighton et al., 2021). In our literature analysis, all
major plant functional groups and growth forms of woody plants
were represented, but broadleaved species were better represented
with 111 species (58 deciduous or semi-deciduous, 53 evergreen)
than conifers with 14 species, of which one was deciduous (Larix
sibirica, Li et al., 2007).We observed a wide range ofWUDwithin
groups but there were some notable trends across plant functional
types. Shrubs of both evergreen and deciduous broadleaves had
slightly shallower WUD (mean of 40 and 36 cm, respectively)
compared to trees of evergreen and deciduous broadleaves (62 and
57 cm, respectively). Furthermore, conifers had on average a less
deep WUD (47 cm) compared to broadleaved trees. The trees and
shrubs with the deepest WUD are deciduous and evergreen
broadleaved species from hyper-arid deserts (Schachtschneider &
February, 2010; Dai et al., 2015) and encroaching conifers from
semiarid grasslands (Eggemeyer et al., 2009). However, WUD of
conifers might be underestimated, because most conifers were
represented in Mediterranean woodlands, for which many studies
reported shallow soils (e.g. Barbeta et al., 2015; Voltas et al., 2015).
Sampling these rocky soils can be very challenging and deep soil
contribution to WUD could, therefore, be underestimated
(Carrière et al., 2020; Nardini et al., 2021). At the other side of
the WUD spectrum are deciduous broadleaved trees from
temperate forests that show consistently shallow water uptake
depth (e.g. Bello et al., 2019; Brinkmann et al., 2019; Gessler
et al., 2022). Overall, our study confirms that WUD varies across
plant functional types, but the variationwithin functional types and
between biomes are much larger, emphasising the role of the local
environment for WUD (Figs 3, S1).
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Fig. 3 Averaged water uptake depth (WUD) of
each species at all the sites retrieved from all the
49 studies that numerically calculated WUD
(Table S2). (a) ordered by plant functional types
and (b) and ordered by biome. Colours indicate
the plant functional type and the biome type.
Circles show averages (mean� SE) per plant
functional type and biome.
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Fig. 2 Illustration of the key mechanisms of root water uptake, including
association with mycorrhizal fungi, hydraulic redistribution, and root
embolism. On the right side, root water uptake as a function of depth (q
(z)) is shown for a soil profile with a dry upper layer (leading to more
negative soil water potential (Ψsoil) and low soil hydraulic conductivity (Ks))
and a deeper soil layer with higher water content (leading to less negative
Ψsoil and higher Ks). At the whole-plant scale, root conductivity (Kr) is
correlated with the root surface area, which decreases exponentially with
depth. As a result, q(z) typically has its maximum at superficial to
intermediate soil depth, where there is sufficient soil water and root
surface. All variables increase from left to right.
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IV. Relationship between rooting depth and water
uptake depth

Rooting depth is the primary metric used to estimate the vertical
space occupancy of a root system, and has, therefore, been used to
infer the depth of soil and weathered bedrock from which a plant
can uptake water (Schenk & Jackson, 2005). In many ecosystems,
tree rooting depth is closely related to the depth of the water table
(Fan et al., 2017; but see: Pierret & Lacombe, 2018). Deeper roots
generally allow for greater plasticity in the depths through which
water can be acquired (Markewitz et al., 2010; Choat et al., 2018;
Nardini et al., 2021).WUD is a function of the vertical gradient of
Ψroot,Ψsoil, and root surface area (Fig. 2). The vertical distribution
of the root surface area, while relatively sparsely documented
(Schenk, 2008), can be highly plastic, driven by the availability of
soil resources (Zanetti et al., 2015; Weemstra et al., 2017). As root
systems deepen, their capacity to take up and transport significant
amounts of water at the whole-tree scale is limited by a decline in
root biomass density (e.g. Fig. 2; Schenk, 2008; Nippert &
Holdo, 2015), increased root suberization, and higher fraction of
woody roots (Kramer&Boyer, 1995). A larger root xylemdiameter
and higher hydraulic conductivity of deeper roots may partly
compensate this effect (Pate et al., 1995; McElrone et al., 2004).
However, the presence of deep roots does not always equate to
deeper water uptake depths, such as when surface water is abundant
(Ehleringer &Dawson, 1992; Yang et al., 2015; Bello et al., 2019),
but may be reflective of the longer term hydroclimate and water
deficit (Stocker et al., 2023).

Maximum rooting depth varies widely among woody plants,
from a few centimetres to more than 68 m, (Canadell et al., 1996).
Observations of maximum rooting depths can be subject to large
observer-expectancy bias, as root excavations are often being
limited to an arbitrary depth, and as a result deepest roots
undersampled (Fan et al., 2017). Despite these limitations,
large-scale patterns can be observed, such as large variation within
species (Canadell et al., 1996; Jackson et al., 1996; Tumber-Dávila
et al., 2022), andwith topography, climate, and edaphic conditions
(Fan et al., 2017). Multiple factors limit the maximum rooting
depth of plants, including the penetrability of the soil (Case
et al., 2020), inability of roots to survive hypoxic conditions (Fan
et al., 2017), and the carbon cost to maintain and build larger root
systems (Da Silva et al., 2011). The deepest roots are found in large
woody plants in seasonally dry climates with deep penetrable soils
(Canadell et al., 1996).

To understand the functional relationship between rooting
depth and WUD across species and biomes, we extracted
maximum rooting depth observations from the Root Systems of
Individual Plants (RSIP; Tumber-Dávila et al., 2022) database
(157 observations, Appendix A2) along with WUD data for the
same species (60 observations) from publications. In total, 44
species were present in both datasets and could be directly
compared (Table S3; Notes S1). As the maximum WUD is
determined by the depth of soil water analyses (Box 1), it might be
underestimated by sampling limitations, similarly as maximum
rooting depths. To avoid this bias, we calculated both the average
WUD (see Section III) and with the same approach the 90%

quantile of WUD, that is the depth at which 90% of the water is
taken up. As could be expected, we found higher WUD in woody
plants with deeper roots, but the maximum rooting depth was
consistently deeper than the average WUD and, with very few
exceptions, the 90% quantile of WUD (Fig. 4). The difference
between the maximum rooting depth and WUD was most
pronounced in arid regions (Figs 4, S2). For instance, woody
species in semiarid woodlands can have maximum rooting depths
up to 13 m (Tierney&Foxx, 1987; Fan et al., 2017), whereas most
of their water uptake happens within the top 40 cm (West
et al., 2007;Grossiord et al., 2017). Similarly, in hyper-arid deserts,
extremely deep roots down to 47 m were observed, whereas most
WUD took place within 3–4 m (Schachtschneider & Febru-
ary, 2010). Hence, the majority of water taken up by trees comes
from much shallower soil layers than reached by the roots
(Miguez-Macho & Fan, 2021). Calculations of WUD are often
weightedmeans of stable isotopemeasurements (Box 1, Section III,
Notes S1) and, therefore, donot represent themaximumWUDbut
rather the average depths from which most of the water was
acquired. The maximum WUD, where usually very little water
uptake occurs, corresponds in most studies to the maximum depth
of the soil from which stable isotopes were analysed, which is
dependent on the feasibility of extracting deep soil cores. The
difference between WUD and rooting depth can, therefore, be
explained by the advantage of having a deep rooting system that,
while not contributing to the majority of water uptake, allows trees
in dry regions to maintain E during extended droughts and avoid
extreme desiccation (Schenk & Jackson, 2005; Davidson
et al., 2011; Stahl et al., 2013; Mackay et al., 2020; Laughlin
et al., 2023). In contrast to arid ecosystems, maximum rooting
depthwas closer to both the average and the 90%quantile ofWUD
in more humid climates (Figs 4, S2; Schmid & Kazda, 2005;
Brinkmann et al., 2019). Trees growing at wetter locations showed
less reliance on deep roots as expected by the greater availability of
soil water at shallower depths.Hence, our analysis is consistent with
findings that rooting depth alone should not be used as a proxy for
plant WUD (Nippert & Holdo, 2015); however, plants with
deeper roots do generally have deeper water uptake depths and
occur at more arid locations (Fig. 4).

V. Water uptake depth under seasonal soil moisture
variation

WUD is highly dynamic within local areas, changing within a few
days in response to drying or wetting soils (e.g. Gessler et al., 2022).
Seasonal changes in WUD in response to naturally changing soil
water availability are the most ubiquitous observation in the
literaturewith 74 out of the 120 reviewed studies reporting seasonal
WUD shifts (Figs 5, S3; Table S1). Experiments testing drought
effects on WUD through precipitation exclusion set-ups are less
common (e.g. Barbeta et al., 2015; Grossiord et al., 2017; Chen
et al., 2021). Nevertheless, both observational and experimental
studies agree that WUD tracks the depth of the soil with the least
negative water potential by taking up water from the shallow layers
during moist conditions and switching to deeper layers when the
shallow layers become dry (e.g. Brinkmann et al., 2019; Grellier
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et al., 2021; Wenping et al., 2021). In some cases, woody plants
switched their WUD from deep to more shallow sources from the
wet to the dry season (Fig. 5). Such seemingly contradictoryWUD
dynamics were explained by the depletion of groundwater sources
during extreme droughts (Barbeta et al., 2015) and the replenish-
ment of superficial soils during the dry season by recent rainfall
events (e.g. Grellier et al., 2021; Liu et al., 2021). Thus, even deeply
rooted plants preferentially uptake water from shallow soil layers
when soil moisture becomes higher (Schenk, 2008; Feldman
et al., 2023).

In regions where there is little variability in soil moisture, water
sources tend to stay constant during the year. For instance, trees
growing on constantly dry soils will persistently take up water from
deepWUD(Kray et al., 2012;Kukowski et al., 2013), whereas trees

growing on permanently water-saturated soils will show consistent
shallow water uptake (Goldsmith et al., 2012). Moreover, in some
instances, trees growing in arid regions may not reach the deep
groundwater level with their roots and, therefore, rely on recent
precipitation as their main water source and consistently take up
water from shallow soil layers (February et al., 2007; West
et al., 2007; Fan, 2015). Furthermore, savannas trees often rely
consistently on relatively deep water sources, despite considerable
seasonal changes in soil moisture, which can be attributed to the
avoidance of competition with herbaceous species at shallow layers
(Kulmatiski & Beard, 2013; Case et al., 2020) and thus a niche
complementarity strategy (Le Roux et al., 1995; Grellier
et al., 2021). Thus, despite an overall positive effect of aridity on
WUD (Fig. 5), there is large variation driven by edaphic
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Fig. 5 Differences in water uptake depth between wet and dry season across biomes for all the 49 studies that numerically calculated it (Table S2). (a) Seasonal
changes in averaged water uptake depth (WUD) from wet (squares) to dry (circles) season in relation to the precipitation in the dry vs wet seasons for all the 49
studies that numerically calculatedWUD (Supporting Information Table S2). Small open symbols show species- and site-specific values and large filled symbols
show averages of all the sites per biome. Solid lines indicate studies that found deeper WUD during the dry than the wet season, whereas dashed lines indicate
studies that found less deepWUD during the dry than the wet season. The dotted line shows the significant relationship betweenWUD and precipitation across
species and sites (P< 0.001, R2= 0.142). (b) Proportional WUD interpolated at 10 cm interval. Values were aggregated by biome for wet and dry seasons.
Several studies indicated groundwater source use without explicit depth of the groundwater table for which the proportion of groundwater use was averaged.
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conditions, such as the depth of the groundwater table, water
holding capacities of soil horizons, and competition for soil water.

By comparing dry and wet season WUD from 147 records of
125 species at 46 sites (see Section III, Notes S1), we observed
marked differences in the extent of the seasonal shifts in WUD
across biomes. Subtropical deserts and arid grasslands show the
largest seasonal changes (92 vs 197 cm and 134 vs 198 cm,
respectively, Fig. 5). Tropical rain forests and woodland and
shrublands (comprising many Mediterranean sites) also consis-
tently shift to deeper soil layers in the dry season, resulting in large
shifts in WUD (31 vs 61 cm in tropical forests and 43 vs 66 cm in
woodland and shrublands). In temperate forests, changes inWUD
were less pronounced (35 vs 49 cm), and trees from seasonal
tropical forests and savannas had the smallest changes between wet
and dry season (53 vs 57 cm). Across the entire range of study sites,
WUD was significantly related to the seasonal precipitation
(P< 0.001, Fig. 5). A common hypothesis is that precipitation
variability (i.e. the frequency and intensity of rainfall events)may be
an important driver of long-term patterns of tree WUD. This is
because small regular rainfall events that infiltrate shallow soil layers
favour plants with shallow water uptake, whereas when more
irregular and intense rainfall events replenish deep soil layers, it
favours plants with access to deep water sources (Sala &
Lauenroth, 1982; Schwinning et al., 2003). By relating the 147
records of WUD from the published literature to the precipitation
variability (intra-annual variability of precipitation as a percentage
of the average annual precipitation) at the respective sites, we found
some evidence supporting this hypothesis (P< 0.001, R2= 0.21,
Fig. S4). Hence, WUD changes in response to seasonal and
short-term soil water availability, but is also influenced by
long-term climatic conditions, such as annual precipitation sum
and variability across the year.

VI. The role of water uptake depth for tree water and
carbon exchange, and mortality

WUD has significant implications for whole-tree responses to
climate, including water and carbon exchange and vulnerability to
drought-induced mortality. Soil drought typically drives more
negative plant water potentials (Ψp) and induces WUD shifts to
deeper sources (Eggemeyer et al., 2009; Yang et al., 2011), resulting
in lowerE andCO2 assimilation (Grossiord et al., 2017), indicating
that shifting to deeper plant water sources is insufficient to
compensate for reduced water availability (Mas et al., 2024).
Nevertheless, in cross-species comparisons within a given location,
trees with deeper WUD can maintain less negative Ψp during dry
seasons than co-occurring species that rely on shallow soil water
(e.g. Stahl et al., 2013; Brum et al., 2019; Liu et al., 2021, but see
Jiang et al., 2020). Species that maximise water acquisition by
switching WUD to deeper, wetter sources during dry periods can
maintain higher E and CO2 assimilation compared to species that
cannot reach deep water sources (e.g. Moreno-Gutiérrez
et al., 2012; Schwendenmann et al., 2015). As a consequence,
water use efficiency (WUE, that is the ratio between carbon
assimilation and water loss) is lower in species and individuals that
have deeper WUD compared to those with shallower WUD

(Hasselquist et al., 2010; Moreno-Gutiérrez et al., 2012, but see
Jiang et al., 2020). While WUD was correlated with Ψp across
several woody plant species (Ding et al., 2021), differences in Ψp

may not always be reliably used to infer differences in WUD
between co-occurring species (Kukowski et al., 2013). The
relationship betweenWUDandΨp varies depending on the plant’s
hydraulic sensitivity to decreasing Ψp, that is whether they rapidly
close their stomata (relatively isohydric species) or maintain higher
stomatal conductance at decreasing Ψp (relatively anisohydric
species). The limited studies that have investigated this relationship
come to inconsistent conclusions and find either a deeper (West
et al., 2007; Moreno-Gutiérrez et al., 2012; Ding et al., 2021) or
shallower (Grossiord et al., 2017) WUD of more isohydric
compared to more anisohydric species. Nevertheless, relatively
anisohydric species with deep roots have shown a higher capacity to
switch from shallow to deep water sources compared to relatively
isohydric ones (West et al., 2007; Grossiord et al., 2017; Tang
et al., 2018). While this shows a link between aboveground water
use strategy and WUD, we are still lacking empirical evidence for
the relationship between the plant’s hydraulic sensitivity toΨp and
WUD and its impact on E and photosynthesis.

Access to reliable water sources through deep water uptake
should also enable to survive long dry spells (Nepstad et al., 1994;
Stahl et al., 2013). During droughts, reduced water uptake leads to
a decline in hydraulic conductance and stomatal closure (Cuneo
et al., 2016). Due to the continued water loss by evaporation from
plant surfaces (i.e. theminimum stomatal conductance), the risk of
xylem embolism increases (Cochard, 2021). Under continued soil
drought, xylem cavitation spreads throughout the xylem network,
increasing the risk of mortality via hydraulic failure (Choat
et al., 2018; Mantova et al., 2021). Having roots at great depths
where soil water is available during drought canmitigate the risk of
hydraulic failure during periods of severe water limitations (Stahl
et al., 2013; McDowell et al., 2019; Chitra-Tarak et al., 2021;
Laughlin et al., 2023). Indeed, rooting depth has been positively
related to drought survival at the local scale (Padilla &
Pugnaire, 2007; Nardini et al., 2016). However, in regions with
seasonal recharge of deep soil layer, greater WUD does not
guarantee long-term survival, and can even increase mortality due
to delayed recharge of deep soil layers (Chitra-Tarak et al., 2018).
By contrast, in locations where the soil layer is thin and rooting
depth is restricted, access to fissures within the rock that concentrate
water can prevent tree mortality (McDowell et al., 2019; Preisler
et al., 2019; Nardini et al., 2021, 2024). Thus, WUD may play a
fundamental role in tree mortality, but more empirical work is
needed to understand themechanisms, especially as very few studies
have directly linked tree mortality andWUD in situ (but see crown
defoliation effects in, for example West et al., 2012; Barbeta
et al., 2015; Ding et al., 2021), highlighting an important
research gap.

VII. Model representation of WUD across scales

Vegetation process models (VMs; Trugman, 2022) spanning
tree-to-Earth scales play a key role on bridging between
observations of WUD and making predictions about woody plant
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mortality, understanding ecosystem resilience, and quantifying
primary production. Designed around soil–vegetation–
atmosphere transfer theory, models quantify how atmospheric
demand for water and E, translates into water uptake from the soil.
They typically simulateWUD as a function of soil water content in
different layers and can account for structural and functional root
traits (McCormack et al., 2015; Warren et al., 2015). Most VM’s
partition the soil into two ormore layers and simulate water uptake
from each layer in proportion to the root surface area and hydraulic
pressure gradients that depend on relative soil water content in each
soil layer. They thus have the necessary functionality for simulating
known WUD mechanisms (Eqn 1, Section II) in accordance with
empirical evidence of WUD (Sections III–VI). Most models
describewater uptakewith a flux equation that includes a sink term,
as:

∂s z , tð Þ
∂t

¼ ∂q s , z , tð Þ
∂z

�F s , zð Þ Eqn 2

where s is the soil water content, z is the depth below the land
surface, t is time, q is the water flux via infiltration, vertical or lateral
flux. F(s, z) is a water flux term, that is often used to represent plant
water uptake (after Feddes et al., 2001) following:

F s , zð Þ ¼ f r ,z

βr ,z
βr

E βrð Þ
Δz

Eqn 3

where fr,z is the fraction of root area at depth z, βr,z and βr are,
respectively, the relative soil water content for depth z and for the
whole root, and E is transpiration. βr,z can be a function of the soil
matric potential (Jarvis, 2011) rather than soil water content, to
account for the nonlinear response of water flow to potential
gradients. Some models distribute roots with depth using an
exponential function (de Rosnay & Polcher, 1998) parameterized
using information from global databases (e.g. Schenk &
Jackson, 2005).

Commonly used WUD modelling frameworks allow for the
adjustments to the proportion of water uptake by depth
(commonly called WUD compensation by modellers; Fig. 6). In
most models,WUD compensation is a passive process, driven only
by hydraulic pressure gradients without changing the depth
distribution of roots. However, a small number of models include
an active process that require either root growth, changes to root
permeability (e.g. Casparian band or aquaporin changes), or both
(Knighton et al., 2021). Model simulations support empirical
evidence that suggestsWUDcompensation is an important trait for
tree survival during drought (Markewitz et al., 2010; Christina
et al., 2017). Formodels that donot haveWUDcompensation (e.g.
Ivanov et al., 2012), water uptake is calculated as a function of the
proportion of the root surface at a given depth (fr,z, see Eqn 3) and
the response of E to βr for each root zone or layer independently.
Without compensation, the simulation of WUD is increasingly
inaccurate as soils dry (Li et al., 2012). Consequently, these models
overestimate the meanWUDwhen soil water content is uniformly
high because they acquire water via deep roots when they need only
water from shallow ones. Conversely, as soil water content drops

the mean WUD is static and thus underestimated, and total water
uptake is also underestimated (Kuhlmann et al., 2012). Moreover,
WUD compensation can explain tree survival in both natural
(Johnson et al., 2018) and experimental extreme droughts (Mackay
et al., 2020). Similarly, simulating WUD compensation via the
Sperry et al. (2017) model has proven valuable for understanding
tree responses to drought in aspen (Love et al., 2019) and tropical
forests (Pivovaroff et al., 2021). An important finding in these
studies is that E is sustained through extreme droughts by water
uptake from< 5% of their total root area (i.e. small values of fr,z) at
depths exceeding 0.6 m.

Two approaches with a different representation of soil and root
hydraulics are commonly used to calculate root water uptake and its
support for E: macroscopic and hydraulic models (Fig. 7). In both,
the belowground soil–plant system is represented using soil–root
layers with each layer accounting for its respective bulk water
uptake. However, hydraulic VMs simulate water flow through the
soil and xylem separately (hydraulic approach, Fig. 7), whereas
macroscopic VMs use the physics of water flow through the soil as a
proxy for plant water uptake (macroscopic approach; Clark
et al., 2015). In the macroscopic approach, water uptake is
calculated as a function of local soil water content (Fig. 7) following
Feddes et al. (2001). Data accuracy trade-offs have led to the use of
simplified soil–xylem hydraulics in larger scale models (Vander-
borght et al., 2021), and yet Earth Systems models are moving
towards implementing xylem hydraulics (e.g. Kennedy et al., 2019;
Li et al., 2021). The hydraulic approach (Clark et al., 2015; Vogel
et al., 2016) implements a full description of soil-xylem hydraulics
that considers the effects of both lateral and axial pressure gradients
on E by using soil matric potential to account for the radial soil–
root pressure gradient. This approach is used by some VMs to
account for the role of plant hydraulic architecture on WUD (e.g.
Mackay et al., 2015; Huang et al., 2017; Silva et al., 2022). The
hydraulic approach builds on the electric circuit analogy of
resistances and capacitances. A representative way to solve for water

f r,z F(s, z) F(s, z) 

No compensation Compensation

z

z = 0

Low High low High low High

Well-watered
Drought

Fig. 6 Model representations of the effect of compensation on WUD
dynamics, with fr,z representing relative root fraction with depth z and F(s,
z) representing the relative water uptake by roots by depth and soil water
content (drought vs well-watered conditions).
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flow is the Kirchhoff integral transform of the Richards equation
used to calculate water flux (Sperry et al., 1998):

F φi ,φiþ1,φi�1

� � ¼ φi�φi�1ð Þ� φiþ1�φi

� �� ΔWi

Δt

� �

Eqn 4

where ΦI is the matric flux potential for soil or xylem element, i,
which is the integral hydraulic conductance over water potential for
soil hydraulic conductivity (e.g. VanGenuchten, 1980) or vulner-
ability curves for xylem (e.g. Neufeld et al., 1992), and Wi is the
water content. Depth-specific soil-xylem hydraulics can compute
both water uptake and export depths associated with hydraulic
redistribution (see Fig. 2, for example Gou&Miller, 2014; Huang
et al., 2017). Such models have successfully demonstrated
hydraulic redistribution, which calls for it to be included in
large-scale models (Warren et al., 2015).

Overall, while many mechanisms and empirically observed
processes can be successfully simulated, the biggest frontier for
WUD modelling is the representation of active water uptake. To
account for active water uptake, the role played by fine roots needs
to be better quantified (McCormack et al., 2015), the modification
of hydraulic conductivity via changes in aquaporin expression
better understood (Ding et al., 2023), and plant hydraulic status
must be integrated with a carbon-limited growth strategy in which
roots explore the soil with both benefits (i.e. water uptake) and costs
(i.e. carbon allocated to root growth; Mackay et al., 2020).
Although there are models that include root growth for
stand-to-ecosystem scales (see table 1 in Potkay et al., 2021) and
regional-to-global scales (see table 1 in Wang et al., 2021), they
generally rely on stochastic precipitation inputs or use empirical
functions for root distribution. To understand tree and shrub
responses to transient environmental conditions, models should be
evaluated whether root water uptake depth is sufficiently flexible

when shallow layers are dry (e.g. Fan et al., 2017), grow roots based
on carbon allocation and xylem–phloem hydraulics (e.g. Mackay
et al., 2020; Potkay et al., 2021), and account for cessation of root
growth during extreme drought (Mackay et al., 2020). Based on
Eqn 1, soil water potential represents half the resistance to plant
water uptake, and so vegetation model developers should strive to
improve their soil water hydrology routines to account for deep
soils, rock-to-root water transfer (Korboulewsky et al., 2020;
Nardini et al., 2021), and accurate representations of storage
limitation capacity of the subsurface (Hahm et al., 2019; Tai
et al., 2021). Including active water uptake by root growth and the
limit thereof by root access to water during extreme drought might
be critically needed to predict WUD (and by extension E ) under
climate change scenarios across biomes and seasons. Furthermore,
models with such capability will no doubt aid in understanding
why WUD is related to plant functional type, but also in revealing
the underlying physiological explanations for the large interspecific
variations in WUD (see Section V).

VIII. Conclusions and perspectives

Water uptake by woody plants is a dynamic process driven by the
plant’s transpirational demand and changes in soil water availability
and root hydraulic conductivity (Fig. 2).WUD varies across biomes,
with woody plants in arid grasslands and deserts using water sources
four times as deep as trees from humid temperate forests across the
year (Fig. 3). By contrast, differences between plant functional types
are less pronounced, whereas they show a large within-group
variability.Globally, biome differences inWUDare thusmuchmore
pronounced than differences in plant functional types. Although
deep roots are a prerequisite for water uptake from deep soils, average
WUD can deviate considerably from maximum rooting depth,
particularly in arid locations (Fig. 4). In those locations, deep
taproots, while contributing little to the bulk of transpiredwater, play
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Fig. 7 Conceptual frameworks for macroscopic
and hydraulic models for computing water
uptake to support transpiration (E ). Macroscopic
models ignore the soil–root water potential
gradient (c. Eqn 1) while considering soil water
content (WC) or soil water potential (Ψ).
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models allow for hydraulic redistribution (red
two-headed arrows).
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an important role in ensuring survival during dry seasons by
providing sufficient water to sustain E. During dry seasons, woody
plants across all biomes and plant functional types shift water uptake
to soil layers with higher moisture, which usually results in deeper
WUD (Fig. 5). We can thus observe dynamic responses in WUD
around the globe andWUDchanges seemmainly limited by soil and
rooting depth, and the avoidance of interspecific competition. This
consistent pattern opens the opportunity to modelling woody plant
WUD as a passive process driven by water potentials at a large scale
(e.g. Stocker et al., 2023), but it relies on knowledge of the vertical
profiles of soil moisture and root surface area. A framework linking
WUD to the vertical profile in soil water potential and the vertical
distribution of roots (Figs 6, 7) is thus a promising approach for
vegetation modelling.

To better understand WUD at the global scale, we need
measurements from underrepresented locations, notably boreal
forests, temperate seasonal forests, and rainforests (Fig. 1). In these
ecosystems, measurements of WUD are technically challenging,
often due to the absence of a gradient in water isotopic
composition, which can be partly overcome using
isotopic labelling. Moreover, to know how rooting depth limits
WUD we need to understand whether roots can grow opportu-
nistically upon soil drought, as suggested in Li et al. (2019), or
whether they have to be grown in advance (Mackay et al., 2020).
Furthermore, we need more knowledge of how WUD dynamics
influence aboveground responses, such asE and xylem embolism to
understand the impact ofWUDon treemortality.WUDdynamics
could be related to species-specific sensitivity of hydraulic
conductance to drought and VPD, but the low number of studies
directly relating above- and belowground dynamics restricts
generalisations. Such improvements could be used in
next-generation vegetation process models that should include
carbon- andwater-limited soil exploration by roots and its effect on
regional and global scale models.
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Baitulin IO, ed. 1993.Fitoékologicheskie issledovanija v juzhnojGobi (Phytoecological
investigations in southernGobi). Alma-ata,Russia:Gylim. (InRussianwithEnglish

summary.)

Bang-xing W. 1991. Studies on the vertical structure of seasonal rain-forest in

Xishuangbanna of Yunnan. Acta Botanica Sinica 33: 232–239.
Berndt HW, Gibbons RD. 1958. Root distribution of some native trees

andunderstory plants growing on three sites within Ponderosa pine watersheds
inColorado. US Dep. Agric. For. Serv. Sta. Pap. RM-37.

Bhattachan A, Tatlhego M, Dintwe K, O’Donnell F, Caylor KK, Okin GS et al.
2012. Evaluating ecohydrological theories of woody root distribution in the

kalahari. PLoS ONE 7(3): e33996.

Bonal D, Atger C, Barigah TS, Ferhi A, Guehl J-M, Ferry B. 2000.Water

acquisition patterns of two wet tropical canopy tree species of French Guiana as

inferred from H2 18O extraction profiles. Annals of Forest Science 57: 717–724.
Breckle SW, Agachanjanz O, RahmannM. 1994. Spezielle Ökologie der gemäßigten
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Supporting Information

Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Fig. S1 Proportional and averaged water uptake depth (WUD)
aggregated by plant functional type during the wet and dry seasons.

Fig. S2Difference between themaximum rooting depth and water
uptake depth (WUD) in relation to the mean annual
precipitation sum.

Fig. S3 Summary of the experimental approaches, measurement
techniques and core findings of the 120 studies on water uptake
depth dynamics.

Fig. S4 Averaged water uptake depth (WUD) during the wet and
dry seasons in relation to precipitation seasonality, and precipita-
tion seasonality of the sites in each biome.
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Table S1 Summary of the findings from the 120 studies on water
uptake depth dynamics, their measurement approach and experi-
mental settings.

Table S2Reviewed studies calculating depth of water uptake using
natural 18O andD isotopes or isotopic tracers in combination with
mixing models or direct inference.

Table S3 Species for which both water uptake depth (WUD) and
rooting depth are provided and the respective studies.
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