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Machine learning (ML) models of drug sensitivity prediction are becoming increasingly popular in
precision oncology. Here,we identify a fundamental limitation in standardmeasures of drug sensitivity
that hinders the development of personalized prediction models – they focus on absolute effects but
do not capture relative differences between cancer subtypes. Our work suggests that using z-scored
drug responsemeasures mitigates these limitations and leads tomeaningful predictions, opening the
door for sophisticated ML precision oncology models.

Precision oncology aims at data-driven identification of personalized
treatments for cancer patients. Drug sensitivity tested on cell lines or
organoids has shown great potential for predicting therapy success1,2. In this
approach, cancer cell lines or organoids are exposed to a large collection of
anti-cancer compounds at different concentrations in vitro. The cancer cell
survival rate is then used to derivemeasures of drug efficacy, such as the half
maximal inhibitory concentration (IC50) or the area under the dose-
response curve (AUC)3. With the ever-increasing availability of large data
resources containing drug sensitivity measurements and paired omic pro-
files across hundreds of cell lines4–7, machine learning (ML) models have
emerged as a promising approach towards predicting drug response8–13.ML
models for drug response prediction typically integrate omic data from
cancer cell lineswith drugprofiles to predict drug sensitivity, asmeasuredby
IC50 or AUC

13,14.
Several studies have so far addressed open questions on how to train

ML models for drug response prediction. Notably, Sharifi-Noghabi et al.14

carried out a systematic study on the comparative performance of several
MLmodelswhen trained and tested on themost popular cell line datasets to
predict different measures of drug response. In agreement with previously
reported striking discordances between two large pharmacogenomic
datasets15, namely CGP6 and CCLE5, cross-domain generalization issues
that question the application of MLmodels in clinically relevant tasks have
been reported14. The use of IC50 as a proxy of therapeutic efficacy has also
been considerably debated14–17, as IC50 indicates potency andnot necessarily
clinical outcomes.Additionally, IC50 is highly dependent on the cell division
rate17 and the overall drug toxicity18. The latter suggests that when com-
paring drugs by IC50 values alone, more toxic drugs would be unnecessarily

prioritized, hindering personalized predictions. To address these issues,
alternative scores have been proposed. The AUC, a metric that is inde-
pendent of the dose and captures the cumulative effect of the drug, is less
related to mere potency and was reported to better explain systematic
variation in cancer drug response16. Other alternative scores include the
drug relevance score (ratio of the drug’s IC50 to its maximum therapeutic
dosage) that approximates the therapeutic index used in drug
development18, the normalized version of AUC (i.e., the ratio of the drug’s
AUC to the maximum area for the concentration range)19, the normalized
growth rate inhibition (GR)17 that compares growth rates in the presence
and absence of drug, accounting for confounding effects of division rate, the
activity area (AA)5 that reflects both drug efficacy and potency, and the drug
sensitivity scoring (DSS)20 that integrates multiple dose-response relation-
ships in cancer and control cells. Still, the vast majority of ML models for
drug response prediction are trained to predict IC50 or AUC

13,14.
Motivated by the above, here we investigate how standardmeasures of

drug response impact ML models of precision oncology. We used GDSC,
the largest resource that forms the basis of most current ML models, con-
taining IC50 values of hundreds of anticancer drugs in thousands of cancer
cell lines4. We first observed that IC50 drug response profiles were very
highly correlated even between cell lines of distinct origins (example of a
bladder carcinomaanda gliomacell line shown inFig. 1a).Weextended this
analysis to all pairs of cell lines in GDSC and found that this effect was
omnipresent (i.e., consistent across all cancer subtypes; Fig. 1b, Supple-
mentary Fig. 1), local (i.e., pronouncedwithin cell lines of the same subtype;
Supplementary Fig. 1), and robust (i.e., consistent across all drug pathways,
see Supplementary Fig. 2). Following the same process for two distinct and
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widely used cancer cell line datasets, namely the Cancer Cell Line Ency-
clopedia (CCLE)5 and the Cancer Therapeutics Response Portal
(CTRP)21–23, corroborated our observations (Fig. 1b). This surprising find-
ing indicates that drug response, as measured by IC50, is largely dependent
on the drug and not the cell line it was tested on, suggesting that predicting
drug response basedon IC50 is a trivial task.ViewingGDSC through the lens

of the drug, previous work has observed high correlation across drugs
reported as a “general level of drug sensitivity” by Geeleher et al.24 and
“general response across drugs” byWhite et al.25, in part explained bymulti-
drug resistance. Conversely, our analysis views drug sensitivity prediction
through the lens of the cell by using drug response to compute pairwise cell
line similarity.When repeating our analysis using the drug relevance score18
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(IC50/max concentration) and the AUC, we confirmed our observation,
even if pairwise correlation coefficientswere slightly decreased (Fig. 1b, left).
Finally, we followed the same process using PCPL, a pancreatic cancer
patient derived organoid (PDO) library with associated genomic, tran-
scriptomic, and therapeutic profiling19. Using the normalized AUC still
leads to the same problem of elevated correlation coefficients as observed in
GDSC (Fig. 1b, right). Together, our findings point to a fundamental issue
when using these measures for personalized drug response prediction from
cell line or organoid data: drug response is heavily affected by the inherent
potency or toxicity of eachdrug independentlyof the cell line itwas testedon.

We next explored how this issue affects the performance of ML drug
sensitivity prediction models. We first implemented single-drug models,
including amean baselinemodel that assigns to each test sample themean
drug response of that drug from the train set, and a linear regression (LR)
model on selected genes (Methods). We compared these baseline models
with four pan-drugMLmodels: (i) a bimodal k-Nearest Neighbor (kNN)
model26, (ii) a fully connected neural network (baseline NN), (iii) Pacc-
Mann, a multi-modal attention-based neural-network model27 and (iv)
DeepCDR, a hybrid graph convolutional network28 (Methods). To miti-
gate the reported limitations, we applied a z-score normalization for all
IC50/AUC values separately for each drug, thus removing the drug-
specific bias and dominance of toxic compounds. Indeed, as expected,
correlation coefficients computed for z-scored IC50/AUC values are now
reduced and centered around zero (Fig. 1b). To test the contribution of
omics in the prediction, we tested all models with normal or zero-filled
omics feature vectors, resulting in a total of four test settings (Methods and
Fig. 1c, legend). All settings were tested in a cross-validation fashion using
both actual and z-scored IC50 values. Our results clearly demonstrate that
even the least sophisticated models can accurately predict IC50 values
(Fig. 1c, top). Model performance is not affected in the zero-filled omic
setting, suggesting that indeed, the predictions solely rely on drug profiles
and are indifferent to molecular properties of the cell lines (Fig. 1c, top).
Strikingly, the mean baseline model that simply outputs the average IC50

without considering the omic profiles achieves comparable results tomore
sophisticated ML models. Predicting the z-scored IC50 values appears to
be a much more challenging task, with all pan-drug ML models largely
failing in all settings (Supplementary Data 1–3). Repeating the same
process using the precision at k score (Methods, Fig. 1c, bottom) and a
rank-based loss function18 (Supplementary Fig. 3) is insufficient to miti-
gate the issue, indicating that our results are consistent across perfor-
mance assessment scores. This can be explained by considering that
z-scoring removes the per-drug systematic variation from the IC50 mea-
surements, and thus predicting the z-scored IC50 values implies learning
to predict how cell lines respond to drugs relative to an average cell line.
Overall, we conclude that, although ML models can accurately predict
IC50, these predictions are not in reality personalized but rather merely
driven by drug features that are universal across all cancer types. In other
words, established drug response metrics promote learning absolute
effects of drugs while neglecting relative differences between cell lines thus
counteracting a vision of precision oncology where subtleties in biological
signatures drive treatment decisions. This can be mitigated through the
usage of response metrics that emphasizes relative differences such as the
proposed z-scored IC50.

To better understand this effect, we looked deeper into the PCPL
pancreatic organoid dataset and visualized drug response of the top three
drugs in terms of AUC (Fig. 2a, top) and z-scored AUC (Fig. 2a, bottom)
across all organoids (results on all tested drugs are given in Supplementary
Fig. 4).We also predicted drug rankings across all tested organoids based on
its AUC and z-scored AUC value (Fig. 2b top and bottom, respectively). A
first striking observation is that Bortezomib has the lowest AUC and is thus
the top-ranking drug in almost all tested organoids. Disulfuram follows
closely and ranks second in almost 80% of all tested organoids, followed by
SN-38. Conversely, z-scored AUC values appear to be organoid-specific,
with different drugs being highly effective for different organoids (Fig. 2a, b,
bottom), suggesting they can potentially be used for personalized drug
recommendations. To assess this, we evaluated all previous models for
predicting both the AUC and z-scored AUC in a full and zero-filled omics
setting (Methods). We first employed a zero-shot inference setting, i.e., we
trained pan-drug models on the cell line data (GDSC) and tested them on
the PCPL data (Fig. 2c, left). All pan-drug models reached satisfactory
performance when predicting the AUC without additional re-training.
However, the models again relied only on drug profiles: zero-filling the
omics data did not diminish performance, the simplistic mean baseline
model outperformed all ML models, and all models failed in the z-scored
setting (Supplementary Data 4–6). The single-drug linear regressionmodel
performs slightly worse than the pan-drug models, suggesting that it is
highly dependent on the gene selection. We then trained and tested all
models on the PCPL dataset in a 10-fold cross validation setting (Fig. 2c,
right). As expected, pan-drugmodels reach higher overall performance, but
are again dependent only on the drug profiles. Interestingly, this time the
linear regressionmodel achieved accurate predictions in both the AUC and
z-scoredAUCsetting, both in termsofPearson’s correlation coefficient (Fig.
2c, right) and Precision at k (Supplementary Fig. 5). This encouraging
finding suggests that, under appropriate considerations, predicting drug
sensitivity from omics data is feasible even with simplistic models.

Motivated by this, we further investigated genes important for the
linear regression predictions.Wefirst removedmulticollinearity inRNAseq
data, resulting in a total of 6000 linearly independent genes (Methods). By
computing the prediction performance in terms of average Pearson’s cor-
relation coefficient for varying number of selected genes (Fig. 2d), we see
that the prediction quality is stablewhen thenumber of relevant genes varies
between 100 and 1000 and reaches a maximum value of around 0.93 for
approximately 350 genes on average, a pattern consistent across all tested
drugs (Supplementary Fig. 6). Using the genes selected for each drug as
features, we created a 2D embeddingmap usingUMAP29 and visualized the
AUCof a selecteddrug (Paclitaxel) on that embedding (Fig. 2e).Weobserve
that dataset and drug-specific gene selection allows for a straightforward
linear separation of the organoids in terms of their AUC, whereas genes
selectedbased on the literature do not have the same effect. This observation
is true for all tested drugs (Supplementary Fig. 7) and explains the high
performance of the linear regressionmodel: unlike pan-drugmodels trained
onGDSC, the linearmodel is specific to thePCPLdataset,which couldbe an
advantage in a disease-specific clinical setting. To further assess the per-
formance of the linear regressionmodel, we created scatterplots of predicted
vs. observed z-scored AUC values per drug (Supplementary Fig. 8) and per
organoid (Supplementary Fig. 9), which indicated consistent results at an

Fig. 1 | Differentmeasures of drug response on cell line datasets. aA scatterplot of
IC50 values of all drugs tested on two cell lines (Bladder Carcinoma and Glioma)
indicates a high correlation between the corresponding IC50 drug response profiles.
b Boxplots of pairwise Pearson and Spearman correlation coefficients for different
measures of drug response (e.g., IC50, AUC), computed for each pair ofGDSC, CCLE
and CTRP cell lines and PCPL organoids. For the GDSC boxplots, the correlation
coefficient was computed across all tested drugs shared across a cell line pair, which
made up on average 81% ± 19% of all drugs. In all box plots, center line corresponds
to the median, box limits to the upper and lower quartiles and whiskers to 1.5x
interquartile range. c Performance of different ML models of drug sensitivity

prediction using the Pearson correlation coefficient between observed and predicted
drug responsemeasures (top) and the Precision at k = 5 score (bottom) across all cell
lines. The dots and errorbars represent five independent cross-validation folds, and
corresponding standard deviation, respectively. KNN k-nearest neighbor, NN
neural network, Mean mean baseline, LR linear regression. The pan-drug models
were tested using both original and z-scored IC50 values, with original or zero-filled
omics feature vectors, resulting in a total of four test setting combinations, as
indicated in different colors in the legend. The mean baseline model was evaluated
without omics data and the linear regression model was evaluated with omics
data only.
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individual drug or organoid level. Together, our results suggest that per-
sonalized drug response prediction from omics measurements is indeed
feasible and opens the door formore sophisticatedMLmodels to be applied
on the same single-drug, z-scored setting.

In conclusion, in this work we expose fundamental issues with the use
of common drug response measures that hinder the application of ML

models for pan-cancer personalized drug response prediction. Specifically,
we show that popular ML pan-drug sensitivity prediction models do not
base their predictions on the molecular features and fail to make truly
personalized predictions. Although using z-scored IC50/AUC values miti-
gates this issue by reformulating the drug response prediction into predic-
tion of drugs to which a patient responds better or worse than an average
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Fig. 2 | Results on pancreatic organoid data. a Heatmap of top three drugs as per
AUC score (top) and z-scored AUC score (bottom) for each PCPL organoid (col-
umn). Smaller/higher AUC values indicate higher/lower efficacy of the drug in the
tested organoid; smaller/higher z-scored values indicate higher/smaller efficacy
related to the average efficacy of that drug across all organoids. b Stacked bar plots
indicating the percentage of PCPL organoids in which each drug ranked 1st, 2nd, or
3rd, as per AUC (top) or z-scored AUC score (bottom). c Pearson’s R correlation
coefficient between predicted and observed drug response values computed per
organoid for each of the evaluated models. All models were either trained on GDSC

and tested on the PCPL dataset (left) or trained and tested on the PCPL dataset only
(right). In the latter, error bars indicate the standard deviation across 10 cross
validation folds. d Pearson’s R correlation coefficient between predicted and
observed AUC values for varying number of considered genes aggregated over all
drugs. e UMAP embedding of the RNAseq organoid data using genes selected by
PaccMann (left) and the drug-specific gene selection scheme of the linear regression
model (right) for Paclitaxel.Here, each dot corresponds to an organoid, and the color
of the dot reveals the AUC values of Paclitaxel on that organoid.
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patient, trainingmodels in a z-scored setting is a challenging task for all pan-
cancerMLmodels. Conversely, we show that even simplemodelsmay learn
from omics data, performing exceptionally well when trained in a drug-
specific manner on a well-defined disease setting. Future efforts in devel-
oping personalized drug sensitivity prediction models need to address
limitations associated with IC50/AUC and consider adopting response
metricswith drug-specific transformation schemes, such as z-scoring. A key
challenge on the road toward developing improved pan-cancermodels is to
equip them with inductive biases to promote omics features. This
enhancement can facilitate predictions for previously unseen drugs while
maintaining the ability to provide personalized treatment recommenda-
tions. Finally, the use of organoids to predict responses to cancer drugs
represents a significant stride forward in precision medicine, as supported
by recent studies30–33. The potential to tailor treatments based on individual
organoid responsesholds considerablepromise for improving the efficacyof
cancer therapies while minimizing adverse effects. As progress unfolds in
thisfield, predictionsofdrug responsesderived fromorganoidsmaybecome
an integral component of personalized cancer treatment strategies.

Methods
Datasets
Cell line data were obtained from the Genomics of Drug Sensitivity in
Cancer (GDSC) database4 (we used the GDSC1 data), the Cancer Cell Line
Encyclopedia (CCLE) dataset5 and the Cancer Therapeutics Response
Portal (CTRP)dataset21–23 (details inDataAvailability). ForGDSC, the drug
screen results are available in terms of viability per dosage and were used to
obtain IC50 and AUC values. All ML models except DeepCDR were eval-
uated on 953GDSC cell lines and 283 drugs. SinceDeepCDRwas evaluated
using both transcriptomic and genomic data, we trained and tested it with
the original GDSC subset provided in the DeepCDR repository (https://
github.com/kimmo1019/DeepCDR)which contained 561 cell lines and 238
drugs. The pancreatic cancer dataset was obtained from the Pancreatic
Cancer PDO Library19 (PCPL) containing RNA expression data for 43
organoids that were screened against 26 drugs. The drug efficacy was
measured and reported in terms of AUC values.

Computation of correlation coefficients
Let ðxi;j; xi;kÞ denote the drug responses of drug i 2 ½1; n� in cell lines j; k 2
½1;m� respectively, reported as e.g., the IC50, AUC or drug relevance score.
Then, thePearson correlation coefficient rj,kbetween cell lines j, k and across
all drugs n is computed as:

rj;k ¼

Pn

i¼1
xi;j � �xj

� �
xi;k � �xk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
xi;j � �xj

� �2
�P

n

i¼1
xi;k � �xk
� �2

s

where �xi and �xj correspond to the mean drug response of cell line j and k
respectively, across all drugs. We note that, as it is often the case that not all
drugs were tested in all cell lines, only the common drugs between the two
cell lines are used for the above computation. Similarly, the Spearman
correlation coefficient is computed for each pair of cell lines across all drugs
by considering the rank values of x.

Z-score transformations
The z-score transformations of the drug responses xi,j were computed for
each drug across all cell lines it was tested on, or specifically:

Zi;j ¼
xi;j � �xi

σ i

where �xi, σi correspond to the mean and standard deviation of the drug
response of drug i across all cell lines it was tested on, respectively. For
GDSC, we used the precomputed z-scored values as provided in the GDSC

data, but we independently validated that indeed they were performed
across all cell lines.

Drug sensitivity prediction from GDSC
Pan-drug models. We first tested several pan-drug prediction models
that integrate molecular features (genomic or transcriptomic data of cell
lines/organoids) with chemical structural properties of drugs and can
thus predict drug response for both seen and unseen drugs. In this
approach, the whole dataset is employed to train one prediction model.
The following models were considered, in increasing complexity: (i) a
baseline bimodal k-Nearest Neighbors (kNN)model proposed by Born
et al.26 which predicts drug response of a test sample (cell line or organoid)
as the average of the drug responses of the k nearest samples in a bimodal
similarity space defined using an inversedTanimoto similarity ofMorgan
fingerprints as drug-drug distances34 and the Euclidean distance for gene
expression features. (ii) a baseline neural network (NN) consisting of 3
fully connected hidden layers and a linear output unit as used by Prasse
et al.18 The network takes as input a concatenation of encoded SMILES
and gene expression features, and outputs a drug response value. The
network is trained using MSE of the real vs. the predicted IC50 as a loss
function. (iii)PaccMann, amulti-modal attention-based neural-network
model with state-of-the-art performance in IC50 prediction from tran-
scriptomics data27. PaccMann relies on SMILES, and uses contextual
attention layers to merge information across both modalties. PaccMann
incorporates prior knowledge about targets of drugs present in GDSC
and protein-protein interactions and reduces the dimensionality of the
gene expression data to 2128 genes. Similarly to the baseline NN, Pacc-
Mann employs an MSE loss function. We used the PaccMann imple-
mentation from https://github.com/PaccMann/paccmann_predictor. In
a recent study18, PaccMann has beenmodified to predict ranking of drugs
rather than IC50 values by replacing the MSE loss with a normalized
discounted cumulative gain (NDCG). This modification was shown to
outperform the reference models with respect to the drug ranking task.
We tested this model with the implementation available from https://
github.com/PascalIversen/mlmed_ranking. (iv) DeepCDR, a hybrid
graph convolutional network consisting of a uniform graph convolu-
tional network (UGCN) representing chemical drug features and mul-
tiple subnetworks representing different types of omics profiles28. UGCN
relies on the adjacent information of atoms in a drug and aggregates the
features of neighboring atoms together. The subnetworks generalize over
features of cell line omics profiles. The high-level drug and omics features
are then concatenated and used as input for a final prediction. DeepCDR
utilizes gene expression, genomic mutation, and DNA methylation data
and only considers 697 genes from COSMIC Cancer Gene Census
(https://cancer.sanger.ac.uk/census). The network is trained using MSE
as a loss function. For a fairer comparison of DeepCDR with other
models, we initially tested only with transcriptomics data and found that
it predicted the same drug response for each cell line. We thus decided to
use DeepCDR with all omics data available in GDSC. We used the
DeepCDR implementation available at: https://github.com/kimmo1019/
DeepCDR.

The pan-drug models were evaluated using as input drug features and
omics data (transcriptomics for KNN, baseline NN, and PaccMann;
genomics, transcriptomics, and epigenomics for DeepCDR) or drug fea-
tureswith zero-filled omics feature vectors. For bothabove cases, themodels
predicted either actual or z-scored IC50 values, obtained by subtracting from
each observed value the mean and dividing by the standard deviation, as
computed across all cell lines/organoids on that drug. Overall, this resulted
in a total of 4 test settings (matrix legend in Fig. 1c), namely IC50 with
original omics (blue), IC50 with zero-filled omics (light orange), z-scored
IC50 with original omics (green), z-scored IC50 with zero-filled omics (dark
orange).

Single-drug models. Single-drug models were trained separately for
each drug; each single-drugmodel was blind to drug response of cell lines
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or organoids to other drugs. As a baseline for single-drug models, we
tested a simplistic mean baseline model that computes, for each drug, a
mean value of drug responses in the train set and uses thismean value as a
prediction for all test samples. The mean baseline model only uses as
input drug information and is blind to omics data. We then tested a total
of 8 standard regression models, namely: k-Nearest Neighbors (KNN),
Linear Regression (Ridge with regularization parameter alpha=10),
Support Vector Regression (with a linear, radial basis function, and
polynomial kernel), Decision Tree, Random Forest, Multi-layer Per-
ceptron. For linear models (Linear Regression, linear Support Vector
Regression), linearly independent genes were selected, so that no two
genes are linearly correlated with Pearson’s R correlation coefficient
smaller than 0.6 and a p-value smaller than 0.05. This was done by
iteratively performing agglomerative clustering based on 1-Pearson-
distances (distance threshold between clusters = 0.4, complete linkage),
selecting one representative gene from each cluster, and repeating while
the clusters contain more than one element. The best results were
obtained with a linear regression model with genes selected using Pear-
son’s correlation relevance score (on average 770 genes selected per
drug), which is what we report in the manuscript (Fig. 1c). The linear
regression model was trained and tested with omics features only. We
used a standard 5-fold cross validation scheme by splitting the dataset
into 5 equal sized folds so that the folds had no overlapping cell lines. All
models were implemented using scikit-learn (https://scikit-learn.org).

Drug sensitivity prediction from PCPL
For the prediction of AUC per drug for the PCPL organoids, we used: (i)
single-drugmodels (linear regression with selected features using Pearson’s
correlation relevance score) trained on PCPL only, (ii) pan-drug models
trained on GDSC and tested on PCPL, and (iii) pan-drug models trained
and tested on PCPL only. DeepCDRwas excluded from the evaluation, as it
requires genomic features that are not available for PCPL. Pan-drugmodels
were applied to predict response to 14 drugs present both in GDSC and
PCPL,whereas single-drugmodels predicted response to all 26 PCPLdrugs.
We used a 10-fold cross validation to evaluate the PCPLmodels. For the last
set of experiments, where the pan-drug models were trained on GDSC cell
lines and tested on PCPL organoids, no cross-validation was performed;
instead, the full GDSC dataset was used solely for training, while the PCPL
dataset was used for testing. To make RNAseq data comparable across the
two datasets (GDSC and PCPL), we z-scored each dataset separately and
then z-scored the merged dataset one more time.

Gene selection
To quantify the dependence of each gene in the gene expression data to each
drug, we computed a set of the following 5 scores between gene expression
level and drug response across all cell lines or organoids screened with that
drug: (i) Pearson’s correlation coefficient and (ii) Spearman’s R correlation
coefficient, (iii) mutual information score35, (iv) sum of squared residuals of
the least squares polynomial fit of the second degree, (v) coefficients of linear
SVMregression predicting drug response based on gene expression level.We
then used 100 thresholds on each relevance score for filtering out irrelevant
genes with the goal to determine which combination of score, threshold, and
model provides the best performance for each drug based on average Pear-
son’s correlationsbetweenobservedandpredicteddrug responseper cell line/
organoid. The experiments were conducted in a cross-validation setting.

Performance assessment scores
To evaluate the performance of all models we used four following scores:
(i) thePearsoncorrelation coefficient betweenobservedandpredicteddrug

response measures, as computed separately per patient and per drug:
(ii) the mean squared error (MSE) of the prediction as computed sepa-

rately per patient and per drug.
(iii) Precision at k, i.e., the percentage of correct predictions of top-k drugs

being ranked according to the selected scores (IC50, IC50 z-score, AUC,
AUC z-score).

(iv) the normalized discounted cumulative gain at k, i.e. the sum of rele-
vance values of items occupying the first k ranks normalized by the
measure of the ideal ground truth ranking, for more details see (Prasse
et al.)18.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
In this study we used the following datasets: (i) GDSC1, available from the
Genomics of Drug Sensitivity in Cancer portal (https://www.cancerrxgene.
org/downloads/drug_data?screening_set=GDSC1); drug pathways were
downloaded from the same linkunder Preview: drugs included indownload
(.csv), (ii) CCLE, available from DepMap (https://depmap.org/portal/
download/all/), (iii) CTRP (v2), available from Rees et al.23 as Supplemen-
tary files (Supplementary Datasets 1–3), and (iv) PCPL, available from
Tiriac et al.19 (Supplementary Table S4).

Code availability
The code related to this study, including figure-generating scripts, is avail-
able under an open-source license at: https://github.com/Urogenus/GDSC_
Pancreatic_study.
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