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A B S T R A C T

The World Federation for Ultrasound in Medicine and Biology (WFUMB) has promoted the development of this
document on multiparametric ultrasound. Part 2 is a guidance on the use of the available tools for the quantifica-
tion of liver fat content with ultrasound. These are attenuation coefficient, backscatter coefficient, and speed of
sound. All of them use the raw data of the ultrasound beam to estimate liver fat content. This guidance has the
aim of helping the reader in understanding how they work and interpret the results. Confounding factors are dis-
cussed and a standardized protocol for measurement acquisition is suggested to mitigate them.
The recommendations were based on published studies and experts’ opinion but were not formally graded
because the body of evidence remained low at the time of drafting this document.
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Introduction

New ultrasound (US)-based biomarkers that non-invasively quantify
liver fat content are currently available [1−3]. Due to the steatotic liver
disease (SLD) “epidemic,” their use to assess the presence and severity
of hepatic steatosis is attractive.

In 2021, the World Federation for Ultrasound in Medicine and Biol-
ogy (WFUMB) released a position paper on liver fat quantification pro-
viding expert’s opinion [1]. Since then, several further studies have been
published. However, confounding factors that may affect the US estima-
tion of liver fat are inadequately understood, and a protocol for the
acquisition of these parameters that mitigate the differences in values
between observers or between algorithms from different manufacturers
is lacking.

Therefore, the WFUMB leadership has promoted the development of
a document on multiparametric US, which includes both new evidence
on the role of shear wave elastography in chronic liver disease (pre-
sented in part 1) and the available data on the quantitative US evalua-
tion of liver fat content (Part 2).

For the guidance on the use of the US biomarkers for the quantifica-
tion of liver fat content the recommendations were based on published
studies and experts’ opinion but were not graded because the body of
evidence remained low at the time of drafting this document.

Quantification of liver fat content: the clinical needs

Hepatic steatosis is the defining feature of metabolic dysfunction-
associated steatotic liver disease (MASLD), previously termed metabolic
dysfunction-associated fatty liver disease (MAFLD) or nonalcoholic fatty
liver disease (NAFLD) [4]. MASLD has become the most common
chronic liver disease worldwide, affecting at least 30% of the global
adult population [5]. It is also the second leading indication for liver
transplantation in the United States and an important cause of hepato-
cellular carcinoma (HCC) [6]. Further, MASLD is associated with
increased risk of type 2 diabetes and cardiovascular disease [7].

Hepatic steatosis can coexist with other chronic liver diseases such as
viral hepatitis and is also a key feature of alcohol-related liver disease.
Concomitant MASLD increases the risk related to other liver disease as
for example evident in patients with both MASLD and hepatitis B who
have a higher risk of developing cirrhosis and HCC [8]. Likewise, liver-
related events are more common in patients with hepatic steatosis due
to both metabolic syndrome and excessive alcohol consumption than
either alone [9]. This condition is currently referred to as metabolic dys-
function and alcohol-related steatotic liver disease (MetALD) [4].

Most imaging techniques allow not only the diagnosis but also the
estimation of the severity of liver steatosis. Although patients with
MASLD have increased risk of liver-related events [10], the severity of
hepatic steatosis does not appear to affect the liver-related prognosis.

Hepatic steatosis is more dynamic than fibrosis, responding to weight
changes from nutrition intake, physical activity, pharmacotherapy, or
bariatric surgery [11].

Hepatic steatosis often decreases or even disappears as a patient pro-
gresses to cirrhosis, thus explaining the fact that MASLD is the most com-
mon underlying etiology of cryptogenic cirrhosis [12].

Although the absolute severity of hepatic steatosis may not impact
survival, the change in hepatic steatosis has attracted much interest. In
secondary analyses of clinical trial data, a reduction of hepatic steatosis,
as measured by a change in magnetic resonance imaging proton density
fat fraction (MRI-PDFF), correlated with histological improvements in
metabolic dysfunction-associated steatohepatitis (MASH) [13]. In partic-
ular, patients with a 30% or greater relative reduction in MRI-PDFF dur-
ing MASH treatment are more likely to have a ≥2-point reduction in the
NAFLD activity score and resolution of MASH. One study in a nontreat-
ment cohort also suggests that the MRI-PDFF response might correlate
with improvement in liver fibrosis, though this remains to be confirmed
in treatment cohorts [14]. For these reasons, the MRI-PDFF response is
2

often used as the primary or key secondary endpoint in early phase clini-
cal trials in MASH, with a ≥30% relative reduction in MRI-PDFF repre-
senting treatment response, and ≥50% or ≥70% relative reduction
representing super-responders. This approach allows early readouts in a
noninvasive manner. In contrast, there are limited data on the accuracy
and reliability of US techniques to determine treatment response,
though such methods are sometimes used in investigator-initiated stud-
ies due to their relatively low cost.

There is a lack of longitudinal studies relating the severity of hepatic
steatosis, assessed with controlled attenuation parameter (CAP) or ultra-
sound attenuation technologies, with development of cardiometabolic
outcomes. Although the severity of hepatic steatosis determined by B-
mode ultrasound is considered inconsistent, it has been associated with
development of type 2 diabetes mellitus [15]. Some studies in large
cohorts have reported that the severity of liver steatosis is associated
with an increased risk of cardiovascular events [16−18].

Of note, a very recent study including 391 adult subjects with type 2
diabetes has reported that high liver fat content, assessed with MRI-
PDFF, implied an increased cardiovascular risk independently of age,
gender, ethnicity and body mass index (BMI) [19]. The results of this
study highlight that the importance of steatosis grading in SLD is often
overlooked [20].

Another relevant question in the field is whether hepatic steatosis
affects liver stiffness measurement (LSM). Some studies suggest that
severe hepatic steatosis is associated with increased LSM independent of
the degree of liver fibrosis [21], but this is not shown in all studies [22].
One study also showed that correction for the CAP could reduce false-
positive diagnosis of advanced liver fibrosis by LSM using vibration con-
trolled transient elastography (VCTE) [23]. Moreover, hepatic steatosis
is strongly linked to obesity, and a very high BMI has been repeatedly
demonstrated to confound results of LSM [24,25]. It is yet unclear if con-
founding is primarily caused by hepatic steatosis, thickness of subcuta-
neous and prehepatic fat, or technical issues related to obesity. In any
case, careful consideration of these confounding factors related to the
severity of hepatic steatosis may improve the interpretation of LSM
results.

MASLD in pregnancy is now a common occurrence, as many women
begin pregnancy overweight or obese. Previous studies have found that
hepatic steatosis increased the risk of gestational diabetes mellitus, preg-
nancy-associated hypertension, and preterm birth [26,27]. Perinatal
MASLD has also been associated with maternal insulin resistance, gesta-
tional diabetes mellitus and increased risk of obesity, cardiometabolic
risk, type 2 diabetes and MASLD in offspring [28]. Furthermore, autopsy
and MRI studies have shown a relationship between MASLD in stillborn
and live neonates, and chronic pre-conception maternal type 2 diabetes
and gestational diabetes mellitus, reflecting a metabolically unfavorable
intrauterine environment and potential metabolically adverse start to
life [29,30]. If MASLD in intrauterine life and early childhood persists
with other metabolic risk factors, then the journey towards future type 2
diabetes, cardiovascular disease and cirrhosis may begin early in life.
Although, data are sparse and guidelines have previously not included
MASLD in pregnancy, opportunistic assessment of the severity of MASLD
in at-risk pregnant women, using US-based technologies may provide a
window to future intergenerational health.

Reference standard

Assessment of SLD requires on one hand quantification of liver fat,
and on the other hand assessment of additional components of liver dis-
ease, namely inflammation and fibrosis, associated with risk of progres-
sion and liver-related events [31−33].

Liver biopsy is still considered the reference standard to assess SLD
given that it can provide data on each of its histological components.
From histology, the degree of steatosis, hepatocyte ballooning and lobu-
lar inflammation are combined in the so-called NAFLD activity score
[31], identifying steatohepatitis at values ≥4. Staging of fibrosis is done
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on the same specimen [34]. However, liver biopsy is invasive with possi-
ble significant complications, and there is a large inter-observer variabil-
ity in interpreting specimens, particularly regarding hepatocyte
ballooning and steatosis grading [35,36]. On the other hand, the histo-
logic specimen is just a small sample (1/50,000) of the whole liver,
therefore it cannot be representative of features that likely have a het-
erogeneous distribution. As for pure fat quantification, it is neither con-
ceivable nor ethical to use liver biopsy to identify and quantify liver fat
content in the very large number of individuals with MASLD. In addi-
tion, the amount of fat in the liver can change over the course of months
so short term follow-up may be required, and serial follow-up evaluation
with liver biopsy cannot be justified (cost; risks).

In addition to liver biopsy, liver fat quantification can be achieved
using MRI-based methods, including MR spectroscopy (MRS) and MRI-
PDFF derived from MR chemical shift imaging (CSI). MRS directly meas-
ures signal intensities from fat protons and signal intensities from water
protons in the liver on the frequency domain, and thus liver fat fraction
can be directly calculated as the ratio of signal intensities from fat pro-
tons to the sum of signal intensities from both water and fat protons
[37]. Conversely, CSI relies on the difference in resonance frequency
between water and fat protons. In human tissue including liver, water
protons process slightly faster than fat protons by 3.5 ppm, leading to
the oscillation with regular interval [38]. In opposed phase (OP), where
vectors from water protons oppose those from fat protons, signal intensi-
ties from fat protons are subtracted from the signals of water protons. In
contrast, in phase (IP), where vectors from water and fat protons align,
signal intensities from fat protons are added to those from water pro-
tons. PDFF is determined by calculating the difference in signal intensi-
ties between IP and OP. To address intrinsic biases in CSI, multi-echo
acquisitions with T2* correction and spectral fat modeling are employed
to obtain accurate liver fat quantification [39]. Both MRS and PDFF
derived from CSI exhibit excellent diagnostic performance for liver fat
quantification and are highly reproducible across different vendors. Con-
sequently, these MRI-based techniques are widely used as noninvasive
alternative reference methods to liver biopsy in many clinical trials.

Unlike histology, the MRI-PDFF threshold for detecting liver steatosis
slightly vary between studies. The most used is 6% [40].

Both MRI and histology, the reference standards, have distinct
approaches: histology arbitrarily counts affected hepatocytes, disregard-
ing the size and distribution of fat droplets within the cells. Conversely,
MRI measures relative fat signals but fails to depict the histological dis-
tribution. Consequently, these methods should be viewed as comple-
mentary rather than directly correlated.
Table 1
Algorithms currently commercially available for the estimate of liv
listed in alphabetical order

Manufacturer Algorithm Name

Canon (Japan) AC ATI (a
Echosens (France) AC CAP (
Esaote (Italy) AC QAI (
E-Scopics (France) AC ATT (

SoS SOS (
BSC BSC

Fujifilm (Japan) AC iATT
General Electric (USA) AC UGAP
Mindray (China) AC USAT
Philips (The Netherlands) AC ATI (a
Samsung (Republic of Korea) AC TAI (t

parameter related to BSC TSI (t
AC + parameter related to BSC USFF

Siemens (Germany) AC+ BSC UDFF
SuperSonic Imagine (France) AC ATT P

SoS Ssp PL

AC, attenuation coefficient; BSC, backscatter coefficient; dB/cm/M
meter/second; sr, steradian; SoS, speed of sound.
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Ultrasound techniques to estimate liver fat

There are three US techniques that are being used to estimate liver
fat. These are attenuation coefficient (AC), backscatter coefficient (BSC),
and speed of sound (SoS). All these techniques use the “raw data” of US
beam to estimate these parameters. The raw data is the US signals that
are returned to the transducer. The raw data contains a large amount of
information including frequency information, signal strength, as well as
other information. Each of these US techniques utilized portion of
this raw data to estimate the amount of liver fat. Representative images
from each manufacturer are presented in appendix 1 (supplementary
material).

The hepatorenal index is the ratio between the US signals backscat-
tered by the liver and the right renal cortex, the latter being the refer-
ence. This is performed using the raw US data to remove any correction
applied for attenuation to the image. For those to be accurate the renal
cortex must be normal. It is not a direct and quantitative measure of liver
fat; therefore, it will not be discussed in this document.

Algorithms for the estimate of the attenuation coefficient

The AC is the rate of the amplitude loss of the US beam traveling
through tissue. It is frequency dependent. As the US beam traverses
tissue energy is lost so the intensity of the US beam decreases. Some
tissue (fluid) may not attenuate the US beam; however, other tissues
will attenuate it depending on the tissue composition. The change of
the US beam amplitude over the depth of a certain frequency is the
AC. Fat attenuates the US beam more than normal liver leading to
an increased AC. Several modalities can be used to calculate the AC:
sound field correction; spectral shift; spectral difference; log differ-
ence or hybrid methods. The basic science on this topic can be
found elsewhere [2].

Several algorithms to estimate the AC are currently available
(Table 1). They include the controlled attenuation parameter (CAP)
which estimate the slope of the AC over the distance at a single fixed fre-
quency in decibel/meter (dB/m) and the algorithms available on imag-
ing US systems that calculate the AC in a bandwidth of the US beam;
therefore, the values are reported in decibel/centimeter/megahertz
(dB/cm/MHz). There could be differences between algorithms from dif-
ferent manufacturers depending on which modality they use to calculate
the AC.

The following sections expand on the available evidence for their use
in clinical practice.
er fat content with ultrasound systems. The manufacturers are

Unit of measurement

ttenuation imaging) dB/cm/MHz
controlled attenuation parameter) dB/m
Q-attenuation imaging) dB/cm/MHz
attenuation) dB/m
speed of sound) m/s

dB/cm-sr
(attenuation) dB/cm/MHz
(ultrasound derived fat fraction) dB/cm/MHz
(ultrasound attenuation) dB/cm/MHz
ttenuation imaging) dB/cm/MHz
issue attenuation imaging) dB/cm/MHz
issue scattering imaging) -
(ultrasound fat fraction) %
(ultrasound derived fat fraction) %
LUS (plane-wave ultrasound attenuation) dB/cm/MHz
US (plane-wave ultrasound speed of sound) m/s

Hz, decibel/centimeter/megahertz; dB/m, decibel/meter; m/s,
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Controlled attenuation parameter
The CAP available on the FibroScan system was presented in 2010 as

an add-on software tool for the estimation of liver fat content and has
been referenced in more than 700 scientific medical publications at the
publication of this document. It quantifies the attenuation of the ultra-
sound tracking impulses during the liver stiffness measurement process
and calculates the attenuation slope in dB/m within a range of 100
−400 dB/m. Initially, CAP was only available for the M probe which
restricted its use to lean cohorts. After implementation in the XL probe,
designed for obese subjects, CAP was extensively evaluated in compari-
son to liver histology and magnetic resonance-based techniques [1,41].
Recently, the algorithm has been updated including a continuous mea-
surement and an automated withdrawal of unreliable measurements
and renamed SMART CAP [42].

Large individual patient data meta-analysis revealed that the accu-
racy depends on the etiology of liver disease and anthropometric meas-
ures such as that high BMI may result in a suboptimal performance for
the detection and grading of liver steatosis [43,44]. This can be partially
explained by the varying prevalence of steatosis in different cohorts but
may also reflect inherent technical limitations of the technology. In clini-
cal practice, CAP has an acceptable accuracy for steatosis estimation in
patients with viral hepatitis [45], but its specificity is impaired in
cohorts with higher steatosis prevalence, i.e. patients with MASLD [44].
Head-to-head comparison with MRI-PDFF reveals a lower accuracy of
CAP [46]. Attempts to improve the accuracy of CAP by adjusting the val-
ues to BMI and etiology as well as a combined interpretation with LSM
have been proposed but not yet successfully validated [43]. In addition,
the application of quality criteria such as the interquartile range (IQR)
has been analyzed: Two studies proposed different upper limits for the
IQR, i.e., 30% of the median value [47] and 40 dB/m [48]. However,
this approach was not validated in a prospective multi-center study and
a recent meta-analysis [44,49].

In consequence, a variety of different cut-off values for the detection
of steatosis grades has been suggested. A study from the United Kingdom
provides the only biopsy-controlled data from a prospective multicenter
study including 380 CAP measurements from patients at risk of MASLD
[49]: Youden index cutoff values for S≥S1, S≥S2, and S≥S3 were
302 dB/m, 331 dB/m, and 337 dB/m, respectively. For clinical practice,
a robust cut-off for the detection of any grade of steatosis is important to
establish the diagnosis of MASLD. However, only few patients with a
metabolic risk profile and histological exclusion of liver steatosis have
been included in the available studies [44]. Therefore, a value of
288 dB/m that was determined in an MRI-PDFF controlled cohort
may serve as the best reference available for the detection of steatosis
(S >0) [50].

Longitudinal data of CAP in patients with targeted interventions
focusing on steatosis reduction mainly derive from cohorts with bariatric
intervention or comparable therapies. These data show a significant
decline of CAP in responder patients and underline the value of CAP as a
bedside tool for repetitive monitoring [51,52]. In a small cohort of indi-
viduals with MASLD, a delta-CAP of -46 dB/m has been suggested to
identify reduction of steatosis defined by a decline of MRI-PDFF >30%
relative to the baseline value in patients aiming for lifestyle modification
[53]. Several publications evaluated the value of CAP for the prediction
of clinically relevant endpoints [54,55]. Although CAP did not predict
liver related endpoints in a large study including patients with advanced
chronic liver disease [56], more recent data indicate that CAP may pre-
dict the risk of cardiovascular endpoints in patients with type 2 diabetes
[57] and HCC development in chronic viral hepatitis B [55].

Besides its role for quantification of liver fat, CAP has been
included in algorithms that aim to determine the risk of an “at risk”
MASH. The FibroScan-AST (FAST Score) combines LSM, CAP and
aspartate-aminotransferase values to identify patients having a high
probability of at-risk MASH [58]. This approach has been validated
in further cohorts [59,60], but still awaits its clinical inclusion in
guideline recommendations.
4

In conclusion, CAP is a point of care test for estimation of hepatic
steatosis. The interpretation of the CAP value requires knowledge of con-
founding factors, local prevalence, and etiology. The limited specificity
in patients with metabolic risk profile demands a careful consideration
of CAP with a low threshold for validation by biopsy or MRI-PDFF. CAP
has been used to monitor steatosis in patients undergoing therapeutic
interventions, however larger studies are needed to validate its use in
this setting. Studies with long follow-up intervals are required to deter-
mine the prognostic value of CAP in the context of MASLD.
Attenuation coefficient on imaging ultrasound systems
Studies using either liver biopsy or MRI-PDFF as the reference stan-

dard have assessed the diagnostic accuracy of AC algorithms imple-
mented on imaging US systems for evaluating hepatic steatosis. Most
studies have reported good to excellent performance with area under
the receiver operating characteristic curve (AUC) values ranging from
0.74 to 0.97 (Table 2). For instance, AC-Canon (Canon Medical Systems,
Japan) exhibited excellent diagnostic performance in detecting various
grades of hepatic steatosis within a cohort of 328 biopsy-proven cases
[61]. Additionally, in a study involving 1010 participants using MRI-
PDFF as the reference standard, it has been reported that AC-GE (GE
Healthcare, USA) showed excellent diagnostic performance in detecting
different grades of hepatic steatosis [62].

Comparison studies between CAP and other AC algorithms from dif-
ferent manufacturers have also been conducted, indicating comparable
[71,72,82,85,88,93] or superior diagnostic performance of AC over CAP
in detecting and grading hepatic steatosis [66,70,85,87,96] (Table 3).
These studies used either histology or MRI-PDFF as the reference stan-
dard.

A recent study has compared the performance of AC-Canon and CAP
in a series of patients with type 2 diabetes and MASLD using both MRI-
PDFF and histology as reference standard [86]. With MRI- PDFF as refer-
ence, the performance of ATI was significantly better than that of the
CAP for detecting steatosis (S >0) whereas no differences were observed
when histology was the reference (Table 3).

Several studies, that used AC algorithms from different manufac-
turers and in which histology was used as the reference standard, have
reported that the AC values are not influenced by liver fibrosis
[61,63,69,97].

In a meta-analysis of 13 studies including 1509 patients in which the
AC algorithms from several manufacturers were used, the pooled sensi-
tivity and specificity of the AC were 76% and 84%, respectively, to
detect patients with a histopathologic steatosis grade or PDFF S ≥1 and
87% and 79%, respectively, to detect patients with a steatosis grade S
≥2 [98]. The hierarchical summary AUCs for ≥S1 and ≥S2 were 0.83
and 0.91, respectively.

Regarding the reproducibility of AC measurements, most studies
have reported good to excellent intra- and inter-reader agreement, with
intraclass correlation coefficient (ICC) values exceeding 0.80 (Table 4).

However, certain considerations have arisen in the evaluation of
hepatic steatosis using AC. Despite most studies reporting excellent diag-
nostic performance, the specific cut-off values have shown variation
among different studies. For instance, the AC-Canon cut-off value to
detect S >0 hepatic steatosis ranged from 0.59 to 0.71 dB/cm/MHz
(Table 2), whereas the AC-GE cut-off value ranged from 0.53 to 0.66
dB/cm/MHz (Table 2). This variability may be attributed to differences
in the measurement protocol among studies and as well as differences in
algorithms by various manufacturers. Heterogeneity in the characteris-
tics of the studied cohorts, inclusion criteria or differences in the preva-
lence of the disease must also be considered.

Currently, there is no widely accepted consensus regarding several
key aspects of measurement, including the size and location of the ROI
with respect to the liver capsule, the number of measurements taken,
and the chosen examination mode.



Table 2
The diagnostic performance of attenuation coefficient in detecting and grading hepatic steatosisa

Technique Study Subjects
number

Reference
standard

S0 vs. S1-S3 S0-S1 vs. S2-S3 S0-S2 vs. S3

Cutoff dB/
cm/MHz

AUC Sensitivity
(%)

Specificity
(%)

Cutoff dB/
cm/MHz

AUC Sensitivity
(%)

Specificity
(%)

Cutoff dB/
cm/MHz

AUC Sensitivity
(%)

Specificity
(%)

AC-Canon Bae [63] 108 Biopsy 0.64 0.84 74.5 77.4 0.70 0.89 86.4 81.4 0.745 0.93 100 82.4
Bae [64,65] 120 Biopsy 0.63 0.89 80.3 96.3 0.66 0.91 100 73.1
Bao [66],b 159 MRI-PDFF 0.70 0.94 85.9 94.1 0.79 0.75 87.50 54.37
Bulakci [67] 140 MRI-PDFF 0.65 0.94 84.2 92.8 0.74 0.98 93.0 84.4 0.91 0.97 90.0 95.3
Cassinotto [68] 534 MRI-PDFF 0.65 0.85 77 78 0.70 0.88 85 71 0.71 0.86 81 72
Dioguardi [69] 101 Biopsy 0.69 0.81 76 86 0.72 0.89 96 74
Ferraioli [70] 114 MRI-PDFF 0.63 0.91 80.2 88.9 0.72 0.95 100 78.2
Ferraioli [71],b,c 72 MRI-PDFF 0.69b 0.90b 78.6b 95.8b

0.62c 0.92c 81.1c 95.6c

Jang [72] 57 Biopsy 0.62 0.81 61.5 90.3
Jeon [73] 87 MRI-PDFF 0.59 0.76 88.0 62.2 0.65 0.88 85 71.6
Lee [74] 102 Biopsy 0.64 0.93 75.0 95.0 0.70 0.88 84.0 76.0 0.73 0.82 86.0 69.0
Sugimoto [75] 119 Biopsy 0.67 0.88 75.0 100 0.72 0.86 90.0 66.0 0.86 0.79 61.0 85.0
Tada [76] 148 Biopsy 0.66 0.85 67.8 87.6 0.67 0.91 92.0 83.7 0.68 0.91 100 75.2
Tada [77] 119 MRI-PDFF 0.63 0.81 67.9 85.7 0.73 0.87 79.3 91.1 0.75 0.94 92.9 88.6
Torkzaban [78] 66 Biopsy 0.71 0.81 68.0 89.0
Yuri [61] 328 Biopsy 0.63 0.82 NA NA 0.67 0.93 NA NA 0.70 0.920 NA NA
HSu [79] 28 Biopsy 0.69 0.97 100 83.0 0.78 0.99 100 90.0 0.82 0.97 100 85.0
Kwon [80] 100 MRI-PDFF 0.62 0.91 91.5 80.0 0.72 0.94 93.3 87.1
Jang [81] 132 Biopsy 0.62 0.94 85.0 97.0 0.70 0.94 95.0 80.0 0.78 0.94 100 83.0
Huang [82] 60 Biopsy 0.67 0.97 85.7 100 0.73 0.91 93.8 78.6 0.757 0.766 94.1 60.5
Bae [83] 102 MRI_PDFF 0.66 0.92 89.5 83.1
Chiyanika [84] 15 Biopsy 0.59 0.91 87.5 87.5 0.60 0.97 83.3 90.0 0.63 0.93 100 85.7
Zhu [85] 130 MRI-PDFF 0.63 0.88 86.5 76.9 0.72 0.86 85.5 71.2
Dioguardi Burgio [86] 187 Biopsy 0.59 0.92 95.6 80.0 0.72 0.79 68.9 80.5

58.2191 MRI-PDFF 0.61 0.86 93.3 76.9 0.72 0.71 74.2
AC-GE Cassinotto [68] 534 MRI-PDFF 0.66 0.93 84.0 85.0 0.72 0.96 100 80.0 0.78 0.96 100 83.0

Fujiwara [87] 163 Biopsy 0.53 0.90 81.2 87.1 0.60 0.95 85.7 81.5 0.65 0.959 80.4 90.0
Imajo [62] 1010 MRI-PDFF 0.65 0.91 86.7 82.0 0.71 0.91 90.6 77.5 0.77 0.894 81.0 82.6
Kang [88] 87 Biopsy 0.59 0.82 86.8 67.4 0.69 0.80 80.0 84.4
Ogino [89] 84 Biopsy 0.60 0.94 86.7 88.9 0.71 0.95 85.7 91.8 0.72 0.88 85.7 80.0
Tada [90] 126 MRI-PDFF 0.60 0.92 85.5 88.5 0.69 0.87 82.7 81.1 0.694 0.892 96.7 70.8
Kuroda [91] 582 MRI-PDFF 0.65 0.92 92.0 75.0

AC-Fujifilm Tamaki [92] 351 Biopsy 0.62 0.79 72.0 72.0 0.67 0.87 82.0 82.0 0.73 0.96 87.0 89.0
Koizumi [93] 89 Biopsy 0.68 0.74 55.1 87.7 0.72 0.80 77.8 87.1 0.78 0.96 100 91.1

AC-Samsung Jeon [94] 173 MRI-PDFF 0.72 0.92 83.0 91.0 0.83 0.91 79.0 91.0 0.86 0.90 100 80.0
Ronaszeki [95] 101 MRI-PDFF 0.77 0.89 85.2 78.7 0.85 0.93 81.1 89.1
Zhu [85] 130 MRI-PDFF 0.91 0.86 74.2 82.1 0.96 0.70 77.4 72.3

AC, attenuation coefficient; AUC, area under the receiver operating characteristic curve; dB/cm/MHz: decibel/centimeter/megahertz; MRI-PDFF: magnetic resonance imaging derived proton density fat frac-
tion.

a For the 95% confidence intervals and other statistical details, please see the cited articles
b Utilized ATI-Pen mode
c Utilized ATI-Gen mode. Other studies using ATI did not specify their mode.
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Table 3
Comparison of the performance of the attenuation coefficient on ultrasound systems with controlled attenuation parametera

Technique Study Subjects number Reference standard S0 vs S1−S3 S0-S1 vs S2−S3 S0−S2 vs S3

AUC AUC of CAP p-value AUC AUC of CAP p-value AUC AUC of CAP p-value

AC-Canon Bae [64,65] 120 Biopsy 0.89 0.83 0.15 0.91 0.90 n.s.
Bao [66],b 159 MRI-PDFF 0.94 0.79 0.01 0.75 0.57 0.001
Ferraioli [70] 114 MRI-PDFF 0.91 0.85 0.14 0.95 0.88 0.04
Ferraioli [71],b, c 72 MRI-PDFF 0.90b 0.85 n.s.

0.92 c 0.85 n.s.
Jang [72] 57 Biopsy 0.81 0.83 0.76
Seo [96] 105 Biopsy 0.93 0.93 0.96 0.94 0.94 0.77 0.94 0.87 0.05
Huang [82] 60 Biopsy 0.97 0.92 0.28 0.91 0.87 0.25 0.77 0.81 0.33
Zhu [85] 67 MRI-PDFF 0.88 0.87 n.s. 0.86 0.84 n.s.
Burgio [86] 187 Biopsy 0.92 0.95 0.64 0.79 0.76 0.61

191 MRI-PDFF 0.86 0.69 0.02 0.71 0.69 0.60
AC-GE Fujiwara [87] 163 Biopsy 0.90 0.83 0.14 0.95 0.84 0.01 0.96 0.82 0.001

Kang [88] 87 Biopsy 0.82 0.79 NA 0.80 0.73 NA
AC-Fujifilm Koizumi [93] 89 Biopsy 0.74 0.81 0.13 0.80 0.85 0.29 0.96 0.87 0.57
AC-Samsung Zhu [85] 67 MRI-PDFF 0.86 0.87 n.s. 0.70 0.82 <0.05

AC, attenuation coefficient; AUC, area under the receiver operating characteristic curve; CAP, controlled attenuation parameter; dB/cm/MHz, decibel/centimeter/
megahertz; MRI-PDFF, magnetic resonance imaging derived proton density fat fraction.

a For the 95% confidence intervals and other statistical details, please see the cited articles.
b Utilized ATI-Pen mode.
c Utilized ATI-Gen mode; Other studies using ATI did not specify their mode; n.s., not significant; NA, not available.
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Backscatter coefficient

When an US beam propagates through tissue and encounters a spa-
tial variation on a scale smaller than or on the order of an US wavelength
local acoustic impedance occurs and a fraction of the incident US energy
is scattered in all directions. A portion of that scattered US energy is
reflected back to the transducer. This process is called backscatter and is
what is used to generate the B-mode image. Fat has a lower density than
water leading to an impedance mismatch. Therefore, lipid vacuoles scat-
ter US energy leading to a higher backscatter in fatty livers. A more
detailed discussion of the basic science and confounding factors for
estimating the BSC for liver fat quantification has been presented previ-
ously [102].
Table 4
Inter-observer and intra-observer agreement of attenuation coefficient estimationa

Technique Study Number of subjects
(reproducibility
measurement/total)

Reference
standard

Interobserver
(ICC, CV)

ATI (Canon) Bao [66] 159/159 MRI-PDFF
Bulakci [67] 34/ 140 MRI-PDFF (0.90, -)
Ferraioli [70] 30/114 MRI-PDFF (0.92, -)

Jang [72] 15/57 Biopsy (-, 9.6%)
Jeon [73] 87/87 MRI-PDFF

Yoo [99] 143/143 NA (0.79, -)
Ferraioli [100] 34/34 NA Intercostal, 2

best image
Huang [82] 60/60 Biopsy
Zhu [85] 130/130 MRI-PDFF

UGAP (GE) Fujiwara [87] 163/163 Biopsy (0.84, -)
Zhao [101] 63 NA (0.86,-)

ATT (Fujifilm) Koizumi [93] 89/89 Biopsy

TAI (Samsung) Ronaszeki [95] 52/101 MRI-PDFF TAI (0.95, -)
Zhu [85] 130/130 MRI-PDFF

BMI, body mass index; CV, coefficient of variation; ICC, intraclass correlation coeffi
ton density fat fraction; SCD, skin-to-liver capsule distance.

a For the 95% confidence intervals, please see the cited articles.
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Calculation of the BSC requires compensation for the total attenua-
tion of US by all intervening tissues between the body surface and the
deepest point in the ROI in the liver. Since AC depends on frequency,
attenuation compensation is usually performed by using US spectra.
This is discussed in detail elsewhere [102].

The estimation of the BSC alone has been the subject of research
studies using the US system in a research mode. These studies reported
that BSC was highly correlated with MRI-PDFF with a sensitivity of 87%,
a specificity of 91%, and an AUC of 0.95 for detecting steatosis (S >0)
[103].

Clinical investigations have measured the normal range of liver BSC
between 4±2 × 10−4 1/cm-steradian (Sr) at frequencies from 2.25MHz
to 3MHz using RF data [104−106]. Using a modified commercial US
agreement Intraobserver agreement
(ICC, CV)

κ-value

(0.93, -)
(0.91, -)
Overall; (0.94,-)
Rater 1; (0.91,-)
Rater 2; (0.98,-)

Total (0.81, 9.4%)
SCD <20 mm (0.83, 7.3%) (n = 72)
SCD≥ 20 mm (0.78, 9.8%) (n = 15)
BMI <25 (0.86, 8.3%) (n = 47)
25≤BMI <30 (0.89, 7.3%) (n = 33)
BMI≥30 (0.56, 11.9%) (n = 7)
(0.929, 7.1%)

cm,
(0.89, -)

Intercostal: (0.92, -)

(0.98,-)
(0.98,-)
(0.86, -)
15 min interval (0.90,-) Different days (0.91,-)

0.91 ± 0.06
(S0 or S≥1)

(0.98,-)

cient; NA, not available; MRI-PDFF, magnetic resonance imaging derived pro-
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scanner in a study of 101 patients where 93 (92.1%) had MRI-PDFF ≥5%
BSC estimated at 3MHz frequency had a coefficient of determination
R2 = 0.76, which was higher than that obtained using AC (R2 = 0.60)
[107]. By combining the BSC and AC, the Pearson r correlation coeffi-
cient compared to MRI-PDFF was 0.87. This combination has been com-
mercialized as US-derived fat fraction (UDFF) and the estimate is given
as percentage. A cutoff of 6.34% for detecting steatosis (MRI-PDFF >5%)
had 84% sensitivity, 100% specificity and 0.94 AUC [107]. Only the
combination of AC and BSC is commercially available.

Some studies have evaluated possible confounding factors. One study
found no confounding effect of either liver fibrosis or lobular inflamma-
tion [108] or cirrhosis [105]. A minimal correlation with BMI has been
observed [109].

A proposal for the development of a standardized protocol for BSC
acquisition has been suggested [102]. Presently it is not known if inges-
tion of food can affect the BSC measurement however there is a theoreti-
cal small effect. Currently, it is recommended to follow the protocol for
liver stiffness measurement [110,111]. No study has evaluated the
appropriate number of acquisitions. Breath holds seem not as critical as
in liver stiffness measurements [102].

To conclude, initial studies suggest that the BSC has good reproduc-
ibility and correlation to MRI-PDFF. The BSC requires that AC also be
obtained, and the combination of both parameters could provide
improved accuracy in liver fat quantification. However, the literature is
limited, and a better understanding of confounding factors is also
needed.

Speed of sound

Conventionally, medical US systems assume a Speed of Sound (SoS)
for transmitting and receiving beamforming operations. The assumed
SoS is typically held constant, usually at 1540 m/s for the entire image.
However, because of this assumption, the ultrasound image quality may
have a degradation because the different organs may have different SoSs
[112]. The SoS is slower in fatty tissue therefore as fat increases in the
liver the SoS will decrease.

The SoS measurements for liver tissue can be based on four techni-
ques: focusing, spatial coherence, compounding, and single-path trans-
mission. The first three selected methods were recently considered the
most promising categories for SoS measurements [113,114] A review of
the basic science of SoS is available by the AIUM-RSNA QIBA Pulse-Echo
Quantitative Ultrasound Initiative [114].

In a review of the literature the hepatic SoS varied from 1470 to
1590 m/s depending on the underlying pathology including fatty livers
[113]. Normal liver SoS was approximately 1570 m/s, while fatty livers
had lower SoS values. While Bamber and Hill [115], Chen et al. [116]
and Hayashi et al. [117] did not report SoS values for S1, S2 and S3 stea-
tosis grades, they reported SoS values of 1547 ± 17.8, 1423 ± 34 and
1556 m/s for fatty liver tissue, respectively [113].

The reproducibility of SoS estimate has been assessed in a study that
included 20 normal subjects. The inter-observer ICC was 0.62 whereas
the mean intra-observer ICCs were 0.52 and 0.79 [118]. These findings
suggest that additional studies are needed regarding the protocol to
improve reproducibility.

In a preliminary study on 17 patients using MRI-PDFF as the refer-
ence standard, a cut-off value of 1555 m/s was able to differentiate
healthy and steatotic livers with an AUC of 0.95 (p < 0.0001). The
authors also developed a method to correct for the thickness of superfi-
cial layers in measuring the SoS in the liver [119].

However, it must be highlighted that the cutoffs for detecting and
grading liver steatosis vary largely between published studies and that
there is a narrow range of values between no steatosis and severe steato-
sis [120,121].

There are limited prospective studies with large populations of vary-
ing degrees of fatty infiltration. In fact, most studies have just deter-
mined a cut-off value for the diagnosis of steatosis and not for grading
7

fatty infiltration. The evidence in literature is very limited. Further stud-
ies are needed to understand how the SoS can be used to estimate the
degree of liver steatosis.

Methods combining more than one quantitative US technique

The combination of more than one parameter might improve the
accuracy in quantifying liver fat content.

As mentioned in the backscatter section above, one manufacturer has
a commercially available system that uses the combination of AC and
BSC to give the results in % fat as correlated with MRI-PDFF [107].

A study in a small cohort of overweight and obese adolescents and
adults has reported that UDFF cutoff of more than 5% had 94.1% sensi-
tivity and 63.6% specificity for diagnosing MRI-PDFF of 5.5% or more
[122]. It is worth noting that the percentage obtained with UDFF or
MRI-PDFF do not correspond to histological percentages.

One commercially available system combines AC and tissue scatter-
distribution imaging (TSI), which is related to the BSC, using artificial
intelligence (AI). The technique is called US fat fraction (USFF) [94].
For diagnosing hepatic steatosis (MRI-PDFF ≥5%), the USFF yielded an
AUC of 0.97 (95% CI: 0.93−0.99). No large studies are presently pub-
lished on this technique.

A research system correlating integrated backscatter coefficient, sig-
nal-to-noise ratio, and US-guided attenuation parameter (UGAP) using
AI has reported an improved discrimination in detecting steatosis
(defined by MRI-PDFF >5%) [91]. This study only evaluated this tech-
nique to make the diagnosis of steatosis.

Protocol for measurement acquisition

Currently, an algorithm for liver fat quantification, or a combination
of them, is available on the US systems from all manufacturers. Most of
the studies that have assessed the performance of these tools employed
AC measurement and either liver biopsy or MRI-PDFF as reference stan-
dard. Generally, these studies report different thresholds for grading
steatosis even when using the same algorithm (Table 2). These differen-
ces are likely due to the lack of a standardized acquisition protocol.

In this regard, it should be noted that the literature suggests that the
measurements of liver fat content are affected by several factors, includ-
ing, among others, the depth of the region of interest (ROI), the ROI’s
size, the frequency of the transducer, the scan location [1,2,100,123].

Controlled attenuation parameter (CAP)

The CAP is obtained together with LSM. Therefore, the recommenda-
tion for LSM acquisition must be followed. As for specific quality crite-
ria, there are conflicting data in the literature: a study reported a higher
accuracy of CAP when the IQR of 10 acquisitions was ≤40 dB/m [48],
another study reported that the accuracy improved with and IQR
<30 dB/m [50], whereas other studies did not confirm these findings
[44,49].

Attenuation coefficient (AC) on imaging ultrasound systems

A study has shown that the highest inter-operator repeatability was
observed for measurements obtained in the intercostal space, but it
seems that it is not mandatory that the transducer is perpendicular to
the liver capsule as recommended for stiffness assessment with the shear
wave elastography techniques [100]. The quality of the image should be
the highest one, with few vessels and preferably no ligaments. The upper
edge of the measurement box must be positioned 2 cm below the liver
capsule avoiding the reverberation artifact. The AC value decreases
increasing the depth; therefore, results are not the same when obtained
at different depths [123,124]. To mitigate differences in values between
different algorithms, it is preferable that the length of the measurement
box (3 cm is recommended) is the same for all manufacturers [100,123].
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If a standalone AC setting is available, it is preferable to avoid the
acquisition of liver stiffness and fat quantification at the same time. It is
preferable to perform the measurements sequentially rather than at the
same time. Indeed, once a good acoustic window is obtained, consecu-
tive AC measurements may take very little time.

The breathing phase does not affect the AC value [101,125,126];
however, the repeatability of AC measurements in different breathing
phases has not been investigated yet. A study has shown that AC meas-
urements obtained with free breathing were less repeatable than those
obtained while the subject was holding the breath [100]. It has been
reported that eating or drinking doesn’t affect AC measurement
[101,125,127,128].

Table 5 reports the suggested protocol for fat quantification.
A recent study that used histology as reference standard has investi-

gated the optimal number of valid measurements obtained with the AC-
Canon in a series of 139 MAFLD patients [97]. It found that there was
no significant difference in the mean AC values obtained from one, two,
three, five and seven measurements and that the mean AC value of three
valid measurements was adequate to guarantee the accuracy of liver
steatosis assessment.

As with CAP, when the AC is obtained together with LSM, the stan-
dard protocol for LSM acquisition must be followed.
Backscatter coefficient and speed of sound

Currently, there isn’t any published study about factors that can
affect the measurement of the BSC or the SoS. However, it should be
underscored that the measurement of the BSC is dependent and gener-
ally combined with that of the AC. Therefore, the protocol used for this
latter must be followed to mitigate the variability in the measurement of
liver fat content.
Recommendations

1. Noninvasive US-based quantification techniques are more reliable
than B-mode US imaging for the detection and quantification of liver
fat content.

2. In studies assessing the accuracy of the new algorithms for the esti-
mate of liver fat content, MRI-PDFF should be used as the reference
standard.

3. CAP must not be used as a reference standard in studies assessing the
accuracy of the new algorithms for fat quantification.

4. CAP has become a point-of-care technique, however its specificity in
patients with metabolic risk profile is limited. A value of 288 dB/m,
determined in an MRI-PDFF controlled cohort, may serve as the best
reference available for the detection of steatosis (S >0).
Table 5
Suggested protocol for attenuation coefficient measurement with ultrasound
systems

1 Fasting is not mandatory if the measurement is taken alonea.

2 Breath-hold.
3 Best quality of the B-mode image, but not necessarily with the transducer

perpendicular to the liver capsule.
4 Right intercostal space.
5 Measurement box positioned perpendicular to the transducer.
6 Length of the measurement box 3 cm.
7 Upper edge of the measurement box at 2 cm below the liver capsule.
8 IQR/M ≤ 15%.
9 Median (or mean) value of three to five acquisitions.
10 For a reliable measurement, follow the manufacturer quality criterion

when available

IQR/M, interquartile range/median.
a In a multiparametric approach for quantitative ultrasound the patients

should be in fasting state and the recommended protocol for stiffness assess-
ment must be prioritized.
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5. The estimation of liver fat by attenuation coefficient (and attenua-
tion coefficient plus backscatter coefficient) has good initial results;
however, a standardized acquisition protocol must be followed to
mitigate differences in values between studies.

6. When the attenuation coefficient is obtained together with liver stiff-
ness measurement, the standard protocol for the acquisition of liver
stiffness measurement must be followed.

7. Studies with long follow-up intervals are required to determine the
prognostic value of US fat quantification in patients with MASLD.

8. Backscatter coefficient and speed of sound have limited evidence,
and more evaluation is needed before they can be recommended for
routine clinical use.
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