
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
9
6
3
0
4
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
9
.
5
.
2
0
2
4

Citation: Drewe, J.; Schöning, V.;

Danton, O.; Schenk, A.; Boonen, G.

Machine Learning-Based Analysis

Reveals Triterpene Saponins and

Their Aglycones in Cimicifuga racemosa

as Critical Mediators of AMPK

Activation. Pharmaceutics 2024, 16, 511.

https://doi.org/10.3390/

pharmaceutics16040511

Academic Editors: Robert Ancuceanu

and Mihaela Dinu

Received: 28 February 2024

Revised: 14 March 2024

Accepted: 5 April 2024

Published: 7 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

Machine Learning-Based Analysis Reveals Triterpene Saponins
and Their Aglycones in Cimicifuga racemosa as Critical
Mediators of AMPK Activation
Jürgen Drewe 1,* , Verena Schöning 2 , Ombeline Danton 1, Alexander Schenk 1 and Georg Boonen 1

1 Medical Department, Max Zeller Söhne AG, 8590 Romanshorn, Switzerland; ombelined@gmail.com (O.D.);
alexander.schenk@zellerag.ch (A.S.); georg.boonen@zellerag.ch (G.B.)

2 Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital—University
Hospital, 3010 Bern, Switzerland

* Correspondence: juergen.drewe@zellerag.ch or juergen.drewe@unibas.ch

Abstract: Cimicifuga racemosa (CR) extracts contain diverse constituents such as saponins. These
saponins, which act as a defense against herbivores and pathogens also show promise in treating
human conditions such as heart failure, pain, hypercholesterolemia, cancer, and inflammation. Some
of these effects are mediated by activating AMP-dependent protein kinase (AMPK). Therefore,
comprehensive screening for activating constituents in a CR extract is highly desirable. Employing
machine learning (ML) techniques such as Deep Neural Networks (DNN), Logistic Regression
Classification (LRC), and Random Forest Classification (RFC) with molecular fingerprint MACCS
descriptors, 95 CR constituents were classified. Calibration involved 50 randomly chosen positive
and negative controls. LRC achieved the highest overall test accuracy (90.2%), but DNN and RFC
surpassed it in precision, sensitivity, specificity, and ROC AUC. All CR constituents were predicted
as activators, except for three non-triterpene compounds. The validity of these classifications was
supported by good calibration, with misclassifications ranging from 3% to 17% across the various
models. High sensitivity (84.5–87.2%) and specificity (84.1–91.4%) suggest suitability for screening.
The results demonstrate the potential of triterpene saponins and aglycones in activating AMP-
dependent protein kinase (AMPK), providing the rationale for further clinical exploration of CR
extracts in metabolic pathway-related conditions.

Keywords: AMPK activator; logistic regression classification; deep neural networks; machine
learning; Cimicifuga racemosa; triterpene saponins; polyphenols

1. Introduction

Extracts of Cimicifuga racemosa L., NUTT. (also known as Actaea racemosa L. or black
cohosh) are widely accepted [1–4] and have been granted “well-established use” status in
the treatment of postmenopausal (i.e., climacteric) complaints by the European Medicines
Agency [5]. This monograph predominantly includes vasomotor symptoms such as hot
flushes and sweating, as well as nervousness, irritability, and metabolic changes. Although
characteristic postmenopausal complaints have been known for a very long time and the
beneficial effects of Cimicifuga extracts on climacteric symptoms are well accepted [3,4],
the mechanism of actions has not yet been fully elucidated.

As well as clinical studies involving female patients, Seidlova-Wuttke et al. (2012) [6]
undertook a comprehensive investigation aimed at delving into the beneficial impacts
of a CR extract on postmenopausal symptoms in ovariectomized rats. In addition to the
commonly reported climacteric effects, the authors were able to discern noteworthy reduc-
tions in fat accumulation and a decrease in the manifestations of metabolic syndrome in
these animals. As AMP-activated protein kinase (AMPK) plays a pivotal role in regulating
cellular metabolism [7], Moser et al. [8] investigated the effect of a CR extract Ze 450 and
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three of its isolated components (23-epi-26-deoxyactein, protopine, and Cimiracemoside C)
on AMPK activity and carbohydrate metabolism in HepaRG cells and male ob/ob mice.

The extract and its components activated AMPK to the same extent as the AMPK
activator metformin. The results also showed the extract led to significant reductions in
body weight and plasma glucose levels, while improving glucose metabolism and insulin
sensitivity in male diabetic ob/ob mice [8]. These findings broadened the mechanism of
action of Cimicifuga in various domains to include the activation of AMPK and the subse-
quent effect on cellular metabolism, as indicated by a recent review discussion [9]. This new
perspective brings new areas of application such as metabolic disorders, cardiovascular
diseases, obesity, anti-aging, antioxidative, and supportive antiproliferative therapy into
the focus of future clinical developments.

When examining the literature on published AMPK activators, the substantial chemical
and pharmacological heterogeneity of the activators becomes evident. While only a handful
of these (naturally occurring) activators directly target the enzyme itself, such as salicylate
or AMP, the majority exert their effects indirectly. They achieve this by either influencing
upstream kinases that subsequently phosphorylate AMPK or by reducing cellular ATP
levels, leading to AMPK phosphorylation and subsequent activation. In particular, a
variety of plant extracts or isolated plant constituents have been described in the literature
to activate the enzyme [10–12].

The primary class of naturally occurring metabolites that may activate AMPK is the
class of triterpene saponins and polyphenols such as flavonoids, courcumin, stilbenes,
and others may also do so [13–15]. The class of triterpene saponins is widely distributed
throughout the plant kingdom and constitutes a large and diverse group of secondary
metabolites. They consist of a hydrophobic (water-repelling) aglycone, which can be
steroidal or triterpenoid in nature, and one or more hydrophilic sugar moieties known
as glycosides. These sugar moieties can be either monosaccharides or oligosaccharides
and exhibit variations in their structure, size, and composition. The most common sugar
moieties in steroidal saponins include glucose, galactose, rhamnose, xylose, and arabinose,
which can undergo further metabolic processes. The type and number of sugar moieties
attached to the steroid or triterpenoid aglycone affect the physicochemical properties and
biological activities of the saponins, such as their solubility, stability, and bioavailability [16].
Saponins usually have unfavorable physiochemical properties for oral absorption due to
their large molecular mass and hydrophilicity, which hinders enteral absorption and cellular
uptake [17]. Hence, biotransformation to aglycones by cleavage of the glycosidic sugars
may significantly alter cellular availability and consequently affect their pharmacological
effects. Notably, certain saponins undergo deglycosidation by colonic microflora leading to
enhanced intestinal absorption of the lipophilic aglycones. This is observed in the cases
of certain ginsenosides and soybean saponins [18–20]. These compounds may also have a
higher probability of entering their target cells.

When investigating herbal remedies, experiments can be challenging. The herbal
extracts are complex and often contain multiple substances. Additionally, obtaining pure
isolated compounds from these extracts can be difficult.

This presents an opportunity where machine learning models can significantly en-
hance the classification of activator constituents. Machine learning offers the possibility of
thorough screening of these complex mixtures so that key compounds can be accurately
identified, thereby streamlining subsequent detailed analysis and testing.

Recently, we have published research about sensitive and accurate machine learning
models for the classification of AMPK activators [12]. In the present study, an extended
and updated version of this applied database of known activators and controls has been
used to classify all chemically characterized constituents of the Cimicifuga extract Ze 450
to estimate its ability to activate AMPK.

2. Materials and Methods

The flow and structure of experiments are illustrated in the following Figure 1:
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2.1. Data

A highly detailed AMPK dataset was compiled in 2021 [13] and recently updated
in August 2023. It was compiled by a thorough literature review of AMPK activators
and inhibitors, conducted on PubMed (https://pubmed.ncbi.nlm.nih.gov/, accessed on 4
April 2024) using the search terms “AMPK AND activation” and “AMPK AND inhibition”.
Compounds were included if they were confirmed activators or inhibitors by at least
one publication listed on PubMed. Additionally, the Bioassay database of PubChem
Substance and Compound databases (https://pubchem.ncbi.nlm.nih.gov/, accessed on 4
April 2024) was consulted, particularly when compounds exhibited an EC50 of ≤0.1 µM,
indicating activation. Conversely, compounds that were tested and found to be inactive
for AMPK activation or exhibited inhibitory activity were used as the control group for
this analysis. In total, the database comprised N = 1120 and N = 815 active compounds or
controls, respectively.

To comprehensively characterize the power of Cimicifuga racemosa, 95 chemically
defined compounds from the rhizome were included for analysis [21] (see Table A1,
Appendix B).

2.2. Data Preprocessing

Chemical structures were coded using the simplified molecular-input line-entry system
(isomeric SMILES taken from PubChem). Data were used to calculate MACCS fingerprint
descriptors (Molecular ACCess System, [22]). MACCS fingerprint descriptors are binary
representations encoding the presence or absence of specific structural features or substruc-
tures within a molecule. They are represented by a fixed-length vector of 166 bits with
“0” values indicating absence and “1” values indicating presence. They do not encode
information about bond order, stereochemistry, or spatial arrangement of atoms. Despite
these limitations, fingerprint descriptors are commonly used in cheminformatics and com-
putational chemistry. Since MACCS fingerprints focus on specific structural features, they
are effective at capturing chemical diversity in a dataset [23].

Finally, data preprocessing (curation) entailed eliminating duplicate entries, salts,
mixtures, smaller fragments, and proteins from SMILES structures, with a focus on low
molecular weight drug-like compounds (molecular weight < 1000). Lastly, tautomers were
not standardized during this process.

To reduce computational effort and noise, the VarianceThreshold feature selection method
was used to remove features with low variance (<0.01%).

The unbalanced distribution of activators and controls was compensated for by the
Synthetic Minority Oversampling Technique (SMOTE, [24]), which generates synthetic samples
for the minority class by interpolating between existing samples. It creates new samples

https://pubmed.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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that are combinations of neighboring samples, resulting in an even class distribution
(1122 members for each class). SMOTE was only applied in the training and not in the
test phase.

2.3. Validation

Validation of models was based on OECD Principles for (Q)SAR Validation [25] using
the 2:1 random split of the 2244 total data into 1570 training and 674 test data. These
training data were further split (5:1 ratio) into a validation training dataset (N = 1258) and a
validation test dataset (N = 314) to optimize model hyperparameters and train the models
(using the sklearn train-test split method). After completion of training, the test data served
as an external control using 5-fold cross-validation. Furthermore, the training was repeated
after randomization of the response variable (Y-randomization [26]).

The high-dimensional data of activators and controls were transformed into a two-
dimensional space using the t-distributed stochastic neighbor embedding technique (tSNE).
This method offers a visual representation of the structural relationship between various
compounds, aiding in the interpretation of the database’s applicability domain [27].

2.4. Machine Learning Models

The following three machine learning techniques were applied: Deep Neural Net-
works, Logistic Regression Classification, and Random Forest Classification.

All calculations were performed using Python 3.11.2 (https://www.python.org/,
accessed on 4 April 2024). Graphical analysis was carried out using OriginPro, version
2023, OriginLab Corporation, Northampton, MA, USA, or Matplotlib, version 3.3.3 (https:
//matplotlib.org/#, accessed on 5 April 2024).

2.4.1. Deep Neural Network (DNN)

DNNs are sophisticated computational models with multiple interconnected layers,
allowing them to automatically learn hierarchical representations of complex patterns from
data [28]. Their depth enables effective feature extraction and is a key factor in their success
across various machine learning tasks.

The data were assessed using a sequential DNN model, featuring a variable number
of dense, hidden, and dropout layers, with HeNormal as the kernel initializer and Constant
(value = 0) as the bias initializer. The activation functions employed were the exponential
linear unit (ELU) for positive values and sigmoid for the output layers. Binary cross-entropy
was utilized as the loss function. Details of the model are given in Appendix A.

2.4.2. Logistic Regression Classification (LRC)

LRC [29] is a powerful and widely used statistical method for modeling the probability
of a binary outcome based on one or more independent variables.

LRC is used to estimate the probability p̂ that an instance belongs to a class:

p̂ = hθ(x) = σ(θT ·x), (1)

using the logistic function:

σ(t) =
1

1 + e−t . (2)

Binary classification for two classes denoted with 0 and 1 was obtained by

ŷ = σ(t) =
{

0, p̂ < 0.5
1, p̂ ≥ 0.5

(3)

The scikit-learn procedure was used (https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.LogisticRegression.html, accessed on 4 April 2024).

https://www.python.org/
https://matplotlib.org/#
https://matplotlib.org/#
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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2.4.3. Random Forest Classification (RFC)

RFC, an ensemble method (https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html, accessed on 4 April 2024), enhances generalizabil-
ity and robustness by aggregating multiple base estimators, surpassing the performance
of individual estimators such as decision trees. Each base estimator in the sequence aims
to minimize the bias of the combined estimator. Renowned for classification tasks, RFCs
are adept decision tree algorithms. Hyperparameters were optimized through grid search
analysis, covering the number of estimators, maximum features utilized, maximum tree
depth, minimum samples for split and leaf, and impurity criterion. Notably, no bootstrap
sampling was employed in the process.

2.5. Hyperparameter Tuning

The hyperparameter tuning was performed on both the validation training dataset
(N = 1258) and a validation test dataset (N = 314), which was derived with a 5:1 split using
the train-test split method to optimize model hyperparameters and train the models.

Some of the adjustable hyperparameters of the investigated models were tuned by
grid search, which was coupled with a 5-fold cross-validation (using sklearn GridSearchCV
module), the others were kept in their default settings. Specifically for logistic regression, we
focused on two key hyperparameters: the inverse of the regularization strength, denoted as
“C”, and the penalty functions, which could be either “l1” (Lasso), “l2” (Ridge) regression, or
“elasticnet” (a combination of “l1” (Lasso) and “l2” (Ridge)). These penalty functions help
to control the impact of large coefficients in the model, thereby discouraging it from fitting
noise into the data. Additionally, we determined the optimal solver among various options,
which included the Newton-conjugate gradient optimization method (“Newton-cg”), the
Limited-memory Broyden–Fletcher–Goldfarb–Shanno optimization method (“lbfgs”), a
linear programming approach (“liblinear”).

For DNN, a grid search was performed on learning rate, batch size, number of hidden
layers, and dropout layers.

2.6. Model Evaluation

The dataset underwent partitioning using the sklearn.model_selection preprocessing
method train_test_split, allocating 30% for testing and 70% for training. Subsequently, a
5-fold cross-validation (CV) was performed.

To compare data distributions and assess the application domain, t-distributed stochas-
tic neighbor embedding analysis was conducted via the sklearn.manifold.TSNE procedure.
This technique transforms high-dimensional data into a 2-dimensional representation,
facilitating graphical evaluation of applicability domains.

Machine learning model performance was evaluated using the following metrics:

Accuracy: (TP + TN)/(TP + TN + FP + FN);
Precision: TP/(TP + FP);
Sensitivity: TP/(TP + FN);
Specificity: TN/(TN + FP).

Here, TP represents true positives (correctly predicted activators), FP denotes false
positives (incorrectly predicted activators), TN signifies true negatives (correctly predicted
controls), and FN stands for false negatives (incorrectly predicted controls).

2.7. Prevention of Overfitting

Overfitting is a common problem in machine learning and statistical modeling, and it
occurs when a model learns to perform very well on the training data but fails to generalize
its predictions to new, unseen data.

One important risk factor is an unbalanced distribution of activators and controls in
our database. This is an inherent problem in AMPK activation. Due to the importance of this
activation, many potential activator compounds have been tested experimentally, whereas
a much smaller number of negative controls (often inhibitors) have been investigated. This

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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leads to a bias in the reported results within the literature. To significantly minimize the
risk of overfitting, various methodical precautions were undertaken.

2.7.1. Feature Selection

Since more complex models have a greater risk of model noise and are prone to over-
fitting, we simplified our models by eliminating those features that contribute information
only marginally (e.g., have a variance threshold below 0.01).

2.7.2. Cross-Validation

Cross-validation, especially the 5-fold variant during hyperparameter tuning followed
by a 10-fold variant coupled to the ROC analysis (see below), is a machine learning tech-
nique that gauges predictive model performance and generalization. It does this by splitting
the dataset into ten roughly equal parts or “folds”. The model is trained on nine of these
parts and tested on the remaining one. This process is repeated ten times, with each fold
serving as the test set once.

The performance metrics (in our case accuracy) from these ten rounds were then
averaged to judge the model’s overall performance. It is a powerful method for compre-
hensively evaluating a model’s capabilities. It is more robust than a single train-test split
because it examines how well the model generalizes different subsets of data.

2.7.3. Regularization

For logistic regression: an application of regularization techniques like L1 (Lasso) or L2
(Ridge) regression or elastic net option was used to penalize large coefficients in the model.
This discourages the model from fitting noise into the data. The parameter C denotes the
inverse of the regularization strength. The choice between these techniques was made in
the tuning of hyperparameters by the grid search procedure. For DNN, dropout layers
were evaluated.

2.7.4. Early Stopping

For DNN training, an early stopping procedure (keras.callbacks module EarlyStop-
ping, https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping,
accessed on 4 April 2024) was applied to monitor the training loss and halt training if there
was no improvement for five consecutive epochs.

2.8. Receiver Operating Characteristic (ROC)

To assess the performance of a binary classifier regardless of thresholds, the receiver
operating characteristic (ROC) curve and its corresponding area under the curve (AUC) scores
were computed [30]. This evaluation was complemented with a 10-fold cross-validation to
ensure the robustness and generalizability of the results.

2.9. y-Randomization

A final aspect of method validation is y-randomization. In this step, the DNN was
applied to the molecular descriptors (denoted by X) unchanged, while the target y was
randomized (null model). The performance was then measured. If the original model
significantly outperformed the null model, it suggested a meaningful relationship between
the molecular descriptors (X) and biological activity (denoted by y) in our dataset. In
such a scenario, it provided confidence in the predictive power of our model. To enhance
confidence further, this process was repeated 50 times.

2.10. Classification of Cimicifuga racemosa (CR) Constituents

Using the SMILES of the CR constituents, the same molecular descriptors were calcu-
lated for the database. While the database was fitted to a standardizer and transformed,
the CR descriptors were only transformed using the same standardizer. Using the best-

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
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performing model of the training, the CR constituents were predicted as either AMPK
activators or controls.

To calibrate these classifications, 50 randomly chosen samples of the positive and
negative controls of the database were each also classified in the same run. The models
were ranked by the number of misclassifications.

2.10.1. Comparison of Cimicifuga racemosa (CR) Metabolites with Database

The best-performing model from the analysis was then employed to classify the
transformed CR constituent descriptors. For each CR constituent, the five most similar
members of the database were determined through pairwise calculation of cosine similarity
scores (k) using scikit-learn (https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.pairwise.cosine_similarity.html, accessed on 4 April 2024):

k(x, v) =
< x, y >

∥x∥·∥y∥ ,

where ∥·∥ denotes the Euclidian norm and <x,y> denotes the dot product of vectors x and
y. It ranges from −1 to 1. Values of k > 0.8 were regarded as similar.

2.10.2. Comparison of Cimicifuga racemosa (CR) Saponins with Their Estimated Aglycones

In total, 46 of the CR constituents were identified as saponins. Their original SMILES
codes were theoretically deglycosylated, following the approach suggested by
SwissADME [31], to generate new SMILES codes for their corresponding aglycones. These
new SMILES codes were then used to generate descriptors from the estimated aglycones
for classification.

2.10.3. Assessment of Markers for Oral Absorption

A comparison between triterpene saponin constituents and their aglycones was con-
ducted using the web tool SwissADME [31] available at http://www.swissadme.ch, ac-
cessed on 4 April 2024. This tool utilizes robust and predictive models for physicochemical
properties, pharmacokinetics, and drug-likeness. It allowed us to estimate several param-
eters considered as indicators for the oral bioavailability of drugs, including molecular
weight (MW), water solubility [32], topological polar surface area (TPSA; [33]), distribution
coefficient XlogP [34], the number of violations of Lipinski’s rule of five [35], and the
estimated lead-likeness [31].

3. Results
3.1. t-SNE Analysis

The t-SNE graphical analysis indicates a clear separation between the two classes,
namely activators and controls, across the MACCS fingerprint descriptors (Figure 2):

For illustration, the distribution of four important parameters between activators and
controls is displayed in Figure 3:

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
http://www.swissadme.ch
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3.2. Feature Reduction

Variance threshold reduction simplified the models by reducing the number of features
to 139 for the MACCS fingerprint descriptors from their initial counts of 166.

3.3. Hyperparameter Tuning

For the MACCS fingerprint descriptors a batch size of 16, no dropout layers, a learning
rate of 0.001, and three hidden layers were found to be optimal for the DNN model. As a
solver, the Adam optimizer and the binary cross-entropy as loss functions were used.

For the LRC model, a regularization strength C of 0.5, a L2 penalty, and the liblinear
solver were selected, and “newton-cg” for the solver was estimated to be optimal parame-
ters. For RFC, the gini criterion was chosen, the maximum features were set to log2 (number
of features), the min_samples_leaf and min_samples_split were set to 1 and 4, respectively,
and the number of estimators was set to 110.

All other parameters were left at their default settings.

3.4. Test Performances

In evaluating the performance of various machine learning techniques, all models
demonstrated a commendable accuracy level of approximately 90%. Notably, the DNN
model exhibited superior performance compared with other models by minimizing the
number of misclassifications on the calibration data. With DNN, there were only three
misclassifications, in contrast to 17 for LRC and 9 for the RFC model.

While the LRC model achieved the highest overall test accuracy at 90.2%, both the
DNN and RFC models surpassed it in terms of precision, sensitivity, specificity, and ROC
AUC, as summarized in Table 1.

Table 1. Summary of results of classification of different machine learning methods.

Method
Training
Accuracy

(%)

Test
Accuracy

(%)

Y-
Randomization

(**)

Precision
(%)

Sensitivity
(%)

Specificity
(%)

ROC AUC
(*) TN FN FP TP

Deep
Neural

Network
(DNN)

96.9 86.2 57.6 ± 1.8 89.8 86.0 86.5 97.6 ± 4.2 50 3 0 47

Logistic
Regression

Classification
(LRC)

90.2 90.2 57.7 ± 1.5 87.9 84.5 84.1 90.2 ± 4.2 43 10 7 40

Random Forest
Classification

(RFC)
99.7 89.0 57.8 ± 1.8 93.3 87.2 91.4 95.0 ± 2.5 49 8 1 42

Dataset (number): activators (1120), controls (815, after SMOTE oversampling 1122). (*) ROC AUC = area under
the receiver operating characteristics curve. (**) N = 50 permutations, TN = number of correctly classified controls,
FN = number of falsely classified positive controls, FP = number of falsely classified negative controls, and
TP = number of correctly classified positive controls.

All models utilized the MinMax Scaler for data scaling prior to modeling. As a side
note, the RFC model was also evaluated without prior scaling, producing identical results
to those obtained with scaled data.

The area under the receiver operating characteristic curve (ROC AUC) assesses a
model’s capacity to differentiate between activator and control classes across various
thresholds. These curves (Figure 4) were combined using a 10-fold cross-validation. A
higher ROC AUC value indicates better class discrimination, with the optimal value being
1.0 or −1.0.
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(B) Logistic Regression Classification (LRC); and (C) Random Forest Classification (RFC).

3.5. y-Randomization

Notably, in none of the 50 shuffled models could a distinction be made between
activators and controls (see Table 1). The mean accuracy ranged from 57.6 ± 1.8% to
57.8 ± 1.8%. These results suggest that the unchanged models are statistically significant
and are unlikely to have arisen by chance. This provides confidence in the predictive power
of our models.

3.6. Classification of Cimicifuga racemosa (CR) Constituents

For classification, 103 chemically defined CR root compounds were identified [21] and
checked for isomeric SMILES codes by using the PubChem database (https://pubchem.
ncbi.nlm.nih.gov/, accessed on 4 April 2024). In total, 95 distinct compounds with all
information available were used for analysis (see Table A1, Appendix B).

All compounds with triterpene and triterpenoid structures were classified as active.
This classification is supported by the literature for 23-Epi-26-deoxyactein and cimirace-
moside C [8]. From the non-triterpene compounds, the cinnamic, benzoic, or fukiic acid
derivatives were clearly classified as active. A literature search supported this classification
for synaptic acid [36], P-coumaric acid [11], isoferulic acid [37], protocatechuic acid [37],
and protocatechuic aldehyde [38]. Compounds such as cimiracemates, cimiphenones,
cimifugic acid derivatives, and actealactone were likewise classified as active. Among

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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the chromones—angelicain, cimifugin, and visnagin—only angelicain and cimifugin were
classified as active, whereas visnagin was classified as inactive, possibly due to the absence
of a propan-2-ol group. Interestingly, the glycoside cimidahurin was classified as active.
However, its aglycone hydroxytyrosol, and not the compound itself, was identified in
the literature as an activator of AMPK [39]. For the chemical structures, see Appendix B:
Table A1.

Further support for these classifications came from a similarity comparison of the
CR constituents against our database. The constituents demonstrated high similarity to
database compounds, with median similarity scores descending from 0.94 to 0.91. However,
five compounds—cimipromidine (0.78), cimipromidine methyl ester (0.74), dopargine (0.77),
and N-methylcytisine (0.797)—recorded the lowest similarity scores, aligning with their
lower probability estimates of AMPK activation, as indicated in Figure 5. These findings,
including individual similarity scores, are detailed in Table A2 in Appendix B, underscoring
the data supporting the classification outcomes.
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Figure 5. Classification of Cimicifuga racemosa root constituents was performed using three differ-
ent methods: (A) Deep Neural Network (DNN); (B) Logistic Regression Classification (LRC); and
(C) Random Forest Classification (RFC). Saponins and their aglycones are clearly classified as activa-
tors of AMPK. Saponins and their aglycones were unequivocally identified as activators of AMPK.
While other constituents were also categorized similarly, albeit with lower probabilities. Among
these constituents, cyclocimipronidine and dopargine were classified with uncertainty, along with
N-methylcytisine, which the DNN model classified as inactive.

3.7. Comparison of Saponins with Their Aglycones

The 46 theoretical aglycones showed no systematic and significant differences in their
probability compared with the saponins from which they were derived [31].
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Saponins and their corresponding aglycones were analyzed for several markers in-
dicative of oral bioavailabilities and drug-likeness (Figure 6). Data were applied to open
source Webtool SwissADME [31], available at http://www.swissadme.ch, accessed on 4
April 2014.
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Figure 6. Comparison of triterpene saponin constituents with their theoretically derived aglycones
(applied from open source SwissAMDE Webtool, [31]): (A) molecular weight of aglycones was
significantly smaller than that of saponins (p < 0.0001, paired two-sided t-test); (B) water solubility
surprisingly showed high overlap but was significantly smaller (p = 0.02); (C) topological polar
surface area (TPSA) was clearly significantly smaller in the aglycones (p < 0.0001; paired two-sided
t-test); (D) lipophilicity, as expressed by XLogP, increased significantly (p < 0.0001; paired two-sided
t-test); (E) Lipinski’s rule of five violations was significantly differently distributed (p = 0.01; Wilcoxon
signed-rank test), with aglycones having a smaller number of violations; and (F) estimation of the
lead-likeness score was not significantly different.

As constructed, the molecular weight of aglycones was consistently lower than their
corresponding saponins. While water solubility exhibited a significant decrease, on average

http://www.swissadme.ch
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(p = 0.02, paired two-sided t-test), compared with the solubility of saponins, there was a
notable overlap between the two groups. In contrast, the topological polar surface area
showed minimal overlap and a highly significant difference (p < 0.0001, paired two-sided
t-test) between aglycones and saponins. An increase in lipophilicity, as indicated by the
significant elevation of XLogP (p < 0.0001, paired two-sided t-test), was evident.

Assessing oral bioavailability using Lipinski’s rule of five [35], which indicates im-
proved bioavailability if all five conditions are met, revealed significantly fewer violations
for the aglycones (p = 0.01, Wilcoxon signed-rank test). Despite expectations that the ob-
served effects on topological polar surface area (TPSA) and XLogP would manifest as clear
differences in water solubility, the substantial overlap in solubility suggests that various
physicochemical parameters exert opposing effects. This phenomenon cannot be solely
explained by lipophilicity in a monocausal manner. Concerning drugability (lead-likeness),
no clear advantage of the aglycones over the saponins could be demonstrated (p = 0.09,
Wilcoxon signed-rank test).

4. Discussion

Herbal preparations encompass complex mixtures of potentially active chemical com-
pounds. Nevertheless, comprehensive in vitro experiments often necessitate pure, isolated
substances for each identified constituent. Regrettably, such isolated constituents are fre-
quently insufficiently available. Hence, our extended approach uses machine learning tools,
offering novel opportunities to screen these multi-substance preparations and identify
promising lead compounds. These can then undergo rigorous subsequent testing.

Even when availability problems are set to one side, directly assessing each ingredient
in vitro is a resource-intensive and time-consuming endeavor. A swifter, more cost-effective
solution could be employing diverse machine learning models. These models, based on
an established structure–activity database, can predict the AMPK activation potential of
numerous so far uncharacterized substances “in a single run”.

All models investigated showed very good performance in discriminating AMPK acti-
vators from controls. Surprisingly, with the exception of three compounds (cyclocimiproni-
dine, dopargine, and N-methylcytisine), all of the 95 investigated CR constituents were
clearly predicted activators. It was therefore necessary to rule out a technical artifact caused
by the overfitting of the model. Overfitting is a common problem in machine learning and
statistical modeling, and it occurs when a model learns to perform very well on the training
data but fails to generalize its predictions to new, yet unseen data. In other words, an
overfitted model has focused on capturing the noise or random fluctuations in the training
data instead of accurately capturing the underlying patterns or relationships.

A risk factor for overfitting is an unbalanced distribution of activators and controls in
our database. This is an inherent problem in pharmacology. Due to the importance of AMPK
activation, many potential activator compounds have been experimentally tested, whereas
a much smaller number of negative controls (often inhibitors) have been investigated. This
leads to a bias in the reported results within the literature.

In mitigating the challenge of overfitting, various methodological measures have been
implemented to minimize this risk:

1. Balancing unevenly distributed dataset classes;
2. Employing simpler models;
3. Implementing cross-validation;
4. Utilizing regularization techniques;
5. Employing early stopping techniques.

All of these precautions were rigorously applied to ensure that technical and method-
ological safeguards had been implemented.

As we have previously demonstrated [12], the positive controls within our dataset,
which serve as activators, exhibit a notable structural diversity. This diversity arises from the
fact that a significant proportion of activators exert their effects indirectly. They interact with
regulatory sites upstream in the biological pathways. When these sites are activated, they, in
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turn, trigger the phosphorylation and activation of AMP-activated protein kinase (AMPK).
AMPK is a critical enzyme responsible for sensing and regulating energy supply, as well
as various cellular functions. These functions include controlling carbohydrate entry and
metabolism, generating reactive oxygen species (ROS), regulating apoptosis, modulating
cellular growth, and influencing processes like mitochondrial biogenesis and autophagy.

While we achieved an excellent predictive performance on our unseen test dataset, it
is important to acknowledge that the presence of unaccounted-for mechanisms cannot be
ruled out. It is also worth noting that machine learning models have inherent limitations.
They provide classification probabilities that ideally should be validated through direct
in vitro or in vivo experiments or by other evidence. Another limitation is the research
process itself. It focuses on AMPK activators rather than inhibitors or inactive substances.
As a result, significantly fewer substances have been identified that inhibit AMPK, or,
perhaps even more importantly, are confirmed not to interact with it. This leads to a
selection bias in our database and unbalanced distribution and thus poses a theoretical
risk of over-identifying active substances. This suggests that external evidence should also
be sought.

A point that clearly supports the validity of the classifications is the calibration of
the data, each consisting of 50 randomly selected positive and negative controls. Their
classifications were clearly separated, with only 3% to 17% misclassifications across the three
models under investigation. Another point to consider is the high sensitivity (84.5–87.2%)
and specificity (84.1–91.4%), which provide strong indications for suitability as a screening
tool.

To further substantiate our model’s predictive accuracy regarding the classification of
the 95 CR constituents as either activators or controls, a comprehensive similarity analysis
against all compounds in our database was performed. This involved computing the
structural similarities of the CR constituents to every database entry and identifying the
five most closely matching compounds for each metabolite (details provided in Table A2
in Appendix B). Notably, each of the CR constituents displayed considerable structural
similarity to the positive control compounds within our database. The constituents showed
high similarity to compounds in the database, with median similarity scores ranging
from 0.94 down to 0.91. Nonetheless, a subset of compounds—specifically, cimipromi-
dine (0.78), cimipromidine methyl ester (0.74), dopargine (0.77), and N-methylcytisine
(0.797)—registered the lowest similarity scores. This correlates with their diminished
likelihood of activating AMPK, as reflected in the probability estimates presented in
Figure 4. These observations, including individual similarity scores, are thoroughly doc-
umented in Table A2 in Appendix B, providing a robust data foundation supporting our
classification results.

Studying herbal drugs presents a unique set of challenges due to the complexity
of herbal extracts, which consist of multiple substances. Additionally, obtaining pure
substances from these extracts is often a challenging task, resulting in limited availability.
Consequently, our improved method offers exciting new prospects for conducting thorough
analyses of these complex mixtures. It enables the examination of multi-component herbal
extracts to identify particular compounds of interest. Subsequently, these compounds can
undergo more extensive assessments and evaluations, followed by further refinement of
the extracts to enhance the concentration of the desired components.

Our results indicate that the models clearly classified all constituents of Cimicifuga
racemosa as activators apart from three non-triterpenes. This suggests a high probability
of their ability to activate AMPK. However, we cannot determine the strength of this
activation from our findings. Moreover, it is plausible that this activation is a collaborative
or even synergistic effect, considering that many constituents were classified as active. The
overall effect is certainly influenced by the concentrations of these active compounds at the
site of action, which is hard to predict.

It is perplexing that the models made no distinction between triterpene saponins
and their aglycones in terms of the probability of classifying the compounds as activators.
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Although it is conceivable that aglycones, due to their higher lipophilicity, have a greater
likelihood of being absorbed into tissues and reaching the site of action [40], our model
merely predicts whether the compounds are capable of activating AMPK at all. It does not
take into account the dose–response relationship and kinetics.

Triterpene saponins, known for their high hydrophilicity, exhibit limited oral absorp-
tion from the gastrointestinal tract, especially when compared to their respective lipophilic
aglycones (for a review, see [40]). In our experiments, the range of water solubility values
of CR triterpene saponins significantly overlapped the range of the values of their corre-
sponding aglycones, suggesting that this statement likely needs to be assessed individually
for each saponin and aglycone. Consequently, it is difficult to predict the overall oral
absorption of a multicomponent mixture as an herbal extract.

In current Cimicifuga racemosa extracts, the aglycone content is relatively low. Nev-
ertheless, research has demonstrated that a significant portion of the dose of triterpene
saponin, as observed with 23-epi-26 dihydroxyactein, is orally absorbed in both rats [41]
and humans [42]. Nonetheless, following oral administration, certain triterpene saponins
have the potential to reach the large intestine, where they might undergo degradation by
the colonic microbiome. This process, similar to what has been observed for other triterpene
saponins [40]), could also contribute to the overall effect.

This study has some limitations: While MACCS (Molecular Access System) descriptors
are widely utilized in cheminformatics and machine learning for representing chemical
compounds [23], it is essential to acknowledge their inherent limitations and potential
biases. Being rooted in predefined substructures, there is a possibility of bias towards
specific compound types or functional groups, potentially overlooking less common or
innovative structural motifs. The reliance on a fixed set of molecular features may impede
the generalizability of machine learning models across diverse chemical datasets. Further-
more, some MACCS descriptors may exhibit high correlation or redundancy, leading to
multicollinearity in the feature space. Addressing such issues is crucial as it can impact
the stability and interpretability of machine learning models, often necessitating feature
selection or dimensionality reduction techniques, as we applied in our study.

Moreover, MACCS descriptors are primarily tailored for small organic molecules
and may not adequately represent complex biomolecules or materials. Hence, to ensure
compatibility with the descriptor’s scope, we constrained our dataset to small compounds
(molecular weight ≤ 1000).

A PubMed search using the terms “AMPK” and “QSAR” reveals that various QSAR
models for predicting AMPK activation have been documented [43,44]. These models pre-
dominantly rely on pharmacophore docking, homology modeling, and structure-, ligand-,
or fragment-based design strategies, focusing solely on compounds that activate AMPK
directly. Diverging from these methodologies, our research appears to be the first to compre-
hensively incorporate compounds that activate AMPK, regardless of whether the activation
is direct or indirect. This inclusive approach enables a broader understanding and captures
the diverse mechanisms of AMPK activation more effectively, addressing the enzyme’s
activation heterogeneity.

5. Conclusions

The results of this study confirm that all triterpene saponins, as well as their aglycones,
tested may contribute to activating the AMP-dependent protein kinase (AMPK). With
regard to the mechanism, this may suggest a collaborative or even synergistic action on the
enzyme. Since AMPK plays a pivotal role in various interconnected metabolic pathways,
our results further underscore the rationale for clinically investigating the therapeutic
benefits of Cimicifuga racemosa extracts in conditions associated with disturbances in these
metabolic pathways.
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Appendix A. Details of the Deep Neural Networks Model

Details of the Deep Neural Networks model;
Python code: Model.ipynb;
Database: database.csv.

from sklearn.model_selection import KFold
from sklearn.metrics import make_scorer, accuracy_score
from keras.models import Sequential
from keras.callbacks import ModelCheckpoint
from keras.models import load_model
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
n_features = X_train.shape [1]
n_targets = 1
learning_rate = 0.01
n_hidden = 4
batch_size = 32
epochs = 10
def create_model (n_features: int, learning_rate: float, n_hidden: int, batch_size: int,

dropout: float) -> Sequential:inputs = Input (shape = (number of features))
x = Dense (1_500, kernel_initializer = init_w, bias_initializer = init_b) (inputs)

x = Activation (“elu”)(x)
x = Dropout (dropout)(x)
for i in range (0,n_hidden):

(x) = Dense (1_500-i*300, kernel_initializer = init_w, bias_initializer = init_b) (x)
(x) = Activation (“elu”) (x)
(x) = Dropout (dropout) (x)

outputs = Dense (n_targets, activation = “sigmoid”) (x)
model = Model (inputs = inputs, outputs = outputs)
model.compile (loss = ‘binary_crossentropy’, optimizer = Adam(learning_rate = learning_rate),
metrics = [‘accuracy’])
return model

https://www.mdpi.com/article/10.3390/pharmaceutics16040511/s1
https://www.mdpi.com/article/10.3390/pharmaceutics16040511/s1
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Appendix B

Table A1. Major constituents of Cimicifuga racemosa extracts.

Shengmanol type (16-ketone type)
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O-β-D-xylopyranoside O-Xyl H H OH O-Ac Epoxy - 56962372

23-O-Acetylshengmanol-3-O-α-L-
arabinopyranoside O-Ara H H OH O-Ac Epoxy - 10865257

Bugbanoside C O-Ara H O-Ac OH =O OH/OH + 15894670

Bugbanoside D O-Ara H O-Ac OH =O Epoxy + 15894671

Bugbanoside E O-Ara H O-Ac H =O Epoxy + 15894672

Cimicifugoside H-1 O-Xyl OH H H =O Epoxy + 15241163

Cimicifugoside H-3 O-Xyl OH H H =O CH2OH + 15241164

Cimiracemoside L 4′-O-Ac-Xyl H H OH O-Ac Epoxy - 10952624

Cimicidanol OH OH H H =O Epoxy + 10413064
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Hydroxyshengmanol type

Pharmaceutics 2024, 16, x FOR PEER REVIEW 18 of 32 
 

 

Hydroxyshengmanol type 

 
Compounds R1 R2 R3 R4 R5  16 23 24 CID 
24-Acetylhydroshengmanol-3-O-
β-D-xylopyranoside 

O-Xyl OH OH CH3 O-Ac/OH S S S 157168 

Cimiracemoside E O-Xyl =O H CH2OH O-Ac/OH R R S 91827210 
Shengmanol OH OH OH CH3 Epoxy  S R S 101133349 
Shengmanol-3-O-β-D- 
xylopyranoside 

O-Xyl OH OH CH3 Epoxy  S R S 158275 

 

Cimigenol type (A) 

 
Compounds R1 R2 R3 R4 Δ7,8 15 24 CID 
Cimigenol OH H CH3 OH - R S 16020000 
Cimigol OH H CH3 OH - S R 101596828 
25-O-Acetylcimigenol OH H CH3 O-Ac - R S 46881255 
25-O-Acetylcimigenol 3-O-α-L- 
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Cimiracemoside C (=Cimifugoside M) O-Ara H CH3 OH - R S 15541911 

Compounds R1 R2 R3 R4 R5 16 23 24 CID

24-Acetylhydroshengmanol-3-O-β-D-
xylopyranoside

O-Xyl OH OH CH3 O-Ac/OH S S S 157168
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Shengmanol OH OH OH CH3 Epoxy S R S 101133349

Shengmanol-3-O-β-D-
xylopyranoside

O-Xyl OH OH CH3 Epoxy S R S 158275

Cimigenol type (A)
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12-β-Acetoxycimigenol OH O-Ac CH3 OH - R S 16104912

12-β-Acetylcimigenol-3-O-β-D-
xylopyranoside

O-Xyl O-Ac CH3 OH - R S 44418831

12-β-Hydroxycimigenol OH OH CH3 OH - R S 10006332

Bugbanoside F O-Ara OH CH3 OH + R S 101096469

Cimiracemoside B O-Xyl H CH2OH OH - R S 91826883

Cimiracemoside C (=Cimifugoside M) O-Ara H CH3 OH - R S 15541911

Cimiracemoside D O-Ara O-Ac CH3 OH - R S 70698290

Cimiside A O-Xyl OH CH3 OH - R S 91827183

Cimiside B
3′-O-Xyl-
3-O-Xyl

H CH3 OH - R S 10054869

Cimigenol type (B)
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Cimiracemoside type
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Actaeaepoxide-3-O-beta-D-xylopyranoside
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Compound CID 
Actaeaepoxide-3-O--D-xylopyranoside 15515494

Friedelin 

Compound CID 
Friedelin 91472 

Cinnamic acid derivatives 

Compounds R1 R2 R3 CID
Sinapic acid O-Me OH O-Me 637775 
p-Coumaric acid H OH H 637542 
Isoferulic acid OH O-Me H 736186 
3,4-Dimethoxycinnamic acid O-Me O-Me H 717531

Cimiracemate type 

Compounds R1 R2 R3 CID
Cimiracemate A OH O-Me H 5315874 
Cimiracemate B O-Me OH H 5315876 
Cimiracemate C OH O-Me O-Me * 5315877 
Cimiracemate D O-Me OH O-Me * 5315878 

* Stereochemistry not known.
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Cimiciphenone type
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Cimicifugic acid A (2-Feruloyl fukinolic acid) OH OH O-Me OH 6449879 
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Fukinolic acid OH OH OH OH 6441059 
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Petasiphenone OH 16066851
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Cimicifugic acid D (2-Caffeoyl piscidic acid) OH H OH OH 11742743

Cimicifugic acid E (2-Feruloyl piscidic acid) OH H O-Me OH 10002902

Cimicifugic acid F (2-Isoferuloyl piscidic acid) OH H OH O-Me 6450179

Cimicifugic acid G (2-Feruloyl piscidic acid) OH OH O-Me O-Me 11655574

Fukinolic acid OH OH OH OH 6441059
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Table A2. Support of classification: similarity of Cimicifuga constituents to database elements.

(Cosine-Similarity Score)

No Generic Name Top 1 Score Top 2 Sore Top 3 Score Top 4 Score Top 5 Score

Cimi_1 12-beta-Acetoxy-Cimigenol DMAT 0.902 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899 CHEMBL3133762 0.899 CHEMBL196759 0.899

Cimi_2 12-beta-Acetyl-Cimigenol-3-
O-beta-D-xylopyranoside CHEMBL3393133 0.951 CHEMBL3133762 0.951 CHEMBL196759 0.951 2-Hydroxyestradiol 0.951 Ezetimibe 0.940

Cimi_3 12-beta-Hydroxy-Cimigenol DMAT 0.900 CHEMBL196759 0.899 CHEMBL3133762 0.899 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899

Cimi_4 12-O-Acetylacteol DMAT 0.903 CHEMBL3133762 0.900 CHEMBL196759 0.900 CHEMBL3393133 0.900 2-Hydroxyestradiol 0.900

Cimi_5 15-O-Methyl-Cimigenol CHEMBL3393133 0.899 2-Hydroxyestradiol 0.899 CHEMBL3133762 0.899 CHEMBL196759 0.899 CHEMBL3361128 0.887

Cimi_6 23-epi-26-Deoxyactein=27-
Deoxyactein CHEMBL3393133 0.952 CHEMBL196759 0.952 CHEMBL3133762 0.952 2-Hydroxyestradiol 0.952 CHEMBL2325901 0.931

Cimi_7 23-O-Acetylshengmanol Compound C2 0.909 CHEMBL2017214 0.899 CHEMBL383246 0.895 CHEMBL3963444 0.894 6 Paradol 0.894

Cimi_8 23-O-Acetylshengmanol
3-O-beta-D-xylopyranoside CHEMBL2325901 0.951 CHEMBL371968 0.934 CHEMBL2420899 0.934 Polydatin 0.934 Teneligliptin 0.934

Cimi_9 23-O-Acetylshengmanol
xyloside CHEMBL2325901 0.951 CHEMBL371968 0.934 CHEMBL2420899 0.934 Polydatin 0.934 Teneligliptin 0.934

Cimi_10 24-Acetylhydroshengmanol
xyloside CHEMBL196759 0.941 CHEMBL3393133 0.941 CHEMBL3133762 0.941 2-Hydroxyestradiol 0.941 CHEMBL2325901 0.939

Cimi_11 24-O-Acetylacerionol CHEMBL3746293 0.923 GW275944X 0.921 Theasinensis A 0.917 CHEMBL1078665 0.901 Mogrol 0.897

Cimi_12 25-AnhydroCimigenol-3-O-
alpha-L-arabinoside

6-O-Cinnamoyl-D-
glucopyranose 0.952 GW290597X 0.952 GW458787A 0.952 delphinidin-3-

glucoside 0.952 Ezetimibe 0.952

Cimi_13 25-O-AcetylCimigenol CHEMBL383246 0.901 CHEMBL3963444 0.900 6 Paradol 0.900 CHEMBL4112013 0.900 Ascofuranone 0.878

Cimi_14 25-O-AcetylCimigenol
3-o-alpha-L-arabinoside CHEMBL3393133 0.951 CHEMBL3133762 0.951 CHEMBL196759 0.951 2-Hydroxyestradiol 0.951 Ezetimibe 0.940

Cimi_15 25-O-Acetyl-cimigenol
xyloside CHEMBL3393133 0.951 CHEMBL3133762 0.951 CHEMBL196759 0.951 2-Hydroxyestradiol 0.951 Ezetimibe 0.940

Cimi_16 25-O-Ethyl-cimigenol-3-O-
beta-D-xylopyranoside 2-Hydroxyestradiol 0.951 CHEMBL3393133 0.951 CHEMBL3133762 0.951 CHEMBL196759 0.951 GYY4137 0.928

Cimi_17 25-O-Methyl-cimigenol CHEMBL3393133 0.899 2-Hydroxyestradiol 0.899 CHEMBL3133762 0.899 CHEMBL196759 0.899 CHEMBL3361128 0.887
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Table A2. Cont.

(Cosine-Similarity Score)

No Generic Name Top 1 Score Top 2 Sore Top 3 Score Top 4 Score Top 5 Score

Cimi_18 25-O-Methyl-cimigenol-3-O-
beta-D-xyloside 2-Hydroxyestradiol 0.951 CHEMBL3393133 0.951 CHEMBL3133762 0.951 CHEMBL196759 0.951 GYY4137 0.928

Cimi_20 3,4-Dimethoxycinnamic acid 4a-Isoalantolactone 0.958 Nootkatone 0.958 Gemcitabine 0.957 Fenoldopam 0.936 GW439255X 0.913

Cimi_22 Acerinol Theasinensis A 0.917 GW275944X 0.895 Folic caid 0.892 6-O-cinnamoyl-D-
glucopyranose 0.890 Karaviloside X 0.886

Cimi_23 Actaeaepoxide
3-O-beta-D-xylopyranoside GSK978744A 0.945 CHEMBL2338231 0.943 LCZ696 0.943 Tadalafil 0.943 Berteroin 0.943

Cimi_24 Actaealactone C129 0.859 GW644007X 0.827 Clozapin 0.827 CHEMBL1081678 0.813 CHEMBL4092508 0.812

Cimi_25 Actein CHEMBL196759 0.941 CHEMBL3133762 0.941 2-Hydroxyestradiol 0.941 CHEMBL3393133 0.941 Ezetimibe 0.931

Cimi_26 Acteol DMAT 0.902 CHEMBL3133762 0.899 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899 CHEMBL196759 0.899

Cimi_27 Angelicain GW644007X 0.899 CHEMBL3730916 0.864 CHEMBL2338229 0.857 CHEMBL204420 0.838 CHEMBL4217199 0.834

Cimi_28 Bugbanoside E CHEMBL2420899 0.954 Teneligliptin 0.954 Polydatin 0.954 CHEMBL371968 0.954 Cinacalcet 0.954

Cimi_29 Bugbanoside F Folic acid 0.961 GSK978744A 0.954 GW290597X 0.952 SC4 0.952 6-O-cinnamoyl-D-
glucopyranose 0.952

Cimi_30 Caffeic acid 3-O-
methylquercetin 1.000 CHEMBL208286 0.977 CHEMBL2408232 0.934 4a-Isoalantolactone 0.914 Nootkatone 0.914

Cimi_31 Caffeic methyl ester Nootkatone 0.980 4a-Isoalantolactone 0.980 Fenoldopam 0.959 3-O-
methylquercetin 0.938 CHEMBL208286 0.917

Cimi_32 Cimicfugoside M CHEMBL196759 0.961 2-Hydroxyestradiol 0.961 CHEMBL3133762 0.961 CHEMBL3393133 0.961 GYY4137 0.938

Cimi_33 Cimicidanol Gamma linolenic
acid 0.924 Fluvastatin 0.923 CHEMBL1078665 0.913 CHEMBL4114120 0.912 Compound C2 0.912

Cimi_34 Cimicifugic acid C Glyceolin 0.957 GW780056X 0.926 Oligomycin 0.926 Ibuprofen 0.926 CHEMBL4092508 0.878

Cimi_35 Cimicifugic acid D Glyceolin 0.957 GW780056X 0.926 Oligomycin 0.926 Ibuprofen 0.926 CHEMBL4092508 0.878

Cimi_36 Cimicifugic acid E Glyceolin 0.930 GW780056X 0.900 Oligomycin 0.900 Ibuprofen 0.900 Melatonin 0.885

Cimi_37 Cimicifugic acid F Glyceolin 0.930 GW780056X 0.900 Oligomycin 0.900 Ibuprofen 0.900 Melatonin 0.885

Cimi_38 Cimicifugoside H-1 CHEMBL2420899 0.954 Teneligliptin 0.954 Polydatin 0.954 CHEMBL371968 0.954 Cinacalcet 0.954
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Table A2. Cont.

(Cosine-Similarity Score)

No Generic Name Top 1 Score Top 2 Sore Top 3 Score Top 4 Score Top 5 Score

Cimi_39 Cimicifugoside H-2 CHEMBL1230171 0.962 Meriolin 1 0.962 CHEMBL2420899 0.953 Polydatin 0.953 Cinacalcet 0.953

Cimi_40 Cimicifugoside H-3 CHEMBL1230171 0.982 Polydatin 0.973 Teneligliptin 0.973 CHEMBL371968 0.973 GW576924A 0.973

Cimi_41 Cimicinol Folic acid 0.939 GSK978744A 0.934 SC4 0.932 GW290597X 0.932 6-O-cinnamoyl-D-
glucopyranose 0.932

Cimi_42 Cimiciphenone Paroxetine 0.969 CHEMBL4112741 0.921 Melatonin 0.919 CHEMBL4066628 0.904 Ibuprofen 0.904

Cimi_43 Cimidahurine Gamma-oryzanol 0.973 Atractylenolide III 0.960 Sirtinol 0.937 Zidovudine 0.933 Compound 59 0.926

Cimi_44 Cimifugin CHEMBL3930006 0.858 GW644007X 0.858 GW708336X 0.852 Palbociclib 0.849 CHEMBL204420 0.844

Cimi_45 Cimigenol DMAT 0.900 CHEMBL196759 0.899 CHEMBL3133762 0.899 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899

Cimi_46 Cimigenol xyloside CHEMBL196759 0.961 2-Hydroxyestradiol 0.961 CHEMBL3133762 0.961 CHEMBL3393133 0.961 GYY4137 0.938

Cimi_47 Cimigol DMAT 0.900 CHEMBL196759 0.899 CHEMBL3133762 0.899 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899

Cimi_48 Cimilactone B GW576924A 0.953 Teneligliptin 0.953 CHEMBL2420899 0.953 polydatin 0.953 Cinacalcet 0.953

Cimi_49 Cimipronidine CHEMBL1933279 0.778 Cheletyrine 0.764 Pinosylvin 0.758 Nordihydroguaiaretic
acid 0.755 CHEMBL3730146 0.723

Cimi_50 Cimipronidine methyl ester CHEMBL1933279 0.743 Pinosylvin 0.741 GSK182497A 0.713 Cheletyrine 0.710 BDE-209 0.705

Cimi_51 Cimiracemate A Paroxetine 0.954 Oligomycin 0.922 GW780056X 0.922 Ibuprofen 0.922 CHEMBL4112741 0.907

Cimi_52 Cimiracemate B Paroxetine 0.954 Oligomycin 0.922 GW780056X 0.922 Ibuprofen 0.922 CHEMBL4112741 0.907

Cimi_53 Cimiracemate C Paroxetine 0.956 CHEMBL4066628 0.926 Melatonin 0.910 CHEMBL4112741 0.880 CHEMBL4092508 0.878

Cimi_54 Cimiracemate D Paroxetine 0.956 CHEMBL4066628 0.926 Melatonin 0.910 CHEMBL4112741 0.880 CHEMBL4092508 0.878

Cimi_55 Cimiracemoside A (=F) GSK978744A 0.963 Ezetimibe 0.962 Monensin 0.952 Folic acid 0.952 GSK192082A 0.945

Cimi_56 Cimiracemoside B CHEMBL3393133 0.990 CHEMBL3133762 0.990 CHEMBL196759 0.990 2-Hydroxyestradiol 0.990 GYY4137 0.970

Cimi_57 Cimiracemoside C CHEMBL196759 0.961 2-Hydroxyestradiol 0.961 CHEMBL3133762 0.961 CHEMBL3393133 0.961 GYY4137 0.938

Cimi_58 Cimiracemoside D CHEMBL3393133 0.951 CHEMBL3133762 0.951 CHEMBL196759 0.951 2-Hydroxyestradiol 0.951 Ezetimibe 0.940

Cimi_59 Cimiracemoside E CHEMBL2325901 0.981 Cinacalcet 0.962 Teneligliptin 0.962 Polydatin 0.962 CHEMBL371968 0.962

Cimi_60 Cimiracemoside G GSK978744A 0.963 Ezetimibe 0.962 Monensin 0.952 Folic acid 0.952 GSK192082A 0.945

Cimi_61 Cimiracemoside H CHEMBL3393133 0.951 CHEMBL3133762 0.951 CHEMBL196759 0.951 2-Hydroxyestradiol 0.951 Ezetimibe 0.940
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Table A2. Cont.

(Cosine-Similarity Score)

No Generic Name Top 1 Score Top 2 Sore Top 3 Score Top 4 Score Top 5 Score

Cimi_62 Cimiracemoside J Ezetimibe 0.962 Monensin 0.952 CHEMBL3975011 0.952 CHEMBL4246000 0.952 GSK978744A 0.945

Cimi_63 Cimiracemoside K Ezetimibe 0.962 Monensin 0.952 CHEMBL3975011 0.952 CHEMBL4246000 0.952 GSK978744A 0.945

Cimi_64 Cimiracemoside L CHEMBL2325901 0.929 CDN1163 0.918 Cinacalcet 0.914 CHEMBL2420899 0.914 polydatin 0.914

Cimi_65 Cimiracemoside N CHEMBL3393133 0.952 CHEMBL196759 0.952 CHEMBL3133762 0.952 2-Hydroxyestradiol 0.952 CHEMBL2325901 0.931

Cimi_66 Cimiracemoside P CHEMBL3133762 0.932 CHEMBL196759 0.932 2-Hydroxyestradiol 0.932 CHEMBL3393133 0.932 CHEMBL2325901 0.931

Cimi_67 Cimiside A CHEMBL196759 0.961 2-Hydroxyestradiol 0.961 CHEMBL3133762 0.961 CHEMBL3393133 0.961 GYY4137 0.938

Cimi_68 Cimiside B CHEMBL196759 0.971 2-Hydroxyestradiol 0.971 CHEMBL3133762 0.971 CHEMBL3393133 0.971 GYY4137 0.949

Cimi_69 Cimiside E 6-O-Cinnamoyl-D-
glucopyranose 0.952 GW290597X 0.952 GW458787A 0.952 delphinidin-3-

glucoside 0.952 Ezetimibe 0.952

Cimi_70 Cyclocmipronidine Cheletyrine 0.801 15,16-
dihydrotanshinone I 0.800 CHEMBL3730933 0.800 Nordihydroguaiaretic

acid 0.791 CHEMBL188282 0.757

Cimi_71 Dahurinol CHEMBL383246 0.901 CHEMBL4094080 0.897 2G11 0.897 Gamma linolenic
acid 0.884 CHEMBL3735890 0.884

Cimi_72 Dopargine Tangeretin 0.768 GSK182497A 0.751 SC-202671 0.748 CHEMBL3927465 0.748 Oleic acid 0.747

Cimi_73 Ferulic acid methyl ester 4a-Isoalantolactone 0.958 Nootkatone 0.958 Gemcitabine 0.957 Fenoldopam 0.936 GW439255X 0.913

Cimi_74 Formononetin CHEMBL3774632 1.000 SB-409514 0.984 PP487 0.969 CHEMBL3393131 0.969 CHEMBL207674 0.969

Cimi_75 Friedelin Procyanidin B2 0.891 CHEMBL4112013 0.857 GSK635416A 0.857 CHEMBL3727865 0.850 CHEMBL3859268 0.840

Cimi_76 Fukiic acid Glyceolin 0.924 Adenine 0.861 CHEMBL2408232 0.861 Icaritin 0.859 Oligomycin 0.853

Cimi_77 Fukinolic acid Glyceolin 0.957 GW780056X 0.926 Oligomycin 0.926 Ibuprofen 0.926 CHEMBL4092508 0.878

Cimi_78 IsoCimicifugamide Compound 59 0.869 Nummularic acid 0.858 Sirtinol 0.858 Bupivacaine 0.849 CHEMBL3931350 0.837

Cimi_79 Isoferulic acid Nootkatone 1.000 4a-Isoalantolactone 1.000 fenoldopam 0.979 3-O-
methylquercetin 0.914 Gemcitabine 0.914

Cimi_80 Neocimicigenoside A CHEMBL196759 0.941 CHEMBL3393133 0.941 CHEMBL3133762 0.941 2-Hydroxyestradiol 0.941 CHEMBL2325901 0.939

Cimi_81 Neocimicigenoside B CHEMBL196759 0.941 CHEMBL3393133 0.941 CHEMBL3133762 0.941 2-Hydroxyestradiol 0.941 CHEMBL2325901 0.939

Cimi_82 N-Methylcytisine TBB 0.797 CHEMBL3967075 0.784 Soyasapogenol C 0.780 Momordicoside Q 0.780 GW827396X 0.738
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(Cosine-Similarity Score)

No Generic Name Top 1 Score Top 2 Sore Top 3 Score Top 4 Score Top 5 Score

Cimi_83 p-Coumaric acid Sulforaphane 1.000 3-O-
Methylquercetin 0.879 GW782612X 0.868 CHEMBL3736320 0.849 CHEMBL208286 0.847

Cimi_84 Petasiphenone CHEMBL4112741 0.951 Paroxetine 0.936 Ibuprofen 0.933 GW780056X 0.933 Oligomycin 0.933

Cimi_85 Piscidic acid Glyceolin 0.892 Adenine 0.891 Icaritin 0.831 Ibuprofen 0.814 Oligomycin 0.814

Cimi_86 Podocarpaside A CHEMBL1230171 0.962 Meriolin 0.962 CHEMBL2420899 0.953 Polydatin 0.953 Cinacalcet 0.953

Cimi_87 Podocarpaside B CHEMBL1230171 0.962 Meriolin 0.962 CHEMBL2420899 0.953 Polydatin 0.953 Cinacalcet 0.953

Cimi_88 Podocarpaside C CHEMBL1230171 0.962 Meriolin 0.962 CHEMBL2420899 0.953 Polydatin 0.953 Cinacalcet 0.953

Cimi_89 Podocarpaside D CHEMBL1230171 0.962 Meriolin 0.962 CHEMBL2420899 0.953 Polydatin 0.953 Cinacalcet 0.953

Cimi_90 Podocarpaside F CHEMBL1230171 0.962 Meriolin 0.962 CHEMBL2420899 0.953 Polydatin 0.953 Cinacalcet 0.953

Cimi_91 Podocarpaside G CHEMBL1230171 0.952 Meriolin 0.952 Teneligliptin 0.944 Polydatin 0.944 CHEMBL371968 0.944

Cimi_92 Protocatechualdehyde CHEMBL208286 0.951 3-O-
Methylquercetin 0.929 Belinostat 0.923 CHEMBL2408232 0.909 GW782612X 0.872

Cimi_93 Protocatechuic acid CHEMBL208286 1.000 3-O-
Methylquercetin 0.977 CHEMBL2408232 0.956 Fenoldopam 0.910 Nootkatone 0.891

Cimi_94 Shengmanol CHEMBL196759 0.910 DMAT 0.892 CHEMBL3133762 0.889 CHEMBL3393133 0.889 2-Hydroxyestradiol 0.889

Cimi_95 Shengmanol xyloside CHEMBL196759 0.951 CHEMBL3133762 0.931 2-Hydroxyestradiol 0.931 CHEMBL3393133 0.931 Ezetimibe 0.920

Cimi_96 Sinapic acid Nootkatone 0.961 4a-Isoalantolactone 0.961 Fenoldopam 0.941 Gemcitabine 0.920 CHEMBL4066628 0.895

Cimi_97 Visnagin Prednisolone 0.938 CHEMBL3976646 0.889 Rifampicin 0.889 CHEMBL208118 0.889 Monascus 0.889

Cimi_2
_metab 12-beta-Acetoxycimigenol DMAT 0.902 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899 CHEMBL3133762 0.899 CHEMBL196759 0.899

Cimi_6
_metab Cimi_6_metab CHEMBL3393133 0.910 CHEMBL196759 0.910 2-Hydroxyestradiol 0.910 CHEMBL3133762 0.910 Monensin 0.908

Cimi_8
_metab 23-O-Acetylshengmanol Compound C2 0.909 CHEMBL2017214 0.899 CHEMBL383246 0.895 CHEMBL3963444 0.894 6 Paradol 0.894

Cimi_9
_metab Cimi_9_metab Compound C2 0.909 CHEMBL2017214 0.899 CHEMBL383246 0.895 CHEMBL3963444 0.894 6 Paradol 0.894
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(Cosine-Similarity Score)

No Generic Name Top 1 Score Top 2 Sore Top 3 Score Top 4 Score Top 5 Score

Cimi_10
_metab Cimi_10_metab CHEMBL196759 0.899 2-Hydroxyestradiol 0.899 CHEMBL3133762 0.899 CHEMBL3393133 0.899 CHEMBL4094080 0.899

Cimi_12
_metab Cimi_12_metab Ascofuranone 0.919 AKOS007865932 0.907 CHEMBL4246000 0.907 CHEMBL3975011 0.907 delphinidin-3-

glucoside 0.898

Cimi_14
_metab Cimi_14_metab DMAT 0.902 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899 CHEMBL3133762 0.899 CHEMBL196759 0.899

Cimi_15
_metab Cimi_15_metab DMAT 0.902 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899 CHEMBL3133762 0.899 CHEMBL196759 0.899

Cimi_16
_metab 25- O-Methylcimigenol CHEMBL3393133 0.899 2-Hydroxyestradiol 0.899 CHEMBL3133762 0.899 CHEMBL196759 0.899 CHEMBL3361128 0.887

Cimi_18
_metab 25-O-Methylcimigenol CHEMBL3393133 0.899 2-Hydroxyestradiol 0.899 CHEMBL3133762 0.899 CHEMBL196759 0.899 CHEMBL3361128 0.887

Cimi_19
_metab Cimi_19_metab DMAT 0.903 CHEMBL3133762 0.900 CHEMBL196759 0.900 CHEMBL3393133 0.900 2-Hydroxyestradiol 0.900

Cimi_22
_metab Cimi_22_metab Monensin 0.909 GSK978744A 0.905 CHEMBL2338231 0.903 Berteroin 0.903 LCZ696 0.903

Cimi_23
_metab Cimi_23_metab Monensin 0.909 GSK978744A 0.905 CHEMBL2338231 0.903 Berteroin 0.903 LCZ696 0.903

Cimi_25
_metab Cimi_25_metab DMAT 0.903 CHEMBL3133762 0.900 CHEMBL196759 0.900 CHEMBL3393133 0.900 2-Hydroxyestradiol 0.900

Cimi_28
_metab Cimi_28_metab CHEMBL3746293 0.925 CHEMBL1078665 0.925 Compound C2 0.924 CHEMBL4114120 0.902 GW275944X 0.902

Cimi_29
_metab Cimi_29_metab CHEMBL2376144 0.899 CHEMBL2041962 0.898 CHEMBL3427184 0.898 Epiberberine 0.898 GW275944X 0.898

Cimi_32
_metab Cimi_32_metab DMAT 0.900 CHEMBL196759 0.899 CHEMBL3133762 0.899 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899

Cimi_38
_metab Cimicidanol Gamma linolenic

acid 0.924 Fluvastatin 0.923 CHEMBL1078665 0.913 CHEMBL4114120 0.912 Compound C2 0.912
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Table A2. Cont.

(Cosine-Similarity Score)

No Generic Name Top 1 Score Top 2 Sore Top 3 Score Top 4 Score Top 5 Score

Cimi_39
_metab Cimi_39_metab Gamma linolenic

acid 0.966 Fluvastatin 0.966 CHEMBL2337767 0.955 Epiberberine 0.955 CHEMBL1078665 0.933

Cimi_40
_metab Cimi_40_metab C128 0.956 Pitavastatin 0.955 Xanthohumol 0.928 Fluvastatin 0.920 CHEMBL4114120 0.909

Cimi_41
_metab Cimi_41_metab GW631581B 0.894 Theasinensis A 0.884 Compound C2 0.884 GW275944X 0.881 Folic acid 0.880

Cimi_43
_metab Hydroxytyrosol CHEMBL1233881 1.000 CHEMBL4112741 0.830 CHEMBL3909286 0.823 gamma-oryzanol 0.802 CHEMBL4215572 0.793

Cimi_46
_metab Cimigenol DMAT 0.900 CHEMBL196759 0.899 CHEMBL3133762 0.899 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899

Cimi_56
_metab Cimi_56_metab CHEMBL3393133 0.941 2-Hydroxyestradiol 0.941 CHEMBL3133762 0.941 CHEMBL196759 0.941 CHEMBL4278763 0.917

Cimi_57
_metab Cimigenol DMAT 0.900 CHEMBL196759 0.899 CHEMBL3133762 0.899 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899

Cimi_58
_metab 12beta-acetoxycimigenol DMAT 0.902 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899 CHEMBL3133762 0.899 CHEMBL196759 0.899

Cimi_59
_metab Cimi_59_metab CHEMBL2325901 0.939 CHEMBL2420899 0.923 CHEMBL371968 0.923 Teneligliptin 0.923 Polydatin 0.923

Cimi_61
_metab Cimi_61_metab CHEMBL3393133 0.920 CHEMBL3133762 0.920 CHEMBL196759 0.920 2-Hydroxyestradiol 0.920 Monensin 0.917

Cimi_62
_metab Cimi_62_metab Ascofuranone 0.923 AKOS007865932 0.911 Monensin 0.908 CHEMBL3975011 0.908 CHEMBL4246000 0.908

Cimi_63
_metab Cimi_63_metab Ascofuranone 0.923 AKOS007865932 0.911 Monensin 0.908 CHEMBL3975011 0.908 CHEMBL4246000 0.908

Cimi_64
_metab 23-O-Acetylshengmanol Compound C2 0.909 CHEMBL2017214 0.899 CHEMBL383246 0.895 CHEMBL3963444 0.894 6 Paradol 0.894

Cimi_65
_metab Cimi_65_metab CHEMBL3393133 0.910 CHEMBL196759 0.910 2-Hydroxyestradiol 0.910 CHEMBL3133762 0.910 Monensin 0.908
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(Cosine-Similarity Score)

No Generic Name Top 1 Score Top 2 Sore Top 3 Score Top 4 Score Top 5 Score

Cimi_66
_metab Cimi_66_metab CHEMBL2017214 0.911 DMAT 0.903 CHEMBL3735890 0.889 CHEMBL383246 0.885 CHEMBL3393133 0.879

Cimi_67
_metab 12beta-Hydroxycimigenol DMAT 0.900 CHEMBL196759 0.899 CHEMBL3133762 0.899 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899

Cimi_68
_metab Cimigenol DMAT 0.900 CHEMBL196759 0.899 CHEMBL3133762 0.899 2-Hydroxyestradiol 0.899 CHEMBL3393133 0.899

Cimi_69
_metab Cimi_69_metab Ascofuranone 0.919 AKOS007865932 0.907 CHEMBL4246000 0.907 CHEMBL3975011 0.907 delphinidin-3-

glucoside 0.898

Cimi_78
_metab Cimi_78_metab SB-732941 0.924 CHEMBL3933251 0.875 CHEMBL3728128 0.870 Corosolic acid 0.852 Hernandezine 0.800

Cimi_80
_metab Cimi_80_metab Urolithin A 0.907 CHEMBL2017214 0.897 CHEMBL383246 0.891 DMAT 0.890 CHEMBL3963444 0.890

Cimi_81
_metab Cimi_81_metab Urolithin A 0.907 CHEMBL2017214 0.897 CHEMBL383246 0.891 DMAT 0.890 CHEMBL3963444 0.890

Cimi_86
_metab Cimi_86_metab Gamma linolenic

acid 0.955 CHEMBL1078665 0.944 CHEMBL4114120 0.943 GW780159X 0.942 Crocin 0.941

Cimi_87
_metab Cimi_87_metab CHEMBL4114120 0.953 Crocin 0.952 Gamma linolenic

acid 0.943 Fluvastatin 0.941 Fucoxanthin 0.940

Cimi_88
_metab Cimi_88_metab Gamma linolenic

acid 0.955 Fluvastatin 0.954 CHEMBL1078665 0.944 CHEMBL4114120 0.943 Epiberberine 0.942

Cimi_89
_metab Cimi_89_metab CHEMBL4114120 0.953 Crocin 0.952 Gamma linolenic

acid 0.943 Fluvastatin 0.941 Fucoxanthin 0.940

Cimi_90
_metab Cimi_90_metab CHEMBL1230171 0.962 Meriolin 1 0.962 CHEMBL2420899 0.953 polydatin 0.953 Cinacalcet 0.953

Cimi_91
_metab Cimi_91_metab Gamma linolenic

acid 0.943 Fluvastatin 0.941 CHEMBL1078665 0.932 CHEMBL4114120 0.930 Epiberberine 0.929

Cimi_92
_metab Cimi_92_metab CHEMBL196759 0.910 DMAT 0.892 CHEMBL3133762 0.889 CHEMBL3393133 0.889 2-Hydroxyestradiol 0.889

Median 0.941 0.923 0.922 0.912 0.907

Highlighted in blue are the constituents for which no comparison molecule was found in the database with a cosine similarity score > 0.8.
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