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A B S T R A C T   

Background: To develop an effective radiological software prototype that could read Digital Imaging and Com-
munications in Medicine (DICOM) files, crop the inner ear automatically based on head computed tomography 
(CT), and classify normal and inner ear malformation (IEM). 
Methods: A retrospective analysis was conducted on 2053 patients from 3 hospitals. We extracted 1200 inner ear 
CTs for importing, cropping, and training, testing, and validating an artificial intelligence (AI) model. Automated 
cropping algorithms based on CTs were developed to precisely isolate the inner ear volume. Additionally, a 
simple graphical user interface (GUI) was implemented for user interaction. Using cropped CTs as input, a deep 
learning convolutional neural network (DL CNN) with 5-fold cross-validation was used to classify inner ear 
anatomy as normal or abnormal. Five specific IEM types (cochlear hypoplasia, ossification, incomplete partition 
types I and III, and common cavity) were included, with data equally distributed between classes. Both the 
cropping tool and the AI model were extensively validated. 
Results: The newly developed DICOM viewer/software successfully achieved its objectives: reading CT files, 
automatically cropping inner ear volumes, and classifying them as normal or malformed. The cropping tool 
demonstrated an average accuracy of 92.25%. The DL CNN model achieved an area under the curve (AUC) of 
0.86 (95% confidence interval: 0.81-0.91). Performance metrics for the AI model were: accuracy (0.812), pre-
cision (0.791), recall (0.8), and F1-score (0.766). 
Conclusion: This study successfully developed and validated a fully automated workflow for classifying normal 
versus abnormal inner ear anatomy using a combination of advanced image processing and deep learning 
techniques. The tool exhibited good diagnostic accuracy, suggesting its potential application in risk stratification. 
However, it is crucial to emphasize the need for supervision by qualified medical professionals when utilizing this 
tool for clinical decision-making.   

1. Introduction 

According to reports from all over the world, children with 
congenital hearing loss have an inner ear malformation (IEM) rate of 
20%–30% [1,2]. Gross malformations (cochlear aplasia, cochlear nerve 

aplasia, Michel’s deformity) are a contraindication to cochlear implan-
tation surgery and major deformities may cause surgical issues. Since 
computed tomography (CT) provides important information on the state 
of the inner ear and other abnormalities both before and after surgery, it 
has been the main method of diagnosis [3]. It can be challenging for 
non-specialists to make an accurate diagnosis of inner ear pathologies 
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due to their complex anatomical structure [4]. However, automatic 
detection of IEMs using deep learning (DL) could lead to the develop-
ment of new methods for diagnosing all types of IEMs. DL is a type of 
artificial intelligence (AI) that can learn to recognize patterns in data, 
and it has been shown to be effective for automatically detecting 
anatomical structures in medical images. 

A tool for automatic identification of the malformed inner ear does 
not exist to our best knowledge up to know, however, there are attempts 
to diagnose it semiautomatically (with manually adjusted inner ear 
localization) [5] or using methods developed for normal anatomy and 
finding the inner ear with unknown accuracy [6,7]. 

Despite the fact that DL has become more common in the medical 
community [8], in particular when contrasting human and machine 
performance [9], and DL is employed to evaluate temporal bone CTs [5], 
no study on fully automated inner ear crop and classification has been 
published before. 

To analyse the complex structure of the temporal bone, 3 dimen-
sional - convolutional neural network (3D-CNN) would be required. The 
recent development of CNN architectures and powerful computer 
graphics processing units with a lot of memory has made 3D-DL useful 
for medical image analysis [10]. 

Additionally, it was mentioned that, when compared to unsupervised 
techniques, supervised abnormality detection with only 64 abnormal 
samples was excellent. In supervised deep learning, training data with 
labels like “normal” or “abnormal” are used to build a standard classi-
fication CNN that classifies test data [11]. 

To the best of our knowledge, a fully automatized DL workflow for 
inner ear malformation diagnosis has not yet been developed and vali-
dated in any of the available studies. Our AI technology can help pro-
fessionals evaluate CT images more accurately. The tool might also be 
able to provide crucial second opinion information needed for patient- 
tailored diagnosis and surgery prior to or after the implantation of a 
cochlear implant (CI). One study only covers congenital inner ear mal-
formations, missing ossification [6], or does not have diverse (based on 
1 country), and robust number of input data [7]. Another study classi-
fied inner ear with outstanding accuracy, however it provided a semi-
automatic way of inner ear localization, which made it time-consuming 
and impossible to implement in real-life workflow and was restricted to 
using a single institute technique [5]. Present study focused on software 
development for the fully automatized diagnosis of wide range of inner 
ear malformations, by evaluating the effectiveness of supervised DL on 
CT images and whether abnormal regions were accurately detected. 
Deep learning-based categorization needs data from multicentre studies 
and large-scale evaluations, but none of these studies have been carried 
out for any IEM. To fill this unmet need, we gathered information from 

three cohorts and countries, created and evaluated an inner ear cropping 
tool, and assessed the diagnostic performance of a deep learning-based 
classifier. As a result, we developed an AI based software for inner ear 
diagnosis. 

2. Material and methods 

2.1. Patient cohorts, image analyses, pre-processing 

All experiments were conducted in strict accordance with the 
Declaration of Helsinki, and the results were reported in full compliance 
with the Standards for Reporting Diagnostic Accuracy. The retrospective 
study to use the anonymized images for research was approved by the 
Institutional Review Board and ethics committees of King Saud Uni-
versity, Saudi Arabia (IRB No. 22/0084/IRB), St. Petersburg ENT and 
Speech Research Institute, Russia (IRB No. 23_001/IRB), and Stellen-
bosch University, South Africa (IRB No. S_23_001/IRB). The ethics 
committees granted their approval on the grounds that the study was 
retrospective and did not require informed patient consent. 

CT scans of the head of 2053 potential CI candidates with various 
inner ear anatomical types were retrieved from the three cohorts 
retrospectively between January 1, 2016, and December 31, 2021. The 
CT images were acquired using different vendors and scanning param-
eters, based on the provided Digital Imaging and Communications in 
Medicine (DICOM) files. Non-enhanced axial reconstructed images with 
fields of view that encompassed both ears or one depicted side (Fig. 1) 
were included. In general, 256-slice (range: 128–512) multidetector-row 
CT scanners were used. The following scanning parameters were used in 
the majority of cases: axial plane, 0.625 mm (range: 0.48–1.5) slice 
thickness, auto-mAs (range: 120–145 mAs), 140 kV, 484 to 1024 matrix, 
bone kernel, and rotation time 1 s with 0.3 mm reconstruction in the 
axial and coronal views. The cases included in the cohorts were selected 
randomly. Based on the radiological reports, the images were enrolled 
into six defined categories: (1) normal anatomy (defined as the “normal” 
group), (2) common cavity (CC), (3) cochlear hypoplasia (CH), (4) 
enlarged vestibular aqueducts (EVAS), (5) incomplete partition (IP) type 
I, (6) IP type III, and (7) ossification (defined as the “abnormal” group) 
(Fig. 5). Pre- and post-operative head CTs of implanted (post-op) and 
non-implanted ears were also included. 

The following conditions were excluded: (1) a history of a cranial 
injury; (2) not sufficient slice thickness (>1 mm) and (3) resolution with 
more than 1.5 mm/pixel. 

2.1.1. Cropping algorithms 
We developed different algorithms for cropping the inner ear in a 

volume and chose the top two for final test; 
Hounsfield units (HU) and distance-based cropping: The funda-

mental principle behind this approach lays on identifying high Houns-
field unit values within the intricate bone structure of the inner ear. The 
method initiates by applying an averaging technique using a window 
filter, typically set at dimensions around 5 mm × 5 mm x 5 mm, in order 
to merge the inner ear as one blob presented in the whole volume. It 
loops through each voxel, starting from the highest HU value voxel in 
descending order. It calculates the distance between each consecutive 
voxels, if this computed distance exceeds a predetermined threshold, 
typically set at 20 mm, which corresponds to the average longest dis-
tance between two points within a normal inner ear, the previous voxel 
is chosen as the reference point, then a cropping with considering the 
selected voxel as the center will be applied. 

Two-staged spatial auto k-means clustering cropping: This method-
ology focuses on the interrelations among voxels in addition to their HU 
values, the first stage starts by averaging the volume with 5 mm × 5 mm 
x 5 mm kernel, then it takes only the highest 0.5% voxels from the whole 
volume. The algorithm following this step automatically determines the 
optimal number of clusters using the elbow method, the next step is to 
take the closest cluster to the volume center, presuming the inner ear is 
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Fig. 1. Flowchart outlining the selection of cases. If there were multiple examinations for a patient, the oldest evaluation for abnormalities was included, and the 
contralateral normal ear was eliminated. Images of the left ear, derived from bilateral images, were all horizontally mirrored to the right. 

Fig. 2. Cropping algorithm of the inner ear.  
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typically around the volume center, cropping with 45 mm × 45 mm x 45 
mm dimensions will be applied, the second stage follows with same 
procedure but with different parameters namely 3 mm × 3 mm x 3 mm 
smoothing filter and 20 mm × 20 mm x 18 mm cropping dimensions. 

We used elbow method to increase the accuracy. This approach ex-
amines the fraction of variance or inertia plotted against cluster count, 
where the variance is determined based on the calculation of the within- 
cluster sum of squares value (Euclidean distance). that is predicated on 
the notion that improving data separation does not result from adding 
clusters above a particular threshold. The initial clusters will provide a 
lot of information, but eventually the marginal gain will sharply decline, 
creating an angle in the graph. This is the point where the “elbow cri-
terion” is applied, since the right “k,” or number of clusters, is selected 
[12]. Algorithm is summarized in Fig. 2. 

2.2. Dataset, model developments, settings, and evaluation 

Based on the cropped clinical CT series, 600 malformation inputs 
were selected. 8.33% of the data (n = 50/600) was saved for secondary 
validation. Of the remaining 91.67% (550/600), 70% (385/550) was 
used to train the model and 30% (165/550) was used for testing and 
validation. The same data pipeline was created for normal anatomy (n =
600). In total, 1200 CT series were selected as input. 

Two biomedical engineers with 5 and 13 years of experience, 
respectively, and a neuroradiologist with 10 years of experience in head 
and neck imaging collaboratively enrolled cases into two labeled data-
sets: “Normal” and “Malformed.” The evaluation of the test data for 
supervised deep learning is summarized in Fig. 3. We performed a 5-fold 
cross-validation. 

The DL CNN model was created with internal parameters from the 
ground up. The architecture of this supervised deep learning was as 
follows: The neural network comprises: 

(1) Input layer: The input layer has a shape of (width = 128, height 
= 128, depth = 64, 1), means that the input data is a 3D image with 1 
channel.(2) Convolutional layers: The convolutional layers use filters of 
size (3, 3, 3) to extract spatial features from the input data. The filters are 
applied to the input data in a sliding window fashion, and the outputs of 
the filters are combined to produce a feature map. The feature maps are 
then passed to the next convolutional layer, where more complex fea-
tures are extracted. (3) Max pooling layers: The max pooling layers 
down sample the feature maps by taking the maximum value from a pool 

of pixels. This helps to reduce the computational complexity of the 
model as well helps to prevent overfitting. (4) Batch normalization 
layers: The batch normalization layers normalize the outputs of previous 
layers, which helps to improve the stability of the training process. (5) 
Global average pooling layer: The global average pooling layer averages 
the outputs of all the convolutional layers, which produces a single 
feature vector. (6) Dense layers: The dense layers project the feature 
vector onto a new space. The first dense layer has 512 units, and the 
second dense layer has 1 unit. (7) Output layer: The output layer pro-
duces a single output value, which is the probability of the input data 
belonging to a certain class. The parameters of the neural network are 
optimized and compiled. The architecture of the model can be seen on 
Supplementary Fig. 1. 

After loading the data, it was segregated into defined “Normal” and 
“Malformed” groups. Then, augmented images for training the CNN 
were generated. Data augmentation and auto-contrast functions were 
used each time the training and test data were read, respectively. 

The following data augmentation methods were used: random 
rotation range (<10◦), random horizontal shifts (− 40px-+40px for three 
axes), random zoom (65–145%), and random rotation (<15◦). Addi-
tionally, contrast correction was performed by randomly removing the 
lowest and highest values within 0–2%. Image contrast was altered for 
the auto-contrast function by removing the 0.7% of minimum and 
maximum values. All parameters were used to apply random trans-
formations to the images to increase the size of the training dataset and 
improve the robustness of the model. Batch size has been set to 50. For 
each dataset, the maximum number of epochs was set at 100, and 
training was terminated early if the validation loss did not decrease after 
10 epochs. Structure of the model could be seen in Supplementary Fig. 1. 
The models trained on an NVIDIA GeForce RTX 4080 Laptop GPU with 
12 GB GDDR6 VRAM. We tested the model after training it to see how 
well it performed. 

2.3. Validation, statistic evaluation 

To validate the developed decision support system, 100 images (50 
“Normal” and 50 “Malformed”) images randomly selected (and sepa-
rated before model development, and these images have never seen by 
the model during the model training). AI performance for the full dataset 
(except 100 images for interobserver analysis) was also measured with 
standard Area Under the Curve of the Receiver Operating Characteristic 

Fig. 3. Supervised deep learning model architecture.  
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curve (AUC-ROC) curve. 
Statistical analyses: The Spearman rank-order correlation coefficient 

was used to calculate the correlation between two variables. Analyses 
were carried out using Python 3.12.0. 

3. Results 

The analysis included 600 “Normal” anatomy and 600 “Malformed” 
CT series, as can be seen in the flowchart (Fig. 1.) and evaluated. The 
most prevalent abnormality was cochlear hypoplasia. 

Cropping tools accuracy: Hounsfield units and distance-based crop-
ping algorithm achieved the following mean accuracy of 87.2% with the 
malformations. The determined point is more likely to be located around 
the semi-circular canals. Two-staged spatial auto k-means clustering 
cropping algorithm achieved 92.5% mean accuracy with the malfor-
mations. Determined point is closer to the basal turn center and Internal 
auditory canal. Detailed accuracies per malformation types, “Normal” 
and “Malformed” groups, and for pre and postoperative groups could be 
seen in Table 1., Table 2., and Table 3. 

During the development of AI classifier, accuracy, precision, recall, 
and F1 scores are 0.812, 0.791, 0.8, and 0.766, respectively. The su-
pervised DL learning provided accurate categorization in each of the 
four situations. Performance shown by the area under the curve (AUC) is 
0.86 (95% CI: 0.81–0.91). On top of application programming interfaces 
(API), graphic user interface (GUI) was built (Fig. 4, Video 1). 

Supplementary video related to this article can be found at https://d 
oi.org/10.1016/j.compbiomed.2024.108168 

4. Discussion 

In this study, we developed a method for getting fully automatized 
and immediate response for differentiating normal from malformed 
pathologic inner ear anatomy, as well a decision support tool for a 
complex aspect of inner ear surgery. Two automatized cropping tools 
developed for cropping the inner ear volume, performances have been 
measured and compared. Additionally, we created a DL model using a 
multicentric, multi-national CT series, and we assessed the models’ ac-
curacy, precision, recall, and f1 score as well as their overall perfor-
mance (AUC). By using cross-sectional medical imaging, our goal was to 
create an AI-based efficient software with GUI for inner ear diagnosis. 
Radiology was revolutionized by deep learning, which made it possible 
to identify anatomical variation [13]. Smaller datasets were used in 
earlier deep learning-based studies on the diagnosis of malformations in 
head and neck/temporal bone CT scans [5,6,14]. 

The differences in accuracy between the HU-based and K-means 
based algorithms are not generally attributable to the type of anatomy. 
For instance, the HU-based algorithm incorrectly identified teeth and 
skull fragments in a small number of instances, whereas the K-means 
algorithm did not exhibit these errors. The differences in accuracy for 
different anatomical types are likely attributable to the variability in the 
input data. For example, in the case of cochlear hypoplasia (CH), the 
accuracy can vary depending on the specific subcategory (CH I, CH II, 
CH III, or CH IV) [1], which may cause the HU-based algorithm to 
perform less consistently than the K-means algorithm (84% and 95%, 
respectively). 

We assumed that a completely self-developed, easily structured 
would be suitable for classification, which was also confirmed by the 
fact in another study with a lot more complex architecture they reached 

almost the same accuracy [6]. In our study, we created a unified method, 
which uses directly CT series as an input, therefore we do not lose any 
data during the training of the model, which could lead to a model that is 
more trustful compared to a model that uses a segmentation, then a 
point cloud. Moreover, in our case, any clinical CT can be used as an 
input regardless of the input matrices which makes it applicable 
worldwide, especially in developing countries with older CT machines 
and a lack of professional staff. Ogawa et al. reported applying unsu-
pervised DL using 3D variational autoencoder in detecting inner ear 
abnormalities on CT images with fewer malformation types and was 
limited to a single institute [5]. Overall, we ended up with a solution that 
is completely automatized and not limited by a semi-automatized 
method [5] or lack of variance of input data during the training [6]. 
We developed a model with good supervised learning accuracy [15] 
however, Ogawa et al. found unsupervised learning to be more prom-
ising and achieved the highest accuracy when compared to other su-
pervised learning based studies. This is noteworthy due to high variance 
between the two unsupervised learning based models’ performance for 
the same purpose, which raises questions [5,6]. Moreover, the software 
could be used for primary screening of inner ear malformations in pri-
mary care settings or for incidental CT examinations of newborns. 

A systematic review by Huang et al., in 2023 found that deep 
learning models have achieved diagnostic accuracy comparable to that 
of human experts in narrow clinical tasks for several medical domains 
and imaging modalities [16]. Given the complexity of inner ear 
anatomical variations, it would be advantageous for end-users to have 
an assistive AI tool in their decision-making, especially during the 
preparation of cochlear implant surgeries. This tool could aid in the 
selection of the appropriate electrode for a patient-tailored setting and 
in taking precautionary steps to seal the cochlea well stopping the ce-
rebrospinal fluid gusher, a complication that occurs in most incomplete 
partition type III cases. If unnoticed by the ENT surgeon prior to surgery 
can lead to interoperative complications. Fujima et al. also were of the 
opinion that deep learning techniques are a beneficial adjunct to the 
diagnostic process for specific diseases on head CT scans and the per-
formance of AI is not significantly different from that of human experts 
[17]. While the goal of this tool is to assist the average user in the 
absence of a radiological specialist, it is worth conducting studies 
comparing DL AI model and a group of radiologists and experts. 

In our study, we used diversification approach to reduce risk based 

Table 1 
Accuracy table for the proposed algorithms on the pre-operative data. Abbreviations: Hounsfield unit (HU), Normal anatomy (NA), Common cavity (CC), Incomplete 
partition type I, Incomplete partition type III (IPIII), Enlarged vestibular aqueduct syndrome, Ossification (OS), Cochlear hypoplasia (CH).  

Algorithm NA CC IPI IPIII EVAS OS CH Overall 

HU-based 83% 93% 94% 76% 86% 88% 84% 87.2% 
K-means-based 90% 88% 98% 93% 88% 95% 95% 92.5%  

Table 2 
Accuracy comparison between algorithms on post and pre-operative scans. 
Abbreviation: Hounsfield unit (HU).  

Algorithm Post operative Pre-operative 

HU-based 41% 87.2% 
K-means-based 88% 92.5%  

Table 3 
Overall cropping accuracies for normal and abnormal anatomies. Abnormal 
group consists of Common cavity (CC), Incomplete partition type I, Incomplete 
partition type III (IPIII), Enlarged vestibular aqueduct syndrome, Ossification 
(OS), Cochlear hypoplasia (CH). Abbreviation: Hounsfield unit (HU).  

Algorithm Normal anatomy Abnormal 

HU-based 83% 88% 
K-means-based 90% 93%  
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on the Nobel Prize-winning study by Markowitz, who first described that 
returns can be increased while keeping risk low by diversifying a port-
folio [18]. Thus, we involved input images from different institutes and 
countries covering wide variations in inner ear anatomy making our 
model strong thereby benefitting young residents and physicians prior to 
CI surgery. However, the strict requirements of the General Data Pro-
tection Regulation (GDPR) make it difficult for other parties to provide 
images, so using the tool locally may be a viable approach to obtaining 
additional expert opinions from outside of the institute. Another 
possible implementation is to support the additional post-processing of 

the temporal bone, based on the caution of software, to help radiologists 
report faster. 

One of the limitations of our software is that we had used only 1200 
cases from three countries to train and test our AI model which certainly 
needs improvisation involving more sites and several images to make a 
robust model. The limitations of the cropping algorithms are the 
following: HU-algorithm detected the teeth, and parts of the skull in a 
few cases. This would have caused the lower overall accuracy of the HU- 
algorithm based crops compared the K-means solution. K-means algo-
rithm detected the skull in those cases where the inner ear is far from the 

Fig. 4. Software prototype GUI along with functions and the classification at the time of submission of the draft. Abbreviations: graphical unit interface (GUI).  

Fig. 5. Mid-modiolar section of an ossification, incomplete partition type I, normal anatomy (upper line), incomplete partition type III, cochlear hypoplasia, common 
cavity (bottom line). 
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volume center. Perhaps we could have achieved higher specificity and 
sensitivity if we had used unsupervised 3D techniques or 3D-Region- 
Based Convolutional Neural Network (RCNN) as reported by Ogawa 
et al. [5] However, AUC values were, varied in different research that 
used the same unsupervised methodology. In the next study, our soft-
ware should be validated by human experts. Future research needs to 
focus on the development of multi-class classifiers for additional cate-
gories of malformations, auto-3D segmentation of the complete inner 
ear, and/or AI-based methods for cochlear nerve research using mag-
netic resonance imaging diffusion tensor imaging (MRI DTI). A notable 
limitation of our study is that we were unable to include all types of 
malformations, including vestibular malformations, due to the balanced 
distribution of data. 

Deep learning methods have the potential to be a valuable tool for 
the identification of inner ear malformations on head CT scans. This 
technology could serve as an effective adjunct to the diagnostic process. 

5. Conclusions 

This research shows the development and validation of a possible 
fully automatized workflow for classifying normal versus abnormal 
inner ear anatomy. The tool could carry good diagnostic accuracy during 
risk stratification, however, must be supervised by the decision-maker. 
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