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How individuals perceive and process diagnostic device 
errors
Moritz Beckera and Christian Matt b

aInstitute for Digital Management and New Media, Ludwig-Maximilians-Universität München (LMU), 
Munich, Germany; bInstitute of Information Systems (IWI), University of Bern, Bern, Switzerland

ABSTRACT
Diagnostic device errors by health wearables cannot be avoided 
entirely, but they can have dramatic consequences for individuals, 
who are, consequently, deeply concerned and may refrain from 
using. However, it remains unclear how individuals assess and 
respond to potential diagnostic device errors when adopting health 
wearables. The present study unpacks this ‘black box’ using the 
elaboration likelihood model (ELM) to evaluate how potential diag-
nostic device errors translate into error perceptions, error processing, 
and behavioural reactions enacted through central and peripheral 
route cues. Based on a survey of 193 people with diabetes, we unveil 
that while peripheral cues are activated, most of the error processing 
is conducted consciously, strongly contributing to individuals’ atti-
tude formation towards health wearables and their usage intention. 
These insights improve our theoretical understanding of user percep-
tions and responses to potentially erroneous health wearables. 
Furthermore, they guide suppliers in optimising their strategic pro-
duct development and communication strategies.
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1. Introduction

Health wearables include smartwatches, patches, chest straps, wristbands, and others. They 
are frequently used for monitoring cardiometabolic health based on indicators such as heart 
rate, glucose, and electrocardiogram, as well as respiration, sleep, diet, or specific symptom 
monitoring (M. A. Lee et al., 2023). However, not only for health wearables, system errors 
remain a major obstacle to system adoption and usage, and are often not fully avoidable, for 
technological (e.g. underlying data is subject to measurement error) or economic reasons (e.g. 
if the elimination of the errors would entail unacceptable costs). Diagnostic device errors are 
system-related errors during the diagnostic process that are caused by the technological 
abilities of the involved health IT. In a domain as critical as personal health, understanding 
how users perceive and respond to IT errors is essential since such errors can substantially 
affect physician-patient relationships (Dave et al., 2021; Kistler et al., 2010) and even be lethal 
(Cryer, 2002), e.g. if a patient were erroneously advised to take an incorrect dose of medicine.
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Patients are interested in keeping the diagnostic device error rates low but are often 
not free to choose the medical equipment themselves. Acceptance and trust in the data 
that patients obtain from such devices are highly relevant in digital health ecosystems 
(Solberg et al., 2022). Unlike in the professional context, in the private context, individuals 
can freely choose which health wearables they want to use. Factors of performance 
expectations, effort expectancies, social influence, healthcare threat, and trust signifi-
cantly impact patients’ intention to adopt healthcare IoT (Dadhich et al., 2022). By making 
their own choice on healthcare devices, individuals may thus directly influence the level of 
potential diagnostic device errors they are exposed to.

While prior research has examined the economic consequences of diagnostic device errors 
and health wearables’ accuracy or provided technological recommendations for improving error 
margins (Rodbard, 2016), only little research has focused on the impact of such technology- 
induced hazards on user behaviour. Bitkina et al. (2020) presented an overview of the current 
state and the future challenges within medical devices’ usability and user experience. The paper 
points out the importance of improvements in reliability and safety on medical devices for the 
health care system but also highlights the necessity to carefully consider the user side in all 
development stages of medical devices. Also, from usability research on personal digital 
assistants in health care, we know that errors are one of five critical elements: learnability, 
efficiency, memorability, and satisfaction (Lindquist et al., 2008). We still miss a deeper under-
standing of how diagnostic device errors are perceived and what kind of decision processes this 
institutes. Even more, we do not know whether users take such decisions consciously and how 
they balance the potential pros and cons when deciding on using health wearables. We ask: How 
do individuals perceive and process diagnostic device errors?

To answer these research questions, we surveyed 193 people with diabetes. For these 
individuals, digital self-monitoring of their health status is an integral part of their disease 
management, while diagnostic device errors can have severe consequences. To uncover 
how these individuals process diagnostic device errors and how this affects their attitude 
towards and their usage of health wearables, we use an elaboration likelihood model (ELM) 
to distinguish between central (more conscious and thoughtful) and peripheral (less con-
scious and thoughtful) process routes. We examine the effects of potential hazards arising 
from using potentially erroneous health wearables on users’ decision-making. We also 
explain how individuals process these technology-induced hazards, providing suppliers 
with more insights on how to communicate potential error levels to users.

2. Conceptual foundations

2.1. Diagnostic device errors and their consequences

Given the rising impact of IT in the health domain, e.g. the development of wearable 
blood pressure monitoring rings (Sel et al., 2023), health wearables can be a means to 
reduce diagnostic errors but also a missed opportunity to make timely or correct diag-
nosis (Singh, 2014) but also constitute the source of diagnostic errors (Fontil et al., 2019). 
Diagnostic device errors are caused by health wearables’ technological abilities and occur 
during the diagnostic process as total measurement errors if the variable is continuous or 
misclassifications if the variable is discrete (Yang et al., 2018). Unfortunately, health 
wearables have error margins of up to 30% (Takacs et al., 2014).
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Diagnostic device errors can be very costly for healthcare systems when they cause 
misdiagnosis-related harm, which is ‘preventable harm that results from the delay or 
failure to treat a condition actually present (when the working diagnosis was wrong or 
unknown) or from treatment provided for a condition not actually present’ (Newman- 
Toker & Pronovost, 2009, p. 1060). Concrete consequences can range from no or little 
harm to severe harm (including death) and include psychological and medical costs to 
patients, malpractice claims to physicians, and incurred financial costs for healthcare 
systems. For people with diabetes, diagnostic device errors can potentially lead to acute 
hypoglycaemia or hyperglycaemia, and the individuals may fail to seek the needed 
services or treatment and run the risk of permanent functional impairment (Cryer,  
2002). Considering healthcare systems, if people with diabetes use the least accurate 
blood glucose monitors, this would lead to additional annual costs in the U.S. of approxi-
mately $339 million for Type 1 patients and approximately $121 million for Type 2 
patients (Budiman et al., 2013). Diabetes mellitus affected 537 million people globally in 
2021, and over 6 million deaths occurred. Forecasts predict that 643 million people will 
have diabetes by 2030, which is 1 out of 9 adults. Therefore, research on diabetes plays an 
important role, and it utilises the most recent technological trends, such as forecasting 
blood glucose levels using artificial intelligence (Ahmed et al., 2023).

2.2. Information processing of diagnostic device errors

By collecting personal health information from a broader population and analysing it in 
real-time, health wearables provide instantaneous, goal-oriented feedback that can help 
individuals better understand their health status and identify possibilities to support 
healthy behaviours (Piwek et al., 2016). The adoption of wearable devices increases 
quickly (Kaplan et al., 2023), making it important to understand the impact of such 
devices. Among others, wearable devices were associated with improved health percep-
tion, self-care (Hydari et al., 2023), and longer workout duration, which in turn helped 
reduce psychological distress (Choudhury & Asan, 2021). Along with other medical 
devices and online platforms, health wearables also profit from recent advancements in 
wearable technologies and AI to enable individuals new possibilities of medical self- 
diagnosis (Aboueid et al., 2019). However, since the sensor capacities for health wearables 
are still in their infancy, diagnostic device errors cannot fully be avoided, and so it is not 
only the personal health information but also their sensitivity to being flawed that 
individuals need to consider when using health wearables. Although diagnostic device 
errors play a key role in individuals’ satisfaction with health wearables, there is insufficient 
knowledge about how individuals perceive them and process them as part of their 
technology usage decisions. Applying dominant IS acceptance models as well as theories 
of attitude formation (Bandura, 1993; Rogers, 1983) is not suitable to shed more light since 
they focus only on reflective precursors of action and assume that changing a person’s 
conscious cognitions will lead to substantial changes in attitudes and behaviours. Since 
these cognitive approaches have shown insignificant explanatory power, dual process 
models have been developed to distinguish a conscious (central) and an unconscious 
(peripheral) path in information processing (Hagger, 2016). Following such dual process 
perspectives, individuals may process potentially erroneous health information along two 
routes: first, the more thoughtful and cognitively effortful route that is used when 
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individuals are both motivated and able to think about the consequences of misdiagno-
sis-related harm (central route); second, the less thoughtful and cognitively effortful 
(peripheral) route, which dominates when motivation or ability are low and affects 
dominate (Petty & Cacioppo, 1986; Strack & Deutsch, 2004). In IS research, dual-process 
theories have frequently been used to explain how recipients process received informa-
tion, indicating a high fit to explain how individuals process specific information, such as 
(erroneous) health information (Hagger, 2016; Sheeran et al., 2013). Therefore, this dual- 
route processing is directly triggered by individuals’ error perceptions, which are the 
mental representation of the diagnostic device errors. Thus, individual error perceptions 
are followed by dual-error processing over central and peripheral routes, eventually 
affecting individuals’ attitude formations and usage intentions.

3. Research model and hypothesis development

3.1. Research model

As the basis for our research model, we use the elaboration likelihood model (ELM), which, 
unlike many other models commonly used to study consumer behaviour, explains how 
messaging affects changes in individuals’ attitude and their decision making (Shahab 
et al., 2021). Originally developed in the early 1980s (Petty & Cacioppo, 1986), the ELM is 
one of the most prominent dual process models that explain individuals’ information 
processing (Figure 1). A dual process model explicitly allows us to distinguish conscious 
from unconscious processing alternatives to understand more of the level and depth of 
use processing while dealing with errors. ELM suggests that a person has a continuum of 
elaboration approaches to processing information. Individuals may elaborate on issue- 
relevant thinking or use simple decision rules to respond to this information. The nature of 
elaborative processing goes beyond simply paying attention to or comprehending the 
arguments in the message. Elaborative processing involves generating one’s own 

Figure 1. Conceptual research model.
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thoughts in response to the information to which one is exposed. ELM has been success-
fully applied in similar research fields, providing a detailed understanding of how infor-
mation processing is conducted and which cues are affected (Angst & Agarwal, 2009; 
Bhattacherjee & Sanford, 2006). Using mobile health applications as an example, ELM has 
also been used to show that information and system quality affect persistent use and are 
processed on two routes (Guo et al., 2020).

We use the ELM conceptualisation of Tam and Ho (2005) and integrate established 
variables with high contextual fit on both routes. The focus of error processing through 
the central route is closely linked to individuals’ perceived desirability of the conse-
quences and the perceived likelihood that these consequences will occur (Ajzen & 
Fishbein, 2000). Research suggests that risk perception is a suitable measure to assess 
the negative effects about IT derived from central route processing (Rhodes & Pivik, 2011). 
Since diagnostic device errors are directly tied to individuals’ wellbeing, occurring risk 
perceptions are an inherent attribute of health wearables adoption. However, despite 
health wearables’ advantages for individuals, such as the more convenient measurement 
or automatised data analysis and storage, proper handling of health wearables is 
a requirement. For the central processing, we therefore integrate self-efficacy 
(Schwarzer, 2014), as an important antecedent of technology adoption and usage deci-
sions in healthcare (Zhang et al., 2018) to account for individuals’ perceived capability to 
perform a target behaviour (Johnston & Warkentin, 2010). However, the central route is 
only taken when error processing is based upon critical thinking and the triggering 
information of diagnostic device errors is given due consideration. The recipient scruti-
nises all available information relevant to the message. If recipients lack either the 
motivation or the ability to process the detailed information concerning the diagnostic 
device error, they engage in peripheral processing. To account for these rather simple 
cues for judgement formation, we use threat perception, as an emotional feeling that 
serves as the non-calculable affective counterpart to risk perception (DeSteno et al., 2004). 
Again, for peripheral route processing, we not only cover potential negative effects but 
also seek to analyse individuals’ balancing of potential positive and negative factors when 
deciding on health wearables usage. Chronic diseases, especially, often put substantial 
burdens and worries on patients, and health IT can help reduce this distress by providing 
effective support in self-management behaviour (Fisher et al., 2013). We therefore include 
health distress reduction as the second peripheral variable to account for the potentially 
positive functional effects of health wearables on individuals (Kendall, 2013).

3.2. Effects of error perceptions on error processing

Risk perception is ‘the subjective belief that there is some probability of suffering 
a loss in pursuit of a desired outcome’ (Pavlou & Gefen, 2004, p. 41). It can be driven 
by uncertainty about the potential consequences of acting on inaccurate informa-
tion. Research has unveiled that quality of information (i.e. accuracy) can substan-
tially reduce perceived risk in the context of information exchanges and web-based 
health information-seeking (Nicolaou & McKnight, 2006). Risk perceptions relate to 
potentially undesired effects of technology use and comprise a collection of notions 
that individuals form based on different risk sources and the information available to 
them (Nicolaou et al., 2013). Thus, risk perceptions are based on the potential risks 
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arising from the use of health wearables, based on an assessment of the health 
information provided to them. It has been shown that insufficient information 
quality can trigger risk perceptions (Nicolaou & McKnight, 2006; Park et al., 2015). 
Based on this, we also expect a direct link between the perceptions of health 
wearables’ sensitivity for diagnostic device errors and individuals’ risk perceptions. 
We hypothesise: 

H1: Error perceptions will positively influence risk perception.

Self-efficacy, defined as the perceived capability to perform a target behaviour, is 
a substantial predictor of various health behaviours and is proposed to be important for 
the self-management of chronic diseases (Lorig et al., 1999; Schwarzer, 2014). However, 
compared to its effects, much less is known about the predictors of self-efficacy. 
Concerning IS adoption, various behavioural, cognitive, and environmental factors have 
been found to influence computer self-efficacy; these include ill-defined performance 
levels, ambiguous feedback, and inaccurate information (Lam & Lee, 2006). In line with 
this, individuals’ self-efficacy depends on accurate information for their disease self- 
management, which provides individuals with more independence and can help them 
to understand their disease better. Diagnostic device errors can lead to restrictions in 
individuals’ self-management effectiveness and user complaints (Breton & Kovatchev,  
2010). Qualitative research also suggests that only effective self-monitoring of personal 
health information positively affects perceived self-efficacy (Ong et al., 2014). Following 
this, error perceptions may decrease self-efficacy by impeding individuals’ convenient 
self-management of their health status. Thus, we hypothesise: 

H2: Error perceptions will negatively influence self-efficacy.

Researchers typically label an implication of present or future harm as a threat and 
predicate beliefs in its efficacy on the notion that certain effects follow as long as the 
threat is perceived by individuals (Johnston & Warkentin, 2010). Following Walter and 
Lopez (2008), we define individuals’ perceived health threats as the extent to which 
individuals believe that using a health wearables will decrease their control over the 
conditions, processes, procedures, or content of their health status. In general, threat 
perceptions are a key predictor of responses to health information. Health and neurop-
sychology researchers have developed frameworks that account for the ways in which 
people respond to health information that individuals perceive uncomfortable or threa-
tening (Rogers, 1983). For instance, these studies demonstrate that cognitive or atten-
tional modulation of amygdala activation are evoked by emotional or threatening cues 
(Dvorak‐Bertsch et al., 2009). Individuals perceive threats when viewing photographic 
images with negative valence, during negative emotional imagery, and during the 
anticipation of electric shocks (Curtin et al., 2001). We see diagnostic device errors as 
potential misdiagnosis-related harm that can cause further threat perceptions. Following 
previous evidence, we hold that threat stimuli caused by diagnostic device error percep-
tions may influence individuals’ peripheral processing unless their cognitive capacity is 
essentially exhausted, and their threat cues are activated. We hypothesise:

6 M. BECKER AND C. MATT



H3: Error perceptions will positively influence threat perception.

Health distress refers to the frequently hidden emotional burdens, stresses, and worries 
associated with managing demanding, progressive, chronic diseases (Gonzalez et al.,  
2011). Research suggests that computer-based supportive interventions to improve self- 
management behaviours will reduce health distress, owing to a reduction of worries and 
concerns about poor disease management (Fisher et al., 2013). Owing to their support in 
individuals’ self-management, health wearables should lower users’ frustrations owing to 
disease-associated restrictions and make them feel more courageous and less afraid 
concerning the future development of their health status. A related aspect is that IT- 
based health-promotion technologies can help individuals better understand their stress 
sources and lower health distress (Bosworth et al., 1995). Providing detailed information 
on physiological activities (e.g. heart rate) can help users better adapt their stress-related 
physiological activities to improve their health. However, while correctly functioning 
health wearables have this positive potential for distress improvement, diagnostic device 
errors might inhibit these positive effects. In contrast, such errors might even create 
additional worries, making individuals fall into an aversive negative state in which coping 
and adaptation processes fail to return to physiological and/or psychological homoeos-
tasis, and the extent of the distress reduction is lower (Carstens & Moberg, 2000). We 
therefore hypothesise: 

H4: Error perceptions will negatively influence health distress reduction.

3.3. Effects of error processing on attitude formation and usage intention

Risk perceptions are a powerful predictor of consumers’ behaviours, attitudes, and their 
motivation to avoid mistakes. They substantially influence individuals’ information adop-
tion and purchase decisions (Nicolaou & McKnight, 2006; Pavlou & Gefen, 2004). Since 
user behaviour varies subject to individual risk perceptions, segmentation by risk percep-
tion is an effective strategy to predict consumer attitudes and intentions towards specific 
products or services. For instance, higher user risk perceptions negatively influence 
attitudes towards internet shopping, online purchasing, and mobile banking services 
(Luo et al., 2010). In healthcare contexts, where risk perceptions often relate to beliefs 
on vulnerability to a disease, they are a significant predictor of self-protective behaviour 
(Schwarzer, 2008). According to the health belief model (Janz & Becker, 1984) and 
protective motivation theory (Rogers, 1983), risk perceptions significantly predict indivi-
duals’ likelihood of taking preventive action. For health campaigns, the perceived risk of 
catching a disease motivates attitude formation (Rimal, 2001). Research into health 
behaviours suggests that individuals with high-risk perceptions have more negative 
attitudes and fewer intentions to use health IT (Hsieh, 2015). Based on these findings, 
we hypothesise: 

H5: Risk perception will negatively influence attitude formation towards health 
wearables.

JOURNAL OF DECISION SYSTEMS 7



Previous studies have investigated how self-efficacy affects decision-making and beha-
viours (Bandura, 1993; Johnston & Warkentin, 2010). IS research suggests that individuals 
with high computer self-efficacy are more likely to develop positive attitudes and have 
higher technology usage intentions in general (Boss et al., 2015; Lam & Lee, 2006), as well 
as in the field of mHealth app adopt (Balapour et al., 2019). In healthcare, self-efficacy is 
a crucial determinant of individuals’ health-protective intentions and behaviours (Rahman 
et al., 2016; Schwarzer, 2014). Perceived self-efficacy and negative emotions also deter-
mine individuals’ information-seeking behaviours (S. Y. Lee et al., 2008). Since perceived 
self-efficacy involves subjective beliefs in one’s ability to perform a desired behaviour, 
these subjective beliefs reflect individuals’ perceived capabilities to use health wearables 
to accomplish health-related tasks. Self-efficacy affects information usage intensity in the 
context of heart diseases and increases individuals’ confidence to conduct breast cancer 
examinations (Rimal, 2001). Moreover, research confirms that attitude formation towards 
self-care is directly associated with higher self-efficacy (Walker et al., 2015). Following this, 
if self-efficacy increases, then attitude formation towards the object of these beliefs will 
also increase. Thus, we hypothesise: 

H6: Self-efficacy will positively influence attitude formation towards health wearables.

Research in various disciplines, such as politics, communication, psychology or healthcare, 
considers threats a particularly relevant source of attitude formation and action (Neuberg 
et al., 2011). When threats are perceived, individuals adjust their behaviour subject to the 
extent of damage they perceive to be associated with the threats. Transferred to the 
health context, if individuals perceive a threat to their health status, they assess the 
benefits and barriers to a recommended health action and change their attitudes accord-
ingly. Physicians’ threat perceptions have a negative impact on their attitudes to use 
health IT (Bhattacherjee & Hikmet, 2007). We follow this line of thought for the context of 
individuals and hold that: 

H7: Threat perception will negatively influence attitude formation towards health 
wearables.

The adverse effects of stress on individuals’ behaviours and attitudes are well-known from 
other fields (Ragu-Nathan et al., 2008). For instance, owing to the negative correlation 
between occupational stressors and attitudes to change, very stressed individuals demon-
strate decreased commitment and increased reluctance to accept organisational change 
interventions (Vakola & Nikolaou, 2005). Individuals who experience stress in their profes-
sion show poor attitudes towards their organisations and are more likely to resign. Health 
distress, covering the hidden emotional burdens, stresses, and worries associated with 
managing diseases, has been analysed as a determinant of user attitudes towards IT 
(Ahuja & Thatcher, 2005). We expect that, in individuals’ minds, a higher potential for 
a distress reduction owing to health wearables’ benefits will be connected to a more 
positive attitude towards health wearables. Thus, we hypothesise: 

H8: Health distress reduction will positively influence attitude formation towards health 
wearables.
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It is well-documented that attitudes influence behaviour by affecting behavioural inten-
tions (Kroenung & Eckhardt, 2015; Pavlou & Gefen, 2004). Adoption studies for health IT 
and ELM studies confirm the positive relationship between attitude formation and usage 
intentions (Angst & Agarwal, 2009). Also, many technology acceptance studies show that 
attitude towards IT influences the intention to use it (Venkatesh et al., 2012). We 
hypothesise: 

H9: Attitude formation towards health wearables will positively influence intentions to 
use health wearables.

4. Methodology

4.1. Procedure and participants

We conducted an online survey targeted towards people with diabetes, for whom 
digital self-monitoring of their health status is an integral part of their chronic 
disease management, and potential diagnostic device errors can have severe con-
sequences. After requesting basic details on sociodemographics and health status, 
participants watched a two-minute video explaining the functionality and use of 
actual health wearables. We used a non-invasive self-monitor watch that measures 
glucose levels through the skin without cumbersome and painful blood-based tests 
with a simple press gesture on the digital device. To ensure that participants 
completed the survey with a shared understanding, they received three test ques-
tions on the health wearables’ purpose of usage, which they needed to answer to 
continue the survey.

Diabetes is a long-term metabolic pathological condition in which the blood 
glucose level fluctuates outside the individual normoglycemic range (often between 
90 to 120 mg/dL). We implemented two error types and potential consequences 
thereof (Breton & Kovatchev, 2010; Rodbard, 2016). In detail, detecting an abnormal 
blood glucose level, although the de facto level is within the recommended limit 
(false-positive error), can induce over-cautiousness and lead to additional stress 
owing to an alarming diagnosis and potentially unnecessary physician visits. On 
the other hand, a failure to detect abnormal blood glucose levels (false-negative 
error) can lead to both hyperglycaemia (high blood glucose levels) and hypoglycae-
mia (low blood glucose levels). We use a three-group between-design (Table 1) with 
a health wearable without any error and two treatments that included a 30% chance 
for either a false-positive or a false-negative error (Takacs et al., 2014) (Appendix A).

We piloted the survey with four faculty members, eight doctoral students, and nine 
non-scientific respondents from different fields to ensure that the instructions and the 
wording of the questionnaire items were easy to understand and unambiguous. We 
made minor changes to the survey instructions and certain items’ wording. A market 
research company with substantial experience in this field administered the final 
sample.
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4.2. Operationalization of constructs

We used validated measures from prior studies to operationalise our constructs and 
adapted these to the context of health wearables. We used multi-item scales since 
they provide better predictive validity for construct measurement than single-item- 
constructs (Diamantopoulos et al., 2012). In this research context, these constructs 
apply to individuals who are affected by an omnipresent disease, e.g. diabetes, and 
can profit from health wearables to manage their health better. We measured the 
effects of individuals’ error perceptions by adopting the reliability construct from 
McKnight et al. (2011). Since self-efficacy and distress are fairly broad constructs and 
are used in various health and IS contexts (Schwarzer, 2014), we used specific health 
self-efficacy (Lorig et al., 1999) and distress scales (Lorig et al., 1996). We adapted these 
to the focal context of diabetes. We measured perceived threat using the items of Bala 
and Venkatesh (2015), who adapted Major et al. (1998) threat perception scale to the 
IS context. We measured risk perception with a scale adapted from Stone and 
Grønhaug (1993), with financial, performance, physical, and psychological loss compo-
nents and an additional item for health risks concerning diabetes. For attitude forma-
tion, we followed Dinev et al. (2016). Our usage intention items are based on the ELM 
study on IT acceptance by Bhattacherjee and Sanford (2006). Besides the demographic 
variables age and gender, we also controlled for the pre-attitude concerning blood 
glucose metres (Polonsky et al., 2015), individuals’ health status (Lorig et al., 1996), 
expertise about health wearables (H. S. Bansal & Voyer, 2000), and individuals’ trusting 
stances (McKnight et al., 2002). Appendix B provides an overview of all questionnaire 
items.

4.3. Measurement validity

To account for potential common method bias, we implemented the procedural 
remedies recommended by Podsakoff et al. (2003), such as providing contextual 
information and definitions to reduce ambiguity. Given the sensitivity of health 
information, we guaranteed respondent anonymity and ensured that their data was 
used only for scientific, non-commercial purposes. Harman’s single-factor test 
indicated that no factor explained more than 50% of the total co-variance 
among the measures (43.1% for the most vital influence factor). In addition, we 
followed Kock (2015) to assess all factor-level variance inflation factors (VIF) to test 
for common method bias. All values were below the recommended threshold of 

Table 1. Potential diagnostic outcomes and study design.

Potential Diagnostic 
Outcomes

Glucose level 
(reported)

within the below or above
normoglycemic the normoglycemic

range range

Glucose level 
(de-facto)

within the normoglycemic range Baseline: 
No error

Treatment 1: 
False-positive error

below or above 
the normoglycemic range

Treatment 2 
False-negative error

Baseline: 
No Error
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3.3, indicating the common method bias did not seem to have affected the data. 
For our data analysis, we used SmartPLS (Ringle et al., 2014), owing to its suit-
ability to help ‘understand the variation in the dependent variables that are 
explained by the dependent variables’ (Petter, 2018). While we succeeded in 
obtaining a clean sample of 193 actual people with diabetes, we cannot assume 
representativeness or fulfilment of the distribution requirements of co-variance- 
based structural equation modelling techniques. Concerning internal consistency 
reliability, all Cronbach’s alphas were higher than 0.7. To assess the reflective 
constructs’ convergent validity, we analysed the indicators’ reliability and each 
construct’s average variance extracted (AVE), which was above 0.5 for all cases 
(Appendix B). We assessed indicator reliability by examining the outer loadings of 
each item on its construct. All item loadings exceeded the suggested threshold of 
0.708, indicating adequate reliability (Chin et al., 2003). Values for composite 
reliabilities of constructs with multiple indicators exceeded the recommended 
threshold of 0.7. We assessed discriminant validity by analysing the cross- 
loadings, confirming that all factor loadings were higher than any cross-loadings. 
The AVE for all constructs was higher than the recommended threshold of 0.5. 
Further, the Fornell-Larcker criterion was validated, since the square roots of each 
construct’s AVE were higher than the correlations with all other constructs in the 
model (Table 2). Finally, considering the heterotrait-monotrait ratio of correlations 
(HTMT), all correlations were below the recommended threshold of 0.9. Thus, we 
obtained overall support for discriminant validity.

5. Results

5.1. Descriptive statistics and controls

One hundred ninety-three participants completed the survey, of which 118 were male 
and 75 were female. Sixty-eight participants had diabetes Type 1, and 125 had Type 2; all 
of them were on intensive insulin therapy (Table 3). All participants required regular self- 
monitoring of blood glucose, thus sharing a potentially high involvement in the study’s 
subject matter. More than three out of four participants (76.1 %) had to consult 
a physician about their diabetes at least every two months. Furthermore, a comparably 

Table 2. Interconstruct correlation matrix.
Mean s.d. AGE ATT EPR EXP GEN DDR HEA ITU RSK PRE SEF THR TRU

AGE 54.58 11.81 1.00
ATT 5.06 1.91 −0.09 0.97
EPR 3.96 1.66 0.01 −0.63 0.92
EXP 3.85 1.92 −0.18 0.16 −0.20 0.95
GEN 1.39 0.49 −0.34 0.01 0.04 0.02 1.00
DDR 3.91 1.95 0.00 0.47 −0.44 0.14 −0.01 0.93
HEA 4.23 1.55 −0.15 0.10 −0.06 0.21 0.01 0.13 1.00
ITU 4.68 2.12 −0.15 0.87 −0.54 0.20 0.06 0.47 0.12 0.99
RSK 2.83 1.51 −0.09 −0.47 0.49 −0.04 0.19 −0.21 −0.01 −0.36 0.80
PRE 5.04 1.39 0.01 0.16 −0.25 0.42 −0.03 0.29 0.20 0.20 −0.18 0.82
SEF 3.99 1.65 −0.07 0.65 −0.67 0.31 −0.03 0.54 0.13 0.61 −0.36 0.32 0.89
THR 1.90 1.44 0.07 −0.26 0.07 0.18 0.13 −0.10 0.04 −0.24 0.29 0.07 −0.11 0.91
TRU 4.26 1.33 −0.02 0.13 −0.05 0.26 −0.13 0.11 −0.02 0.21 −0.01 0.08 0.23 0.03 0.84
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large number of 57 participants gave us voluntary feedback, mostly appreciating our work 
and highlighting its relevance to them. This high ratio of voluntary feed increased our 
confidence in the respondents’ motivation.

5.2. Structural model and hypotheses tests

We used PLS analysis to verify our structural model and to test the hypotheses. To assess 
potential collinearity, we analysed the exogenous constructs’ variance inflation factors (VIF). 
All values were lower than 1.5 and thus well below the recommended threshold of 3.3. The 
overall variance explained was 51.6% for attitude formation and 78.4% for intentions to 
use. This suggests that our theoretical model explains a substantial share of the overall 
variance in the primary outcome variables. We conducted the bootstrap procedure with 
300 subsamples and 5,000 iterations to determine the significance of the different path 
estimates. Figure 2 presents an overview of the effect sizes and their statistical significance.

Concerning the effects of individuals’ error perceptions on the central route, as hypothe-
sised, error perception had a significant positive effect on individuals’ risk perceptions (p <  
0.001), supporting H1, as well as a significant negative effect on perceived self-efficacy (p <  
0.001), supporting H2. The effects of error perceptions on the peripheral route were less 
pronounced, leading to a significantly negative effect on health distress reduction (p <  

Table 3. Demographic profile of respondents.
Demographic characteristic Frequency Percentage

Male 118 61.1
Female 75 38.9

Age
19 or less 1 0.5
20–29 7 3.6
30–39 15 7.8
40–49 31 16.1
50–59 67 34.7
60–69 59 30.6
70–79 13 6.7

Education:
Secondary school 121 62.7
High school diploma 26 13.5
College degree 43 22.3
PhD degree 3 1.6

Diabetes type:
Type 1 68 35.2
Type 2 (on intensive insulin therapy) 125 64.8

Frequency of diabetes related physician consultation
Every month 12 6.2
Every 1–2 months 135 69.9
Every 3–6 months 40 20.7
Every 7–12 months 4 2.1
Less than 1× per year 2 1.0

Time since diabetes was first diagnosed
Less than 5 years 24 12.4
5–9 years 43 22.2
10–19 years 67 34.7
20–29 years 38 19.7
30–39 years 10 5.2
40 or more years 11 5.7
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0.001). Still, there was no significant influence on threat perception (p > 0.05). Thus, we 
obtained support for H4 but rejected H3. We then analysed the effects of the central and 
the peripheral route cues on individuals’ attitude formation. Both central route cues, risk 
perception, and self-efficacy significantly influence attitude formation towards health wear-
ables. The significant negative effect of risk perceptions on attitude formation (p < 0.01) 
provided support for H5, while the significant positive effect of self-efficacy on attitude 
formation (p < 0.001) provided support for H6. For the peripheral route, threat perception 
and health distress reduction had significant albeit less pronounced influences on attitude 
formation towards health wearables. For health distress reduction, the relationship was 
significant at the 1% significance level, providing support for H8, while for threat percep-
tion, we obtained significance at the 5% level, providing support for H7. As 
hypothesised, attitude formation had strong and significantly positive effects on intentions 
to use (p < 0.001), supporting H9. An overview of the hypotheses tests is reported in 
Table 4.

6. Discussion and implications

6.1. Discussion

Our research was motivated by the increasing reliance on IT, the significant consequences 
of IT errors on individuals in particular fields such as health IT, and the lack of knowledge 
on the perceptual and behavioural effects of IT errors on individuals. Using the example of 
people with diabetes, we sought to close existing research gaps by uncovering how 
individuals perceive, process, and respond to diagnostic device errors. Drawing upon the 
ELM, we found that perceptions of diagnostic device errors are processed along central 
and peripheral routes. Still, the former have a much stronger influence on individuals’ 
attitude formation and usage intentions. These findings will now be discussed.

Considering dual process models, we found that individuals primarily process diag-
nostic device errors using central cues, involving self-efficacy and perceived risk, and to 

Figure 2. Research model results.
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a lesser extent, through a potential reduction of health distress as a peripheral cue. These 
results align with other ELM studies that found attitude formation is simultaneously 
influenced by a continuum of both peripheral and central cues (G. Bansal et al., 2015; 
Bhattacherjee & Sanford, 2006). The uncertainty about novel technologies and their 
functioning can reinforce dual-route processing (Angst & Agarwal, 2009; Tormala, 2016). 
However, while uncertainty generally stimulates dual-route processing, central processes 
often predominate. Individuals engage in deeper and more thoughtful information 
processing when they feel uncertain, stimulating involvement and, therefore, central 
information processing (Petrocelli et al., 2007). We interpret that individuals processed 
diagnostic device errors primarily using central cues: diagnostic device errors lead to 
uncertainty and produce a desire for certainty, leading individuals to process available 
information more deeply and thoughtfully (central route) (Tormala, 2016).

Our results also show that both routes influence individuals’ behavioural responses in 
determining their attitude formation towards health wearables. The specific route used to 
enable attitude formation is critical because central route attitude formation tends to 
have different consequences and properties than peripheral route attitude formation 
(Petty & Cacioppo, 1986). Several studies provide evidence that attitudes resulting from 
more effortful thinking better predict behavioural intentions and guide actions than 
attitudes resulting from little thinking (Barden & Tormala, 2014). Since we found central 
cues, i.e. risk perception and self-efficacy, to be dominant, and since attitudes that result 
from central route processes tend to be stronger than those from peripheral route 
processes, attitudes concerning diagnostic device errors are likely to be more persistent 
and resistant over time when challenged by contrary information. In addition, strong 
attitudes guide thinking and, perhaps most importantly, behaviour (Ajzen & Fishbein,  
2000). This means that health wearables with few diagnostic device errors could even-
tually lead to strongly positive attitudes towards health wearables. If these attitudes 
towards health wearables persist in individuals’ memory, they are more likely to continue 
to influence behaviour over time than weak attitudes, leading to higher intentions to use 
(Sheeran et al., 2013; Strack & Deutsch, 2004). These are essential insights regarding initial 
technology adoption decisions and algorithm aversion (Daschner & Obermaier, 2022; 
Weiler et al., 2022).

Concerning the individual constructs on both routes, we found that individuals care-
fully scrutinise and evaluate diagnostic device errors using self-efficacy and risk percep-
tion. These effects are in line with previous IS and health studies (Boss et al., 2015; Breton 
& Kovatchev, 2010; Ong et al., 2014). First, perceived self-efficacy is a crucial determinant 
of individuals’ attitudes to technology, continuance, and switching decisions (Rahman 

Table 4. Results by hypothesis.
Hypothesis Support?

H1: Error perceptions -> Risk perception Yes
H2: Error perceptions -> Self-efficacy Yes
H3: Error perceptions -> Threat perception No
H4: Error perceptions -> Health distress reduction Yes
H5: Risk perception -> Attitude formation towards health wearables Yes
H6: Self-Efficacy -> Attitude formation towards health wearables Yes
H7: Threat perception -> Attitude formation towards health wearables Yes
H8: Health distress reduction -> Attitudes formation towards health wearables Yes
H9: Attitude formation towards health wearables -> Intentions to use health wearables Yes
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et al., 2016). Given the importance of health to everyone, individuals may be more 
reluctant when doubting the reliability of IT as a potential risk to their health. In line 
with previous research that has demonstrated the adverse effects of risk perceptions on 
attitudes (Luo et al., 2010), our results support this relationship for health wearables and 
contribute to other research on risk perceptions and decision-making (Nicolaou & 
McKnight, 2006; Nicolaou et al., 2013; Park et al., 2015) by uncovering that error percep-
tions function as an antecedent of individuals’ risk perceptions. We further obtained 
support for the effects of error perceptions on individuals’ health distress reduction, but 
we need to note that their threat perceptions were not affected. Concerning health 
distress reduction, our results align with self-regulation models (Leventhal et al., 2003). 
Studies on technostress, i.e. the negative stress of end users owing to the introduction of 
new technologies (Mahapatra & Pillai, 2018), demonstrate the notable effects of both 
acute (Ragu-Nathan et al., 2008) and chronic (Riedl et al., 2012) technology stressors on 
physiological parameters, which in turn have been shown to have the potential to affect 
health considerably (Ragu-Nathan et al., 2008). For individuals, bodily symptoms from 
distress may intermingle with symptoms from physical illness, increasing the experience 
of poor health. Thus, the unexpected experience of diagnostic device errors can create 
health distress and direct their attention inward towards bodily processes (Gonzalez et al.,  
2011), which block conceptual, rational considerations of effective coping and can result 
in negative attitudes towards health wearables. Concerning individuals’ threat percep-
tions, at first glance, it might seem counter-intuitive that error perceptions do not 
significantly affect threat perception. However, our interpretation is that, when consider-
ing health wearables, individuals evaluate the long-term use of health wearables and, 
therefore, consider the consequences over several years (Davey et al., 2012). In contrast to 
rather easy or short-term decisions, such as subliminal classical conditioning that occurs 
outside of awareness, important life decisions require more careful consideration and are 
therefore processed along the central route. Thus, the occurring peripheral threat cues 
considering diagnostic device errors could be outweighed by other more conscious and 
more rational central processing factors.

6.2. Implications for theory

The empirical results of our study revealed three key findings, each of which contributes 
to theory. We uncovered the underlying mechanisms of the perceptions and processing 
of diagnostic device errors along central and peripheral cues and their attitude formation 
and usage intentions concerning health wearables. Using an ELM-based dual information 
process model instead of IT acceptance models, we uncovered the influences of diag-
nostic device errors on attitudes to erroneous health IT. Thus, we complement prior IT 
acceptance theories by emphasising that IT acceptance should be preceded and framed 
by informational contexts around the technology in question. At the same time, we 
obtained rich insights and supported the growing research streams of dual process 
models of health behaviours (Hagger, 2016; Sheeran et al., 2013).

The identified non-significant influences of error perception on perceived threats are 
a contribution rather than a limitation. On the one hand, studies in cognitive psychology 
show that peripheral cues significantly impact cognition (central cues) (Forgas, 2002). On 
the other hand, IS and neuropsychology uncovered that central higher-order processes 
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can regulate amygdala-mediated peripheral processes (Riedl et al., 2012). We followed 
the second research stream and argued that peripheral threat cues could be regulated in 
individuals’ minds by central higher-order processes of conscious rational calculation of 
the likelihood of losses (e.g. risk perception). Such central regulation may also occur in 
other technology contexts where individuals are highly involved because they depend on 
such technologies (i.e. online banking). Since these individuals are often experienced and 
trained in their usage over time, this often makes them more confident in their cognitive 
thinking, and peripheral cues, such as emotions or affect, might be outweighed and have 
less influence on individuals’ decision-making. Thus, this adds value to health IS research 
since this circumstance is possibly a result of the interplays of central and peripheral cues 
and warrants further investigations for all dual process models. This has important 
implications, e.g. for research addressing interface design to enable users to detect errors 
better (Braun et al., 2023).

The literature on ELM and health care has not sufficiently considered negative variables 
besides privacy concerns. Thus, we responded to the calls from Angst and Agarwal (2009) 
and Dinev et al. (2015), who requested extending ELM research with new variables that 
could negatively influence attitudes. Our study deepens the understanding of attitude 
formation by aligning it with negative functional aspects of technologies in the context of 
sensitive data. Focusing on the error perceptions of a specific healthcare technology, we 
shed light on individuals’ expectations on technologies’ freedom from error and their 
behavioural responses in the form of attitudes and intentions. This is especially relevant 
since IT increasingly assists us in our daily lives and creates dependencies on its accurate 
functioning (Gupta et al., 2023; Matt, 2022). Researchers should take the opportunity to 
analyse individuals’ perceptions of diagnostic device errors in the context of other health 
technologies and measure potential effects on attitude formations and usage over time. 
Such analyses seem especially beneficial for scenarios where individuals may be obliged 
to continue using health IT or any other form of IT that may be prone to specific errors. For 
instance, although the professional healthcare sector is subject to strict regulations in 
many countries, patients must still trust hospital operators to choose current and accurate 
healthcare technologies.

In contrast, for people with diabetes, the medical task of self-monitoring blood glucose 
can be seen as a regular requirement to ensure their health. Still, the selection of health 
wearables is their choice, and dependent on the country, it may not be protected by such 
strict regulations. Although the healthcare context provides a fertile setting, future 
research could also explore the interplay of diagnostic device errors, error perceptions, 
and attitude formations in other contexts with a strongly increasing availability of data 
(Abdolkhani et al., 2023) but critical outcomes for users, e.g. for decision support in 
financial contexts (Mollá et al., 2022).

Beyond the context of health wearables, our work adds to the literature on 
perceived risk as a factor in the adoption of new technologies in healthcare (Schnall 
et al., 2015). We considered a scenario in which the use of IT can lead to both 
a significant increase in quality of life (through easier use), but also to threatening 
consequences in the event of errors. This is undoubtedly not representative of the 
assessments of perceived risk in other IT applications (such as the risk associated with 
data disclosure), but it reflects the increasing functionality and use of AI in ever more 
sensitive areas of everyday life very well. Our work therefore enriches current 
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discussions in the context of artificial intelligence in the healthcare sector. These 
include, for instance, AI-based risk considerations and trust (Gupta et al., 2023; 
Solberg et al., 2022), the adoption of smart devices subject to functional requirements 
(Im et al., 2022) as well as recent debates on AI explainability in the medical field (Liu 
et al., 2022). We recommend that future research in the latter field integrates our 
findings and puts a stronger emphasis on finding suitable means to communicate 
medical AI functionality along with information on potential errors and their conse-
quences for users. This is all the more important as these added functionalities 
ultimately have a strong influence on the possibilities for individuals to gain control 
over their own state of health and how they deal with illnesses.

6.3. Implications for practice

Our empirical results have substantial value for practice, which is mainly based on an 
improved understanding of how individuals deal with technology-related threats that 
result from the usage of health IT. For suppliers, while erroneous IT is generally seen as 
troublesome for users, false information from health wearables can pose significant health 
risks to individuals. Our results have shown that diagnostic device errors translate into 
users’ error perceptions, enabling elaboration likelihoods, and affecting their attitude 
formation towards health wearables, and, eventually their usage intentions. While in 
most cases, it can be assumed that device manufacturers do not intend to integrate 
errors, ensuring higher levels of freedom from error often requires more research or better 
components, which usually results in higher costs. Thus, suppliers must match their 
customers’ expectations concerning their products’ freedom from error with accruing 
development and manufacturing costs. To establish consumer trust, they may resort to 
external sources of credibility (such as test facilities or certificates), which may be parti-
cularly helpful for new products or relatively unknown suppliers (McKnight et al., 2011).

Another contribution is the finding that a strong focus on user attitude formation as 
a proxy to measure the success of marketing campaigns, for instance, can be insufficient 
since it is vital to know how users’ attitudes are formed. Our model provides a more 
profound basis for tracking attitude formations and the different causes attributable to 
central and peripheral route factors. Concerning diagnostic device errors, communication 
strategies or health campaigns that address these errors should seek to activate the 
central route by stimulating the factors of self-efficacy and risk perception, as well as 
sending messages targeting health distress reduction on the peripheral route. For 
instance, suppliers who seek to build error-free devices can emphasise the high accuracy 
of their devices in their advertising and can stress the suitability to conduct glucose 
measurements with little worry. This will directly address the peripheral route, particularly 
health distress reduction, and users will probably develop more positive attitudes towards 
their products.

Finally, for the communication of diagnostic device errors to individuals, we advise 
suppliers, public health institutions, and regulators to carefully frame information 
based on de facto diagnostic device errors because individuals’ error perceptions 
strongly affect central and peripheral processes on attitude formations and usage 
intentions. This topic is also of high current relevance in the context of the 
European General Data Protection Regulation (GDPR), which seeks to enforce more 
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transparency regarding data storage, data usage, and data accuracy (European 
Commission of Justice and Consumers, 2018). These aspects become more relevant 
not only because health IT is often interconnected and can automatically collect, 
process, and disseminate information to different entities but also becomes more 
relevant given the rising capabilities of AI, which are often difficult to control by 
both providers and users, which raises new questions of responsibility (Lüthi et al.,  
2023). In a more connected world of digital health, individuals’ decisions to adopt 
a certain device with a specific diagnostic device error level may constitute a single 
source of error that can also affect more complex processes in which other entities or 
more powerful devices and algorithms are involved. The expected increase of inter-
connected information-sharing networks in healthcare highlights the necessity to 
conduct more research into error processing, considering erroneous personal health 
information. Suppose ancillary conditions and privacy configurations meet patients’ 
requirements. In that case, automatic dissemination of diagnostic data may deliver 
additional information for research and drug development, may reduce public health-
care system costs, and may eventually help many people to improve their health 
conditions.

7. Research limitations and future work

Despite utmost care, this study has limitations. First, for methodological reasons, we could 
only consider one specific type of health wearables. We acknowledge that individual 
device or supplier characteristics (such as voice-command features, a compelling design, 
materials of high-value appearance, impacts of brand names, and individuals’ relation-
ships with suppliers) could impact associated risk perceptions (Weith & Matt, 2023). Thus, 
we recommend the use of other types of health wearables in future studies to examine 
potential differences in individuals’ perceptions across devices and over time since risk 
perceptions may change over time and may be subject to external influences, such as 
recent news on hacker attacks on a supplier (Angst & Agarwal, 2009).

Second, owing to the currently limited availability of health wearables in the 
market, instead of de facto behaviour, we could only assess diabetics’ intentions to 
use health wearables. Despite the frequent use of intentions as a predictor of de 
facto behaviour, individuals may still behave differently than they have indicated. 
We chose a developing technology for our study because novel technologies are 
often more prone to device errors and might create a more credible scenario. 
Furthermore, conducting such research at an early stage opens new opportunities 
to help shape these technologies before they have reached actual market diffusion. 
The high involvement of our participants, as can be seen in the extensive voluntary 
feedback and support we received, highlights the pressing need to answer such 
questions now. Importantly, once health wearables have achieved market diffusion, 
studies should focus on how these devices affect self-diagnosis behaviours 
(Aboueid et al., 2019; Shahsavar & Choudhury, 2023).

Third, our results apply to people with Type 1 and Type 2 diabetes who need 
insulin therapy and who may thus show different patterns compared to users with 
lower involvement. Decisions of highly involved individuals, who rely more on the 
central route, are claimed to be more sustainable than the decisions of less 
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involved individuals, based on the peripheral route (G. Bansal et al., 2015). 
Furthermore, our sample included participants from one European country, mean-
ing we cannot assume that our results represent other countries, especially those 
that differ significantly in market maturity (Tuzovic et al., 2017). Also, individuals’ 
access to health wearables and their decisions to consult physicians are likely to be 
a factor in the general healthcare quality levels and the availability of physicians, 
emphasising the potential for health wearables to improve healthcare and enable 
new digital healthcare services that may have particular benefits for rural areas and 
less developed countries (Barrett et al., 2015). Therefore, we recommend replica-
tions with different samples in different countries and long-term analyses on the 
persistence of the effects over time and subject to stimuli that affect involvement, 
privacy concerns (Sui et al., 2023), and attitudes.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

Moritz Becker was a Ph.D. candidate and Research Assistant at the Institute for Digital Management 
and New Media at LMU Munich, Germany. His Doctoral thesis addressed users’ perceptions, 
processing and disclosure of health-care data. Before joining the Ph.D. programme, he received 
a Master of Arts from the University of Mannheim. He also holds a Master of Business Research from 
LMU Munich. His research has been published in The Database for Advances in Information Systems, 
Pacific Asia Journal of the Association for Information Systems, as well as in several conference 
proceedings.

Christian Matt is a Full Professor and Co-director of the Institute of Information Systems at the 
University of Bern, Switzerland. He holds a Ph.D. in Management from Ludwig-Maximilians- 
Universität (LMU), Munich, Germany, and was a visiting scholar at the National University of 
Singapore and the Wharton School of the University of Pennsylvania. His current research focuses 
on strategic aspects of digital transformation and value creation, as well as the responsible design 
and use of AI technologies. His research has been published in MIS Quarterly, Journal of Management 
Information Systems, Journal of Information Technology, European Journal of Information Systems, 
Information Systems Journal, MIS Quarterly Executive, and several others.

ORCID

Christian Matt http://orcid.org/0000-0001-9800-2335

References

Abdolkhani, R., Gray, K., Borda, A., & DeSouza, R. (2023). Recommendations for the quality manage-
ment of patient-generated health data in remote patient monitoring: Mixed methods study. 
Journal of Medical Internet Research MHealth and UHealth, 11(1), e35917. https://doi.org/10.2196/ 
35917  

Aboueid, S., Liu, R.H., Desta, B.N., Chaurasia, A., & Ebrahim, S. (2019). The use of artificially intelligent 
self-diagnosing digital platforms by the general public: Scoping review. JMIR Medical Informatics, 
7(2), e13445. https://doi.org/10.2196/13445  

JOURNAL OF DECISION SYSTEMS 19

https://doi.org/10.2196/35917
https://doi.org/10.2196/35917
https://doi.org/10.2196/13445


Ahmed, A., Aziz, S., Abd-Alrazaq, A., Farooq, F., Househ, M., & Sheikh, J. (2023). The effectiveness of 
wearable devices using artificial intelligence for blood glucose level forecasting or prediction: 
Systematic review. Journal of Medical Internet Research, 25, e40259. https://doi.org/10.2196/40259  

Ahuja, M.K., & Thatcher, J.B. (2005). Moving beyond intentions and toward the theory of trying: 
Effects of work environment and gender on post-adoption information technology use. MIS 
Quarterly, 29(3), 427–459. https://doi.org/10.2307/25148691  

Ajzen, I., & Fishbein, M. (2000). Attitudes and the attitude-behavior relation: Reasoned and auto-
matic processes. European Review of Social Psychology, 11(1), 1–33. https://doi.org/10.1080/ 
14792779943000116  

Angst, C.M., & Agarwal, R. (2009). Adoption of electronic health records in the presence of privacy 
concerns: The elaboration likelihood model and individual persuasion. MIS Quarterly, 33(2), 
339–370. https://doi.org/10.2307/20650295  

Balapour, A., Reychav, I., Sabherwal, R., & Azuri, J. (2019). Mobile technology identity and 
self-efficacy: Implications for the adoption of clinically supported mobile health apps. 
International Journal of Information Management, 49, 58–68. https://doi.org/10.1016/j.ijinfomgt. 
2019.03.005  

Bala, H., & Venkatesh, V. (2015). Adaptation to information technology: A holistic nomological 
network from implementation to job outcomes. Management Science, 62(1), 156–179. https:// 
doi.org/10.1287/mnsc.2014.2111  

Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational 
Psychologist, 28(2), 117–148. https://doi.org/10.1207/s15326985ep2802_3  

Bansal, H.S., & Voyer, P.A. (2000). Word-of-mouth processes within a services purchase decision 
context. Journal of Service Research, 3(2), 166–177. https://doi.org/10.1177/109467050032005  

Bansal, G., Zahedi, F.M., & Gefen, D. (2015). The role of privacy assurance mechanisms in building 
trust and the moderating role of privacy concern [article]. European Journal of Information 
Systems, 24(6), 624–644. https://doi.org/10.1057/ejis.2014.41  

Barden, J., & Tormala, Z.L. (2014). Elaboration and attitude strength: The new meta‐cognitive 
perspective. Social and Personality Psychology Compass, 8(1), 17–29. https://doi.org/10.1111/ 
spc3.12078  

Barrett, M., Davidson, E., Prabhu, J., & Vargo, S.L. (2015). Service innovation in the digital age: Key 
contributions and future directions. MIS Quarterly, 39(1), 135–154. https://doi.org/10.25300/ 
MISQ/2015/39:1.03  

Bhattacherjee, A., & Hikmet, N. (2007). Physicians’ resistance toward healthcare information tech-
nology: A theoretical model and empirical test. European Journal of Information Systems, 16(6), 
725–737. https://doi.org/10.1057/palgrave.ejis.3000717  

Bhattacherjee, A., & Sanford, C. (2006). Influence processes for information technology acceptance: 
An elaboration likelihood model [article]. MIS Quarterly, 30(4), 805–825. http://search.ebscohost. 
com/login.aspx?direct=true&db=bth&AN=23111656&site=ehost-live 

Bitkina, O.V., Kim, H.K., & Park, J. (2020). Usability and user experience of medical devices: An 
overview of the current state, analysis methodologies, and future challenges. International 
Journal of Industrial Ergonomics, 76, 102932. https://doi.org/10.1016/j.ergon.2020.102932  

Boss, S.R., Galletta, D.F., Lowry, P.B., Moody, G.D., & Polak, P. (2015). What do systems users have to 
fear? using fear appeals to engender threats and fear that motivate protective security behaviors. 
MIS Quarterly, 39(4), 837–864. https://doi.org/10.25300/MISQ/2015/39.4.5  

Bosworth, K., Gustafson, D.H., Hawkins, R.P., & Group, B.R. (1995). The BARN system: Use and impact 
of adolescent health promotion via computer. Computers in Human Behavior, 10(4), 467–482.  
https://doi.org/10.1016/0747-5632(94)90041-8  

Braun, M., Greve, M., Brendel, A.B., & Kolbe, L.M. (2023). Humans supervising artificial intelligence – 
investigation of designs to optimize error detection. Journal of Decision Systems, 1–26. https://doi. 
org/10.1080/12460125.2023.2260518  

Breton, M.D., & Kovatchev, B.P. (2010). Impact of blood glucose self-monitoring errors on glucose 
variability, risk for hypoglycemia, and average glucose control in type 1 diabetes: An in silico 
study. Journal of Diabetes Science and Technology, 4(3), 562–570. https://doi.org/10.1177/ 
193229681000400309  

20 M. BECKER AND C. MATT

https://doi.org/10.2196/40259
https://doi.org/10.2307/25148691
https://doi.org/10.1080/14792779943000116
https://doi.org/10.1080/14792779943000116
https://doi.org/10.2307/20650295
https://doi.org/10.1016/j.ijinfomgt.2019.03.005
https://doi.org/10.1016/j.ijinfomgt.2019.03.005
https://doi.org/10.1287/mnsc.2014.2111
https://doi.org/10.1287/mnsc.2014.2111
https://doi.org/10.1207/s15326985ep2802_3
https://doi.org/10.1177/109467050032005
https://doi.org/10.1057/ejis.2014.41
https://doi.org/10.1111/spc3.12078
https://doi.org/10.1111/spc3.12078
https://doi.org/10.25300/MISQ/2015/39:1.03
https://doi.org/10.25300/MISQ/2015/39:1.03
https://doi.org/10.1057/palgrave.ejis.3000717
http://search.ebscohost.com/login.aspx?direct=true%26db=bth%26AN=23111656%26site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true%26db=bth%26AN=23111656%26site=ehost-live
https://doi.org/10.1016/j.ergon.2020.102932
https://doi.org/10.25300/MISQ/2015/39.4.5
https://doi.org/10.1016/0747-5632(94)90041-8
https://doi.org/10.1016/0747-5632(94)90041-8
https://doi.org/10.1080/12460125.2023.2260518
https://doi.org/10.1080/12460125.2023.2260518
https://doi.org/10.1177/193229681000400309
https://doi.org/10.1177/193229681000400309


Budiman, E.S., Samant, N., & Resch, A. (2013). Clinical implications and economic impact of accuracy 
differences among commercially available blood glucose monitoring systems. Journal of Diabetes 
Science and Technology, 7(2), 365–380. https://doi.org/10.1177/193229681300700213  

Carstens, E., & Moberg, G.P. (2000). Recognizing pain and distress in laboratory animals. ILAR journal, 
41(2), 62–71. https://doi.org/10.1093/ilar.41.2.62  

Chin, W.W., Marcolin, B.L., & Newsted, P.R. (2003). A partial least squares latent variable modeling 
approach for measuring interaction effects: Results from a Monte Carlo simulation study and an 
electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189–217. https:// 
doi.org/10.1287/isre.14.2.189.16018  

Choudhury, A., & Asan, O. (2021). Impact of using wearable devices on psychological distress: 
Analysis of the health information national trends survey. International Journal of Medical 
Informatics, 156, 104612. https://doi.org/10.1016/j.ijmedinf.2021.104612  

Cryer, P.E. (2002). Hypoglycaemia: The limiting factor in the glycaemic management of type I and 
type II diabetes. Diabetologia, 45(7), 937–948. https://doi.org/10.1007/s00125-002-0822-9  

Curtin, J.J., Patrick, C.J., Lang, A.R., Cacioppo, J.T., & Birbaumer, N. (2001). Alcohol affects emotion 
through cognition. Psychological Science, 12(6), 527–531. https://doi.org/10.1111/1467-9280. 
00397  

Dadhich, M., Poddar, S., & Hiran, K.K. (2022). Antecedents and consequences of patients’ adoption of 
the IoT 4.0 for e-health management system: A novel PLS-SEM approach. Smart Health, 25, 
100300. https://doi.org/10.1016/j.smhl.2022.100300  

Daschner, S., & Obermaier, R. (2022). Algorithm aversion? On the influence of advice accuracy on 
trust in algorithmic advice. Journal of Decision Systems, 31(sup1), 77–97. https://doi.org/10.1080/ 
12460125.2022.2070951  

Dave, N., Bui, S., Morgan, C., Hickey, S., & Paul, C.L. (2021). Interventions targeted at reducing 
diagnostic error: Systematic review. BMJ Quality & Safety, 31(4), 297–307. https://doi.org/10. 
1136/bmjqs-2020-012704  

Davey, R.J., Stevens, K., Jones, T.W., & Fournier, P.A. (2012). The effect of short-term use of the 
guardian RT continuous glucose monitoring system on fear of hypoglycaemia in patients with 
type 1 diabetes mellitus. Primary Care Diabetes, 6(1), 35–39. https://doi.org/10.1016/j.pcd.2011.09. 
004  

DeSteno, D., Petty, R.E., Rucker, D.D., Wegener, D.T., & Braverman, J. (2004). Discrete emotions and 
persuasion: The role of emotion-induced expectancies. Journal of Personality and Social 
Psychology, 86(1), 43. https://doi.org/10.1037/0022-3514.86.1.43  

Diamantopoulos, A., Sarstedt, M., Fuchs, C., Wilczynski, P., & Kaiser, S. (2012). Guidelines for choosing 
between multi-item and single-item scales for construct measurement: A predictive validity 
perspective. Journal of the Academy of Marketing Science, 40(3), 434–449. https://doi.org/10. 
1007/s11747-011-0300-3  

Dinev, T., Albano, V., Xu, H., D’Atri, A., & Hart, P. (2016). Individuals’ attitudes towards electronic 
health records: A privacy calculus perspective. In A. Gupta, V. L. Patel, & R. A. Greenes (Eds.), 
Advances in healthcare informatics and analytics (pp. 19–50). Springer.

Dinev, T., McConnell, A.R., & Smith, H.J. (2015). Research commentary—informing privacy research 
through information systems, psychology, and behavioral economics: Thinking outside the 
“APCO” box. Information Systems Research, 26(4), 639–655. https://doi.org/10.1287/isre.2015.0600  

Dvorak‐Bertsch, J.D., Curtin, J.J., Rubinstein, T.J., & Newman, J.P. (2009). Psychopathic traits moderate 
the interaction between cognitive and affective processing. Psychophysiology, 46(5), 913–921.  
https://doi.org/10.1111/j.1469-8986.2009.00833.x  

European Commission of Justice and Consumers. (2018). Reform of European Union data protection 
rules. European Commission. Retrieved June 4, 2018 from http://ec.europa.eu/justice/data- 
protection/reform/index_en.htm 

Fisher, L., Hessler, D., Glasgow, R.E., Arean, P.A., Masharani, U., Naranjo, D., & Strycker, L.A. (2013). 
REDEEM: A pragmatic trial to reduce diabetes distress. Diabetes Care, 36(9), 2551–2558. https:// 
doi.org/10.2337/dc12-2493  

Fontil, V., Khoong, E.C., Hoskote, M., Radcliffe, K., Ratanawongsa, N., Lyles, C.R., & Sarkar, U. (2019). 
Evaluation of a health information technology–enabled collective intelligence platform to 

JOURNAL OF DECISION SYSTEMS 21

https://doi.org/10.1177/193229681300700213
https://doi.org/10.1093/ilar.41.2.62
https://doi.org/10.1287/isre.14.2.189.16018
https://doi.org/10.1287/isre.14.2.189.16018
https://doi.org/10.1016/j.ijmedinf.2021.104612
https://doi.org/10.1007/s00125-002-0822-9
https://doi.org/10.1111/1467-9280.00397
https://doi.org/10.1111/1467-9280.00397
https://doi.org/10.1016/j.smhl.2022.100300
https://doi.org/10.1080/12460125.2022.2070951
https://doi.org/10.1080/12460125.2022.2070951
https://doi.org/10.1136/bmjqs-2020-012704
https://doi.org/10.1136/bmjqs-2020-012704
https://doi.org/10.1016/j.pcd.2011.09.004
https://doi.org/10.1016/j.pcd.2011.09.004
https://doi.org/10.1037/0022-3514.86.1.43
https://doi.org/10.1007/s11747-011-0300-3
https://doi.org/10.1007/s11747-011-0300-3
https://doi.org/10.1287/isre.2015.0600
https://doi.org/10.1111/j.1469-8986.2009.00833.x
https://doi.org/10.1111/j.1469-8986.2009.00833.x
http://ec.europa.eu/justice/data-protection/reform/index_en.htm
http://ec.europa.eu/justice/data-protection/reform/index_en.htm
https://doi.org/10.2337/dc12-2493
https://doi.org/10.2337/dc12-2493


improve diagnosis in primary care and urgent care settings: Protocol for a pragmatic randomized 
controlled trial. JMIR Research Protocols, 8(8), e13151. https://doi.org/10.2196/13151  

Forgas, J.P. (2002). Feeling and doing: Affective influences on interpersonal behavior. Psychological 
Inquiry, 13(1), 1–28. https://doi.org/10.1207/S15327965PLI1301_01  

Gonzalez, J.S., Fisher, L., & Polonsky, W.H. (2011). Depression in diabetes: Have we been missing 
something important? Diabetes Care, 34(1), 236–239. https://doi.org/10.2337/dc10-1970  

Guo, X., Chen, S., Zhang, X., Ju, X., & Wang, X. (2020). Exploring patients’ intentions for continuous 
usage of mHealth services: Elaboration-likelihood perspective study [original paper]. JMIR 
Mhealth Uhealth, 8(4), e17258. https://doi.org/10.2196/17258  

Gupta, S., Kamboj, S., & Bag, S. (2023). Role of risks in the development of responsible artificial 
intelligence in the digital healthcare domain. Information Systems Frontiers, 25, 2257–2274. 
https://doi.org/10.1007/s10796-021-10174-0 

Hagger, M.S. (2016). Non-conscious processes and dual-process theories in health psychology. 
Health Psychology Review, 10(4), 375–380. https://doi.org/10.1080/17437199.2016.1244647  

Hsieh, P.-J. (2015). Physicians’ acceptance of electronic medical records exchange: An extension of 
the decomposed TPB model with institutional trust and perceived risk. International Journal of 
Medical Informatics, 84(1), 1–14. https://doi.org/10.1016/j.ijmedinf.2014.08.008  

Hydari, M.Z., Adjerid, I., & Striegel, A.D. (2023). Health wearables, gamification, and healthful activity. 
Management Science, 69(7), 3920–3938. https://doi.org/10.1287/mnsc.2022.4581  

Im, E., Kang, N., & Han, S. (2022). A study on the intention to use smart healthcare. 2022 IEEE/ACIS 7th 
International Conference on Big Data, Cloud Computing, and Data Science (BCD), Danang, Vietnam, 
(pp. 271–275). https://doi.org/10.1109/BCD54882.2022.9900693 

Janz, N.K., & Becker, M.H. (1984). The health belief model: A decade later. Health Education Quarterly, 
11(1), 1–47. https://doi.org/10.1177/109019818401100101  

Johnston, A.C., & Warkentin, M. (2010). Fear appeals and information security behaviors: An 
empirical study. MIS Quarterly, 34(3), 549–566. https://doi.org/10.2307/25750691  

Kaplan, D.M., Greenleaf, M., & Lam, W.A. (2023). Wear with care: A call for empirical investigations of 
adverse outcomes of consumer health wearables. Mayo Clinic Proceedings Digital Health, 1(3), 413.  
https://doi.org/10.1016/j.mcpdig.2023.06.014  

Kendall, P.C. (2013). Advances in cognitive—behavioral research and therapy (Vol. 4). Academic Press.
Kistler, C.E., Walter, L.C., Mitchell, C.M., & Sloane, P.D. (2010). Patient perceptions of mistakes in 

ambulatory care. Archives of Internal Medicine, 170(16), 1480–1487. https://doi.org/10.1001/archin 
ternmed.2010.288  

Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. 
International Journal of E-Collaboration (IjeC), 11(4), 1–10. https://doi.org/10.4018/ijec.2015100101  

Kroenung, J., & Eckhardt, A. (2015). The attitude cube—A three-dimensional model of situational 
factors in IS adoption and their impact on the attitude–behavior relationship. Information & 
Management, 52(6), 611–627. https://doi.org/10.1016/j.im.2015.05.002  

Lam, J.C., & Lee, M.K. (2006). Digital inclusiveness–longitudinal study of Internet adoption by older 
adults. Journal of Management Information Systems, 22(4), 177–206. https://doi.org/10.2753/ 
MIS0742-1222220407  

Lee, S.Y., Hwang, H., Hawkins, R., & Pingree, S. (2008). Interplay of negative emotion and health 
self-efficacy on the use of health information and its outcomes. Communication Research, 35(3), 
358–381. https://doi.org/10.1177/0093650208315962  

Lee, M.A., Song, M., Bessette, H., Davis, M.R., Tyner, T.E., & Reid, A. (2023). Use of wearables for 
monitoring cardiometabolic health: A systematic review. International Journal of Medical 
Informatics, 179, 105218. https://doi.org/10.1016/j.ijmedinf.2023.105218  

Leventhal, H., Brissette, I., & Leventhal, E.A. (2003). The common-sense model of self-regulation of 
health and illness. In C. L. D & L. H (Eds.), The self-regulation of health and illness behaviour (Vol. 1, 
pp. 42–65). Routledge.

Lindquist, A., Johansson, P., Petersson, G., Saveman, B.-I., & Nilsson, G. (2008). The use of the Personal 
Digital Assistant (PDA) among personnel and students in health care: A review. Journal of Medical 
Internet Research, 10(4), e1038. https://doi.org/10.2196/jmir.1038  

22 M. BECKER AND C. MATT

https://doi.org/10.2196/13151
https://doi.org/10.1207/S15327965PLI1301_01
https://doi.org/10.2337/dc10-1970
https://doi.org/10.2196/17258
https://doi.org/10.1007/s10796-021-10174-0
https://doi.org/10.1080/17437199.2016.1244647
https://doi.org/10.1016/j.ijmedinf.2014.08.008
https://doi.org/10.1287/mnsc.2022.4581
https://doi.org/10.1109/BCD54882.2022.9900693
https://doi.org/10.1177/109019818401100101
https://doi.org/10.2307/25750691
https://doi.org/10.1016/j.mcpdig.2023.06.014
https://doi.org/10.1016/j.mcpdig.2023.06.014
https://doi.org/10.1001/archinternmed.2010.288
https://doi.org/10.1001/archinternmed.2010.288
https://doi.org/10.4018/ijec.2015100101
https://doi.org/10.1016/j.im.2015.05.002
https://doi.org/10.2753/MIS0742-1222220407
https://doi.org/10.2753/MIS0742-1222220407
https://doi.org/10.1177/0093650208315962
https://doi.org/10.1016/j.ijmedinf.2023.105218
https://doi.org/10.2196/jmir.1038


Liu, C.-F., Chen, Z.-C., Kuo, S.-C., & Lin, T.-C. (2022). Does AI explainability affect physicians’ intention 
to use AI? International Journal of Medical Informatics, 168, 104884. https://doi.org/10.1016/j. 
ijmedinf.2022.104884  

Lorig, K., Sobel, D.S., Stewart, A.L., Brown, B.W., Jr., Bandura, A., Ritter, P., Gonzalez, V.M., Laurent, D. 
D., & Holman, H.R. (1999). Evidence suggesting that a chronic disease self-management program 
can improve health status while reducing hospitalization: A randomized trial. Medical Care, 37(1), 
5–14. https://doi.org/10.1097/00005650-199901000-00003  

Lorig, K., Stewart, A.L., Ritter, P., Gonzalez, V.M., Laurent, D.D., & Lynch, J. (1996). Outcome measures 
for health education and other health care interventions. Sage Publications.

Luo, X., Li, H., Zhang, J., & Shim, J.P. (2010). Examining multi-dimensional trust and multi-faceted risk 
in initial acceptance of emerging technologies: An empirical study of mobile banking services. 
Decision Support Systems, 49(2), 222–234. https://doi.org/10.1016/j.dss.2010.02.008  

Lüthi, N., Matt, C., Myrach, T., & Junglas, I. (2023). Augmented intelligence, augmented 
responsibility? Business & Information Systems Engineering, 65(4), 391–401. https://doi.org/10. 
1007/s12599-023-00789-9  

Mahapatra, M., & Pillai, R. (2018). Technostress in organizations: A review of literature.
Major, B., Richards, C., Cooper, M.L., Cozzarelli, C., & Zubek, J. (1998). Personal resilience, cognitive 

appraisals, and coping: an integrative model of adjustment to abortion. Journal of Personality and 
Social Psychology, 74(3), 735–752. https://doi.org/10.1037/0022-3514.74.3.735  

Matt, C. (2022). Campaigning for the greater good?–how persuasive messages affect the evaluation 
of contact tracing apps. Journal of Decision Systems, 31(1–2), 189–206. https://doi.org/10.1080/ 
12460125.2021.1873493  

McKnight, H., Carter, M., Thatcher, J.B., & Clay, P.F. (2011). Trust in a specific technology: An 
investigation of its components and measures. ACM Transactions on Management Information 
Systems, 2(2), 1–25. https://doi.org/10.1145/1985347.1985353  

McKnight, H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust measures for 
e-commerce: An integrative typology [article]. Information Systems Research, 13(3), 334–359.  
https://doi.org/10.1287/isre.13.3.334.81  

Mollá, N., Heavin, C., & Rabasa, A. (2022). Data-driven decision making: New opportunities for DSS in 
data stream contexts. Journal of Decision Systems, 31(sup1), 255–269. https://doi.org/10.1080/ 
12460125.2022.2071404  

Neuberg, S.L., Kenrick, D.T., & Schaller, M. (2011). Human threat management systems: 
Self-protection and disease avoidance. Neuroscience & Biobehavioral Reviews, 35(4), 1042–1051.  
https://doi.org/10.1016/j.neubiorev.2010.08.011  

Newman-Toker, D.E., & Pronovost, P.J. (2009). Diagnostic errors—the next frontier for patient safety. 
Journal of the American Medical Association, 301(10), 1060–1062. https://doi.org/10.1001/jama. 
2009.249  

Nicolaou, A.I., Ibrahim, M., & van Heck, E. (2013). Information quality, trust, and risk perceptions in 
electronic data exchanges. Decision Support Systems, 54(2), 986–996. https://doi.org/10.1016/j. 
dss.2012.10.024  

Nicolaou, A.I., & McKnight, D.H. (2006). Perceived information quality in data exchanges: Effects on 
risk, trust, and intention to use [article]. Information Systems Research, 17(4), 332–351. https://doi. 
org/10.1287/isre.1060.0103  

Ong, W.M., Chua, S.S., & Ng, C.J. (2014). Barriers and facilitators to self-monitoring of blood glucose in 
people with type 2 diabetes using insulin: A qualitative study. Patient Preference and Adherence, 8 
(1), 237–246. https://doi.org/10.2147/PPA.S57567  

Park, I., Sharman, R., & Rao, H.R. (2015). Disaster experience and hospital information systems: An 
examination of perceived information assurance, risk, resilience, and HIS usefulness. MIS 
Quarterly, 39(2), 317–344. https://doi.org/10.25300/MISQ/2015/39.2.03  

Pavlou, P.A., & Gefen, D. (2004). Building effective online marketplaces with institution-based trust. 
Information Systems Research, 15(1), 37–59. https://doi.org/10.1287/isre.1040.0015  

Petrocelli, J.V., Tormala, Z.L., & Rucker, D.D. (2007). Unpacking attitude certainty: Attitude clarity and 
attitude correctness. Journal of Personality and Social Psychology, 92(1), 30–41. https://doi.org/10. 
1037/0022-3514.92.1.30  

JOURNAL OF DECISION SYSTEMS 23

https://doi.org/10.1016/j.ijmedinf.2022.104884
https://doi.org/10.1016/j.ijmedinf.2022.104884
https://doi.org/10.1097/00005650-199901000-00003
https://doi.org/10.1016/j.dss.2010.02.008
https://doi.org/10.1007/s12599-023-00789-9
https://doi.org/10.1007/s12599-023-00789-9
https://doi.org/10.1037/0022-3514.74.3.735
https://doi.org/10.1080/12460125.2021.1873493
https://doi.org/10.1080/12460125.2021.1873493
https://doi.org/10.1145/1985347.1985353
https://doi.org/10.1287/isre.13.3.334.81
https://doi.org/10.1287/isre.13.3.334.81
https://doi.org/10.1080/12460125.2022.2071404
https://doi.org/10.1080/12460125.2022.2071404
https://doi.org/10.1016/j.neubiorev.2010.08.011
https://doi.org/10.1016/j.neubiorev.2010.08.011
https://doi.org/10.1001/jama.2009.249
https://doi.org/10.1001/jama.2009.249
https://doi.org/10.1016/j.dss.2012.10.024
https://doi.org/10.1016/j.dss.2012.10.024
https://doi.org/10.1287/isre.1060.0103
https://doi.org/10.1287/isre.1060.0103
https://doi.org/10.2147/PPA.S57567
https://doi.org/10.25300/MISQ/2015/39.2.03
https://doi.org/10.1287/isre.1040.0015
https://doi.org/10.1037/0022-3514.92.1.30
https://doi.org/10.1037/0022-3514.92.1.30


Petter, S. (2018). “Haters gonna hate”: PLS and information systems research. SIGMIS Database, 49(2), 
10–13. https://doi.org/10.1145/3229335.3229337  

Petty, R.E., & Cacioppo, J.T. (1986). The elaboration likelihood model of persuasion. In B. Leonard 
(Ed.), Advances in experimental social psychology (Vol. 19, pp. 123–205). Academic Press. https:// 
doi.org/10.1016/S0065-2601(08)60214-2  

Piwek, L., Ellis, D.A., Andrews, S., & Joinson, A. (2016). The rise of consumer health wearables: 
Promises and barriers. PLOS Medicine, 13(2), e1001953–e1001953. https://doi.org/10.1371/jour 
nal.pmed.1001953  

Podsakoff, P.M., MacKenzie, S.B., Lee, J.-Y., & Podsakoff, N.P. (2003). Common method biases in 
behavioral research: A critical review of the literature and recommended remedies. Journal of 
Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879  

Polonsky, W.H., Fisher, L., Hessler, D., & Edelman, S.V. (2015). Development of a new measure for 
assessing glucose monitoring device-related treatment satisfaction and quality of life. Diabetes 
Technology & Therapeutics, 17(9), 657–663. https://doi.org/10.1089/dia.2014.0417  

Ragu-Nathan, T., Tarafdar, M., Ragu-Nathan, B.S., & Tu, Q. (2008). The consequences of technostress 
for end users in organizations: Conceptual development and empirical validation. Information 
Systems Research, 19(4), 417–433. https://doi.org/10.1287/isre.1070.0165  

Rahman, M.S., Ko, M., Warren, J., & Carpenter, D. (2016). Healthcare Technology Self-Efficacy (HTSE) 
and its influence on individual attitude: An empirical study. Computers in Human Behavior, 58(1), 
12–24. https://doi.org/10.1016/j.chb.2015.12.016  

Rhodes, N., & Pivik, K. (2011). Age and gender differences in risky driving: The roles of positive affect 
and risk perception. Accident Analysis & Prevention, 43(3), 923–931. https://doi.org/10.1016/j.aap. 
2010.11.015  

Riedl, R., Kindermann, H., Auinger, A., & Javor, A. (2012). Technostress from a neurobiological 
perspective. Business & Information Systems Engineering, 4(2), 61–69. https://doi.org/10.1007/ 
s12599-012-0207-7  

Rimal, R.N. (2001). Perceived risk and self‐efficacy as motivators: Understanding individuals’ long‐ 
term use of health information. Journal of Communication, 51(4), 633–654. https://doi.org/10. 
1111/j.1460-2466.2001.tb02900.x  

Ringle, C.M., Wende, S., & Becker, J.-M. (2014). SmartPLS 3. Hamburg, Germany. http://www.smartpls. 
com 

Rodbard, D. (2016). Continuous glucose monitoring: A review of successes, challenges, and 
opportunities. Diabetes Technology & Therapeutics, 18(2), 3–13. https://doi.org/10.1089/dia.2015. 
0417  

Rogers, R.W. (1983). Cognitive and psychological processes in fear appeals and attitude change: 
A revised theory of protection motivation. In J. Cacioppo & R. E. Petty (Eds.), Social psychophysiol-
ogy: A sourcebook (pp. 153–176). Guilford Press.

Schnall, R., Higgins, T., Brown, W., Carballo-Dieguez, A., & Bakken, S. (2015). Trust, perceived risk, 
perceived ease of use and perceived usefulness as factors related to mHealth technology use. 
Studies in Health Technology and Informatics, 216, 467.

Schwarzer, R. (2008). Modeling health behavior change: How to predict and modify the adoption 
and maintenance of health behaviors. Applied Psychology, 57(1), 1–29. https://doi.org/10.1111/j. 
1464-0597.2007.00325.x  

Schwarzer, R. (2014). Self-efficacy: Thought control of action. Taylor & Francis.
Sel, K., Osman, D., Huerta, N., Edgar, A., Pettigrew, R.I., & Jafari, R. (2023). Continuous cuffless blood 

pressure monitoring with a wearable ring bioimpedance device. Npj Digital Medicine, 6(1), 59.  
https://doi.org/10.1038/s41746-023-00796-w  

Shahab, M.H., Ghazali, E., & Mohtar, M. (2021). The role of elaboration likelihood model in consumer 
behaviour research and its extension to new technologies: A review and future research agenda. 
International Journal of Consumer Studies, 45(4), 664–689. https://doi.org/10.1111/ijcs.12658  

Shahsavar, Y., & Choudhury, A. (2023). The role of AI chatbots in healthcare: A study on user intentions 
to utilize ChatGPT for self-diagnosis. JMIR Preprints. https://doi.org/10.2196/preprints.47564  

Sheeran, P., Gollwitzer, P.M., & Bargh, J.A. (2013). Nonconscious processes and health. Health 
Psychology, 32(5), 460–473. https://doi.org/10.1037/a0029203  

24 M. BECKER AND C. MATT

https://doi.org/10.1145/3229335.3229337
https://doi.org/10.1016/S0065-2601(08)60214-2
https://doi.org/10.1016/S0065-2601(08)60214-2
https://doi.org/10.1371/journal.pmed.1001953
https://doi.org/10.1371/journal.pmed.1001953
https://doi.org/10.1037/0021-9010.88.5.879
https://doi.org/10.1089/dia.2014.0417
https://doi.org/10.1287/isre.1070.0165
https://doi.org/10.1016/j.chb.2015.12.016
https://doi.org/10.1016/j.aap.2010.11.015
https://doi.org/10.1016/j.aap.2010.11.015
https://doi.org/10.1007/s12599-012-0207-7
https://doi.org/10.1007/s12599-012-0207-7
https://doi.org/10.1111/j.1460-2466.2001.tb02900.x
https://doi.org/10.1111/j.1460-2466.2001.tb02900.x
http://www.smartpls.com
http://www.smartpls.com
https://doi.org/10.1089/dia.2015.0417
https://doi.org/10.1089/dia.2015.0417
https://doi.org/10.1111/j.1464-0597.2007.00325.x
https://doi.org/10.1111/j.1464-0597.2007.00325.x
https://doi.org/10.1038/s41746-023-00796-w
https://doi.org/10.1038/s41746-023-00796-w
https://doi.org/10.1111/ijcs.12658
https://doi.org/10.2196/preprints.47564
https://doi.org/10.1037/a0029203


Singh, H. (2014). Helping health care organizations to define diagnostic errors as missed opportu-
nities in diagnosis. The Joint Commission Journal on Quality and Patient Safety, 40(3), AP1. https:// 
doi.org/10.1016/S1553-7250(14)40012-6  

Solberg, E., Kaarstad, M., Eitrheim, M.H.R., Bisio, R., Reegård, K., & Bloch, M. (2022). A conceptual 
model of trust, perceived risk, and reliance on AI decision aids. Group & Organization 
Management, 47(2), 187–222. https://doi.org/10.1177/10596011221081238  

Stone, R.N., & Grønhaug, K. (1993). Perceived risk: Further considerations for the marketing 
discipline. European Journal of Marketing, 27(3), 39–50. https://doi.org/10.1108/ 
03090569310026637  

Strack, F., & Deutsch, R. (2004). Reflective and impulsive determinants of social behavior. Personality 
and Social Psychology Review, 8(3), 220–247. https://doi.org/10.1207/s15327957pspr0803_1  

Sui, A., Sui, W., Liu, S., & Rhodes, R. (2023). Ethical considerations for the use of consumer wearables 
in health research. Digital Health, 9, 20552076231153740. https://doi.org/10.1177/ 
20552076231153740  

Takacs, J., Pollock, C.L., Guenther, J.R., Bahar, M., Napier, C., & Hunt, M.A. (2014). Validation of the 
fitbit one activity monitor device during treadmill walking. Journal of Science and Medicine in 
Sport, 17(5), 496–500. https://doi.org/10.1016/j.jsams.2013.10.241  

Tam, K.Y., & Ho, S.Y. (2005). Web personalization as a persuasion strategy: An elaboration likelihood 
model perspective. Information Systems Research, 16(3), 271–291. https://doi.org/10.1287/isre. 
1050.0058  

Tormala, Z.L. (2016). The role of certainty (and uncertainty) in attitudes and persuasion. Current 
Opinion in Psychology, 10(1), 6–11. https://doi.org/10.1016/j.copsyc.2015.10.017  

Tuzovic, S., Kuppelwieser, V., & Bianchi, C. (2017). Adoption of smart health wearables: An empirical 
analysis in Chile and the US. International Research Symposium on Service Excellence in 
Management, Valencia, Spain.

Vakola, M., & Nikolaou, I. (2005). Attitudes towards organizational change: What is the role of 
employees’ stress and commitment? Employee Relations, 27(2), 160–174. https://doi.org/10. 
1108/01425450510572685  

Venkatesh, V., Thong, J.Y., & Xu, X. (2012). Consumer acceptance and use of information technology: 
Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178.  
https://doi.org/10.2307/41410412  

Walker, R.J., Gebregziabher, M., Martin-Harris, B., & Egede, L.E. (2015). Quantifying direct effects of 
social determinants of health on glycemic control in adults with type 2 diabetes. Diabetes 
Technology & Therapeutics, 17(2), 80–87. https://doi.org/10.1089/dia.2014.0166  

Walter, Z., & Lopez, M.S. (2008). Physician acceptance of information technologies: Role of perceived 
threat to professional autonomy. Decision Support Systems, 46(1), 206–215. https://doi.org/10. 
1016/j.dss.2008.06.004  

Weiler, S., Matt, C., & Hess, T. (2022). Immunizing with information–inoculation messages against 
conversational agents’ response failures. Electronic Markets, 32(1), 239–258. https://doi.org/10. 
1007/s12525-021-00509-9  

Weith, H., & Matt, C. (2023). Information provision measures for voice agent product recommenda-
tions— the effect of process explanations and process visualizations on fairness perceptions. 
Electronic Markets, 33(1), 57. https://doi.org/10.1007/s12525-023-00668-x  

Yang, M., Adomavicius, G., Burtch, G., & Ren, Y. (2018). Mind the gap: Accounting for measurement 
error and misclassification in variables generated via data mining. Information Systems Research, 
29(1), 4–24. https://doi.org/10.1287/isre.2017.0727  

Zhang, X., Liu, S., Chen, X., Wang, L., Gao, B., & Zhu, Q. (2018). Health information privacy concerns, 
antecedents, and information disclosure intention in online health communities. Information & 
Management, 55(4), 482–493. https://doi.org/10.1016/j.im.2017.11.003

JOURNAL OF DECISION SYSTEMS 25

https://doi.org/10.1016/S1553-7250(14)40012-6
https://doi.org/10.1016/S1553-7250(14)40012-6
https://doi.org/10.1177/10596011221081238
https://doi.org/10.1108/03090569310026637
https://doi.org/10.1108/03090569310026637
https://doi.org/10.1207/s15327957pspr0803_1
https://doi.org/10.1177/20552076231153740
https://doi.org/10.1177/20552076231153740
https://doi.org/10.1016/j.jsams.2013.10.241
https://doi.org/10.1287/isre.1050.0058
https://doi.org/10.1287/isre.1050.0058
https://doi.org/10.1016/j.copsyc.2015.10.017
https://doi.org/10.1108/01425450510572685
https://doi.org/10.1108/01425450510572685
https://doi.org/10.2307/41410412
https://doi.org/10.2307/41410412
https://doi.org/10.1089/dia.2014.0166
https://doi.org/10.1016/j.dss.2008.06.004
https://doi.org/10.1016/j.dss.2008.06.004
https://doi.org/10.1007/s12525-021-00509-9
https://doi.org/10.1007/s12525-021-00509-9
https://doi.org/10.1007/s12525-023-00668-x
https://doi.org/10.1287/isre.2017.0727
https://doi.org/10.1016/j.im.2017.11.003


Appendices

Appendix A. Scenarios

Group Treatment

No error

With the new biosensor system, the blood glucose level is measured via skin resistance. This 
measurement is almost error-free.

False-positive 
error

With the new biosensor system, the blood glucose level is measured via skin resistance. 
Unfortunately, in 3 out of 10 cases, the value shown is too high or too low, although the blood 
glucose level is within a normal range.

False-negative 
error

With the new biosensor system, the blood glucose level is measured via skin resistance. 
Unfortunately, in 3 out of 10 cases, the value shown indicates a normal range, although the true 
value is either too high or too low.

Source: PKvitality.com
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Appendix B. Measurement Items

Items Measures

Error Perceptions (EPR): Users’ error perception towards health wearables. 
Composite reliability = 0.98 AVE = 0.95 1 = strongly disagree to 7 = strongly agree

EPR1 Health wearables are a very reliable technology
EPR2 Health wearables doesn’t disappoint me
EPR3 Health wearables are very dependable
EPR4 In my view, health wearables do not fail

Self-efficacy (SEF): Users’ confidence in managing diabetes and its effects using wearables. 
Composite reliability = 0.96 AVE = 0.79 1 = very uncertain to 7 = very certain

SEF1
When using health wearables, how sure are you that . . . 
. . . fatigue caused by your diabetes doesn’t restrict you in the things you want to do

SEF2 . . . the physical complaints caused by your diabetes don’t restrict you in the things you want to do
SEF3 . . . the emotional stress caused by your diabetes disease doesn’t restrict you in the things you want to do
SEF4 . . . other symptoms or health problems caused by your diabetes disease don’t restrict you in the things you 

want to do
SEF5 . . . you can perform tasks to manage your health status so that you need to go to the doctor less often
SEF6 . . . you can take other measures (e.g. take pills) to reduce the extent of your diabetes on your daily life

Risk perception (RSK): Perceived concerns about health wearables’ cost, functionality, and physical burden. 
Composite reliability = 0.90 AVE = 0.65 1 = strongly disagree to 7 = strongly agree

RSK1
I fear that a health wearable . . . 
. . . is not worth the money

RSK2 . . . won’t work correctly
RSK3 . . . will physically burden me

Health distress reduction (HDR): Perceived impact of health wearables on emotional well-being. 
Composite reliability = 0.96 AVE = 0.87 1 = strongly disagree to 7 = strongly agree

HDR1
Through the use of a health wearable, I would be . . . 
. . . more courageous regarding my disease

HDR2 . . . less afraid regarding the future development of my disease
HDR3 . . . less worried about my current health status
HDR4 . . . less frustrated because of my restrictions

Threat perception (THR): Emotional perceptions regarding fear, concerns, pressure, and stress. 
Composite reliability = 0.95 AVE = 0.83 1 = strongly disagree to 7 = strongly agree

THR1
When I think about the use of a health wearable, I . . . 
. . . am scared

THR2 . . . have concerns
THR3 . . . feel pressurized
THR4 . . . feel stressed

Attitude formation towards health wearables (ATT): Overall attitude towards health wearables regarding 
their value and desirability. 

Composite reliability = 0.98 AVE = 0.95 1 = strongly disagree to 7 = strongly agree
ATT1 I think that having this health wearable is a good idea
ATT2 I think that using this health wearable is a good idea
ATT3 I have a positive opinion about this health wearable

Intention to use health wearables (ITU): Intended willingness to use health wearables in the near future. 
Composite reliability = 0.99 AVE = 0.98 1 = strongly disagree to 7 = strongly agree

ITU1
I would use this health wearable or a similar device . . . 
. . . in the near future

ITU2 . . . in the near future regularly
ITU3 . . . in the near future to improve my health, productivity, performance, or effectiveness

Expertise about health wearables (EXP): Self-assessed knowledge and experience regarding health 
wearables. 

Composite reliability = 0.97 AVE = 0.90 1 = strongly disagree to 7 = strongly agree

EXP1
Regarding new health wearables, I . . . 
. . . have much knowledge

EXP2 . . . gained a lot of experience
EXP3 . . . am very well informed
EXP4 . . . am an expert

(Continued)
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Items Measures

Pre attitude concerning current device (PRE): Perceived effectiveness and satisfaction with the current 
blood glucose. 

Composite reliability = 0.89 AVE = 0.67 1 = strongly disagree to 7 = strongly agree

PRE1
My current blood glucose metre helps . . . 
. . . me to be more open to new experiences in my life

PRE2 . . . my doctor and I to know how much diabetes medication I need to take
PRE3 . . . me to understand what effects nutrition and physical activity have on me
PRE4 . . . me to feel more satisfied about how everything around my diabetes is working

Trusting stance (TRU): Inclination to trust others 
Composite reliability = 0.88 AVE = 0.71 1 = fully inapplicable to 7 = fully applicable

TRU1 Normally, I trust people until they give me a reason not to trust them
TRU2 When I have doubts, I usually decide in favour of people when I meet them for the first time
TRU3 My typical procedure is to trust new acquaintances until they prove that I shouldn’t trust them

Current health status (HEA): Self-assessment of overall health status. 
Composite reliability = 1.00 AVE = 1.00 1 = very bad to 7 = very good

HEA Generally, I think my health status is . . .
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