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Abstract
1.	 Plant biomass production (BP), nitrogen uptake (Nup) and their ratio, and nitrogen 

use efficiency (NUE) must be quantified to understand how nitrogen (N) cycling 
constrains terrestrial carbon (C) uptake. But the controls of key plant processes 
determining Nup and NUE, including BP, C and N allocation, tissue C:N ratios and 
N resorption efficiency (NRE), remain poorly known.

2.	 We compiled measurements from 804 forest and grassland sites and derived re-
gression models for each of these processes with growth temperature, vapour 
pressure deficit, stand age, soil C:N ratio, fAPAR (remotely sensed fraction of 
photosynthetically active radiation absorbed by green vegetation) and growing-
season average daily incident photosynthetic photon flux density (gPPFD; effec-
tively the seasonal concentration of light availability, which increases polewards) 
as predictors. An empirical model for leaf N was based on optimal photosynthetic 
capacity (a function of gPPFD and climate) and observed leaf mass per area. The 
models were used to produce global maps of Nup and NUE.

3.	 Global BP was estimated as 72 Pg C/year; Nup as 950 Tg N/year; and NUE as 
76 g C/g N. Forest BP was found to increase with growth temperature and fAPAR 
and to decrease with stand age, soil C:N ratio and gPPFD. Forest NUE is con-
trolled primarily by climate through its effect on C allocation—especially to leaves, 
being richer in N than other tissues. NUE is greater in colder climates, where N is 
less readily available, because below-ground allocation is increased. NUE is also 
greater in drier climates because leaf allocation is reduced. NRE is enhanced (fur-
ther promoting NUE) in both cold and dry climates.

4.	 Synthesis. These findings can provide observationally based benchmarks for model 
representations of C–N cycle coupling. State-of-the-art vegetation models in the 
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1  |  INTRODUCTION

Although the main fluxes in the terrestrial carbon (C) cycle are rel-
atively well quantified, large uncertainty surrounds many aspects 
of the nitrogen (N) cycle (Davies-Barnard et al.,  2020; Le Quéré 
et al.,  2018; Zaehle et al.,  2014). The two are inextricably linked 
(Cleveland et al., 2013; Hungate et al., 2003) because of the N re-
quirements for plant growth (Norby et al., 2010), with N availabil-
ity influencing the relationships among photosynthesis and growth 
(LeBauer & Treseder,  2008; Liang et al.,  2020; Vicca et al.,  2012), 
biomass production (BP) and allocation (Fay et al.,  2015; Poorter 
et al.,  2012; Terrer et al.,  2019), and rhizodeposition (Henneron 
et al., 2020; Perkowski et al., 2021). Yet, recent ecosystem models 
have reported global plant N uptake (Nup) ranging widely, from 465 
to 1197 Tg N year−1 (Cleveland et al., 2013; Goll, Winkler, et al., 2017; 
Lawrence et al.,  2019; Oleson et al.,  2010; Smith et al.,  2014; 
Wiltshire et al., 2021). Although N cycling processes are expected to 
constrain the response of terrestrial C uptake to rising CO2 (Hungate 
et al., 2003), the assumptions about these processes made in cur-
rent models vary considerably and global compilations of site-level C 
and N cycling remain underused for their evaluation (see, e.g. Zaehle 
et al., 2014; Fowler et al., 2015). As a consequence, process-based 
models make widely divergent predictions of the extent of N limita-
tion to global C uptake in scenarios of future CO2 and climate change 
(Arora et al., 2020; Stocker et al., 2016; Zaehle et al., 2014).

Meanwhile, observational studies have generated a substantial 
body of ecosystem-level observations relevant to N cycling that has 
not previously been used in model development or evaluation. Here, 
we use such data, derived from multiple sources, to fit and upscale 
statistical models of key processes contributing to the terrestrial N 
cycle, with a view to providing new benchmarks to test (and poten-
tially, better constrain) process-based models.

The starting point for our analysis is BP, which is distinct from 
net primary production (NPP). NPP is defined as gross primary 
production (total photosynthetic carbon fixation) minus plant res-
piration, while BP is the annual C actually used for the growth of 
leaves (BPleaf), wood (BPwood) and roots (BProot; Collalti et al., 2020; 
Collalti & Prentice, 2019; Vicca et al., 2012). NPP includes the pro-
duction of nonstructural C compounds, including labile carbohy-
drates, volatile organic compounds (VOC) and root exudates (Collalti 
et al., 2020; Vicca et al., 2012) that do not form part of BP. How-
ever, although BP is readily available from field measurements (albeit 
with uncertainties—especially about the below-ground contribution, 
and the variable contribution of nonstructural carbohydrates to 

measured BP), NPP generally is not. Our particular focus is then on 
Nup and on nitrogen use efficiency (NUE), which is the ratio of BP to 
Nup. To estimate Nup and NUE, we analyse the environmental depen-
dencies of the various components contributing to determining N 
cycling rates, including BP, biomass allocation, tissue C:N ratios and 
N resorption efficiency (NRE).

BP has been found to increase with growth temperature (Baig 
et al., 2015) and soil nutrient availability (LeBauer & Treseder, 2008). 
A decline in forest BP with stand age is also well documented 
(Ryan et al., 2004; Xia et al., 2019). Few attempts have been made 
to describe global variations of Nup and NUE (but see Cleveland 
et al., 2013; Wang, Ciais, et al., 2018). NUE has been indicated to 
increase as N supply becomes more limiting (Finzi et al., 2007; Har-
rington et al., 2001), and to be reduced at increased soil nitrogen-
to-phosphorus (N:P) ratios (Gill & Finzi, 2016) or after N fertilization 
(Davies-Barnard et al.,  2020). Variations in biomass distribution 
between different organs and their distinct C:N stoichiometry (Ma 
et al., 2021; Tian et al., 2019; Zhang et al., 2020), and variations in 
NRE (Deng et al., 2018; Du et al., 2020), must influence NUE, but 
there is limited knowledge of how these factors change along en-
vironmental gradients and of their importance in affecting Nup and 
NUE variations among sites with different climatic and edaphic con-
ditions. Leaf stoichiometry not only varies greatly between species 
(Tian et al., 2019) but also shows systematic relationships with cli-
mate (Reich et al., 2007) and soils (Maire et al., 2015). Variations in 
mass-based foliar N content (Nmass, mg g−1) have been interpreted 
as reflecting plant nutritional status (e.g. Penuelas et al., 2020) but 
Nmass depends in part on leaf mass per unit area (LMA) and in part 
on the amount of N invested in Rubisco, the key enzyme determin-
ing photosynthetic capacity (Dong et al.,  2017; Luo et al.,  2021). 
Photosynthetic capacity can be quantified by the maximum rate of 
carboxylation (Vcmax). When standardized to 25°C (Vcmax25), this rate 
is related to the amount of Rubisco in leaves and therefore to the 
amount of N per unit leaf area (Harrison et al., 2009). A substantial 
proportion of Vcmax25 variation can be predicted by climate (Peng 
et al., 2021; Smith et al., 2019) and the same is true for LMA (Dong, 
Prentice, et al., 2022; Wang et al., 2023), implying that foliar N con-
tent is at least partly controlled by climate. NRE has been shown to 
be negatively related to temperature and humidity. Because rates of 
N cycling are enhanced in warmer and wetter environments, N sup-
ply from resorption becomes relatively less important under these 
conditions: As temperature and humidity increase, N cycling rates 
shift from the (more conservative) resorption pathway to the miner-
alization pathway (Deng et al., 2018; Du et al., 2020). Taken together, 

TRENDY ensemble showed variable performance against these benchmarks, and 
models including coupled C–N cycling produced relatively poor simulations of Nup 
and NUE.

K E Y WO RD S
carbon, climate, data-driven model, global change ecology, nitrogen uptake, nitrogen use 
efficiency, stand age, terrestrial ecosystem
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climate likely influences the vegetation demand for N and the effi-
ciency with which the uptake of N is translated into plant growth.

BP has been simulated by using satellite products (Cleveland 
et al., 2013; Zhao & Running, 2010), or with models entirely driven 
by climate (Goll, Winkler, et al., 2017; Lienert & Joos, 2018; Maurit-
sen et al., 2019; Meiyappan et al., 2015). However, variations in C 
allocation with climate and soil nutrient availability, and their impli-
cation for N uptake, have typically been underestimated in models 
(Medlyn et al., 2015; Zaehle et al., 2014). As a step towards reme-
dying this situation, we compiled a new global dataset of the key 
components determining N cycling rates in terrestrial ecosystems 
(BP, allocation, plant C:N stoichiometry and NRE) and associated 
environmental drivers and vegetation characteristics (climate, veg-
etation cover, stand age and soil C:N ratio) and analysed their inter-
relationships using statistical methods (Figure S1). We upscaled and 
combined the resulting statistical models to produce global maps of 
BP, Nup and NUE. We also made a first assessment of the ability of 
process-based terrestrial C and C–N cycle models from the TRENDY 
ensemble to represent the environmental responses of BP, Nup and 
NUE as shown in our analysis.

2  | METHODS

The analysis was conducted in six stages: (1) compilation of a data-
set of previously published stand-scale measurements for forest and 
grassland sites; (2) fitting statistical models at the stand scale; (3) 
global application of the models, to estimate global terrestrial C and 
N uptake; (4) global compilation of data to be used as predictors in 
statistical models; (5) analysis of the factors contributing to mod-
elled Nup and NUE; and (6) comparison of the fitted statistical models 
with simulations by state-of-the-art global vegetation models.

2.1  |  Stand-­scale datasets of plant-­ and 
leaf-­trait data

Our plant-trait dataset comprises measurements of total BP 
(g C m−2 year−1) and the BP of leaves, wood and roots in forest 
(Anderson-Teixeira et al.,  2016, 2018; Campioli et al.,  2015; Luys-
saert et al., 2007; Malhi et al., 2011, 2017; Tian et al., 2019; Vicca 
et al., 2012; Wang & Zhao, 2022); and total BP, the BP of leaves and 
roots in grassland (see Table S1 for citations of 78 original papers). 
Eighty-seven per cent of the data are from forests, 13% from grass-
lands. Seventeen per cent, 62% and 21% of the data are from tropical 
(0–22.5°), temperate (22.5°–50°) and high-latitude (>50°) regions, 
respectively. BPleaf, BPwood and BProot represent leaf, wood and root 
production, with BPwood equal to zero in grasslands. BProot includes 
both fine and coarse (lignified) roots for forests and fine roots only 
for grasslands. Subterranean stems and rhizomes of grasses are im-
plicitly included in roots. Total above-ground BP (ABP) is the sum of 
BPleaf and BPwood. Below-ground BP (BBP) is equal to BProot. For a 
subset of the sites, we also obtained data on leaf C:N ratios, which 

were used to calculate the leaf N flux (BPleaf divided by the leaf C:N 
ratio, g N m−2 year−1).

We assembled an additional leaf-trait dataset including Narea, 
Vcmax25 and leaf mass per area (LMA), comprising 350 sites and 
2424 species in natural (unfertilized) vegetation (Atkin et al., 2015; 
Bahar et al.,  2017; Bloomfield et al.,  2019; Cernusak et al.,  2011; 
Domingues et al., 2010, 2015; Dong et al., 2017; Maire et al., 2015; 
Meir et al., 2017; Walker et al., 2014; Wang, Harrison, et al., 2018; 
Xu et al., 2021). Nitrogen resorption efficiency (NRE) data were ob-
tained from published sources at 210 sites (Deng et al.,  2018; Du 
et al., 2020).

For comparison with Nup, we used a forest net mineralization 
rate (Nmin, g N m−2 year−1) dataset from 225 samples at 84 sites (Gill 
& Finzi, 2016). Net mineralization is the net microbial release of in-
organic N into the soil after accounting for immobilization of mineral 
N by microbes and constitutes the flux of mineral N that potentially 
becomes available for plant uptake (before accounting for N losses 
through leaching and gaseous pathways). Field measurements of 
Nmin may be affected by plants taking up a fraction of the gross N 
mineralization flux, potentially leading to an underestimation of 
plant N uptake when using Nmin as a proxy. Additionally, Nmin might 
underestimate Nup, as a significant contribution to Nup can be via 
organic forms of N (Liu et al., 2017; Näsholm et al., 2009). In contrast, 
comparing Nup with Nmin rests on the assumption that annual ecosys-
tem N gains and losses are small compared with mineralization and 
uptake and thus implies an overestimation of N uptake estimated by 
Nmin. However, because direct measurements of Nup are not possible 
(and ecosystem Nup estimates are commonly derived from the same 
component fluxes and stoichiometry data that were used in our 
model development), Nmin was considered here as an acceptable in-
dependent point of comparison for modelled Nup (Gill & Finzi, 2016).

2.2  |  Empirical models

Statistical models for BP, the allocation of BP to separate tissues, 
tissue C:N ratios and NRE were developed based on data from glob-
ally distributed forest and grassland sites (Figure S2). We used in-
terpolated (rather than directly measured) values to avoid the ~86% 
reduction of sample size that would have occurred otherwise. Ad-
ditional analyses, to test the validity of this choice, were carried out 
using directly measured values only.

For forests, a dataset of measured BP (n = 514; Figure S2), ABP 
(n = 709), BPleaf (n = 637) and site-level predictors interpolated 
from map products was used to fit statistical models. BP and its 
allocation have previously been modelled as functions of stand 
age (Campioli et al.,  2015), soil fertility (Vicca et al.,  2012) and 
climate (Collalti et al.,  2020). Accordingly, we initially selected 
the following six variables for predicting BP, ABP/BP and BPleaf/
ABP in forest: stand age, soil C:N ratio, fAPAR, Tg, gPPFD and va-
pour pressure deficit (D). Soil C:N provides an inverse indicator 
of soil N availability (Vicca et al., 2018). fAPAR represents an in-
verse measure of environmental stress—for example, because of 
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a short growing season or to low light, water or nutrient availabil-
ity. gPPFD is in effect a measure of the seasonal concentration of 
light availability and, unlike total growing-season PPFD, increases 
towards the poles. (The selection of predictors was nearly un-
changed if total PPFD was used instead of gPPFD to predict BP, 
except that total PPFD was finally not selected, and D was newly 
included.) To obtain values of predictor (independent) variables 
for each site, we three-dimensionally (latitude, longitude and el-
evation) interpolated values from global maps (see Section 2.4) to 
site locations using geographically weighted regression (GWR) in 
the ‘spgwr’ package in R to obtain plot-level predictors for empir-
ical model fitting.

Model selection (Table S2) was performed by forward stepwise 
regression, adding the variable producing the largest increase in R2 
at each step. We required all variables included in the final model 
to have regression coefficients significantly different from zero (as-
sessed by the t-statistic). Variables were added one-by-one until this 
criterion was no longer met. All ratios constituting response vari-
ables in the statistical models (ABP/BP, BPleaf/ABP and NRE) were 
logit-transformed, because these ratios range from 0 to 1; thus, val-
ues after transformation are continuous and unbounded, consistent 
with the assumptions of ordinary linear regression. For the same rea-
son, stand age, soil C:N ratio, gPPFD and D were log-transformed. In 
one case—logit (BPleaf/ABP)—the model selection procedure failed, 
as age was identified as the first predictor but became nonsignificant 
as more variables were added. In this case, we repeated the model 
selection with stand age removed.

Because multiple individual trees might have been measured at 
each site, a mixed-effects model was applied with site as the group-
ing variable for random offsets. Variance inflation factors (VIF) were 
calculated to test for multicollinearity in the BP and allocation mod-
els (Figure S3). Tg and D were found to cause multicollinearity in BP 
and ABP/BP models (VIF > 10), so in these two models we included 
Tg but not D.

Following Dong et al. (2017), leaf Narea can be well approximated 
as the sum of a bulk leaf tissue component proportional to LMA, and 
a metabolic component proportional to Vcmax25:

where ns and nr are empirical coefficients. It follows that:

We fitted this Nmass model using parallel observations of Nmass, 
Vcmax25 and LMA, for 350 global sites and 2424 species. Here, 
site and species were treated as grouping variables for random 
offsets using a linear mixed-effects model with a crossed random 
design. To estimate leaf C:N ratio (Cmass/Nmass), leaf Cmass was as-
sumed globally constant at the median value (0.47 g g−1) of the 
relevant subset of our leaf-trait dataset (n = 79 sites, 2492 indi-
viduals). This is consistent with recently reported global values 
of Cmass (Ma et al., 2018; Tang et al., 2018). Wood C:N ratio was 
assigned a value of 319 g g−1, the global mean value of trunk C:N 

ratio (n = 544 individuals) reported by Zhang et al.  (2020). Root 
C:N ratio was assigned a value of 94 g g−1 (n = 22 sites), which was 
derived here as the median value of measurements taken along 
with BBP measurements in our dataset. Although variations in 
wood and root C:N ratios are not negligible (Schreeg et al., 2014; 
Zhang et al., 2019), we treated them as constants here. Their vari-
ation appears to be more strongly controlled by phylogeny than by 
the environment (Zhang et al., 2020), rendering them less suitable 
for global upscaling with environmental covariates.

Following the finding by Deng et al. (2018) that NRE decreases 
with temperature and humidity, we fitted a linear model for NRE 
as a function of Tg and D at 184 forest sites (Deng et al., 2018; Du 
et al., 2020):

For grasslands, model selection showed that the optimal pre-
dictive model for site-mean BP (n = 119 sites) was fitted by Tg and 
gPPFD, consistent with the model fitted for forest biomes. ABP/
BP (n = 109 sites) was nonsensitive or weakly correlated to climate 
predictors. Therefore, we estimated a constant value for this ratio 
by performing a linear regression without intercept of ABP on BP, 
yielding a value of 0.50. Tissue C:N ratio and NRE data for grasslands 
had small sample sizes, rendering fitted models insufficiently robust. 
Therefore, leaf and root C:N ratios were assigned constant values 
of 18 and 41, respectively, and NRE = 69%, all being median values 
across the data for grasslands.

Total N uptake (Nup; g N m−2 year−1) was estimated as:

where Nleaf is BPleaf divided by the leaf C:N ratio, Nwood (in forests) is 
BPwood divided by the wood C:N ratio, and Nroot is BProot divided by 
the root C:N ratio. No resorption of N stored in roots was considered.

2.3  | Global mapping

The empirical models, developed based on site-specific obser-
vations, were applied globally—driven by global gridded data 
(see Section 2.4)—to obtain upscaled estimates of all component 
fluxes. Global maps were initially created for forests and grass-
lands separately (see Equations 1–4). The MODIS IGBP land-cover 
map (Sulla-Menashe & Friedl, 2018) was then used to determine 
the fraction of forests versus grasslands in each grid cell. Six 
land-cover classes (evergreen needleleaf, evergreen broadleaf, 
deciduous needleleaf, deciduous broadleaf, mixed forests and 
shrublands) were treated as forest, and one as grassland. The final 
value assigned to each grid cell was a weighted average of the val-
ues for forests and grasslands; weighting was based on the relative 
cover of forests versus grasslands, normalized to a sum of 100% 
(thus disregarding, e.g. urban or agricultural land in order to focus 
on natural and seminatural vegetation). The uncertainties of global 
estimations of C and N uptake were computed using standard 
error propagation methods. Negative BP values arising in a few 

(1)Narea = nsLMA + nr Vcmax25,

(2)Nmass = ns + nr
Vcmax25

LMA
.

(3)logit (NRE) = N1 Tg + N2 lnD.

(4)Nup = Nleaf (1 − NRE) + Nwood + Nroot,
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cases (0.2% and 1.4% of global grid cells in forest and grassland, 
respectively) were ignored. Global NUE was calculated based on 
area-weighted BP and Nup in each grid cell.

2.4  | Global datasets of predictors

For globally upscaling fluxes based on empirical models, we com-
piled global gridded datasets for all predictor (independent) vari-
ables used in the models. Maps on a half-degree global grid were 
developed for Vcmax25 (μmol m−2 s−1), mean daytime air temperature 
(Tg, °C), vapour pressure deficit (D, kPa), incident photosynthetic 
photon flux density averaged over the growing season (gPPFD, μmol 
m−2 s−1), the fraction of absorbed photosynthetically active radiation 
(fAPAR, unitless: a remotely sensed measure of green vegetation 
cover), stand age (years), soil C:N ratio (g g−1) and leaf mass per area 
(LMA, g m−2; Figure S4).

The global map of Vcmax25 was obtained using a climatically 
driven model for Vcmax, based on eco-evolutionary optimality prin-
ciples (Peng et al., 2021; Prentice et al., 2014; Stocker et al., 2020; 
Wang et al.,  2017). Global patterns of Vcmax predicted by this 
model have been shown to compare well to independent esti-
mates derived from remotely sensed chlorophyll measurements 
(Dong, Wright, et al.,  2022). Vcmax was predicted using Equation 
C4 in Stocker et al.  (2020), from atmospheric pressure, CO2, 
gPPFD and other daily climate forcing data (relative humidity, pre-
cipitation and average daily temperature) derived from WATCH 
Forcing Data ERA-Interim (WFDEI: Weedon et al., 2014). Values 
were converted to a standard temperature of 25°C (Vcmax25) using 
the Arrhenius equation, with activation energy from Bernacchi 
et al.  (2001). This converts Vcmax predicted by the model, which 
applies to growth temperature and therefore reflects optimality 
under natural field conditions, to a quantity (Vcmax25) assumed 
proportional to Rubisco amount—and thus to the metabolic com-
ponent of leaf N (Dong et al., 2017; Dong, Prentice, et al., 2022). 
Estimated Vcmax25 was averaged over 1982–2011, using the maxi-
mum daily Vcmax25 value for each year.

Monthly average values of mean daily maximum (Tmax, °C) and 
minimum (Tmin, °C) temperature were obtained from Climate Re-
search Unit data (CRU TS 4.0; Harris et al.,  2014) for the period 
1980–2016. Tg was estimated monthly by approximating the diel 
temperature cycle with a sine curve, where daylight hours are deter-
mined by month and latitude:

where λ is latitude and δ is the monthly average solar declination 
(Jones, 2013). Monthly values of Tg were averaged from 1980 to 2016, 
over the thermal growing season, that is, months with Tg > 0°C.

Vapour pressure deficit (D) was estimated using gridded actual 
vapour pressure (ea, hPa) from CRU, for the same period and resolu-
tion as Tg, using GWR:

Monthly values of D were averaged from 1980 to 2016 over the ther-
mal growing season.

Incident solar radiation data were obtained from WFDEI for the 
same period and resolution as D and Tg. Solar radiation (W m−2) was 
converted to gPPFD assuming an energy-flux ratio of 4.6 μmol J−1 
and a photosynthetically active fraction of 0.5. Monthly values were 
averaged from 1980 to 2016 over the thermal growing season.

Fraction of absorbed photosynthetic radiation (fAPAR) data were 
derived from Advanced Very High Resolution Radiometer (AVHRR) 
Normalized Difference Vegetation Index third generation (NDVI3g) 
map products for the period 1982–2011 (Pinzon & Tucker,  2014). 
Mean stand age was derived from Poulter et al.  (2018), calculated 
as the mean age across four plant functional types (PFTs) and 15 
age classes (from 0–10 to 140–150 years), weighted by their respec-
tive fractional area coverage within each grid cell. Missing values for 
stand ages were filled by the average of the local continent. Soil C:N 
ratio (Batjes,  2015) was processed by calculating the layer depth-
weighted mean across the top 2–3 layers (20–60 cm). Global soil C:N 
maps were then aggregated from 1/120 to 1/2 degrees and spatially 
interpolated to fill the 8% of land area with missing C:N values based 
on the k-nearest-neighbour (KNN) method, using longitude and lat-
itude as predictors and an optimized k = 7. LMA (Moreno-Martínez 
et al., 2018) was also gap-filled by the KNN method (as predicted by 
latitude, Tg, gPPFD and the ratio of actual evapotranspiration to po-
tential evapotranspiration, optimal k = 9), filling 71% of the land area.

2.5  |  Factors contributing to NUE and Nup

We conducted a variable importance analysis using the Lindeman, 
Merenda and Gold (LMG) statistic (Grömping,  2006) for Nup and 
NUE separately in relation to all predictor variables, based on the 
global gridded data. LMG statistics were calculated only for the for-
est models because N cycling rates in grassland depended only on Tg 
and gPPFD and showed little variation.

2.6  |  Comparison with global vegetation models

We analysed global simulations, by 12 dynamic global vegetation 
models (DGVMs) in version 8 of the TRENDY model ensemble, 
driven by varying CO2 and climate but with fixed (preindustrial) land 
use (the S2 simulation protocol). The same simulations also con-
tributed to the annual Global Carbon Budget publication for 2019 
(Friedlingstein et al., 2019). The models do not distinguish BP from 
NPP, so we compared our BP values with DGVM-simulated NPP 
(variable ‘NPP’ in TRENDY outputs). We also compared our Nup val-
ues with DGVM-simulated Nup (variable ‘fNup’ in TRENDY outputs). 
These comparisons were made using values extracted from global 
simulations for the same sites as in other analyses.

Because all the TRENDY DGVMs and our statistical models used 
climate variables as predictors, we also compared partial residual 

(5)
Tg =Tmax

{

1∕2+
(

1−x2
)1∕2

∕2 cos−1 x
}

+Tmin

{

1∕2−
(

1−x2
)1∕2

∕2 cos−1 x
}

, x= −tan � tan �,

(6)D = es − 0.1 ea, where es = 0.611 exp
[

17.27 Tg ∕
(

Tg + 237.3
)]

.
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    | 2681PENG et al.

relationships based on linear regressions for predicted site-level BP, 
Nup and NUE in relation to Tg, gPPFD and D.

3  |  RESULTS

3.1  |  Predicting component fluxes

Component fluxes showed stronger environmental dependencies, 
and more accurate predictions, in forests than in grasslands.

In forests (Table 1; Figure 1), BP and ABP/BP both decreased 
with increasing gPPFD (growing-season mean PPFD), soil C:N 
ratio and stand age but increased with growth temperature. 
(Note that gPPFD tends to be greater if the growing season is 
shorter, thus decreasing BP.) BP also increased with fAPAR. This 
result is expected because photosynthesis depends on canopy 

light absorption. The ratio BPleaf/ABP increased with fAPAR 
and gPPFD, but decreased with aridity. The regression models 
explained 44%, 17% and 8% of observed variance in forest BP, 
ABP/BP and BPleaf/ABP, respectively (Table 1). Analyses using di-
rectly measured (instead of mapped) values of predictors showed 
broadly consistent patterns—with the exceptions that BP was not 
significantly related to measured soil C:N ratio and ABP/BP was 
not significantly related to gPPFD (Figure S5), probably because 
of the reduced sample sizes.

In grasslands, BP increased with Tg but decreased with gPPFD—
qualitatively consistent with the response in forests, but explaining 
only 23% of observed variance. The relationship of ABP/BP to en-
vironmental variables was nonsignificant; hence, we applied a fixed 
ratio ABP/BP = 0.50 (n = 109).

Predictions derived from the empirical models (using site-level 
predictors in the data-driven model) showed general agreement 
with stand-scale measurements for BP (R2 = 0.45: Figure  2), ABP 
(R2 = 0.44), BBP (R2 = 0.16), BPleaf (R2 = 0.51) and BPwood (R2 = 0.28) 
in forests; and BP (R2 = 0.24), ABP (R2 = 0.13) and BBP (R2 = 0.20) in 
grasslands.

The relationship for Nmass as a linear function of Vcmax25/ LMA 
(Equation 2) explained 21% of the variance in observed Nmass. NRE 
was found to decrease with higher temperature and humidity; the 
corresponding regression model explained 23% of observed vari-
ance (Table 1).

Finally, we estimated Nup from the combination of BP, C al-
location, tissue C:N ratios and NRE, yielding good predictions of 
observed Nmass (R2 = 0.39, Figure  2i) using measured Vcmax25 and 
LMA as predictors; leaf N flux (R2 = 0.47, Figure 2j); NRE (R2 = 0.23, 
Figure  2k); and Nmin (R2 = 0.39, compared with modelled Nup in 
Figure 2l) in forests.

3.2  | Global carbon and nitrogen cycling

Annual global BP was estimated as 72 ± 14 Pg C year−1 (Figure  3; 
Table S3). Modelled BP and ABP were highest in tropical and sub-
tropical forests. This result is expected because of the year-round 
growing seasons in the tropics, and because both BP and ABP/BP 
are increased at lower soil C:N ratios and higher temperatures in 
these regions (Figure S4). Leaf C:N ratio was also higher in tropical 
forests, primarily driven by low values of Vcmax25 at high tempera-
tures. NRE increased towards higher latitudes, as expected because 
of lower temperatures.

Annual global Nup was estimated as 950 ± 260 Tg N year−1, 
with a global pattern similar to that of BP. Global NUE was esti-
mated as 76 ± 26 g C/g N. Global mean forest NUE was estimated 
as 91 ± 37 g C/g N, determined by multiple climatic and soil factors. 
The global pattern of forest NUE differed from that of BP or Nup, 
increasing from tropical to boreal forests. Grassland NUE was as-
signed a constant value of 48 ± 34 g C/g N, as we were unable to 
estimate the environmental dependencies of most components in 
grasslands (Table 1).

TA B L E  1  Empirical models and constants.

Response variables Fitted regressions R2

Forest

BP 2838 + 15.7 Tg − 278 ln gPPFD − 377 ln 
C:N − 91.1 ln age + 861 fAPAR

0.44

logit ABP/BP 14.9 + 0.0249 Tg − 1.74 ln gPPFD − 1.44 ln 
C:N − 0.134 ln age

0.17

logit BPleaf/ABP −12.0 + 1.82 ln gPPFD + 1.02 
fAPAR − 0.485 ln D

0.08

Leaf Nmass 0.00584 Vcmax25/LMA + 0.0161 0.21

Leaf Cmass 0.47 (median of 79 sites)

Root C:N ratio 94 (median of 22 sites)

Wood C:N ratio 319 (mean of 544 individuals)

logit NRE 1.15 − 0.0544 Tg + 0.282 ln D 0.23

Grassland

BP 4874 + 27.1 Tg − 797 ln gPPFD 0.23

ABP/BP 0.50 (fitted by regression with zero 
intercept)

Leaf C:N ratio 18 (median of 215 sites)

Root C:N ratio 41 (median of 71 sites)

NRE 0.69 (median of 26 sites)

Note: Fitted models or constants are shown for biomass production 
(BP; g C m−2 year−1); the ratio of above-ground biomass production 
(ABP, g C m−2 year−1) to BP; the ratio of leaf biomass production (BPleaf, 
g C m−2 year−1) to ABP; leaf nitrogen per unit mass (Nmass, unitless); leaf 
carbon per unit mass (Cmass, unitless); root carbon-to-nitrogen ratio 
(C:N, g C/g N); wood carbon-to-nitrogen ratio (C:N, g C/g N) and nitrogen 
resorption efficiency (NRE, unitless). Site-level predictors were all 
mapped values (see Figure S4): soil C:N ratio (C:N, g C/g N), forest stand 
age (age, years), fraction of absorbed photosynthetically active radiation 
(fAPAR, unitless), incident photosynthetic photon flux density averaged 
over the growing season (gPPFD, μmol m−2 s−1), growth temperature (Tg, 
°C), vapour pressure deficit (D, kPa), maximum rate of carboxylation at 
25°C (Vcmax25, μmol m−2 s−1) and leaf mass per unit area (LMA, g m−2). In 
forests, ABP/BP, BPleaf/ABP and NRE were logit-transformed and soil 
C:N ratio, forest stand age, gPPFD and D were log-transformed. Partial 
residual plots are presented in Figure 1.
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2682  |    PENG et al.

3.3  |  Environmental dependencies of Nup and NUE

The data-driven models developed here allowed us to quantify the 
importance of different component processes for Nup and NUE in for-
ests and of variation of in modelled forest Nup. According to the LMG 
statistics, variations in BP, allocation, NRE and leaf N:C ratio and NRE, 
respectively, explained 45%, 22%, 22% and 11% of the variation in 

modelled forest Nup. Climate variables (Tg, D, gPPFD) and (indepen-
dently modelled, but entirely climate-driven) Vcmax25 together explained 
57% of variation in modelled forest Nup. fAPAR, soil C:N ratio, stand age 
and LMA, respectively, explained 28%, 10%, 5% and 0.6%.

Variations in allocation, leaf N:C, NRE and BP, respectively, ex-
plained 71%, 13%, 11% and 5% of the modelled variation in NUE. Cli-
mate variables and climate-derived Vcmax25 together explained 76% 

F IGURE  1 Partial residual plots for statistical models developed to predict: (1) biomass production (BP; g C m−2 year−1) in forest; (2) 
the ratio of above-ground biomass production (ABP; g C m−2 year−1) to BP; (3) the ratio of leaf biomass production (BPleaf; g C m−2 year−1) 
to ABP; (4) nitrogen resorption efficiency (NRE); and (5) BP in grassland. Predictors are mapped soil C/N, stand age, fraction of absorbed 
photosynthetically active radiation (fAPAR), incident photosynthetic photon flux density averaged over the growing season (gPPFD), growth 
temperature (Tg) and vapour pressure deficit (D). All response variables were logit-transformed, and predictors for soil C/N, age, gPPFD and 
D were log-transformed. Statistical models of forest BP, ABP/BP and BPleaf/ABP used linear mixed-effects models, where site is the random 
intercept, and each point is represented by a measured value at ecosystem level. The statistical models for NRE and grassland BP are linear 
regressions, with each point representing a measured site-mean value.

 13652745, 2023, 12, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2745.14208 by U

niversitat B
ern, W

iley O
nline L

ibrary on [08/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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of the modelled variance in NUE. fAPAR, LMA, stand age and soil 
C:N, respectively, explained 16%, 5%, 2% and 1%.

Overall, we found NUE in forests to increase with LMA, age, soil 
C:N ratio and aridity; and to decrease with fAPAR, Tg, Vcmax25 and 

gPPFD (Table 1). The pattern of variation in NUE is dominated by 
climate via its effects on biomass allocation—especially allocation to 
leaves, which are richer in N than other tissues. Increasing leaf allo-
cation is the primary factor leading to decreasing NUE (Figure S6). 

F IGURE  2 Evaluation of model predictions (see Table 1) against measurements. The dotted line is the 1:1 line. The red line represents 
the linear regression of modelled vs. observed values. Points in (i, k) represent site-mean values of leaf N (g g−1) and nitrogen resorption 
efficiency (NRE, unitless). Points in (a–h, j, l) represent each individual recorded for biomass production (BP, g C m−2 year−1), above-
ground biomass production (ABP, g C m−2 year−1), below-ground biomass production (BBP, g C m−2 year−1), leaf biomass production (BPleaf, 
g C m−2 year−1), wood biomass production (BPwood, g C m−2 year−1), leaf N flux (BPleaf divided by leaf C:N ratio, g N m−2 year−1) and net N 
mineralization (g N m−2 year−1).
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2684  |    PENG et al.

Thus, NUE decreases with temperature because lower temperatures 
decrease above-ground allocation, including allocation to leaves; 
and it increases with aridity because leaf allocation is reduced in 
dry climates. These two patterns are compounded by the effects of 
NRE, which is greater in both drier and colder environments, leading 
to increased NUE. The decrease in NUE with gPPFD is also primarily 
driven by leaf allocation: increasing gPPFD decreases the ratio ABP/
BP, but more importantly, increases the ratio BPleaf/ABP, thereby 
reducing NUE.

Above-ground allocation was also reduced in soils with higher 
C:N ratios. However, soil C:N ratio accounted for only 1% of mod-
elled variance in NUE, an effect much smaller than that of climate.

NUE in grassland was assigned a globally fixed value, but this 
value is lower than that of forests because of the high C:N ratio of 
wood. Low NUE in grassland explains the relatively sharp transitions 
(seen in Figure 3f) between low values in semiarid grasslands and 
much higher values in nearby dry forests.

3.4  |  Comparison with global vegetation models

Comparing our global estimates with measurements for BP in forest 
yielded R2 = 0.45 (Figure 2a). Comparison of our global estimates of 
Nup with Nmin data yielded R2 = 0.39 (Figure 2l). TRENDY models per-
formed variably in comparison with these measurements (Table 2). 
Many models showed good performance, approaching that of our 
benchmark model, for BP. Among the four models allowing compari-
son with N uptake, however, none shows R2 greater than half that of 
our benchmark.

We also compared the climatic dependencies of our global es-
timates of BP, Nup and NUE with TRENDY DGVMs. All the DGVMs 
captured the positive response of BP to temperature. Most also cap-
tured the decrease in BP with gPPFD (Figure 4). The representation 
of global patterns for Nup and NUE in relation to climate, however, 
showed a diversity of responses. One model showed the wrong sign 
for the temperature dependency of both Nup and NUE.

F IGURE  3 Global simulations of biomass production (BP, g C m−2 year−1), above-ground biomass production (ABP; g C m−2 year−1), leaf 
carbon-to-nitrogen ratio (leaf C:N), nitrogen resorption efficiency (NRE), N uptake (g N m−2 year−1) and nitrogen use efficiency (NUE, the 
ratio of BP to N uptake). The value at the top of each panel is a global estimate. The observed sites used for fitted model and evaluation are 
shown in Figure S2.
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4  | DISCUSSION

One recent study suggested that all forest C fluxes (autotrophic respi-
ration, NPP, above- and below-ground NPP) display similar trends with 
respect to latitude, temperature and growing-season length (Banbury 
Morgan et al.,  2021), with no difference in allocation at the global 
scale. Many observational and experimental studies contradict this, 
indicating that C allocation is influenced by climate and soil factors 
including light (Poorter et al., 2012), water (Ma et al., 2021; Schenk & 
Jackson, 2002; Zhang et al., 2019), temperature (Lambers et al., 2008; 
Ma et al.,  2021), CO2 (Poorter et al.,  2022; Terrer et al.,  2018) and 
nutrient availability (Litton et al., 2007; Ven et al., 2019, 2020; Yan 
et al.,  2019). Here, we focus on observed variations in BP, Nup and 
their ratio, NUE. Our analysis documents the differentiated responses 
of these three quantities to biotic and environmental factors, and the 
particular importance of variations in C allocation in determining NUE.

BP is shown to be positively related to growth temperature and 
light absorption, while declining with the seasonal concentration of 

light availability—features captured by most of the DGVMs. Addi-
tional controls on BP are soil C:N ratio (with more organic soils sup-
porting lower BP), and forest stand age. N supply limitation on BP is 
well supported by observational studies (LeBauer & Treseder, 2008; 
Vicca et al.,  2012). BP increases towards lower soil C:N ratio be-
cause higher N availability increases whole-plant photosynthesis 
and growth (Vicca et al., 2012). Soil C:N ratio is a relatively crude 
proxy for N availability (Maire et al., 2015), but it emerged here as 
a significant control on BP, in line with previous research (Radu-
jković et al., 2021; Terrer et al., 2019; Van Sundert et al., 2020; Vicca 
et al., 2018). Regarding stand age, the longer transport pathway for 
water in taller trees can result in reduced stomatal conductance and 
photosynthesis (Drake et al., 2011) while the greater sapwood mass 
is required to support a given leaf area and implies increased mainte-
nance respiration (Collalti & Prentice, 2019; Mori et al., 2010; Reich 
et al., 2008)—both effects potentially contributing to a decline in BP.

BP itself emerged as the most important predictor of Nup in 
our analysis—inevitably, given that Nup has to match the stoichio-
metric requirements of plant growth (Cleveland et al., 2013; Zaehle 
et al., 2014). This principle is therefore built into our calculation of 
Nup. Given the strong climatic controls of BP, it also follows that cli-
mate exerts a primary control on Nup. The involvement of soil C:N 
ratio as a secondary control of modelled Nup is consistent with soil 
N limitations on whole-plant C and N uptake (Lawrence et al., 2019; 
Mauritsen et al., 2019).

The ratio of ABP to BP showed responses to the environ-
ment that are qualitatively similar to those of BP, including similar 
responses to soil C:N ratio—indicating that less fertile soil con-
ditions tend to increase BBP relative to ABP. From high to low 
soil N availability, as indicated here by increasing soil C:N ratio, 
increasing allocation of C to roots is commonly observed along 
with decreasing allocation to above-ground production (Franklin 
et al., 2012; Peng et al., 2017). The large below-ground C alloca-
tion in soils with low N availability reflects greater investments 
into Nup through enhanced fine root production. This might also be 
accompanied by greater investments into ectomycorrhizal (ECM) 
fungi to acquire N from soil organic matter (Phillips et al., 2013), 
causing accelerated soil C turnover (Pregitzer et al., 2008) and N 
cycling (Zak et al., 2011). The component of C exported to mycor-
rhizae and exuded into the soil is not contained in BProot, BBP and 
BP and is rarely measured, but a potentially substantial compo-
nent of NPP (Vicca et al., 2012).

The ratio of BPleaf to ABP in forests increases with moisture, 
here measured by the growing-season mean vapour pressure defi-
cit, probably because sapwood area per unit leaf area increases with 
aridity because of the additional water requirement of a given rate 
of photosynthesis under dry conditions (Mencuccini & Grace, 1995). 
The positive effect of fAPAR on this ratio is expected, because of 
the direct link between leaf light absorption and photosynthesis. 
The positive effect of gPPFD might reflect the fact that the annual 
C allocation to leaves is determined by the annual maximum foliage: 
A shorter growing season allows each unit of leaf carbon to produce 
less photosynthate and therefore likely less BP.

TA B L E  2  Statistics for the comparison of global simulations 
(from our study and TRENDY output) interpolated to measurement 
sites. Statistics of our model were shown in bold.

R2 RRMSE
Rel. 
bias Slope

Predicted BP vs. measured BP

Our model 0.45 0.42 −0.02 1.04

CABLE (Haverd et al., 2018) 0.37 0.51 0.10 0.64

ISAM (Meiyappan et al., 2015) 0.36 0.52 −0.25 0.98

ISBA (Decharme et al., 2019) 0.30 0.49 −0.10 0.84

JULES (Sellar et al., 2019) 0.27 0.61 0.26 0.56

LPJ (Smith et al., 2014) 0.05 0.63 −0.23 0.45

ORCHIDEE (Goll, Vuichard, 
et al., 2017)

0.42 0.49 −0.21 0.92

ORCHICNP (Krinner et al., 2005) 0.12 0.57 −0.02 0.50

SDGVM (Walker et al., 2017) 0.19 0.53 −0.12 0.98

CLASS (Melton & Arora, 2016) 0.22 0.67 0.32 0.48

CLM (Lawrence et al., 2019) 0.19 0.53 −0.01 0.70

JSBACH (Mauritsen et al., 2019) 0.31 0.71 0.23 0.41

LPX (Lienert & Joos, 2018) 0.32 0.50 −0.12 0.74

Predicted N uptake vs. measured net mineralization

Our model 0.39 0.75 −0.09 1.59

ISAM (Meiyappan et al., 2015) 0.08 0.92 −0.20 0.54

ORCHICNP (Krinner et al., 2005) 0.13 1.19 0.53 0.56

JSBACH (Mauritsen et al., 2019) 0.09 1.21 0.34 0.24

LPX (Lienert & Joos, 2018) 0.14 0.97 0.45 0.74

Note: Measured variables are biomass production (BP) and net 
mineralization (Nmin). R2 is the coefficient of determination; RRMSE is 
the relative root-mean-square error, as a proportion of the observed 
mean value; ‘Rel. bias’ is the difference between observed and 
predicted mean values, expressed as a proportion of the observed 
mean value; Slope is the slope of the linear regression of observed 
against predicted values. The site distribution is shown in Figure S2.
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Tissue stoichiometry and NRE explained less variance in Nup 
than BP and biomass allocation (Wang, Ciais, et al., 2018). Modelled 
leaf C:N ratios decreased towards high latitudes, driven by Vcmax25 
increasing towards cold climates (Peng et al.,  2021). This pattern 
is consistent with the principle of the LPJ-GUESS model (Smith 
et al., 2014), which assumes that leaf N is driven by its climate-driven 
demand rather than soil N supply. It is not captured by models 
wherein leaf C:N ratio is assigned PFT-specific (Lawrence et al., 2019; 
Oleson et al., 2010) or globally fixed (Wiltshire et al., 2021) values.

Global mean NRE was shown to increase from low to high 
latitudes, driven by negative effects of temperature and humid-
ity on NRE. Because rates of N cycling are enhanced in warmer 
and wetter environments, N supply from resorption is relatively 
less important in tropical regions relative to higher latitudes (Deng 
et al., 2018; Du et al., 2020).

Our analysis casts some light on the opposition between ‘bio-
geochemical niche differentiation’ (Peñuelas et al.,  2019; Sardans 
et al., 2021) and ‘climate-driven demand’ (Wang, Ciais, et al., 2018) 
as the primary controls of ecosystem stoichiometry. Globally, soil 
C:N ratio accounted for just 10% of the modelled variation in Nup 
and 1% of the modelled variation in NUE. N deposition was initially 
considered as an additional predictor for BP and allocation, but pro-
duced no improvement in the fitted model performance for Nup and 
was therefore discarded for the further analysis and modelling. By 
contrast, climate accounted for 57% of modelled variation in Nup and 
76% of modelled variation in NUE. These results point to a dominant 
control of Nup and NUE by climate, with a secondary influence by 
soils. However, soils are linked to climate through their development 
(Jenny,  1994); soil and climate variables are thus not statistically 
independent. In combination with the small-scale heterogeneity 

F IGURE  4 Partial residual relationships for modelled biomass production (BP, g C m−2 year−1), N uptake (Nup, g N m−2 year−1) and nitrogen 
use efficiency (NUE, g C/g N) as functions of incident photosynthetic photon flux density averaged over the growing season (gPPFD, 
μmol m−2 s−1), growth temperature (Tg, °C) and vapour pressure deficit (D, kPa) during the thermal growing season. Predicted site-level BP 
was based on all measured BP plots in forests; predicted site-level Nup was based on all measured N mineralization plots in forests; predicted 
site-level NUE was based on all measured BP and N mineralization plots in forest (Figure S2a, e).
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of soils and shortcomings of global soil data in capturing this, the 
emergence of climate-related variables as dominant over soil fac-
tors in global statistical analyses like ours should be interpreted with 
caution.

Overall, biomass allocation emerged as the dominant process 
controlling of forest NUE (driving 71% of modelled variance). This 
finding is consistent with GOLUM-CNP (Wang, Ciais, et al., 2018), 
where biomass allocation explained >80% of modelled variation 
in NUE (defined as the ratio of gross primary production to Nup 
in their study). According to our models, forest NUE is primarily 
driven by climate, increasing towards colder and drier climates. A 
possible interpretation of this pattern invokes the concept that 
high efficiency of resource use is favoured when resource supplies 
are more limiting to production (Harrington et al., 2001). This inter-
pretation is supported by observations (Gill & Finzi, 2016) and sim-
ulations (Wang, Ciais, et al., 2018), indicating that NUE increases 
from tropical to boreal forest. In boreal forests, much of the N 
pool is bound to organic material and is depolymerized by micro-
bially produced hydrolytic and oxidative enzymes whose activity 
is limited by low temperatures (Gill & Finzi,  2016). To overcome 
this limitation, boreal plants are dependent on ECM or ericoid mi-
crobial symbioses for efficient N acquisition (Högberg et al., 2010; 
Näsholm, 1998; Terrer et al., 2019), requiring greater C allocation 
below ground (Gill & Finzi, 2016). The increase in NUE with aridity 
can be explained by reduced allocation to (N-rich) leaves. NRE also 
plays a role, as N conservation (by resorption) is a favoured strat-
egy in colder and drier environments.

Globally, however, the lowest NUE according to our mapping 
is encountered in arid regions (including Central Asia, the interior 
West of North America and the Sahel) where grasslands dominate. 
The highest NUE is shown primarily in temperate forests, especially 
in northern Europe and China, where relatively low temperatures 
increase below-ground allocation and decrease NRE. N deposition 
in these regions is among the highest globally (Reay et al.,  2008), 
suggesting that N deposition is not a primary control on NUE. Much 
of Australia is also shown as a region of high NUE because of the 
occurrence of forests in dry climates that favour reduced leaf allo-
cation and high NRE.

The increase in NUE from tropical to boreal forest has also been 
linked to decreasing soil N supply or soil N:P ratio (Gill & Finzi, 2016). 
In our analysis, soil C:N ratio accounted for 10% of overall variance 
for Nup but only 1% for NUE, suggesting that soil N supply is a minor 
factor determining NUE and implying that effects of climate—which 
include indirect effects, such as the increased C cost of N acquisition 
at low temperatures—are dominant.

Existing coupled C–N cycle models predict plant C allocation by 
a variety of methods. Some assume fixed (PFT-specific) allocation 
fractions; others embed functional relationships between different 
dimensions, such as leaf and sapwood area (Zaehle et al., 2014), in 
more process-based formulations. Some analyses have used satel-
lite observations of LAI and above-ground biomass (CARDAMOM; 
Bloom et al., 2016) directly as inputs. Given the importance of C al-
location for the N cycle, it is important to check that assumptions 

made about C allocation are realistic. This is not always the case. 
For example, Wang, Ciais, et al. (2018) noted that in CARDAMOM, 
allocation to wood production was commonly >60% (this is rare in 
measurements) and that the turnover time of leaves in temperate 
and boreal biomes was <1 year (but for evergreen leaves it is com-
monly 2.5–10 years). Different assumptions about C allocation will 
necessarily lead to divergent estimations of NUE, so the present sit-
uation implies huge uncertainty about the patterns and controls of 
NUE that could be reduced by systematic comparison against obser-
vationally based benchmarks.

We have noted that the distinction between forest and grass-
land distributions is an important factor determining NUE in our 
global maps. Our approach is consistent with TRENDY models 
that assign PFT-specific leaf C:N ratios, C allocation fractions and 
NRE (Smith et al., 2014; Wiltshire et al., 2021). Nonetheless, it is 
simplistic in (a) assuming sharp boundaries and (b) assigning fixed 
values to several parameters for grasslands. More work is required 
to improve the estimation of plant properties related to N cycling 
in nonforest biomes.

Global BP was estimated as 72 ± 14 Pg C year−1, larger than in 
earlier studies by Cleveland et al.  (2013; 44.35 Pg C year−1) and 
Wang, Ciais, et al. (2018; 52.50 Pg C year−1). Global total Nup was es-
timated as 950 ± 260 Tg N year−1. This falls towards the upper end of 
the range of estimates by six models of global C and N cycling: 465 
(Wiltshire et al., 2021), 728 (Smith et al., 2014), 831 (Goll, Winkler, 
et al., 2017), 968 (Oleson et al., 2010), 1172 (Lawrence et al., 2019) 
and 1197 Tg N year−1 (Cleveland et al., 2013). Global NUE was esti-
mated as 76 ± 26 g C/g N. This falls within the range estimated by 
other models: 50 g C/g N by the TEM model (Melillo et al.,  1993), 
52 g C/g N by the O-CN model (Zaehle et al., 2010), 56 g C/g N by the 
ORCHIDEE model (Goll, Vuichard, et al., 2017) and 80 g C/g N by the 
ISAM model (Meiyappan et al., 2015). Thus, our central estimates of 
global Nup and NUE are within the broad ranges simulated by cur-
rent models. To further improve the reliability of the global N uptake 
flux, data limitations will have to be resolved, in particular for root N 
concentrations and the distinction between below-ground biomass 
production of fine and coarse roots. The latter posed a limitation 
to considering their distinct C:N ratios in the analysis here—with 
unclear implications for a potential bias in our estimates of the N 
requirement for BProot.

In conclusion, our data-driven modelling approach has gener-
ated quantitative relationships that are broadly consistent with ex-
perimental and observational evidence for the controls of different 
processes contributing to the coupling of the terrestrial C and N 
cycles. Data on nonforest ecosystems are, however sparse, limiting 
the information that can be derived from them. Further limitations 
of this study include relatively low R2 values for some comparisons 
(especially those related to C allocation to different tissues), and the 
lack of available measurements of soil factors more directly related 
to plant function than soil C:N ratio, a relatively crude metric of 
N availability. Despite these limitations, our analysis provides new 
benchmarks for coupled C–N cycle modelling. We have presented 
initial comparisons with TRENDY model simulations, based on their 
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publicly available outputs. Simplified representations of allocation 
and tissue C:N ratios in TRENDY models might be responsible for 
divergence of the modelled Nup and NUE responses to climate from 
one another, and from the benchmarks provided here. A more in-
depth examination of model behaviour would be worthwhile in the 
light of our findings, potentially contributing to a reduction in the 
uncertainties associated with N cycle constraints on ecosystem C 
uptake in a changing environment.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table S1: Reference information of biomass production dataset in 
grassland.
Table S2: Model selection for stepwise forward regression.
Table S3: Simulated global C and N uptakes. Units are Pg C year−1 or 
Pg N year−1.
Figure S1: Flowchart for data-driven model estimation and 
global simulation of carbon and nitrogen cycling. In forests and 

grasslands, empirical models and constants were designed to 
determine biomass production (BP; g C m−2 year−1); the ratio of 
aboveground biomass production (ABP; g C m−2 year−1) to BP; the 
ratio of leaf biomass production (BPleaf; g C m−2 year−1) to ABP; 
leaf nitrogen per mass (Nmass; unitless); wood and root carbon-
to-nitrogen ratio (C:N; g C/g N) and nitrogen resorption efficiency 
(NRE; unitless).
Figure S2: Global simulations of biomass production (BP; 
g C m−2 year−1), above-ground biomass production (ABP; 
g C m−2 year−1), leaf carbon-to-nitrogen ratio (leaf C/N), nitrogen 
resorption efficiency (NRE), terrestrial N uptake (g N m−2 year−1) and 
nitrogen-use-efficiency (NUE).
Figure S3: Multicollinearity VIF analysis for fitted BP, ABP/BP, and 
leaf-BP/ABP models.
Figure S4: All prediction fields mapped for site and global 
simulations: soil carbon to nitrogen ratio (C/N) (Batjes, 2015), 
stand-age (age) (Poulter et al., 2018), fraction of absorbed 
photosynthetically active radiation (fAPAR) (Pinzon & Tucker, 
2014), incident photosynthetic photon flux density averaged over 
54 the growing season (gPPFD) (Weedon et al., 2014), growth 
temperature (Tg) (Harris et al., 2014), vapour pressure deficit 
(D) (Harris et al., 2014), maximum rate of carboxylation at 25˚C 
(Vcmax25) (Stocker et al., 2020) and leaf mass-per-area (LMA) 
(Moreno-Martinez et al. 2018).
Figure S5: Partial residual plots for statistical models developed 
to predict: (1) biomass production (BP; g C m−2 year−1) in forest; (2) 
the ratio of aboveground biomass production (ABP; gC m−2 year−1) 
to BP.
Figure S6: Bi-variate relationship between nitrogen-use-efficiency 
(NUE) and leaf-BP/ABP basing on global prediction from data-driven 
model.
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