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A B S T R A C T   

The release of Ca2+ ions from intracellular stores plays a crucial role in many cellular processes, acting as a 
secondary messenger in various cell types, including cardiomyocytes, smooth muscle cells, hepatocytes, and 
many others. Detecting and classifying associated local Ca2+ release events is particularly important, as these 
events provide insight into the mechanisms, interplay, and interdependencies of local Ca2+release events un
derlying global intracellular Ca2+signaling. However, time-consuming and labor-intensive procedures often 
complicate analysis, especially with low signal-to-noise ratio imaging data. 

Here, we present an innovative deep learning-based approach for automatically detecting and classifying local 
Ca2+ release events. This approach is exemplified with rapid full-frame confocal imaging data recorded in iso
lated cardiomyocytes. 

To demonstrate the robustness and accuracy of our method, we first use conventional evaluation methods by 
comparing the intersection between manual annotations and the segmentation of Ca2+ release events provided 
by the deep learning method, as well as the annotated and recognized instances of individual events. In addition 
to these methods, we compare the performance of the proposed model with the annotation of six experts in the 
field. Our model can recognize more than 75 % of the annotated Ca2+ release events and correctly classify more 
than 75 %. A key result was that there were no significant differences between the annotations produced by 
human experts and the result of the proposed deep learning model. 

We conclude that the proposed approach is a robust and time-saving alternative to conventional full-frame 
confocal imaging analysis of local intracellular Ca2+ events.   

1. Introduction 

Ca2+ signaling pathways are crucial in various physiological pro
cesses in almost all cell types [1]. In this context, local Ca2+ release 
events (e.g., Ca2+ sparks, Ca2+ puffs, and Ca2+ blips) are central in 
muscle contractility and excitation-contraction coupling (ECC) regula
tory function. Ca2+ release events result from the opening of Ca2+

release channels (ryanodine receptors, InsP3 receptors) localized in the 
intracellular Ca2+ stores (sarcoplasmic reticulum) membrane. The co
ordinated openings of these Ca2+ release channels form the building 
blocks for global Ca2+ transients, thereby opening up the possibility of 
fine-tuned regulation (local control theory of excitation-contraction 
coupling [2]) of contraction or other cellular functions. Different 
mechanisms are responsible for triggering local Ca2+ events, which 

strongly depend on the cell type. 
In cardiomyocytes, Ca2+ sparks, local releases of Ca2+ from clustered 

Ryanodine receptors (RyRs) [4] and Ca2+ puffs [5] based on intracel
lularly synthesized inositol 1,4,5-trisphosphate (InsP3) which activates 
the coordinated opening of clustered InsP3 receptors (InsP3Rs), are 
present. Functional crosstalk between RyRs and InsP3Rs has been 
observed in cardiomyocytes [6], which may have a significant regula
tory function in cellular remodeling that accompanies various cardiac 
pathologies. 

A detailed investigation of the underlying mechanisms of subcellular 
functional crosstalk requires the accurate detection, classification, and 
separation of Ca2+sparks and Ca2+puffs. While these events exhibit 
distinct spatiotemporal properties [6], the differences can be very sub
tle, leading to overlapping features [7], which poses challenges for their 

* Corresponding author at: Department of Physiology, University of Bern, Buehlplatz 5, CH-3012 Bern, Switzerland. 
E-mail address: marcel.egger@unibe.ch (M. Egger).  

Contents lists available at ScienceDirect 

Cell Calcium 

journal homepage: www.elsevier.com/locate/ceca 

https://doi.org/10.1016/j.ceca.2024.102893 
Received 22 December 2023; Received in revised form 24 March 2024; Accepted 23 April 2024   

mailto:marcel.egger@unibe.ch
www.sciencedirect.com/science/journal/01434160
https://www.elsevier.com/locate/ceca
https://doi.org/10.1016/j.ceca.2024.102893
https://doi.org/10.1016/j.ceca.2024.102893
https://doi.org/10.1016/j.ceca.2024.102893
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ceca.2024.102893&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Cell Calcium 121 (2024) 102893

2

classification. 
Currently, pharmacological tools in combination with Ca2+-sensitive 

dyes offer limited precision in distinguishing between Ca2+sparks and 
Ca2+puffs by using confocal full-frame imaging as the method of choice. 

Here, we propose a deep learning model (DLM) that can efficiently 
locate and classify local Ca2+ release events in confocal full-frame image 
series. The approach is here exemplified in intracellular Ca2+ events in 
cardiomyocytes [3]. However, the results and conclusions presented 
below could benefit other research fields since the DLM can be trained 
and used on other cell types and experimental situations. For instance, 
local Ca2+ release mediated by RyRs and InsP3Rs occurs in smooth 
muscle cells [8] and hepatocytes [9]. The suggested methodology allows 
researchers to detect local Ca2+ release events automatically while 
simultaneously classifying them in a few minutes without human 
intervention. 

2. Methods 

Fig. 1 shows our approach using a trained U-Net [10], a deep 
learning (DL) architecture, which autonomously detects, localizes, and 
classifies Ca2+ release events. The model, after its initial training on a 
manually annotated dataset comprising rapid confocal full-frame Ca2+

imaging recordings, operates independently. The dataset focuses on 
three types of subcellular Ca2+ release events found in cardiomyocytes, 
namely Ca2+ sparks, Ca2+ puffs, and Ca2+ waves, all of which were 
manually segmented as described below. 

In the following, we detail the dataset acquisition and annotation 
protocol and then describe the model training, inference, and evaluation 
process. 

2.1. Dataset of annotated Ca2+ release events 

The high-frequency full-frame confocal image series used to train the 
DLM were generated from recordings of cardiomyocytes isolated from 
either C57Bl/6 mice or the InsP3R type II overexpressing mouse model 
[11] using the fluorescent Ca2+ indicator fluo-3. Detailed information is 
provided in the supplementary materials (section S1). 

Manual annotation of Ca2+ release events in fast full-frame confocal 

recordings is labor-intensive. Causes of this complexity include sub
stantial noise, the presence of out-of-focus events [12], and possible 
crosstalk mechanisms between local Ca2+ release events [6]. To speed 
up the process, two experts in the field utilized a multistep 
semi-automatic approach to annotate Ca2+ release events in the re
cordings. The workflow is shown in Fig. 2A, and corresponding sample 
images from the dataset are given in Fig. 2B. First, a custom Fiji macro 
[13], described in detail in the supplementary materials (section S1.3), 
generated binary masks for each recording. We effectively identified 
potential events from the background by extracting the connected 
components at each frame of these masks. We then merged connected 
components with high spatial overlap in consecutive frames to represent 
each Ca2+ release event by a region of interest (ROI) spanning multiple 
frames. Manual correction of annotations was often necessary, espe
cially when noise caused a missed event in a frame. Similarly, some ROIs 
had to be manually split if they contained more than one event. This 
process resulted in masks where each ROI corresponded to an individual 
Ca2+ release event. 

The detected events were then manually classified into one of four 
classes: Ca2+ spark, Ca2+puff, Ca2+ wave, and undefined. Whenever the 
ROIs representing two Ca2+puffs were spatially contiguous, they were 
merged to represent a single event. The undefined class included events 
that could not be accurately assigned to any other category, typically for 
events located at the edge of the recording (spatially or temporally) or 
when the Ca2+ signal was intertwined with artifacts. Events marked as 
undefined were ignored during the training procedure. Finally, each 
event was assigned a unique integer identifier. Ultimately, the annota
tion process produced two masks for each recording: a classification mask 
indicating the class of each pixel and an events mask indicating the 
event’s identifier associated with each pixel (Fig. 2A, right). 

The two annotators analyzed and classified each Ca2+ release event 
independently. In cases of disagreement, another expert in the field was 
asked to review the disputed labels and make a final decision. Whenever 
this decision was not possible, the ROI would be labeled as undefined. 

Ca2+ release events were annotated in 43 recordings, with 34 
recorded from atrial cells and nine from to ventricular cells. They 
constitute the dataset for training and evaluating the proposed DLM. The 
duration of the recordings ranges from 500 to 1900 frames (~3400 ms to 

Fig. 1. Summarized workflow. Given a full-frame confocal Ca2+fluorescence recording, the workflow produces two output movies. The first movie localizes and 
classifies various classes of Ca2+ release events, and the second enumerates individual event instances. The input movie is processed by the DLM, a complex algorithm 
consisting of several layers. The model’s parameters are adjusted during training to address the problem (refer to Section 2.2.1 for additional details). The DLM 
produces pixel-wise probability distributions for each class (raw output). These distributions are post-processed through a sequence of steps. First, minor artifacts are 
removed, and a threshold is applied to obtain a binary segmentation mask. This mask is then combined with the output of the DLM to classify each pixel, resulting in a 
mask where the Ca2+ release events are classified (class mask). Then, the classification mask is further processed to identify peaks of Ca2+ sparks, enabling the 
separation of individual spark instances. Finally, the watershed algorithm is used to detect instances of Ca2+ puffs and Ca2+ waves. The resulting mask contains 
numbered regions corresponding to the different instances of the Ca2+ release events (instance mask). 
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~12,900 ms). Therefore, we annotated 35,443 frames in which we could 
detect approximately 1400 Ca2+ sparks, 300 Ca2+ puffs, and 25 Ca2+

waves. Fig. 2B shows examples of annotated Ca2+ release events with 
the resulting class and instance masks. 

2.2. 3D U-Net architecture and model training 

The annotated dataset of 43 recordings served to train and evaluate 
our automatic Ca2+ release event detection method. The fundamental 
component of this method is a DL network derived from the U-Net ar
chitecture [10]. The architecture was adapted to accept 3-dimensional 
inputs to suit our requirements, corresponding to two spatial di
mensions and time (Fig. 1, [14]). Further details are given in the sup
plements S2. 

2.2.1. Training procedure 
The whole dataset was split with a ratio of 80 %/20 % for training 

and testing, respectively. Accordingly, 34 recordings were used for 
training and 9 for DLM testing. The U-Net model receives time segments 
of full-frame confocal Ca2+ recordings as input and generates a 4-dimen
sional output representing the probability distribution across four clas
ses (background, Ca2+ spark, Ca2+ puff, Ca2+ wave) for each pixel. 

Due to limited GPU memory, we adopted a sliding window strategy 

and extracted multiple overlapping time segments of 256 frames 
(~1740 milliseconds) from each training sequence with a step of 32 
frames. Additional details about the sliding window approach are pro
vided in the supplementary materials S2.1. During training, we applied 
data augmentation by randomly mirroring these segments along each 
spatial dimension (vertical and horizontal) [15]. We provide more in
formation about data augmentation in the supplements S2.2. 

Pixels of input images were normalized to the range [0, 1]. The 
normalization process was performed relative to the minimum value of 
the image and the maximum value achievable with a 16-bit pixel format 
(i.e., 65,535). 

We used the Lovász-Softmax loss function [16], a continuous and 
differentiable surrogate for the Intersection over Union (IoU) score, 
which measures the overlap between two segmentation masks. The IoU 
score is calculated as the size of the intersection of the masks divided by 
the size of their union. This score ranges from 0 to 1, where 1 indicates 
perfect overlap (identical masks) and 0 denotes no overlap at all. A 
higher IoU score reflects better agreement between the compared re
gions. We excluded regions marked as undefined in the annotated 
dataset for loss computation and the first and last six frames of each 
input segment due to insufficient temporal context. Since the loss is 
computed for each class and later averaged over all classes, each type of 
event has the same impact on the learning procedure. This implicitly 

Fig. 2. Annotated full-frame image dataset of cardiomyocytes loaded with a Ca2+-sensitive fluorescent dye. A) Workflow for the creation of the labels. The (semi-) 
automatic processing returns: 1. a mask representing the classified events’ locations; 2. a mask where each event is separated and assigned a different integer 
(denoted by distinct colors in the figure). B) Sampled frames from the annotated dataset. i) Original frames from three recordings at three increasing time steps. ii) 
Annotated individual event instances resulting from the semi-automatic annotation approach. Each color represents a different Ca2+ release event. iii) Annotated 
frames after the manual classification of Ca2+release events: green - Ca2+ sparks, red - Ca2+ puffs, purple - Ca2+ waves, and grey - unclassified event/artifact. As 
shown in the top example, two individual events of the same type can be contiguous. 
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handles the imbalance present in our dataset. The Adam optimizer [17] 
was used with a fixed learning rate of 10− 4. The model was trained for 
100,000 iterations on batches of 4 time segments, requiring approxi
mately 60 h of computation on a single NVIDIA GeForce RTX 3090 GPU. 
The code was implemented using Python 3.10 with the PyTorch 
framework version 2.0 [18]. 

2.2.2. Inference 
The DLM model automatically detected intracellular Ca2+ events in 

two steps: segmentation and detection. The trained network produced a 
pixel-wise classification of the input recording during segmentation. The 
recordings were split into overlapping segments of 256 frames with a 
step of 32 frames. Predictions of time segments were merged to produce 
a probability map of the size of the input recording, except for the first 
and last six frames, which were ignored due to insufficient temporal 
context. Background pixels were determined by applying Otsu thresh
olding to these probability maps, a method that computes the threshold 
that minimizes intra-class intensity variance [19]. Then, each 
non-background pixel was assigned the highest probability class. 

In the detection step, the obtained pixel-wise labels were used to 
detect the individual instances of Ca2+ release events (also simply called 
instances hereafter). First, individual Ca2+puffs and Ca2+ waves were 
separated based on the connected components of their masks. Due to 
oscillations in the fluorescence signal, the ROIs of individual events may 
be missing in some frames, resulting in “holes” in the temporal dimen
sion. Therefore, Ca2+puff or Ca2+ wave instances were merged when
ever there was a gap of 2 frames or less between two consecutive and 
spatially overlapping events. We then removed detections of Ca2+ puffs 
shorter than 35 ms (5 frames) and Ca2+ waves with a diameter smaller 
than 15 µm (75 pixels), as they typically correspond to artifacts. 

The separation of individual Ca2+ sparks required additional steps. 
Specifically, Ca2+ sparks were separated using the 3D watershed algo
rithm, which takes a list of the peaks of the Ca2+ sparks as input. Peaks 
were identified as the local maxima of the original recordings masked by 
the binary mask of the Ca2+ spark class. Detected peaks were separated 
by a given minimal distance between them, defined as 1.8 µm (9 pixels) 
in the spatial dimensions and 20 ms (3 frames) in the time dimension. As 
with the other classes of events, spatio-temporally unreasonably “small” 
detections were removed in the last step. Specifically, we removed Ca2+

sparks ROIs shorter than 20 ms (3 frames) or with a diameter smaller 
than 0.6 µm (3 pixels) from segmentation masks, labelling their ROIs as 
background. 

This approach can process a recording of 1000 frames, including 
loading from disk, in about 25 s when executed on a single NVIDIA 
GeForce RTX 3090. 

The annotated dataset mentioned in Section 2.1. will be available for 
open access. Additionally, we provide DLM users with an integrated 
graphical user interface (GUI) .1 This interface enables the simple 
loading of xyt-full frame images. In addition to classifying and splitting 
the detected ROIs into individual events, the GUI analyses the detected 
and classified events and reports specific parameters such as amplitude 
and FDHM. The code used to train the DLM, adaptable for other datasets, 
is also available online.2 We would like to emphasize that by making the 
interface freely available, we are giving the interested scientific com
munity the opportunity to test our proposed approach. 

3. Results 

The performance of our trained 3D U-Net model was evaluated on a 
test dataset of nine samples using three methods: pixel-based evaluation, 
instance-based evaluation (i.e., an evaluation based on the instances of 
individual events), and inter-rater variability evaluation, which is a 

comparison of the outputs of the DLM with human experts’ opinions. 
Here, we illustrate the protocol followed for each evaluation type and 
the results we obtained for the dataset considered in this study. 

3.1. Pixelwise evaluation of trained DLM 

First, we evaluated our trained DLM by computing the average IoU 
scores for each class of events between the processed U-Net segmenta
tion masks and the annotated class masks of the test dataset. We also 
computed the IoU scores for the binarized masks obtained after 
combining all Ca2+ release events as the foreground class. The results 
are presented in Table 1. The higher the IoU value, the more accurate the 
model used, i.e., the better the agreement between the predicted events 
and the manually annotated Ca2+ release events. The IoU score is sus
ceptible to small changes in the dimension of the segmented regions, 
especially when they are very small. In our case, it results in low scores 
for local Ca2+ release events (Ca2+ sparks and Ca2+ puffs). For quanti
tative analysis, Fig. 3A compares the annotated masks and the pre
dictions of our model for some sample frames. 

3.2. Instance-based evaluation of trained DLM 

To evaluate the DLM, the annotated instances of Ca2+ release events 
were matched with those predicted by the model. For each pair of an
notated and predicted events, the intersection over minimum (IoMin) 
score was computed using the formula: 

Score(Y,P)= IoMin(Y,P) =
|Y ∩ P|

min(|Y|, |P|)
,

where Y represents the binary mask of an annotated event, and P rep
resents the binary mask of an event detected by the model. In essence, 
the IoMin score is a measure of overlap, similar to the IoU score. Spe
cifically, IoMin divides the intersection area by the smaller of the two 
areas, rather than their union. This score ranges from 0 to 1, where 1 
indicates that one of the mask entirely covers the other one and 0 de
notes no overlap at all. This makes IoMin particularly effective in cases 
where one ROI area is smaller than the other. 

Events were matched when their IoMin score was above 0.5. This 
threshold was chosen as it meaningfully represents when two over
lapping ROIs represent the same event (see Fig. 4 for a graphical 
explanation). 

To analyze the matching results, we report the distribution of 
matched detected events per annotated event (recall scores) and the 
distribution of matched annotated events per detected event (precision 
scores) in Table 2. 

Our method achieved similar precision and recall scores for all types 
of Ca2+ events: nearly 60 % of all annotated events were detected, while 
from the set of predicted events, approximately 40 % were correct de
tections. Ca2+ waves were the only exception to this pattern, achieving 
perfect precision (100 %) for all the predicted events. It is important to 
mention that the numbers of events along the columns of Table 2 do not 
necessarily sum up to the total number of events, as some events might 
match several classes, as can be observed in Fig. 3B. 

Table 3 summarizes the performance of the DLM. Notably, it ach
ieved a minimum detection rate of 75 % for Ca2+ release events in the 
test dataset samples, identifying 234 out of 346 labeled events. Our 

Table 1 
IoU scores between manual annotations and predictions 
from our method averaged over the recordings of the test set.  

Event class IoU score 

Ca2+ sparks 0.20 
Ca2+ puffs 0.18 
Ca2+ waves 0.28 
Binarized segmentation 0.34  

1 https://github.com/r-janicek/xytCalciumSignalsDetection  
2 https://github.com/dottipr/sparks_project 
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model consistently detects Ca2+ waves. Detailed definitions of all met
rics are provided in the supplementary materials S5. 

3.3. Assessment by experts 

This analysis aims to determine if the segmentations produced by our 
model are discernible from those manually outlined by a human expert. 
Six experts in the field of Ca2+ signaling segmented the three types of 
Ca2+ release events in a sample of ten frames selected from the test 
dataset. We obtained the opinions of seven distinct observers: the six 
experts and the predictions of the U-Net model. Examples of the 
resulting segmented masks are shown in Fig. 5, and further information 
about the annotation procedure is given in the supplementary materials 
S3. 

First, we estimated an agreement among all six experts on the 
selected frames. The statistical value that represents the reliability of the 
agreement among a group of observers was computed using Fleiss’ 
kappa [20]. Results are shown in Table 4. We observed that the out
comes of image segmentation and classification of intracellular Ca2+

events exhibit considerable variability when performed by multiple 

human experts. 
Then, we used the resulting annotations to compute the majority 

consensus among all other observers for each pixel. This procedure 
generated segmented frames representing the collective opinion of all 
other observers. It was performed by first including the DLM’s opinion in 
the consensus computation and then excluding it. The agreement 

Fig. 3. Qualitative results of the proposed DLM. A) Comparison of annotations and DLM predictions on six selected frames extracted from two recordings of the test 
dataset: an atrial cell (top) and a ventricular cell (bottom). i) Original frames from two recordings at three different time steps. Asterisks on the first frame of the 
bottom cell denote artifacts resulting from dye loading, which were annotated as background in the training labels. Reported times correspond to the timing of the 
frame in the recording. (ii) Manual annotations (green: Ca2+ sparks; red: Ca2+ puffs; purple: Ca2+ waves). The first frame of the top cell contains a grey region 
(marked with an asterisk). It corresponds to an artifact or a Ca2+ release event that could not be classified. iii) Labels predicted by our method. B) Detected and 
labeled Ca2+ release events can overlap multiple events. Contours denote labeled events, while transparent colors denote detected events. Each color represents a 
different type of Ca2+ release event (green: Ca2+ sparks; red: Ca2+ puffs; purple: Ca2+ waves). i) On the top frame, a labeled Ca2+ wave is matched with two Ca2+

sparks and two Ca2+ puffs belonging to the model’s detections. ii) On the top frame, two labeled Ca2+ sparks and two labeled Ca2+ puffs are matched with a unique 
Ca2+ puff. Similarly, in the bottom frame, two labeled Ca2+sparks are matched with a Ca2+ puff. 

Fig. 4. Illustration of the reason for choosing the IoMin score over the IoU 
score. IoU heavily penalizes regions that overlap but have highly different sizes. 
The IoMin score is more suitable than the IoU score for our purpose, as it 
effectively captures when two events should be matched. 

Table 2 
Matching of Ca2+ release events between DLM detections and annotations in the 
test dataset. Bold numbers highlight the correct matches. Note that the bold 
values in Table A correspond to recall (TP/(TP+FN)), and the bold values in 
Table B correspond to precision (TP/(TP+FP)), hence the title of the tables. 
Details about the computation of the values are provided in the supplementary 
materials S5. The sum of events in each class along the columns differs from the 
total number of events (annotated and detected) because an event may match 
more than one other event. In Table B, the total number of predicted events is 
reported, and the number of events that are later removed is indicated in 
parenthesis. The percentages in the other rows are computed based on the 
number of valid events.  

A)Matches from annotated Ca2+ release events to predicted events (recall scores) 

Class of annotated events Ca2+ sparks Ca2+ puffs Ca2+ waves 

Total number of annotated events 265 74 7 
Matched with predicted Ca2+

sparks 
153 (57.7 %) 39 (52.7 %) 6 (85.7 %) 

Matched with predicted Ca2+ puffs 24 (9.1 %) 41 (55.4 %) 5 (71.4 %) 
Matched with predicted Ca2+

waves 
0 (0 %) 0 (0 %) 4 (57.1 %) 

Undetected events 91 (34.3 %) 19 (25.7 %)  1 (14.3 %)  

B)Matches from predicted Ca2+ release events to annotated events (precision scores) 

Class of predicted events Ca2+ sparks Ca2+ puffs Ca2+

waves 

Total number of events predicted by 
model 

404 (17) 138 (7) 4 (0) 

Matched with annotated Ca2+ sparks 151 (39.0 
%) 

18 (13.7 
%) 

0 (0 %) 

Matched with annotated Ca2+ puffs 69 (17.9 %) 49 (37.4 
%) 

0 (0 %) 

Matched with annotated Ca2+ waves 36 (9.3 %) 12 (9.1 %) 4 (100 %) 
Unmatched with any annotated 

events 
132 (34.1 
%) 

57 (43.5 
%) 

0 (0 %)  
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between all observers was summarized using Cohen’s kappa [21]. The 
detailed protocol for agreement computation is given in the supple
mentary materials S3. 

By computing the Kruskal-Wallis test on the seven groups of ob
servers’ kappa for both cases, we determined whether any statistically 
significant differences among them exist. We did not observe any sig
nificant differences in the agreement of the predictions of the DLM with 
the mean of the majority vote of the experts, neither in cases where the 
DLM’s outcome was included (p = 0.775) nor excluded in the majority 
voting (p = 0.863). Fig. 6 illustrates the variability of the agreement 
values obtained within each group. 

4. Discussion and limitations 

It is important to acknowledge that Ca2+ release events can be rep
resented by distinct, correct regions of interest (ROIs), and there is no 
canonical accurate method for labeling recordings. This assertion is 
bolstered by the significant variability observed among human ob
servers. Regrettably, the IoU score’s sensitivity to minor differences in 
small object shapes poses obstacles to robustly score agreement between 
ROIs detected with different methods (expert, group of experts, DLM) 
for this criterion since the event borders are not distinctly defined owing 
to anisotropic Ca2+ diffusion in cardiac myocytes. The U-Net frequently 
detects events with larger or smaller ROIs than the annotated ones 
proposed (take the Ca2+ wave present in the lower frames of Fig. 3A as 
an instance), resulting in “apparently” inaccurate performance of our 
model when evaluated by the IoU score. Fig. 4 offers a visual repre
sentation of how the IoU score is affected by differences in the areas of 
annotated and detected events. Therefore, assessing our model through 
event instance-based metrics is of interest. Nevertheless, as depicted in 
Fig. 3A, our model yields convincing qualitative results overall. 

The event-wise analysis revealed that our model can identify more 
than 75 % of the annotated events while correctly classifying more than 
75 % on average. Some misclassifications corresponded to complex Ca2+

release events that we did not annotate. Namely, our model could detect 
Ca2+ sparks on top of Ca2+ puffs that were labeled as Ca2+ puffs in our 
dataset. Sometimes, Ca2+ sparks and the underlying Ca2+ puffs were 
detected; sometimes, only the Ca2+sparks on top were detected. For this 
reason, out of 74 annotated Ca2+ puffs, 39 were matched with Ca2+

sparks. Such Ca2+ release events were not annotated in our dataset 

Table 3 
Model performance on test dataset by class and average across classes. The rate 
of detected events is the number of annotated events in each class detected by 
the DLM (including misclassified ones) divided by the number of annotated 
events in the same class. The rate of correct events is the number of correctly 
detected and classified events divided by the total number of events detected in 
the given class. E.g., for the row corresponding to Ca2+ sparks, the value in
dicates that out of all the Ca2+ sparks detected by our model (which account for 
65.7 % of the total number of annotated Ca2+ sparks), 59.2 % were correctly 
classified. The F1-Score, which provides a balanced view of the classifier’s ac
curacy, is the harmonic mean of precision and recall.   

% Detected % Correct F1-Score 

Ca2+ sparks 65.7 % 59.2 % 0.47 
Ca2+ puffs 74.3 % 66.2 % 0.45 
Ca2+ waves 85.7 % 100 % 0.73 
Average 75.2 % 75.1 % 0.55  

Fig. 5. Examples of segmented frames illustrating the high variability between human annotators. Each color corresponds to a different type of Ca2+release event 
(green: Ca2+ sparks; red: Ca2+ puffs; purple: Ca2+ waves). For each of the three examples, the presented figures are a) segmented mask used for DLM training; b) 
segmentation provided by the DLM processed output; c) majority vote computed using the value that was selected by the largest number of experts per pixel; d)-i) 
masks segmented by the six experts. Sample 02 illustrates a fair agreement among experts (Fleiss’ kappa is 0.263); Sample 04 illustrates a moderate agreement among 
experts (Fleiss’ kappa is 0.499); Sample 10 illustrates a substantial agreement among experts (Fleiss’ kappa is 0.776). 

Table 4 
Agreement among all six experts on the selected single frames extracted from the test dataset, assessed by Fleiss’ kappa calculation.  

Frame ID 01 02 03 04 05 06 07 08 09 10 Average 

Group agreement (Fleiss’ kappa) 0.400 0.263 0.393 0.499 0.411 0.210 0.140 0.635 0.817 0.776 0.454  
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because annotated ROIs were created by thresholding a denoised 
version of the original recording, which sometimes simplified and 
limited the granularity of our annotations. Specifically, our annotation 
methodology did not allow for events fully contained in other events. 

Generally, the quality of annotations has a significant impact on the 
results obtained from DL approaches. We acknowledge that our anno
tations were mainly based on amplitude, and we were unable to include 
partly highly complex instances, such as the Ca2+ sparks on top of Ca2+

puffs mentioned earlier in this project. Consequently, the DLM’s 
segmented masks are somewhat biased by our annotation procedure. 

Including additional parameters might produce more comprehensive 
results. Unfortunately, optimal parameters remain undetermined. 

As mentioned earlier, a size discrepancy exists between labeled and 
detected events. Specifically, the former is generally larger due to the 
border of our annotations being determined by processing the recording 
with a threshold. As a result, annotated Ca2+ waves often include local 
Ca2+ release events that emerge during the wave’s dissipating phase. 
Therefore, 36 detected Ca2+ sparks and 12 Ca2+ puffs were identified 
with annotated Ca2+ waves. 

Our analysis showed that the temporal context plays an important 
role in recognizing Ca2+ release events, i.e., events that occurred very 
early in the auger recording are not detectable or are more difficult to 
detect than events that occurred at the end of the measurement, sug
gesting that a more extensive temporal context is required (Table 2A). 
The DLM also tends to categorize parts of already labeled Ca2+ waves as 
Ca2+ puffs, often occurring towards the end of the Ca2+ waves where 
their speed decreases [22]. In contrast, Ca2+ waves are accurately 
detected at their onset. 

The data utilized in this study presents significant challenges due to 
various factors, including the effect of Ca2+ diffusion on border delin
eation. The diverse noise types in the data and its anisotropic nature 
pose difficulties for the 3D U-Net model. Temporal information plays a 
distinct role from spatial information, but the 3D U-Net’s convolution 
processes each dimension uniformly. 

We have shown that standard evaluation metrics, such as the IoU 
score, do not reflect the quality of the model’s detections well. For this 
reason, we further evaluated our approach by asking six experts to 
annotate ten frames selected from the test dataset and compare their 
annotations with the detections of our model. Fig. 5 provides visual 
examples illustrating the differences among various annotations. 

Table 4 shows that some frames present a relatively low agreement. 
These frames belong to recordings with a low number of small events, 
and delineating local Ca2+ release events is complex (e.g., sample 02 in 
Fig. 5). Conversely, we observed high agreement among raters on frames 
containing Ca2+ waves, as these are easier to identify than local Ca2+

release events (e.g., sample 10 in Fig. 5). Finally, the agreement is 
moderate on the frames with many local Ca2+ release events (e.g., 
sample 04 in Fig. 5). A reason for the low agreement on some frames and 
the misclassification of some local Ca2+ release events performed by our 
model could be that some events can also correspond to events that do 
not originate at the focal plane. When Ca2+ diffuses into the focal plane, 
it may give rise to events with a distorted signal [7]. 

Overall, our evaluation demonstrates the comparability of the per
formance of our DLM with human experts. Indeed, our inter-observer 
analysis revealed that the detections provided by our model lie within 
the same range of variability as human experts. This means that a dif
ferentiation between the segmented frames produced by human experts 
and those generated by our model is not feasible. Moreover, the pro
posed DLM offers practical advantages compared to manual annotation. 
Indeed, while the annotation of the frames by the experts took one hour 
per sample on average, the model can efficiently process a 1000-frame 
video in approximately 25 s, significantly reducing the time required 
for analysis. 

The fact that DL has shown in recent years promising achievements 
across many fields, including medical and biological applications 
[23–25], supported the idea of trying a DL-based methodology on rapid 
full-frame confocal imaging data. Several methods for identifying local 
Ca2+ release events in line-scan images are available [26–29]. Some of 
these approaches already apply DL [28] and machine learning [30] 
approaches to enable the detection of Ca2+ release events. However, 
they do not handle full-frame confocal imaging data or distinguish be
tween different local Ca2+ release event types. Additionally, most tools 
based on full-frame images require manual and time-consuming steps. 
For instance, although Juicer software [31] allows pixel-by-pixel event 
classification on full-frame confocal imaging, it requires several days to 
analyze whole cells. Finally, CaCLEAN [32] and iSpark [33] 

Fig. 6. Comparison of each expert with the majority vote. The agreement of the 
segmentation of the DLM (dark grey) with the mean of the majority vote of the 
experts (light grey) is in the same range as the agreement between human 
experts and their corresponding majority vote, including and excluding the 
segmented masks of the DLM. A) The agreement average on each frame is 
computed over all experts, both when the DLM opinion is excluded from the 
majority vote and when it is included. B) Each human expert (light grey) is 
compared with the majority vote of all other human experts, and the masks 
segmented by the DLM, while the masks segmented by the DLM (dark grey) are 
compared with all the human experts. C) Each human expert (light grey) is 
compared with the majority vote of all other human experts, and the DLM (dark 
grey) is compared with all the human experts. In all panels, distinct colors in the 
plots represent the mean kappa values of the different frames, as denoted in the 
legend on the right-hand side of Figure A). Statistical significance was assessed 
using the Kruskal-Wallis test. 
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automatically detect Ca2+ release sites in full-frame confocal imaging, 
but unlike our model, they do not perform classification. Similarly, the 
method proposed in [34] localizes Ca2+ sparks using statistical testing to 
discriminate events (i.e., Ca2+ sparks) from noise and other type of 
events, however, it requires the choice of several parameters. A fast and 
fully automatic DL-based approach for localizing and classifying local 
Ca2+ release events in full-frame confocal imaging is thus currently only 
available with our new DLM based approach reported here. 

5. Conclusion 

Local intracellular Ca2+ release events are present in almost all 
excitable cell types and are involved in various cellular regulatory 
processes and pathways. Analyzing these local Ca2+ release events is a 
prerequisite for a fundamental understanding of the local subcellular 
processes and their regulatory function, particularly under pathophysi
ological conditions. 

This study successfully demonstrated the effectiveness and efficiency 
of a DLM in detecting and classifying intracellular Ca2+ events, exem
plified in the context of cardiomyocytes, eliminating human interven
tion and bias. The DLM can, in principle, be adapted and applied to all 
full-frame confocal data and datasets representing Ca2+ signals. Previ
ously analyzed data could be used to train DLM datasets collected from 
other cell types and in different contexts. 

In conclusion, the proposed DLM offers the advantage of rapid 
detection and classification of Ca2+ release events, enabling more effi
cient data processing than previous methods. The DLM approach can 
detect more than 75 % of the Ca2⁺ release events independently of the 
noise characteristics in the original recordings. Notably, the model can 
locate most annotated Ca2+ release events and identify some instances 
not recorded by manual annotations within 5 min for the complete test 
dataset running on a single NVIDIA GeForce RTX 3090 GPU. 

The result of the DLM analysis is comparable with the manual 
outcome obtained by field-experts analysis, which was previously 
considered the gold standard for Ca2+ event classification. Even if users 
choose to verify all events detected by the model manually, the analysis 
can be completed within a reasonable timeframe. Furthermore, the 
reproducibility of the DLM’s results is assured due to the deterministic 
nature of the trained 3D U-Net architecture. 
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