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Abstract. A regularity result for solutions to boundary blow-up problems for the complex
Monge–Ampère operator in balls in C

n is proved. For certain boundary blow-up problems
on bounded, strongly pseudoconvex domains in C

n with smooth boundary an estimate of the
blow-up rate of solutions are given in terms of the distance to the boundary and the product
of the eigenvalues of the Levi form.

1. Introduction

Let � be a bounded strongly pseudoconvex domain in C
n with smooth boundary.

By smooth we mean C∞-smooth. We want to study the problem{
det

(
∂2u
∂z j ∂ z̄k

(z)
)

= f (z, u(z)) in �,

limz→z0 u(z) = ∞ for all z0 ∈ ∂�, (1)

where f satisfies some regularity and growth conditions. The special case

f (z, u(z)) = k(z) exp(K u(z)),

for a constant K > 0 and k(z) a strictly positive smooth function on � has been
studied by Cheng and Yau [3]. They showed that for this type of right-hand side
there is a unique smooth plurisubharmonic solution. Their motivation for solving
this problem was to construct Kähler-Einstein metrics. We shall briefly outline how
a solution of such a Monge-Ampère equation implies the existence of a Kähler-Ein-
stein metric. Remember that a Hermitian metric ds2 = ∑n

j,k=1 h jk(z)dz j ⊗ dzk

has an associated formω = (i/2)
∑n

j,k=1 h jk(z)dz j ∧dzk . The metric ds2 is said to
be a Kähler metric if dω = 0 andω is said to be a Kähler form. A plurisubharmonic
function u gives rise to a Hermitian metric with ω = ∂∂u. In fact, this is a Kähler
metric since dω = (∂ + ∂)∂∂u = ∂∂∂u = −∂ ∂ ∂u = 0. A metric is said to be
an Einstein metric if it’s Ricci curvature tensor is a constant multiple of the metric
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tensor. Curvature tensors are really defined in terms of connections and are in some
sense independent of the metric. However, given a metric there is a choice of con-
nection so that the connection is said to be compatible with the metric. In the case
of a complex manifold there is also the concept of a connection being compatible
with the complex structure. It is know that on a complex manifold with Hermitian
metric there is a unique connection which is compatible with both the metric and
the complex structure. With this choice of connection the Ricci curvature tensor is
given by

−
n∑

j,k=1

∂2

∂z j∂zk
log

(
det

(
∂2u

∂z j∂zk

))
dz j ⊗ dzk .

A good reference for this is Kobayashi’s book [8]. We see that a plurisubharmonic
solution of Problem (1) with right-hand side

f (z, u(z)) = eK u(z),

satisfies

log

(
det

(
∂2u

∂z j∂zk

))
= K u(z),

and hence gives rise to a metric which is both Kähler and Einstein, a Kähler-Einstein
metric. Also since u(z) tends to infinity at the boundary the metric is complete.

In this paper we give a description of how fast the solutions of Problem (1)
tend to ∞ as z approaches boundary points. We shall sometimes refer to this as
the blow-up rate of the solution. In Sect. 4 we apply our results to describe the
boundary behavior of the Bergman kernel.

Caffarelli, Kohn, Nirenberg and Spruck proved the following theorem in [2]
and it will be of great importance for our construction.

Theorem 1.1. Let � be a bounded, strongly pseudoconvex domain in C
n with

smooth boundary. Let f ∈ C∞(� × R) be a strictly positive function which is
increasing in the second variable. Let ϕ ∈ C∞(∂�). Then the problem{

det
(

∂2u
∂z j ∂ z̄k

)
= f (z, u(z)) in �,

u = ϕ on ∂�,
(2)

has a unique strictly plurisubharmonic solution u. Moreover we have u ∈ C∞(�).

We will also need the following lemma, again from [2].

Lemma 1.2. Let� be a bounded domain in C
n and suppose that v,w ∈ C∞(�)∩

PSH(�). Assume that{
det

(
∂2v
∂z j ∂ z̄k

)
≥ det

(
∂2w
∂z j ∂ z̄k

)
in �

and v ≤ w on ∂�.

Then v ≤ w in �.
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The following comparison principle is sometimes useful. For a proof see for
example [6].

Lemma 1.3. Let� be a bounded pseudoconvex domain in C
n. Assume that f : �×

R → R is a nonnegative function which is increasing in the second variable. Let
v,w ∈ C∞(�)∩PSH(�) and u ∈ C∞(�)∩PSH(�) such that limz→z0 u(z) =
∞ for all z0 ∈ ∂�. Then

(i) det
(
∂2w/∂z j∂ z̄k

) ≤ f (z, w(z)), f (z, v(z)) ≤ det
(
∂2v/∂z j∂ z̄k

)
and v ≤ w

on ∂� implies that v ≤ w in � and
(ii) det

(
∂2u/∂z j∂ z̄k

) ≤ f (z, u(z)), f (z, v(z)) ≤ det
(
∂2v/∂z j∂ z̄k

)
implies that

v ≤ u in �.

If we combine Theorem 1.1 and Lemma 1.3 we get a comparison principle for
solutions to Problem (1) and Problem (2).

Corollary 1.4. Let � be a bounded, strongly pseudoconvex domain in C
n with

smooth boundary and assume that ϕ andψ ∈ C∞(∂�). Assume that f ∈ C∞(�×
R) is a strictly positive function which is increasing in the second variable. Let v
and w be plurisubharmonic solutions to Problem (2) smooth on � with boundary
values ϕ and ψ respectively. Then

(i) if ϕ ≤ ψ on ∂� we have v ≤ w in � and
(ii) if u is a smooth plurisubharmonic solution to Problem (1) we have w ≤ u in

�.

Apart for the conditions put on f in Theorem 1.1 we shall often assume:

(A) There exists functions h ∈ C∞(�) and f1 ∈ C∞(R) and two strictly positive
constants c1 and c2 such that

lim
t→+∞

f (z, t)

f1(t)
= h(z)

uniformly in � and c1 f1(t) ≤ f (z, t) ≤ c2 f1(t) for all (z, t) ∈ �× R.
(B) The function f1 is strictly positive and increasing.
(C) The function

�n(a) =
∞∫

a

((n + 1)F(y))−1/(n+1) dy

exists for a > 0, where F ′(s) = f1(s) and F(0) = 0.

Regularity and uniqueness questions for Problem (1) are quite delicate. We shall
prove Proposition 2.1, a regularity result in balls. Uniqueness will not be dealt with
at all. These questions are studied by the first author in [7].
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2. Existence of solutions

We shall study the problem

{
det

(
∂2v
∂z j ∂ z̄k

)
= k(|z|) f1(v(z)) in BR(0),

lim|z|→R v(z) = ∞,
(3)

where k : [0, R] → [c1, c2] is a smooth function which satisfies k(2l+1)(0) = 0 for
all l ∈ N and 0 < c1 ≤ c2 < ∞. We require that derivatives of odd order vanishes
at 0 because we want the function k(|z|) to be smooth at the origin.

Proposition 2.1. Let R, c1 and c2 be strictly positive real numbers such that c1 ≤
c2. Assume that k : [0, R] → [c1, c2] is a smooth function such that k(2l+1)(0) = 0
for all l ∈ N. Suppose that f1 ∈ C∞(R) satisfies assumptions (B) and (C). Then
Problem (3) has a smooth solution. Moreover the solution is radial.

Before we prove Proposition 2.1 we state some results that we shall use in the
proof. The following result was proved in [6].

Proposition 2.2. Assume that � is a bounded convex domain in C
n and that K a

compact subset of�. Let ϕ : ∂� → R be a nonpositive function and g ∈ C∞(�×
R) be a strictly positive function which is increasing in the second variable. Assume
that w ∈ C∞(�) ∩ PSH(�) is a solution of

{
det

(
∂2w
∂z j ∂zk

)
= g(z, w(z)) in �

w(z) = ϕ(z) on ∂�.

Let D be the diameter of � and

C = sup

(∣∣∣∣∂g1/n

∂xl
(z, t)

∣∣∣∣ ; (z, t) ∈ �× [
inf z∈� w(z), 0

]
and l = 1, . . . , 2n

)
.

Then there exists a compact set L satisfying K � L � � so that, given

M = sup

(∣∣∣∣min

{
0,
∂w

∂ν
(ζ )

}∣∣∣∣ ; ζ ∈ ∂�, z ∈ L and ν = (ζ − z)/|ζ − z|
)
,

we have

sup

(∣∣∣∣ ∂w∂xl
(z)

∣∣∣∣ ; z ∈ K

)
≤ C D2

+2 supz∈K |w(z)| + 2 supz∈∂� |ϕ(z)| + 2DM + C D3

inf z∈K d�(z)

for l = 1, . . . , 2n.
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We shall also use Proposition 2.3 below which was proved by Błocki in [1].
Here we write

‖u‖C1(�) = sup (|u(z)|; z ∈ �)

+
n∑

j=1

(
sup

(∣∣∣∣ ∂u

∂z j
(z)

∣∣∣∣ ; z ∈ �
)

+ sup

(∣∣∣∣ ∂u

∂z j
(z)

∣∣∣∣ ; z ∈ �
))

and for 0 < α < 1

‖u‖Cα(�) = sup

( |u(z)− u(w)|
|z − w|α ; z, w ∈ �, z �= w

)
.

Proposition 2.3. Let w be a C4 plurisubharmonic function in an open set � in C
n

andψ(z) = det
(
∂2w/∂z j∂zk(z)

)
. Assume that for some nonnegative K0, K1, b, B0

and B1 we have

‖w‖C1(�) ≤ K0, sup
�

�w(z) ≤ K1

and

b ≤ ψ(z) ≤ B0, ‖ψ1/n(z)‖C1(�) ≤ B1.

Then for any �′ � � there are two constants α and C where α ∈ (0, 1) depends
only on n, K0, K1, b, B0 and B1, and C depends, besides those quantities, on
inf�′ d�(z), such that

sup

(∥∥∥∥ ∂2w

∂z j∂zk
(z)

∥∥∥∥
Cα(�′)

; j, k = 1, . . . , n

)
≤ C.

We are now ready to prove the result.

Proof. (Proposition 2.1) Let uN be solutions of Problem (2) with right-hand side
f (z, u) = k(|z|) f1(u),� = BR(0) and ϕ ≡ N . Let 
A(z) = Az for Hermi-
tian matrices A which satisfies det A = 1. We have 
A(BR(0)) = BR(0) and if
w = 
A(z)

det

(
∂2(uN ◦
A)

∂z j∂zk
(z)

)
= (det A)2 det

(
∂2uN

∂w j∂wk
(w)

)

= det

(
∂2uN

∂w j∂wk
(w)

)
.

Lemma 1.3 gives that uN is a radial function and also that uN ≤ uN+1. Put u(z) =
limN→∞ uN (z). First we shall construct a function v which satisfies uN ≤ v for
all N . This will guarantee that u exists.

Let ρ(z) = K (|z|2 − R2), where K is a constant which will be chosen later, and
assume that h : R

− → R be a strictly increasing convex function which satisfies
limx→0− h(x) = ∞. Put v = h ◦ ρ. Then

∂v

∂z j
= K z j h

′(ρ), ∂v

∂zk
= K zkh′(ρ)
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and

∂2v

∂z j∂zk
= K δ jkh′(ρ)+ K zk z j h

′′(ρ).

A calculation yields

det

(
∂2v

∂z j∂zk

)
= K n

(
h′(ρ)n − |z|2h′′(ρ)h′(ρ)n−1

)

= K n
(

1

(h−1)′(v)n
− |z|2 (h−1)′′(v)

(h−1)′(v)n+2

)
.

If we choose h−1(v) = −�n(v) we get

(h−1)′(v) = ((n + 1)F(v))−(1/(n+1)),

and

(h−1)′′(v) = − f1(v)((n + 1)F(v))−(n+2/(n+1)).

Hence h is convex and strictly increasing. We see that

K n
(

1

(h−1)′(v)n
− |z|2 (h−1)′′(v)

(h−1)′(v)n+2

)

= K n
(
((n + 1)F(v))(n/(n+1)) + |z|2 f1(v)

)

= K n

(
((n + 1)F(v))(n/(n+1))

f1(v)
+ |z|2

)
f1(v).

We shall now show that

((n + 1)F(v(z)))(n/(n+1))

f1(v(z))
+ |z|2

is a smooth function which is bounded. It is smooth because it is the sum of a
smooth function and a function which is a composition of smooth functions. Since
f1 is strictly positive we have to show that

((n + 1)F(v))(n/(n+1))

f1(v)

is bounded for large values of v. We have

d

dv

(
1

(h−1)′(v)

)
= f1(v)

((n + 1)F(v))(n/(n+1))

and this quantity must be larger than 1 for large v. Assume that

d

dv

(
1

(h−1)′(v)

)
= d

dv

(
((n + 1)F(v))(1/(n+1))

)
< 1
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for large v. This implies that

((n + 1)F(v))(1/(n+1)) < v + C

for large v which contradicts the integrability of ((n + 1)F(v))−1/(n+1). Hence

d

dv

(
1

(h−1)′(v)

)
≥ 1

and

((n + 1)F(v))(n/(n+1))

f1(v)
≤ 1

for large v. Now choose K so that

K n
(

1

(h−1)′(v)n
− |z|2 (h−1)′′(v)

(h−1)′(v)n+2

)
≤ k(|z|) f1(v).

By Lemma 1.3 we have uN ≤ v. Hence u exists and what remains is to show that
it is smooth. We take R′ < R and shall prove that the norms ‖uN ‖2,α is uniformly
bounded. We then use Schauder theory to conclude that u ∈ C∞(BR′(0)) and since
R′ is arbitrary we have u ∈ C∞(BR(0)).

In order to use Propositions 2.2 and 2.3 we need to modify uN . Let R̃ =
(R + R′)/2. Then BR′(0) � BR̃(0) � BR(0). Since uN is radial there are constants
αN = uN |∂BR̃(0) which are uniformly bounded because uN ≤ v for all N . Put
ũN = uN − αN and gN (t) = f1(t + αN ). Note that ũN ≡ 0 on ∂BR̃(0) and that

gN (̃uN ) = f1(uN ) ≤ f1(sup(v(z); z ∈ BR̃(0)))

in BR̃(0). Also

det

(
∂2ũN

∂z j∂zk

)
= det

(
∂2uN

∂z j∂zk

)
= k(|z|) f1(uN ) = k(|z|)gN (̃uN ).

We begin by estimating the first derivatives of uN . This is the same as esti-
mating first derivatives of ũN . For this we shall use Proposition 2.2. Since ũN is
radial the function UN (|z|) = ũN (z) is increasing. It follows that the constant M
in Proposition 2.2 is zero for all N . Since k is smooth the constant C in Proposition
2.2 is bounded. We see that

sup

(∣∣∣∣∂uN

∂xl
(z)

∣∣∣∣ ; z ∈ BR′(0)

)

≤ 2 sup(|v(z)− u1(z)|; z ∈ BR′(0))+ 8C R̃3

R̃ − R′ + 4C R̃2

for all N and l = 1, . . . , 2n. We proceed to the estimate of the second derivatives
and to get these estimates we are going to use that the solutions are radial. The
Monge–Ampère equation can therefore be written as an ordinary differential equa-
tion. Using Lemma 1.2 we see that ũN+1 ≤ ũN in BR̃(0). This lets us conclude
that U ′

N (R̃) ≤ U ′
N+1(R̃). In fact this is not only true for the point R̃. One can easily
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repeat the argument for balls with arbitrary radius and get U ′
N (r) ≤ U ′

N+1(r) for
0 ≤ r < R.

For radial functions one can write

det

(
∂2u

∂z j∂zk

)
= 2−(n+1)

(
U ′(|z|)n

|z|n + U ′(|z|)n−1U ′′(|z|)
|z|n−1

)

where U (|z|) = u(z). Therefore the solutions UN satisfy the equations

U ′′
N (U

′
N )

n−1

rn−1 + (U ′
N )

n

rn
= 2n+1 f1(UN )k(r)

where UN (R) = N and U ′
N (0) = 0. If we rearrange these equations we find that

U ′′
N = 2n+1rn−1 f1(UN )k(r)

(U ′
N )

n−1 − U ′
N

r
. (4)

We are going to use these equations to get a uniform estimate of the second deriv-
ative of the solutions. First note that if we let r tend to 0 we get

U ′′
N (0) = 2n+1 f1(UN (0))k(0)

(U ′′
N (0))

n−1 − U ′′
N (0).

After a rearrangement we get

U ′′
N (0) = 2 ( f1(UN (0))k(0))

1/n

as expected. Inspecting the right-hand side of the Eq. (4) we see that
sup

(|U ′′
N (r)|; 0 ≤ r ≤ R̃

)
< MN < ∞ for each N . In principle we could have

limN→∞ = MN = ∞ since U ′
N tends to 0 as r tends to 0. Therefore one has to

eliminate the possibility that the quantities

sup

(
rn−1

U ′
N (r)

n−1 ; 0 ≤ r ≤ R̃

)

grows uncontrollably in N . However we have already seen that U ′
N (r) ≤ U ′

N+1(r)
and hence

sup

(
rn−1

U ′
N (r)

n−1 ; 0 ≤ r ≤ R̃

)
≤ sup

(
rn−1

U ′
1(r)

n−1 ; 0 ≤ r ≤ R̃

)
< ∞.

We get a uniform estimate of second derivatives on BR̃(0) and an application
of Proposition 2.3 gives a uniform Hölder estimate on the second derivative and
that finishes the proof.
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3. Blow-up estimates

In order to estimate the blow-up rate of a solution to Problem (1) we prove a
proposition on the blow-up rate of solutions to Problem (3).

Proposition 3.1. Assume that f1 ∈ C∞(R) satisfies assumptions (A) and (C).
Assume that c1, c2 is strictly positive numbers and that the function k : [0, R] →
[c1, c2] is a smooth function such that k(2l+1)(0) = 0 for all l ∈ N. Then a radial
solution of Problem (3) meets the estimate

lim|z|→R

�n(v(z))

R − |z| = 2R(n−1/(n+1))k(R)(1/(n+1)).

Remark 3.2. The same proof technique was presented in [10] for a similar problem
involving the real Monge–Ampère operator.

Proof. The existence of v(|z|) = v(r) follows from Proposition 2.1. If we apply
the Monge–Ampère operator to the radial function v and perform the substitu-
tion x = rm with m = 2n/(n + 1) as above we obtain an equality which after a
multiplication by xs g′(x) can be written as

d

dx
(xs g′(x)s) = 2s s

ms
k1(x)x

s F ′(g(x)) (5)

where g(x) = v(r), s = n + 1, k1(x) = k(r) and F(t) is the primitive function of
f1(t) which is zero at the origin. Let us outline the calculation that leads to Eq. (5).
Since v is radial we have

det

(
∂2v

∂z j∂zk
(r)

)
= 1

2sr s−2

(
v′′(r)v′(r)s−2 + v′(r)s−1

r

)
.

Also since v(r) = g(rm) we see that v′(r) = mrm−1g′(rm) and v′′(r) = m(m −
1)rm−2g′(rm)+ m2r2m−2g′′(rm). Therefore

det

(
∂2v

∂z j∂zk
(r)

)

= ms

2s

(
r (m−2)(s−1)g′(rm)s−1 + r (m−2)s+2g′′(rm)g′(rm)s−2

)

= ms

2s
r (m−2)s+2

(
g′(rm)s−1

rm
+ g′′(rm)g′(rm)s−2

)

= ms

2s

(
g′(rm)s−1

rm
+ g′′(rm)g′(rm)s−2

)
.

We also have

d

dx

(
xs g′(x)s

) = sxs−1g′(x)s + sxs g′′(x)g′(x)s−1

= sxs g′(x)
(

g′(x)s−1

x
+ g′′(x)g′(x)s−2

)

and this yields Eq. (5).
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Let 0 ≤ t1 ≤ t2 ≤ t ≤ Rm where we shall choose t1 and t2 shortly. When we
integrate equation (†) from 0 to t ≤ Rm we obtain

t s g′(t)s = 2s s

ms

t∫
0

k1(x)x
s F ′(g(x)) dx

= 2s s

ms


 t1∫

0

k1(x)x
s F ′(g(x)) dx +

t∫
t1

k1(x)x
s F ′(g(x)) dx




= 2s s

ms

(
k1(η1)η

s
1

(
F(g(t1))− F(g(0))

)
+k1(η2)η

s
2

(
F(g(t))− F(g(t1))

))
for some η1 ∈ [0, t1] and η2 ∈ [t1, t]. Fix ε > 0 and choose t1 ∈ [0, Rm] such
that (Rm/t1)s < 1 + ε and |k1(Rm)Rms − k1(η)η

s | < ε for η ∈ [t1, Rm]. Since
limt→Rm F(g(t)) = ∞ it is possible to choose t2 ≥ t1 such that

|k1(η1)η
s
1 (F(g(t1))− F(g(0)))− (k1(R

m)Rms − ε)F(g(t1))|
≤ ε(k1(R

m)Rms + ε)F(g(t))

when t ∈ [t2, Rm]. Hence we have

g′(t)s ≤ 2s s

ms

1

t s
(1 + ε)(k1(R

m)Rms + ε)F(g(t))

≤ 2s s

ms
(1 + ε)

(
k1(R

m)(1 + ε)s + varepsilon(1 + ε)

Rms

)
F(g(t))

for t ∈ [t2, Rm] and we obtain

�n(v(r)) =
Rm∫

rm

(s F(g(x)))−1/s g′(x) dx

≤ 2

m

Rm∫
rm

(
(1 + ε)

(
k1(R

m)(1 + ε)s + ε(1 + ε)

Rms

))1/s

dx

= 2

m

(
(1 + ε)

(
k1(R

m)(1 + ε)s + ε(1 + ε)

Rms

))1/s

(Rm − rm)

where rm ≥ t2. Since limr→R(Rm − rm/(R − r)) = m Rm−1 we have

lim
r→R

�n(v(r))

R − r
≤2

(
(1 + ε)

(
k(R)(1+ε)n+1+ ε(1 + ε)

R2n

))(1/(n+1))

R(n−1/(n+1)).

To prove the converse inequality, we use Eq. (5) again, but this time we integrate
the equality from t0 to t, 0 < t0 < t < Rm and get

t s g′(t)s − t s
0 g′(t0)s = 2s s

ms

t∫
t0

xsk1(x)F
′(g(x)) dx .



Blow-up rate of solutions to boundary blow-up problems 335

Dividing by t s and adding (1 − 1)k1(x)F ′(g(x)) to the integrand gives

g′(t)s =
(

t0
t

)s

g′(t0)s + 2s s

ms

t∫
t0

k1(x)F
′(g(x)) dx

+2s s

ms

t∫
t0

(( x

t

)s − 1
)

k1(x)F
′(g(x)) dx .

We have the estimates
t∫

t0

k1(x)F
′(g(x)) dx ≥ inf (k1(ξ); ξ ∈ [t0, t]) (F(g(t))− F(g(t0))

)

and ∣∣∣∣∣∣
t∫

t0

(( x

t

)s − 1
)

k1(x)F
′(g(x)) dx

∣∣∣∣∣∣
≤ sup

(∣∣∣∣
((

ξ

t

)s

− 1

)
k1(ξ)

∣∣∣∣ ; ξ ∈ [t0, t]
)
(F(g(t))− F(g(t0))) .

Choose t0 ∈ (0, Rm) such that

sup

(∣∣∣∣
((

ξ

t

)s

− 1

)
k1(ξ)

∣∣∣∣ ; ξ ∈ [t0, t]
)
< ε

and

inf (k1(ξ); ξ ∈ [t0, t]) > k1(R
m)− ε.

Since limt→Rm F(g(t)) = ∞ it is possible to choose t1 > t0 such that F(g(t0)) <
εF(g(t)) when t ∈ [t1, Rm]. For these t we have, since g′(t0) is positive,

g′(t)s ≥ 2s s

ms
F(g(t))(k1(R

m)− 2ε)(1 − ε).

Hence

lim
r→R

�n(v(r))

R − r
≥ 2

(
(k(R)− 2ε)(1 − ε)

)(1/(n+1))
R(n−1/(n+1))

and if we let ε tend to zero the proposition follows.

Remark 3.3. In proving the upper bound for limr→R(�n(v(r))/R − r) we could
have integrated Eq. (5) by parts and obtained

t s g′(t)s = 2s s

ms
k1(t)t

s F(g(t))− 2s s

ms

t∫
0

d

dx
(k1(x)x

s)F(g(x)) dx .

If d/dx(k1(x)xs) ≥ 0, which is the case when k1 is constant, we could ignore the
last integral since it is positive and get easier calculations.
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We are now ready to estimate the boundary blow-up rate of the solution u to
Problem (1), our goal being an estimate in terms of the distance from z to the
boundary of � and the product of the eigenvalues of the Levi form. First we show
an inequality and then we refine the argument to get an equality. We begin by deriv-
ing an upper bound which is easy. Take z0 ∈ ∂�. Since � has smooth boundary
there exists a ball BR(z̃0) with radius R and center z̃0 such that BR(z̃0) ⊆ � and
z0 ∈ ∂BR(z̃0). Now, for 0 ≤ ε < R, solve{

det
(
∂2vε
∂z j ∂ z̄k

)
= c1 f1(vε(z)) in BR−ε(z̃0)

lim|z|→R−ε vε(z) = ∞.

By Lemma 1.3 we have u ≤ vε in BR−ε(z̃0) for 0 < ε < R and since v0(z) =
limε→0 vε(z) in BR(z̃0) it follows that u ≤ v in Br (z̃0). Hence �n(u(|z − z̃0|)) ≥
�n(v0(|z − z̃0|)) and using Proposition 3.1 we see that

lim
r→R

�n (u(z̃0 + (r/R)(z0 − z̃0)))

R − r
≥ 2c(1/(n+1))

1 R(n−1/(n+1)).

The lower bound is a little trickier. If�were strongly convex we could compare
u with a solution of a related radial problem in a ball containing �, which touches
∂� at a single boundary point z0 ∈ ∂�. Modulo technical arguments this idea gives
a good lower estimate of the boundary blow-up rate of u at z0. It is obvious that
the above technique cannot be used if � is merely strongly pseudoconvex. Here
a second idea is needed, namely given z0 ∈ ∂� where u is to be estimated from
below, we use a lemma of Narasimhan [9] to map a neighborhood of z0 biholomor-
phically onto a strongly convex domain and thus obtain a local transformation of
the problem to a situation we can handle.

The local character of the problem introduces an new obstacle too, since we
do not know that the transformed version of u, let us call it ũ, is big enough at
all boundary points of the new domain: Boundary blow-up occurs only on a part
of the boundary containing the image point of z0. This problem is overcome by
constructing a very bad lower bound for ũ which however is good enough at the
boundary point in question. When comparing with a radial solution of the related
problem in a ball containing the transformed neighborhood of z0, we push this
radial solution below ũ on the problematic part of the boundary by subtracting an
affine function.

We need the following lemma of Narasimhan [9].

Lemma 3.4. Let� � C
n be a domain with a C2 boundary. Let z0 ∈ ∂� be a point

of strong pseudoconvexity. Then there exists a neighborhood Z ⊆ C
n of z0 and a

biholomorphic mapping 
 on Z such that W = 
(Z ∩�) is strongly convex.

We will need the form of the biholomorphism
. It is known that � has a defining
function ρ with the property that there exists C > 0 such that

n∑
j,k=1

∂2ρ

∂z j∂ z̄k
(z0)z j z̄k ≥ C |z|2
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for all z0 ∈ ∂� and all z ∈ C
n . The local biholomorphism at z0 ∈ ∂� can, after

a translation taking z0 to zero and a rotation taking the exterior normal at z0 to
(1, 0, . . . , 0), be written as

w1 = 
1(z) = z1 + (1/2)


 n∑

j,k=1

∂2ρ

∂z j∂zk
(z0)z j zk


 , w j = 
 j (z) = z j

for j = 2, . . . , n. Now define ũ : W → R as ũ(w) = u(
−1(w)). The Monge–
Ampère operator transforms as

det

(
∂2ũ

∂w j∂w̄k
(w)

)
= | det(
−1)′(w)|2 det

(
∂2u

∂z j∂ z̄k
(
−1(w))

)

under holomorphic coordinate changes. Since W is strongly convex there is a ball
BR′(w̃0) with radius R′ and center w̃0 having the properties that W ⊆ BR′(w̃0)

and ∂BR′(w̃0)∩ ∂W = {w0}, where w0 = 
(z0). Let η > 0 and if we shrink W if
necessary we can assume that

∣∣| det(
−1)′(w)|2 − | det(
−1)′(w0)|2
∣∣ ≤ η on W .

Take a smooth g which satisfies

g(s) ≥ sup
(

c2| det(
−1)′(w)|2; {w; |w − w̃0| = s}
)

and g(R′) = c2(| det(
−1)′(w0)|2 +η) = c2(1+η). Since we want to study Prob-
lem (3) in BR′(w̃0) and use Proposition 3.1 we need to extend g in such a way that
the proposition is still applicable if w̃0 /∈ W . Abusing notation let us call this exten-
sion g. Take ε > 0. We extend g so that Proposition 3.1 can be applied in BR′+ε(w̃0)

and solve Problem (3) with right-hand side g(|w− w̃0|) f1(t) in BR′+ε(w̃0). Let us
call the solution ṽε. Put ṽ(z) = limε→0+ ṽε(z). The function ṽ is a smooth solution
to Problem (3) in BR′(w̃0) with right-hand side g(|w − w̃0|) f1(t). Since

det

(
∂2ũ

∂w j∂w̄k
(w)

)
= | det(
−1)′(w)|2 det

(
∂2u

∂z j∂ z̄k
(
−1(w))

)
= | det(
−1)′(w)|2 f (
−1(w), ũ(w))

and

det

(
∂2ṽε

∂w j∂w̄k
(w)

)
= g(|w − w̃0|) f1(ṽε(w))

≥ c2| det(
−1)′(w)|2 f1(ṽε(w))

≥ | det(
−1)′(w)|2 f (
−1(w), ṽε(w))

in W we could conclude that ṽε ≤ ũ in W if we knew that ṽε ≤ ũ on ∂W . This
would imply that ṽ ≤ ũ in W . To handle this we will make use of the function
Re w1. Let W̃ = ∂W \ 
(∂� ∩ Z). By Lemma 1.3 we have ṽε ≤ ṽ in BR′(w̃0).
Choose α ∈ R such that

sup
(
ṽ(w)+ αRe w1;w ∈ W̃

) ≤ inf
(
ũ(w);w ∈ W̃

)
.
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Since ṽε +αRe w1 ≤ ṽ+αRe w1 ≤ ũ on ∂W we use Lemma 1.3 to conclude that
ṽε + αRe w1 ≤ ũ in W and letting ε tend to zero we see that ṽ + αRe w1 ≤ ũ in
W . We also have

�n(ṽ(w)+ αRe w1) = �n(ṽ(w))+ αRe w1�
′
n(ξ)

= �n(ṽ(w))+ αRe w1 ((n + 1)F(ξ))−(1/(n+1))

where ξ ∈ [ṽ(w)+ αRe w1, ṽ(w)]. Hence we have

lim
r→R′

�n
(
ũ(w̃0 + (r/R′)(w0 − w̃0))

)
R′ − r

≤ lim
r→R′

�n
(
ṽ(w̃0 + (r/R′)(w0 − w̃0))+ α(R′ − r)

)
R′ − r

= lim
r→R′

�n
(
ṽ(w̃0 + (r/R′)(w0 − w̃0)

) + α(R′ − r) ((n + 1)F(ξ))−(1/(n+1))

R′ − r

= lim
r→R′

�n
(
ṽ(w̃0 + (r/R′)(w0 − w̃0)

)
R′ − r

+ lim
r→R′ α ((n + 1)F(ξ))−(1/(n+1))

= lim
r→R′

�n
(
ṽ(w̃0 + (r/R′)(w0 − w̃0)

)
R′ − r

≤ 2g(R′)(1/(n+1))R′(n−1/(n+1))

≤ 2c(1/(n+1))
2 (1 + η)(1/(n+1))R′(n−1/(n+1))

by Proposition 3.1. Note that we are measuring the distance between 
(z) and the
boundary of W and not between z and the boundary of �. This is easily handled if
we put ẑ0 = 
−1(w̃0), R̂ = |ẑ0| and observe the following

lim
r→R̂

�n
(
u(ẑ0)+ (r/R̂)(z0 − ẑ0)

)
R̂ − r

= lim
r→R̂

�n
(
u(ẑ0)+ (r/R̂)(z0 − ẑ0)

)
|
(ẑ0 + (r/R̂)(z0 − ẑ0))−
(z0)|

|
(ẑ0 + (r/R̂)(z0 − ẑ0))−
(z0)|
R̂ − r

≤ 2c(1/(n+1))
2 (1 + η)(1/(n+1))R′(n−1/(n+1)) lim

r→R̂

|
(ẑ0 + (r/R̂)(z0 − ẑ0))−
(z0)|
R̂ − r

= 2c(1/(n+1))
2 (1 + η)(1/(n+1))R′(n−1/(n+1))

.

Let η tend to zero. We have proved a partial description of the blow-up rate of solu-
tions when we approach a boundary point in the normal direction. We introduce
some notation. For z0 ∈ ∂� let

Iz0 = {R ∈ R; BR(z) ⊆ � and ∂BR(z) ∩ ∂� = {z0} for some z ∈ �}
and

I ′
z0

= {R ∈ R; W ⊆ BR(z) and ∂BR(z) ∩ ∂W = {
(z0)} for some z ∈ C
n}

where 
 and W are described in Lemma 3.4. Put R(z0) = sup(R; R ∈ Iz0) and
R′(z0) = inf(R; R ∈ I ′

z0
). The functions R(z0) and R′(z0) are continuous. Using

this we get the following.
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Proposition 3.5. Let � be a bounded, strongly pseudoconvex domain in C
n with

smooth boundary. Let f ∈ C∞(� × R) be a strictly positive function which is
increasing in the second variable and satisfies assumptions (A), (B) and (C). Then
u, a solution to Problem (1), meets the estimate

2c(1/(n+1))
1 R(z0)

(n−1/(n+1)) ≤ lim
z→z0

�n(u(z))

d�(z)
≤ 2c(1/(n+1))

2 R′(z0)
(n−1/(n+1))

,

where z0 ∈ ∂�.

Equipped with this we prove the following.

Proposition 3.6. Let � be a bounded, strongly pseudoconvex domain in C
n with

smooth boundary. Let f ∈ C∞(� × R) be a strictly positive function which is
increasing in the second variable and satisfies assumptions (A), (B) and (C). Then
u, a solution to Problem (1), meets the estimate

2h(z0)
(1/(n+1))R(z0)

(n−1/(n+1)) ≤ lim
z→z0

�n(u(z))

d�(z)

≤ 2h(z0)
(1/(n+1))R′(z0)

(n−1/(n+1))
,

where z0 ∈ ∂�.

Proof. Fix ε > 0 and z0 ∈ ∂�. By assumption (A) there exists a constant C ∈ R

such that

(h(z)− ε) f1(t) ≤ f (z, t) ≤ (h(z)+ ε) f1(t)

for all z ∈ � if t > C . Using Proposition 3.5 we see that

lim
z→z0

�n(u(z))

d�(z)
≤ 2c(1/(n+1))

2 R′(z0)
(n−1/(n+1))

.

Hence there exists δ > 0 such that

�n(u(z)) ≤
(

2c(1/(n+1))
2 R′(z0)

(n−1/(n+1)) + ε
)

d�(z)

if |z − z0| < δ. Since �n is decreasing �−1
n is and since limt→∞�n(t) = 0 there

exists δ′ ≤ δ such that

u(z) ≥ �−1
n

(
(2c(1/(n+1))

2 R′(z0)
(n−1/(n+1)) + ε)d�(z)

)
≥ C

if |z − z0| < δ′. Now take R ∈ Iz0 and choose δ′′ < δ′ such that

sup (|h(z)− h(z0)|; z ∈ BR(z̃0) ∩ Bδ′′(z0)) ≤ ε.

Here BR(z̃0) ⊆ � such that ∂BR(z̃0) ∩ ∂�. Let g be a strictly positive smooth
function which satisfies

g(s) ≤ inf (h(z)− ε; {z ∈ BR(z̃0) ∩ Bδ′′(z0); |z − z̃0| = s})
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for s ∈ [R − δ′′, R] and g(R) = h(z0) − 2ε. If R − δ′′ > 0 extend g to [0, R] in
such a way that Proposition 3.1 still can be used. Abusing notation again call this
extension g. We may assume, after a translation and rotation, that z0 = 0 and the
exterior normal at z0 is (1, 0, . . . , 0). Solve Problem (3) in a slightly smaller ball
BR−ε′(z̃0) and call this solution vε′ . Put v(z) = limε′→0 vε′(z), which exists since
vε′(z) ≤ vε′′(z) when ε′ ≤ ε′′ and vε′(z) ≥ ṽ(z) for any solution ṽ of Problem (1)
in BR (̃z0) with right-hand side g(|z − z̃0|) f1(t). Then v is a smooth solution of
Problem (1) in BR (̃z0) with right-hand side g(|z − z̃0|) f1(t). Now choose α ∈ R

such that

inf (v(z)− αRe z1; z ∈ BR(z̃0) ∩ ∂Bδ′′(z0))

≥ sup (u(z); z ∈ BR(z̃0) ∩ ∂Bδ′′(z0)) .

We have

det

(
∂2(vε′ − αRe z1)

∂z j∂ z̄k
(z)

)
= det

(
∂2vε′

∂z j∂ z̄k
(z)

)
= g(|z − z̃0|) f1(vε′(z))

≤ (h(z)− ε) f1(vε′(z)) ≤ f (z, vε′(z))

≤ f (z, vε′(z)− αRe z1)

in BR−ε′(z̃0) ∩ Bδ′′(z0) and if we use Lemma 1.3 we see that vε′ − αRe z1 ≥ u in
BR−ε′(z̃0) ∩ Bδ′′(z0). Letting ε′ tend to zero we conclude that v − αRe z1 ≥ u in
BR(z̃0) ∩ Bδ′′(z0). Using Proposition 3.1 and noting that g(R) = h(z0) − 2ε we
see that

2(h(z0)− 2ε)(1/(n+1))R(n−1/(n+1)) ≤ lim
z→z0

�n(u(z))

d�(z)
.

If we let ε tend to zero and observe that R ∈ Iz0 was arbitrary we get

2h(z0)
(1/(n+1))R(z0)

(n−1/(n+1)) ≤ lim
z→z0

�n(u(z))

d�(z)
.

If we modify the proof of the lower bound in Proposition 3.5 slightly we finally
arrive at

2h(z0)
(1/(n+1))R(z0)

(n−1/(n+1)) ≤ lim
z→z0

�n(u(z))

d�(z)

≤ 2h(z0)
(1/(n+1))R′(z0)

(n−1/(n+1))
.

Using the idea of adding and subtracting affine functions we can refine the
argument above and get the following improvement. Let us first introduce some
notation.

Definition 3.7. Assume that � = {z ∈ C
n; ρ(z) < 0} where ρ ∈ C∞(�). For

z0 ∈ ∂� suppose that |∇ρ(z0)| = 1. Then �(z0) is the product of the eigenvalues
of the form

n∑
j,k=1

∂2ρ

∂z j∂zk
(z0) dz j ∧ dzk

restricted to the vector space {w ∈ C
n;∑n

j=1 ∂ρ/∂z j (z0)w j = 0}.
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Theorem 3.8. Let � be a bounded, strongly pseudoconvex domain in C
n with

smooth boundary. Let f ∈ C∞(� × R) be a strictly positive function which is
increasing in the second variable and satisfies assumptions (A), (B) and (C). For
boundary points z0 ∈ ∂� let �(z0) be defined as in Definition 3.7. Then u, any
solution to Problem (1), meets the estimate

lim
z→z0

�n(u(z))

d�(z)
= 4(1/(n+1))h(z0)

(1/(n+1))�(z0)
−(1/(n+1)),

where z0 ∈ ∂�.

Proof. After a translation and rotation we can assume that z0 = 0 and that the exte-
rior normal to ∂� at z0 is (1, 0, . . . , 0). Doing the same holomorphic coordinate
change as in the paragraph after the formulation of Lemma 3.4 we know that there
is a ρ so that we can describe ∂� as

Re z1 =
n∑

j,k=1

∂2ρ

∂z j∂zk
(0)z j zk + o(|z|2).

Changing coordinates in the plane {z ∈ C
n; z1 = 0} we can diagonalize the Levi

form so that

∂2ρ

∂z j∂zk
(0) = 0

when j, k ≥ 2 and j �= k. Writing ρ jk = (∂2ρ/∂z j∂zk)(0)we make the coordinate
change ζ1 = z1, ζ j = z j + z1(ρ1 j/ρ j j ) for j = 2, . . . , n. In these coordinates ∂�

is described as Re ζ1 = ρ̃11|ζ1|2 + ∑n
j=2 ρ j j |ζ j |2 + o(|ζ |2) where ρ̃11 depends

on ρ12, . . . , ρ1n, ρ22, . . . , ρnn and it will actually turn out to be irrelevant. Set
ζ̃1 = ζ1

√
ρ̃11, ζ̃2 = ζ2

√
ρ22, . . . , ζ̃n = ζn

√
ρnn . In these coordinates the boundary

is given by the equation

1√
ρ̃11

Re ζ̃1 =
n∑

j=1

|̃ζ j |2 + o(|̃ζ |2).

The equation

1√
ρ̃11

Re ζ̃1 =
n∑

j=1

|̃ζ j |2

describes a sphere with radius 1/2
√
ρ̃11. Given an ε > 0 we can find an open

neighborhood U of ζ̃0 so that the spheres (
√
ρ̃11 − ε)−1Re ζ̃1 = ∑n

j=1 |̃ζ j |2 and

(
√
ρ̃11 +ε)−1Re ζ̃1 = ∑n

j=1 |̃ζ j |2 intersect U ∩∂�̃ only at ζ̃0. Here �̃ is the image
of � under holomorphic coordinate changes above. As in the proof of Proposition
3.6 we can solve a blow-up problem in

1√
ρ̃11 + ε

Re ζ̃1 <

n∑
j=1

|̃ζ j |2
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and

1√
ρ̃11 − ε

Re ζ̃1 <

n∑
j=1

|̃ζ j |2

with right-hand sides g(̃ζ ) f1(t) where g < h and g̃(̃ζ ) f1(t) where g̃ > h. Call the
solutions vε andwε. Add an affine function to vε and subtract such a function from
wε to get functions ṽε and w̃ε. If we choose the affine functions properly we can
use Lemma 1.3 to conclude that u ≤ ṽε in U ∩ {̃ζ ∈ C

n; (√ρ̃11 + ε)−1Re ζ̃1 <∑n
j=1 |̃ζ j |2} and w̃ε ≤ u in U ∩ �̃. Since adding or subtracting affine functions

does not change the blow-up rate we get

lim
ζ̃→ζ̃0

�n(u(̃ζ ))

d�̃(̃ζ )
≤ lim
ζ̃→ζ̃0

�n(w̃ε(̃ζ ))

d�̃(̃ζ )
= lim
ζ̃→ζ̃0

�n(wε(̃ζ ))

d�̃(̃ζ )

and

lim
ζ̃→ζ̃0

�n(u(̃ζ ))

d�̃(̃ζ )
≥ lim
ζ̃→ζ̃0

�n (̃vε(̃ζ ))

d�̃(̃ζ )
= lim
ζ̃→ζ̃0

�n(vε(̃ζ ))

d�̃(̃ζ )
.

In order to complete the proof we have to analyze in what way the biholomor-
phisms we have applied changes the right-hand side of our equation and how d� and
d�̃ is related. Since the complex differential of all but the last biholomorphism is the
identity at z0 we only have to worry about the last transformation. The determinant
of the complex differential of the last transformation is

1√
ρ̃11

∏n
j=2 ρ j j

= 1√
ρ̃11�(z0)

at z0. We have

lim
z→z0

�n(u(z))

d�(z)
= √

ρ̃11 lim
ζ̃→ζ̃0

�n(u(̃ζ ))

d�̃(̃ζ )
.

This is because close to the boundary point it does not matter whether we measure
the distance to the boundary or to the tangent plane. By Proposition 3.6 we get

2

(
1

ρ̃11�(z0)

)(1/(n+1))

h(̃ζ0)
(1/(n+1))

(
1

2
(√
ρ̃11 + ε

)
)(n−1/(n+1))

≤ lim
ζ̃→ζ̃0

�n(u(̃ζ ))

d�̃(̃ζ )

≤ 2

(
1

ρ̃11�(z0)

)(1/(n+1))

h(̃ζ0)
(1/(n+1))

(
1

2
(√
ρ̃11 − ε

)
)(n−1/(n+1))

.

Let ε tend to zero and get

lim
ζ̃→ζ̃0

�n(u(̃ζ ))

d�̃(̃ζ )
= 2

(
1

ρ̃11�(z0)

)(1/(n+1))

h(̃ζ0)
(1/(n+1))

(
1

2
√
ρ̃11

)(n−1/(n+1))

.
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Hence

lim
z→z0

�n(u(z))

d�(z)
=

(
1

ρ̃11�(z0)

)(1/(n+1))

h(̃ζ0)
1

n+1
(
2
√
ρ̃11

)1−(1/(n+1))

=
(

4

�(z0)

)(1/(n+1))

h(̃ζ0)
(1/(n+1))

=
(

4

�(z0)

)(1/(n+1))

h(z0)
(1/(n+1)).

4. Boundary behavior of the Bergman kernel

In this section we shall apply our results on the blow-up rate of solutions to Monge–
Ampère equations to describe the asymptotic behavior of Bergman kernel. These
results are known and in [5] Hörmander obtained a more general result which also
holds for weighted Bergman kernels. We first recall the definition of the Bergman
kernel and some basic results. A reference for this is [9].

Let � be a domain in C
n . We call OL2(�) = O(�) ∩ L2(�) the Bergman

space. Given a compact subset K of � one can show that there is a constant CK

such that

sup(| f (z)|; z ∈ K ) ≤ CK ‖ f ‖L2(�)

for all f ∈ OL2(�). This inequality yields that OL2(�) equipped with the inner
product 〈 f, g〉 = ∫

�
f (z)g(z) dλ(z) is complete and hence a Hilbert space. The

inequality also gives that the functionals, one for each z ∈ �,
z( f ) = f (z)
are bounded linear functionals. The Riesz Representation Theorem guarantees that
there is kz ∈ OL2(�) such that


z( f ) = f (z) = 〈 f, kz〉.
The Bergman kernel is the function K (z, ζ ) = kz(ζ ). It can be shown that, for a
domain � � C

n , we have

K (z, z) = sup(| f (z)|2; f ∈ OL2(�), ‖ f ‖L2(�) = 1).

In [4] Fefferman showed that the asymptotic behavior of K (z, z) as z → z0 for
z0 ∈ ∂� is the same as the boundary behavior of (n!/πn)e(n+1)u(z) where u is the
solution to {

det
(

∂2u
∂z j ∂ z̄k

)
= e(n+1)u(z) in�

limz→z0 u(z) = ∞ for all z0 ∈ ∂�.

With the same notation as in Theorem 3.8 we see that

lim
z→z0

�n(u(z))

d�(z)
=

(
4

�(z0)

)(1/(n+1))
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for z0 ∈ ∂�. We have to calculate, or at least estimate,

�n(u) =
∞∫

u

(
e(n+1)t − 1

)−(1/(n+1))
dt.

Since

lim
t→∞

e(n+1)t(
e(n+1)t − 1

)(1/(n+1))
= 1

we get, for arbitrary fixed ε > 0 and u is large enough,

e−u ≤ �n(u) ≤ (1 + ε)e−u .

This yields

e−u(z) ≤ d�(z)

((
4

�(z0)

)(1/(n+1))

+ ε

)

and

d�(z)

((
4

�(z0)

)(1/(n+1))

− ε

)
≤ (1 + ε)e−u(z)

when u(z) is large enough. Thus for z close enough to z0 we get((
4

�(z0)

) 1
n+1 + ε

)−(n+1)

≤ d�(z)
n+1e(n+1)u(z)

≤ (1 + ε)n+1

((
4

�(z0)

)(1/(n+1))

− ε

)−(n+1)

which yields

lim
z→z0

d�(z)
n+1e(n+1)u(z) = �(z0)

4
.

We have proven the following result.

Theorem 4.1. Assume that � is a bounded strongly pseudoconvex domain with
smooth boundary. Let K�(z, w) be the Bergman kernel of �. For boundary points
z0 let �(z0) be as in Definition 3.7. Then

lim
z→z0

d�(z)
n+1 K�(z, z) = n!

4πn
�(z0)

for all z0 ∈ ∂�.
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