
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
9
6
7
7
5
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
9
.
6
.
2
0
2
4

Title: A cross ancestry genetic study of psychiatric disorders from India  

 

Authors: Bharath Holla 1, Jayant Mahadevan 2, Suhas Ganesh 2, Reeteka Sud 2, Meghana 

Janardhanan 2, Srinivas Balachander 2, Nora Strom 3, Manuel Mattheisen 3,4,5, Patrick F 

Sullivan 6,7, Hailiang Huang 8,9,10, Peter Zandi 11, Vivek Benegal 2, YC Janardhan Reddy 

2, Sanjeev Jain 2, cVEDA collaborators, ADBS-CBM consortium, iPSYCH OCD consortium, 

NORDiC OCD & Related Disorders Consortium, Meera Purushottam* 2, Biju Viswanath* 2 

*Corresponding Authors 

 

1 – Department of Integrative Medicine, National Institute of Mental Health and 

Neurosciences, Bangalore, India 

2 – Department of Psychiatry, National Institute of Mental Health and Neurosciences, 

Bangalore, India 

3 – Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU 

Munich, Munich, Germany 

4 – Dalhousie University, Department of Community Health and Epidemiology & Faculty of 

Computer Science, Halifax, Nova Scotia, Canada 

5 – University Hospital of Psychiatry and Psychotherapy, University of Bern 

6 – Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 

Sweden 

7 – Department of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC, 

USA 

8 – Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, 

MA02114, USA 

9 – Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, 

MA02142, USA 

10 – Department of Medicine, Harvard Medical School, Boston, MA02114, USA 

11 – Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 

Baltimore, Maryland, USA. 

 

 

. 

 

  



Abstract: 

 

Genome-wide association studies across diverse populations may help validate and confirm 

genetic contributions to risk of disease. We estimated the extent of population stratification as 

well as the predictive accuracy of polygenic scores (PGS) derived from European samples to a 

data set from India. We analysed 2685 samples from two data sets, a population 

neurodevelopmental study (cVEDA) and a hospital-based sample of bipolar affective disorder 

(BD) and obsessive-compulsive disorder (OCD). Genotyping was conducted using Illumina's 

Global Screening Array.  

 

Population structure was examined with principal component analysis (PCA), uniform 

manifold approximation and projection (UMAP), support vector machine (SVM) ancestry 

predictions, and admixture analysis. PGS were calculated from the largest available European 

discovery GWAS summary statistics for BD, OCD, and externalizing traits using two Bayesian 

methods that incorporate local linkage disequilibrium structures (PGS-CS-auto) and functional 

genomic annotations (SBayesRC). Our analyses reveal global and continental PCA overlap 

with other South Asian populations. Admixture analysis revealed a north-south genetic axis 

within India (FST 1.6%). The UMAP partially reconstructed the contours of the Indian 

subcontinent.  

 

The Bayesian PGS analyses indicates moderate-to-high predictive power for BD. This was 

despite the cross-ancestry bias of the discovery GWAS dataset, with the currently available 

data. However,    accuracy for OCD and externalizing traits was much lower. The predictive 

accuracy was perhaps influenced by the sample size of the discovery GWAS and phenotypic 

heterogeneity across the syndromes and traits studied. Our study results highlight the accuracy 

and generalizability of newer PGS models across  ancestries. Further research, across diverse 

populations, would help  understand causal mechanisms that contribute to psychiatric 

syndromes and traits.   



INTRODUCTION: 

 

Psychiatric genomics has witnessed tremendous growth over the past two decades CITE. The 

advent of genome-wide association studies (GWAS), along with the formation of international 

consortia and biobanks, have led to a plethora of genetic associations for psychiatric disorders 

and brain traits. The success of GWAS has also led to the development of multiple analysis 

methods to elucidate biological and clinical relevance of these findings (1).  

 

Polygenic score (PGS) is one such method that predicts an individual’s inherited risk for a trait, 

and is derived as a weighted sum of genomic risk alleles (2) based on GWAS findings. While 

GWAS requires large sample sizes to detect common variants of small effects, the PGS can be 

calculated at the level of individuals. Therefore, PGS can be useful for stratifying individuals, 

for risk of disease,  risk based on their genomic variants (3).PGS has gained popularity as a 

predictive tool for various common disorders. For instance, in coronary artery disease, PGS 

can identify individuals at increased risk, and the predictive power could be increased even 

further by combining PGS with clinical risk factors (4–6). In psychiatry, although the 

discriminative power of PGS is not yet suitable for clinical application, the latest GWAS on 

schizophrenia has demonstrated promising outcomes, revealing a notably high odds ratio (OR) 

of 39 (CI 29-53) when comparing the case/control ratio between the highest and lowest deciles 

of the PGS (7). 

 

However, the under-representation of several global populations represents a major limitation 

in psychiatric genomics and PGS research. Recent estimates from GWAS of schizophrenia, 

bipolar disorder (BD) and major depressive disorder suggest that individuals of South Asian 

ancestry make up less than 1% of these samples (8). The Eurocentric nature of GWAS may 

limit the optimal transferability of PGS, and may thus restrict the extent to which the genetic 

discoveries can be extrapolated across diverse populations.  As a case in point, the largest meta-

analysis from the PGC Schizophrenia Working Group included only 25% participants of non-

European ancestry (7). Further, the use of  PGS, derived mainly from European-based GWAS, 

may reinforce or even widen existing health disparities when applied in clinical settings (9). 

There is now accumulating evidence to suggest that the use of multi-ancestry PGS may perform 

better than single-ancestry PGS (10). Hence, addressing the lack of ancestral diversity is critical 

for finessing our findings; as also  for an  equitable distribution of its potential benefits.   

 



Despite its large share in the global population, the contribution to psychiatry GWAS from 

India has been sparse. Given the complex population history (11–13), population substructures 

resulting from geography, linguistics and the historical practice of endogamy (14), there has 

been a reluctance to apply GWAS and PGS methods in India. However, the advent of large 

imputation panels and globally representative genotyping arrays, studies have demonstrated 

feasibility and potential utility of polygenic approaches in India (14). A GWAS on 

schizophrenia from southern India identified a genome-wide significant locus modifying the 

expression of NAPRT1 (15). GWAS in other complex diseases such as diabetes (16) and 

dyslipidemia (17) have implicated loci, which were previously identified in other continental 

populations.  

 

This study investigates the predictive accuracy of cross-ancestry PGS for psychiatric 

phenotypes.. We use state-of-the-art Bayesian methods and also incorporate functional 

genomic annotations to improve portability from European discovery GWAS. We evaluate the 

predictive accuracy for BD, OCD, and externalizing symptoms. Moreover, we assess 

population stratification and admixture levels within these Indian samples, to inform future 

sampling strategies for Indian ancestry GWAS. 

 

METHODS: 

 

Samples and phenotypes  

 

Individuals diagnosed to have BD or OCD through the clinical services at NIMHANS were 

identified, and DNA samples were collected, after informed consent. The cVEDA sample 

consisted of community samples, identified at random, as part of an ongoing study (ref 

here)Control subjects were volunteers from the general population, with no lifetime history of 

psychiatric disease in themselves, or their first degree relatives. All subjects provided written 

informed consent, and the studies were approved by the ethics committee at NIMHANS. 

 

We used genetic data of consenting individuals from the general population and also patients 

with OCD or BD.  Individuals diagnosed with psychiatric disorders, specifically BD and OCD 

were identified through clinical services at NIMHANS, Bengaluru, India. All diagnoses were 

independently confirmed by two experts through detailed clinical interviews and review of 

medical records, as per the ICD-10 criteria for BD (codes F30 and F31) and OCD (code F42). 



Most BD patients met the criteria for BD1 syndrome as defined by the DSM5-TR; while those 

with OCD patients had a moderate to severe illness according to the Clinical Global 

Impressions Scale. 

 

Individuals without a lifetime psychiatric diagnosis or first-degree family history of psychiatric 

illness were included as controls along with cVEDA participants. The cVEDA, is a longitudinal 

study investigating the effects of environmental factors and genomic variations on 

neurodevelopment and susceptibility to externalizing disorders. The study participants have 

undergone  assessments that covered socio-demographics, temperament, environmental 

exposures, parenting styles, psychiatric morbidity, and cognitive functioning (18,19). For this 

study, we focused on the externalizing score from the Strengths and Difficulties Questionnaire 

(SDQ) CITE, which measures hyperactivity/inattention and conduct problems. 

 

Genotyping, quality control and imputation 

 

Genotyping was conducted in three batches using the Illumina Global Screening Array, 

followed by batch-specific quality control using a customized pipeline based on Plink 1.9 and 

KING version 2.3.2. Samples with genotyping rate < 0.95, F_heterozygosity > 0.2, and 

genotype-phenotype sex mismatches were removed from the analysis. SNPs were filtered out 

if these were monomorphic, or had a call rate < 0.95, or deviated from Hardy-Weinberg 

equilibrium p < 1e-6. Pairs of related individuals were identified using the --related function in 

KING and all first, second, and third degree relatives  were excluded. After quality control, the 

genotypic data of each batch were as follows: Batch1-GSAv2+ had 996 subjects and 619,022 

SNPs, Batch2-GSAv3 had 915 subjects and 545,877 SNPs, and Batch3-GSAv3+ included 774 

subjects with 633,293 SNPs. Figure S2 illustrates a consistent ~81% overlap in SNP 

intersections across the three batches, maintained both pre- and post-QC. A detailed description 

of genotyping and quality control is provided in the supplementary material. 

 

Following quality control, genotype data was phased using Eagle v2.4 and unobserved 

genotypes were imputed using Minimac4 with four reference panels: Trans-Omics for 

Precision Medicine (TOPMed) version r2, Haplotype Reference Consortium (HRC) Version 

r1.1 2016, 1000 Genomes Phase 3 (Version 5) and the Genome Asia Pilot v1 – (GAsP) on the 

Michigan Imputation Server. The imputation accuracy was evaluated using info scores (r2) 

across a range of allele frequencies for each reference panel. Following this, “hard call” 



genotypes from the top-performing panel were filtered for an imputation info score (r2) > 0.3 

and a minor allele frequency > 0.01. The filtered genotypes were merged for further analysis, 

resulting in 7,325,802 markers.  

 

Principal Component Analysis (PCA) 

To examine population structure, we conducted PC analysis at three levels: global PCA in 

conjunction with 1000 Genomes (1000G), continental PCA with Human Genome Diversity 

Project (HGDP) and Genome Asia Pilot (GAsP), and within-sample PCA. Prior to conducting 

PCA, the genotype data were pruned for linkage disequilibrium (LD) using an r2 of 0.2 and 

window size of 50 kb and step size of 5 variants. In addition, 24 autosomal regions exhibiting 

long-range LD and spanning more than 2 Mb were excluded because long-range LD regions 

(e.g., the extended MHC region) can unduly influence PCA, which can lead to the masking of 

more subtle genome-wide variation patterns, particularly in admixed samples. This  resulted in 

a final set of 759,439 markers.  

 

For the global and continental PCAs, we merged our samples with publicly available reference 

datasets. While merging, SNPs with unambiguous allele labels were auto-flipped, while those 

with ambiguous (A/T, C/G) or inconsistent allele labels were excluded. We also removed any 

first-, second- and third-degree relatives  present in the reference data. The global PCA used 

1000G data, including 631 African, 330 Amerindian, 494 East Asian, 500 European, and 454 

South Asian samples. Two subsequent Asian sub-continental PCAs (HGDP and GAsP) were 

conducted to examine how our sample clusters within these sub-continental population 

structures.  

 

Ancestry Prediction  

We implemented a  SVM-based method to identify the most likely ancestral groups for each 

individual in our sample based on the first 10 global PCs and known ancestry from the 1000 

Genomes Project data. The R package 'e1071' was used for SVM. An initial parameter grid for 

the radial kernel SVM was defined in terms of cost and gamma parameters. We used 5-fold 

cross-validation, repeating the process twice to identify the optimal hyperparameters. Using 

the best parameters, an SVM model was trained and employed to predict the most probable 

ancestral group of each individual. The predicted ancestral groups were assigned along with 

associated probabilities.  

 



Uniform Manifold Approximation and Projection (UMAP) 

The UMAP algorithm was implemented in Python, utilizing the UMAP-learn library, 

configured with Euclidean distance metric, a neighborhood size of 15, and a minimum distance 

of 0.1. The first 15 PCs from within-sample PCA were selected for UMAP analysis. The 

resulting low-dimensional embeddings were plotted with the SVM predicted ancestry labels 

from the previous step to visualize the within-sample population structure. 

 

Admixture 

 

Admixture proportions were assessed using ADMIXTURE (v1.3.0). The analysis was 

performed on genotype data that had been pruned for LD (see above). In alignment with prior 

literature CITATION, we employed a larger number of markers (272,963) for analysis to 

achieve effective population resolution, given that the required marker count is inversely 

proportional to the genetic distance (FST) between the populations under study. The optimal 

number of ancestral components (K) was determined based on the lowest 10-fold cross-

validation error. The algorithm for ADMIXTURE employs maximum likelihood estimation, 

block relaxation for iterative parameter updates, and a quasi-Newton method for accelerated 

convergence. A subset of samples with high-confidence self-reported geocodes were plotted 

on the map of India to examine the geographical distribution of ancestry proportions. 

 

Polygenic scores (PGS): 

 

Cross-ancestry PGS were constructed for BD, OCD, and externalizing symptoms using public 

GWAS summary statistics from European ancestry populations. The discovery cohorts, of  

individuals of confirmed European ancestry, included 41,917 BD cases and 371,549 controls 

from the 2021 PGC3 analysis (20); and another 6,848 OCD cases and 18,812 controls from the 

OCD PGC GWAS (21). For the broad externalizing phenotype, we utilized summary statistics 

from the genomic structural equation modeling (Genomic SEM) with 1,045,957 participants in 

the Externalizing Consortium (excluding 23andMe samples as required by this company) (22). 

For the PGS calculation, we employed three methods: classical clumping and thresholding 

(C+T) via PRSice-2 (23) and the Bayesian methods PGS-CS-auto (24) and SBayesRC (25). 

For PRSice-2, the best performing PGS was calculated at a range of P-value thresholds 

(0.001,0.05,0.1,0.2,0.3,0.4,0.5,1) with default parameters for clumping with a window of 250 

kb and r2 of 0.1. PGS-CS-auto utilizes a Bayesian regression model with continuous shrinkage 



priors for posterior SNP effect inference and is robust to different genetic architectures. It 

models local LD structures using an external reference panel of around 1 million HapMap3 

markers. SBayesRC incorporates an LD panel with about 7 million imputed common SNPs 

along with 96 functional genomic annotations. It employs a hierarchical multi-component 

mixture prior to adjusting annotation information, thereby influencing the probability and 

effect size of a SNP being causal. PGS-CS-auto and SBayesRC estimate all parameters jointly 

within a Bayesian framework, eliminating the need for parameter tuning. 

 

PGS Predictive performance: 

 

To evaluate the predictive performance of the PGS, we employed a comprehensive set of 

metrics, with adjustments for covariates including sex, SNP batch, and the first seven principal 

components of the genotype data. These metrics included: 1) Nagelkerke's R2 (for BD and 

OCD) and adjusted R2 (for externalizing symptoms); 2) Area under the receiver operating 

characteristic curve (AUC) was calculated for BD and OCD to evaluate the discriminatory 

power of the PGS; and 3) ORs were estimated to compare the risk between the top 10% of 

individuals for a given PGS, to the bottom and middle 10% of the sample. 

 

Multi-PGS Association Analysis 

To assess the specificity of associations for BD, OCD and externalizing symptoms, we also 

attempted an exploratory multi-PGS association analysis with over 3,800 PGSs spanning 18 

trait categories, defined according to the Experimental Factor Ontology (EFO) in the PGS 

Catalog (26). These scores were calculated with ‘pgs-calc’ using default parameters without 

adjusting for ancestral differences in linkage disequilibrium (LD) or minor allele frequency 

(MAF). A Bonferroni-corrected significance threshold was set to α = 1.3 × 10−5 for this 

analysis, conservatively correcting for total number of PGS tested. 

 

RESULTS: 

 

Following quality control and imputation, the final sample available for subsequent analyses 

consisted of 2,685 unrelated individuals. These included those with   BD (N=463; 47% female), 

OCD (N=554; 40% female), other psychiatric diagnoses (N=154; 32% female), and 

neurotypical community controls (N=1514; 48.5% female). The SDQ data on 963 individuals 

showed a mean Externalizing score of 5.9 (SD=3.6.  



As expected, imputation accuracy improved with increasing allele frequency for Indian 

samples across all four imputation reference panels: HRC, TOPMed, GAsP1, and 1000G (see 

Supplementary Fig 1). HRC demonstrated the highest accuracy, followed by TOPMed and 

GAsP1, while 1000G showed the lowest accuracy.  

 

Population Structure 

 

We employed PCA, UMAP, and ADMIXTURE for assessment of population structure in our 

study. Global PCA with 1000G data showed that the Indian samples positioned between 

European and East Asian clusters, with overlap on all the South Asian population labels (Fig 

1A). We also observed intra-regional variability, extending along the PC1 axis but condensed 

along PC2.  

 

The Asian PCA plots reveal two contrasting patterns. In the first plot that incorporates HGDP 

populations, Indian samples do not directly overlap with any HGDP groups. This may well be 

due to lack of specific Indian ancestry data in HGDP (Fig 1B). Our samples clustered between 

the Pakistani and Uyghur (China) populations. PCA with Genome Asia Phase 1 data shows 

that most of our samples form a cluster, substantially overlapping with urban samples from the 

Genome Asia Phase 1 data (Fig 1C). Considering Genome Asia's strategic sampling to capture 

diversity, this overlap suggests that our samples predominantly reflect the genomic spread 

among urban South Asian populations. 

 

Admixture analysis identified a two-cluster solution for the dataset, supported by an inflection 

point at K=2 in the cross-validation error curve (Fig 1D). The FST between these inferred 

ancestries was 1.6%, surpassing the standard 1% threshold, indicating a modest level of genetic 

diversity within the sample. Geographic mapping of a subset of samples with available 

geocodes indicated that ancestral proportions across India are distributed along a north-south 

gradient (Fig 1E, correlation with latitude r=0.7), thereby suggesting a spatial alignment of 

genetic ancestry within the country. 

 

The SVM model robustly predicted ancestral groups, assigning probabilities that revealed 

significant clustering around the PJL, ITU, and BEB populations, with notable representation 

in STU and GIH, while other groups were less represented (Fig F). Using ancestry predicted 

by SVM with 1000G global principal components, the UMAP visualization (Fig 1G) 



approximates the geographical distribution of ancestries in India. Notably, the plot delineates 

distinct clusters corresponding to Eastern (BEB), Northern (PJL), and Southern Indian (ITU, 

STU) ancestry groups, which align closely with their respective geographical origins. 

 

Polygenic Prediction of Psychiatry Phenotypes 

 

We assessed the predictive accuracy of PGS models for BD, OCD, and externalizing traits 

using PRSice-2, PGS-CS-auto, and SBayesRC. The patterns across the PGS models for BD, 

OCD, and externalizing traits were consistent (as expected) with imputed data yielding higher 

predictive accuracy than genotyped data (Figure 2). Notably, Bayesian methods (PGS-CS-auto 

and SBayesRC) outperformed the classical C+T approach (PRSice-2). 

 

For BD, the application of PGS yielded statistically significant results using both Bayesian 

methodologies. The p-values were highly significant at 9.49×10−36 for PGS-CS-auto and 

9.38×10−38 for SBayesRC, accompanied by Nagelkerke R2 values of 0.120 and 0.127, 

respectively. Furthermore, when assuming a 1% population prevalence, these PGS models 

explain approximately 6.5% (using PGS-CS-auto) and 6.9% (using SBayesRC) of the 

phenotypic variance on the liability scale. The discriminatory ability of these models is 

substantiated by an AUC of around 71% for both methods. In terms of clinical risk 

stratification, the PRS-CS-auto method yields an ORs of 3.5 (95% CI 2.2–5.6) and 12.8 (95% 

CI 6.4–25.3) for the individuals in the top decile of being affected with the disorder, when 

compared to individuals in the middle and lowest deciles, respectively (Figure 3). In contrast, 

SBayesRC yields higher corresponding ORs of 3.8 (95% CI 2.4–5.9) and 20.5 (95% CI 9.4–

44.4). 

 

For OCD, the application of PGS also showed significant findings using both PRS-CS-auto 

and SBayesRC methods. The p-values were significant at 1.84x10-9 for PRS-CS-auto and 

8.23x10-6 for SBayesRC, with corresponding Nagelkerke R2 values of 0.026 and 0.014, 

respectively. When assuming a 1% population prevalence, these models account for 

approximately 1.3% (PRS-CS-auto) and 0.7% (SBayesRC) of the phenotypic variance on the 

liability scale. The models' discriminatory ability was lower compared to BD, with an AUC of 

approximately 59% for both methods. In terms of clinical risk stratification for OCD, PRS-CS-

auto yields odds ratios of 2.2 (95% CI 1.4–3.4) and 3.5 (95% CI 2.2–5.6) individuals in the top 



and lowest deciles, respectively, as compared to those in the middle decile. SBayesRC 

demonstrates lower odds ratios of 1.3 (95% CI 0.9–2.1) and 2.1 (95% CI 1.3–3.2). 

 

For externalizing symptoms, the PRS-CS-auto model accounted for approximately 0.78% of 

the variance in the trait, with a coefficient estimate of 0.094 (95% CI: 0.027-0.160, p-value = 

0.006). In contrast, the SBayesRC method explained a smaller variance of 0.23% and a 

coefficient estimate of 0.057 (95% CI: -0.017-0.130, p-value = 0.133).  

 

Discussion 

 

In this study, we evaluated the predictive accuracy of PGS derived from European ancestry 

populations as applied to an Indian sample. We also evaluated the genetic structure of several 

samples ascertained in India with the intent of assessing its genetic diversity, both globally and 

regionally.  

 

We identified a robust cross-ancestry overlap in BD PGS. Our sample included only those with 

well-characterized BD1 and high heritability. This hints at considerable overlap in underlying 

biological mechanisms across ancestries. Interestingly, OCD PGS also showed a significant 

cross-ancestry prediction, albeit with smaller effect size compared to BD likely due to the far 

smaller number of cases in the European OCD GWAS. Overall, our analyses demonstrate that 

PGS models, developed from European cohorts and applied to Indian samples using Bayesian 

methodologies that adjust for local LD patterns and incorporate functional genomic 

annotations, maintain statistical significance for psychiatric diagnoses. These findings suggest 

a shared polygenic liability across populations, indicating that the genetic foundations of 

psychiatric disorders remain consistent, and are detectable,  across diverse ethnic backgrounds 

(27). 

 

The PGS for externalizing symptoms exhibited lesser overlap than that found for BD and OCD. 

This difference could be attributed to the methods of phenotypic ascertainment. Individuals 

with BD and OCD were  identified through the clinical services, evaluated using structured 

face-to-face interviews, and diagnosed using well established and reliable diagnostic 

guidelines. Those with   externalizing traits are typically gauged through standardized 

questionnaires in varied settings, resulting ina lower diagnostic accuracy. Moreover, the 

inherent genetic attributes of each disorder may impact the effectiveness of PGS. For example, 



BD may present more consistent genetic signals, on account of its greater heritability, when 

compared to externalizing traits, which are likely influenced by a wider array of genetic and 

environmental factors. 

 

The genetic diversity observed in our sample is broadly comparable to that seen in European 

populations, which exhibit variation along both East-West and North-South axes (28,29). The 

investigation of genetic risks for common disorders, prevalent across all populations, 

underscores the necessity of including large, continental samples.  Despite these encouraging 

findings, it may still be useful to assess the impact of specific patterns of diversity, within sub-

populations, on these risks. Such approaches promise to enhance the generalizability of genetic 

models in research, targeting the genetic underpinnings of common medical conditions 

 

The lack of global diversity in genetic studies impacts the generalizability of findings for 

underrepresented populations, and constrains the understanding of genetic bases of traits across 

varied groups. This is relevant in psychiatric disorder research, which has predominantly 

included individuals of European ancestry to identify associated genetic loci. The 

epidemiology, and semiology,  of psychiatric syndromes such as BD1 and OCD are quite 

similar all over the world. This suggests that there is likely a similar genetic liability, with a 

shared set of genomic loci influencing these phenotypes across populations (30). Nonetheless, 

ancestry-related variations in LD patterns, with the true causal variant, as well as diverse 

environmental interactions, may affect the size of the genetic effect. 

 

Our results demonstrate the promising portability of PGS based on European GWAS for South 

Asian samples. The genetic variation between populations, manifested in LD structure and 

allele frequency differences, provides opportunities to discover new loci linked to psychiatric 

disorders. Such differences in LD structure are instrumental in fine-mapping associated 

regions, helping to close in on causal variants responsible for the observed associations. Our 

findings underline the need for further refinement of these models through more diverse and 

inclusive multi-ancestral research efforts. Initiatives like the Ancestral Population Network 

studies (https://www.nimh.nih.gov/about/organization/dnbbs/genomics-research-

branch/ancestral-populations-network-apn), including the Asian Bipolar Genetics Network (A-

BIG-NET) (31), are pivotal in promoting genetic diversity within psychiatric genetics research. 

Such efforts are expected to deepen our understanding of the genetics underlying psychiatric 

https://www.nimh.nih.gov/about/organization/dnbbs/genomics-research-branch/ancestral-populations-network-apn
https://www.nimh.nih.gov/about/organization/dnbbs/genomics-research-branch/ancestral-populations-network-apn


conditions, highlighting the shared and unique aspects of psychiatric phenotypes across 

different populations. 

  



Figures: 

Figure 1: Population structure and genetic diversity in Indian samples 

 

 

 

  

Legend: Global PCA (1A) illustrates the placement of Indian samples between European and 

East Asian clusters, highlighting notable regional variability. Asian PCA with HGDP samples 

(1B) reveals distinct clustering of Indian samples, absent in HGDP, situated between Pakistani 

and Uyghur populations. Asian PCA with Genome Asia samples (1C) demonstrates significant 

overlap with urban South Asians, indicating urban genetic diversity. ADMIXTURE analysis 

(1D) reveals a two-cluster genetic structure with a 1.6% F_ST, reflecting modest diversity. 

Geographic mapping of a subset of samples (1E) presents a north-south ancestral gradient, 

correlated with latitude. SVM predictions (F) show clustering around key South Asian 

populations, while UMAP visualization (G) delineates distinct ancestral clusters corresponding 

to geographical regions, highlighting spatial genetic patterns in India 

 

 

 

 

 

 

 

 

 

 



Figure 2: Cross-ancestry polygenic score model comparison for psychiatric phenotypes 

 

 

Legend: Comparison of European-GWAS derived PGS predictive accuracy for BD, OCD, and 

externalizing traits in an Indian cohort using PRSice-2, PGS-CS-auto, and SBayesRC. Imputed 

data shows enhanced prediction, with Bayesian methods outperforming PRSice-2 in cross-

ancestry application. 

 

 Figure 3: Decile-based risk stratification in BD and OCD 

 

 
 

Legend: Both PRS-CS-auto and SBayesRC methods stratify risk across deciles for BD (3A) 

and OCD (3B), with BD showing greater discriminative power. 
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SFigure 1: Comparative Imputation Accuracy Across Allele Frequencies on four imputation 

reference panels: HRC, TOPMed, GAsP1, and 1000G. Imputation with HRC reference panel 

showed superior accuracy compared to other panels across allele frequency spectrum. 

 

 
 

 

 

SFigure 2: Exploratory Multi-Polygenic Score (MultiPGS) Associations. The plot shows  -

log10(P-value)×sign(β) for each trait within 18 categories in relation to Bipolar Disorder, 

Obsessive-Compulsive Disorder, and Externalizing traits. The traits are organized according 

to the Experimental Factor Ontology (EFO) and referenced in the PGS Catalog. The dotted line 

signifies the significance threshold adjusted for multiple testing at −log10(0.05/number of 

tests). 

 



 

 
 



SFigure 3. Quality Control of SNP Genotyping Across Different Batches:  

The Venn diagrams depict SNP intersections across three batches using the Global Screening 

Array, before (A) and after (B) quality control (QC), and following imputation with the HRC 

reference panel (C). They reveal a significant overlap of approximately 80-90% in all batches, 

consistent both pre and post QC and imputation. The '+' symbol denotes batches enhanced with 

additional custom markers from the Infinium PsychArray-24's focused content panel 

 

 
 

STable2: MultiPGS results 

https://drive.google.com/file/d/1Usk9QaBX6W3FH3P3tdwtD39RVu4owIT4/view?usp=drive_link
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