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A B S T R A C T

Severe aortic valve stenosis can lead to heart failure and aortic valve replacement (AVR) is the primary
treatment. However, increasing prevalence of aortic stenosis cases reveal limitations in current replacement
options, necessitating improved prosthetic aortic valves. We investigate flow disturbances downstream of severe
aortic stenosis and two bioprosthetic aortic valve (BioAV) designs using advanced energy-based analyses.
Three-dimensional high-fidelity fluid–structure interaction simulations have been conducted and a dedicated
and novel spectral analysis has been developed to characterise the kinetic energy (KE) carried by eddies in the
wavenumber space. In addition, new field quantities, i.e. modal KE anisotropy intensity as well as normalised
helicity intensity, are introduced. Spectral analysis shows kinetic energy (KE) decay variations, with the stenotic
case aligning with Kolmogorov’s theory, while BioAV cases differing. We explore the impact of flow helicity
on KE transfer and decay in BioAVs. Probability distributions of modal KE anisotropy unveil flow asymmetries
in the stenotic and one BioAV cases. Moreover, an inverse correlation between temporally averaged modal
KE anisotropy and normalised instantaneous helicity intensity is noted, with the coefficient of determination
varying among the valve configurations. Leaflet dynamics analysis highlights a stronger correlation between
flow and biomechanical KE anisotropy in one BioAV due to higher leaflet displacement magnitude. These
findings emphasise the role of valve architecture in aortic turbulence as well as its importance for BioAV
performance and energy-based design enhancement.
1. Introduction

Calcific aortic valve stenosis is characterised by a progressive dete-
rioration, remodelling and thickening of the native aortic valve leaflet
tissue, causing a reduction in its functional flexibility [1]. This condi-
tion, referred to as aortic stenosis (AS), results in increased resistance
to blood flow from the left ventricle to the aorta, particularly during
systole and the potential for blood regurgitation during diastole [2–4].
Aortic valve stenotic disease is the most commonly occurring valvular
pathology in developed countries (afflicting 9 million people world-
wide) and its prevalence has been increasing with population age-
ing [5]. Moreover, surgical aortic valve replacements tally around
300,000 cases annually and this number is projected to double by 2050
due to the ageing global population [6]. The long-term implications
of this pathology are serious. The AS is generally defined as severe
when a significant left ventricular outflow tract (LVOT) obstruction
is present, leading to a reduced orifice area and high downstream jet
velocity, and when symptoms such as dyspnea, heart failure, chest pain
or syncope appear [7]. To address this critical issue, the replacement
with valvular prostheses has emerged as a prevalent solution. These
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prostheses come in two primary types: mechanical heart valves made
from rigid materials such as titanium or carbon and bioprosthetic or
tissue aortic valves (BioAVs) manufactured based on biological tissue.
The replacement of the diseased native aortic valve is achieved through
a medical procedure known as aortic valve replacement (AVR).

Previous studies have extensively explored the haemodynamic per-
formance of aortic valves made from biological materials like porcine or
bovine pericardium [2,4,8–12]. However, the correlation between the
kinetic energy (KE) present within the valve components (i.e. leaflets
and supporting ring) and the energy carried by the turbulent structures
in the flow surrounding the BioAV has yet to be investigated, either
in vitro or in silico. Becsek et al. [9] presented a computational char-
acterisation of the turbulent features of the flow downstream of one
bioprosthetic aortic valve model under peak systolic conditions. One-
dimensional wavenumber energy spectra were calculated at various
distances from the sino-tubular junction and it was argued that the
spectra based on points diametrically aligned where the turbulent
dissipation rate is the largest could be connected to shear-induced
thrombocyte activation. Finally, it was noticed that the presence of
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zones with elevated and fluctuating wall shear stress at the aortic
wall that could possibly underline the presence of endothelial lesions
in these zones. Nonetheless, the wavenumber kinetic energy spectra
considered in Becsek et al. [9] were one-dimensional and limited
to a confined region of the flow along a line perpendicular to the
centreline, thus excluding the study of anisotropy in the kinetic en-
ergy (KE). Besides, in Corso et al. [2,3,13], similar conclusions were
drawn using both in vitro three-dimensional particle tracking velocime-
try experiments and data from direct numerical simulation downstream
of a stenotic aortic valve. The detrimental effect of turbulence on
blood platelet damage and on the production of important irreversible
pressure loss due to elevated haemodynamic turbulent stresses was
assessed. Moreover, it was emphasised that considering Reynolds’ stress
close to the wall is crucial for accurately evaluating wall shear stress
from flow field data when dealing with limited spatial resolution, espe-
cially in the case of disturbed aortic flows. Recently, Gallo et al. [10]
explored the relationship between phase-averaged and fluctuating he-
licity as well as phase-averaged and turbulent kinetic energy, for both
a mechanical heart valve and a bioprosthetic heart valve. To this
end, they simulated the coupled fluid–structure interaction problem by
applying the interface conditions through an immersed body surface
method using a moving least square algorithm for the interpolation
and spreading of the information between the Lagrangian and Eulerian
discretisation points. A Navier–Stokes flow solver together with two
simplified solid motion solver, one for the rigid mechanical valve and
one mass–spring model for the bioprosthetic valve with elastic leaflets,
were employed. The study showed that the haemodynamics down-
stream of the mechanical valve exhibited larger phase-averaged and
fluctuating helicity compared to that downstream of the bioprosthetic
valve. For both heart valve types, strong linear correlations were found
between volume-averaged kinetic energy and helicity when considering
phase-averaged or fluctuating quantities. Peaks of turbulent kinetic
energy (TKE) or fluctuating helicity for both heart valve types was
delayed as compared to the peaks of mean kinetic energy and phase-
averaged helicity. While this study introduces novelty in exploring the
relationship between flow helicity and kinetic energy and utilises data
from 20 simulated cardiac cycles to compute flow field statistics, there
are several areas that can be improved. These pertain to the use of a
simplified mass–spring model to solve the dynamics of the deformable
leaflets, the assumption of a rigid aortic wall and the absence of a ring
supporting the valve leaflets in the simulations. Furthermore, an in-
depth examination of the spatial distribution of kinetic energy, helicity
and their relationship to leaflets and valve designs was not conducted.

The present work is the second part of a comprehensive two-
part study. Both parts utilise validated and high-fidelity computational
approaches. In this paper, the analysis strives to comprehensively char-
acterise the turbulence by inspecting the energy carried by the vortical
structures of the flow following vortex ring formation, a shedding
process including vortex stretching and advection [14]. We seek to
observe the typical energy decay of kinetic energy (KE), as described
in the theory of turbulence [15]. Additionally, we investigate any
deviations from this theoretical energy decay along with examining
the dissipation rate of KE. Connection between leaflet geometries and
turbulence characteristics is underlined. In addition, we analyse and
correlate the spatial distributions of the newly introduced concepts of
kinetic energy anisotropy and helicity intensity over spherical shells
close to the valvular orifice. There has been no previous computational
study and comprehensive energy-based analyses that include valve bio-
prostheses of different designs alongside a comparative assessment with
a severe stenotic case. This work significantly contributes to the de-
velopment of optimally designed valves by thoroughly elucidating the
flow-energy-based mechanisms downstream of BioAVs in comparison
2

to those encountered downstream of a severe aortic stenosis.
2. Methods

2.1. Numerical models

For detailed information on the geometry of the aortic model, the
two valvular bioprostheses, and aortic stenosis, as well as details about
the numerical setups, solving methods, and experimental validation
of the solvers, readers are referred to the first part of the present
extensive study [14] as well as three works by Corso et al. [2,3,13]
for the stenotic case. The following paragraphs provide the reader with
a summary of the numerical experiments implemented. In the case of
the severely calcified valve, the leaflets are considered immobile due
to extensive calcification deposited onto a tricuspid aortic valve. The
geometries of the curved aorta and stenotic orifice are patient-specific
and were obtained from high-resolution phase-contrast magnetic reso-
nance imaging [2,3,13] (see Fig. S3 (a-c) in the supporting information
(SI)). The open-source spectral element solver, NEK5000 [16], is used
to fully resolve the incompressible Navier–Stokes equations in the
stenosed aorta geometry. For this purpose, a mesh skeleton consisting
of 92,208 conforming curved-sided hexahedral elements is generated
and the pressure and velocity fields are resolved by expressing them
over each spectral element using a 7th order polynomial. A third-order
accurate temporal integration scheme is employed, with a constant
time-step equal to 1.54 µs corresponding to a non-dimensional time-
step of 10−4 [3]. The walls of the stenosed aorta are assumed rigid and
the simulated flow conditions are systolic. This is ensured by imposing
velocities at the inflow cross-section located at the corresponding left
ventricular outflow tract (LVOT). The mean Reynolds number at the
stenotic orifice is equal to 3,800 [3,14].

In regard to the simulation of coupled biological valve motion
and blood dynamics, the geometries of the two tested BioAVs are
depicted in Fig. S3 (d, e, g, h) of the SI. The various geometrical
parameters for the 500-micron-thick leaflet shape can be categorised
based on three main features [14,17]: (i) the belly curve, obtained
by longitudinally cutting the leaflet in half; (ii) the attachment or
scallop curve, representing the leaflet extremity attached to the ring;
and (iii) the free edge, denoting the leaflet extremity not attached
to the ring (see Fig. S3 (d, e, g, h) of the SI). Further information
on the parametrisation of these three geometrical features, aimed at
modifying valve leaflet design, can be found in the first part of the
study [14]. The computational domain comprises a rectilinear grid with
periodic boundary conditions for the fluid sub-problem in all three
directions and embedded structures including the aortic root, the as-
cending aorta and the flexible aortic valve model (cf. Fig. S3 (f, i) of the
SI). The proposed numerical experiments on the BioAV cases employ a
fluid–structure interaction (FSI) solving algorithm [18]. This algorithm
couples a fluid sub-problem solved using a sixth-order finite-difference
formulation with a solid sub-problem solved using a finite-element
formulation. Unlike classical immersed boundary methods [19], the
transfer of fluid velocities to the structure and reaction forces from the
structure to the fluid is performed along the shared interface by means
of L2-projections, hence the term variational transfer [18]. This transfer
of information ensures velocity and force continuity at the fluid-solid
interface. The fluid and solid sub-problems are solved synchronously
with a time-step of 5 µs. Regarding the material properties for the
structural parts of the studied FSI problems, a fibre-reinforced material
model is employed to characterise the anisotropic material properties
of the leaflets [20]. This six-parameter constitutive relation models the
presence of two families of collagen fibres oriented at a fitted angle of
60◦ to each other. The parameters of the anisotropic constitutive law
were fitted to match bi-axial tensile tests performed on glutaraldehyde-
fixed bovine pericardium tissue [21]. The material properties of the
aortic wall and the supporting ring of the leaflets are described by
an isotropic linear elastic material model (density of the valve ring
𝜌𝑟 = 1500 kg∕m3; density of the leaflets, aortic root, and aorta 𝜌𝑙 =

3
𝜌𝑆 = 𝜌𝐴𝑜 = 1100 kg∕m , bulk modulus: 3 MPa and shear modulus: 0.3
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MPa for all solid parts). Blood is approximated as an incompressible,
homogeneous and Newtonian fluid (density 𝜌 = 1060 kg∕m3, dynamic
iscosity 𝜇 = 0.004 Pa.s) [11,14]. To impose systolic flow conditions
n the fluid domain discretised by a rectilinear grid of points set with
eriodic conditions at its borders, a forcing term is added to the right-
and side of the Navier–Stokes momentum equation [14]. Cylindrical
ringe regions of the fluid grid are defined to impose a prescribed
ressure difference at inflow and outflow regions [14] (cf. Fig. S3
i) of the SI). This results in the imposition of an accelerating and
ecelerating inflow rate corresponding to a Reynolds number averaged
ver systole of 3,800 (see SI of the first part of the study [14]).

.2. Spectral analysis on the blood motion

The spectral analysis proposed in this study relies upon the in-
ompressible Navier–Stokes equations expressed in Fourier space [22]:

⋅ 𝐮̂(𝜿) = 0, (1)

𝑑𝐮̂(𝜿)
𝑑𝑡

+ 𝑖
∑

𝜿′
{𝜿 ⋅ 𝐮̂(𝜿 − 𝜿′)}𝐮̂(𝜿′) = −𝑖𝜿 𝑝̂(𝜿) − 𝜈𝜅2𝐮̂(𝜅), (2)

with 𝜿, the angular wavenumber vector; 𝐮, the instantaneous flow
velocity vector; 𝐮̂, the Fourier modes of 𝐮; 𝑖 =

√

−1; 𝜈, the kinematic
viscosity and 𝑝̂(𝜿), the modal kinematic pressure.

From these spectral equations, after eliminating the pressure term
by projecting the advective term on the space of incompressibility [23],
an equation describing the dynamics of the modal kinetic energy 𝐸̂𝑢2

can be derived by taking the inner product of Eq. (2) with the complex
conjugate 𝐮̂∗(𝜅) and adding the complex conjugate to the resulting
equation. We obtain the following equation [15,22]:
𝑑
𝑑𝑡

𝐸̂𝑢2 (𝜿) =
∑

𝜿′
Im

(

{𝜿 ⋅ 𝐮̂(𝜿 − 𝜿′)}{𝐮̂(𝜿′) ⋅ 𝐮̂∗(𝜿)}
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇̂𝑢2 (𝜿)

− 2𝜈𝜅2𝐸̂𝑢2 (𝜿)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐷̂𝑢2 (𝜿)

, (3)

with 𝐸̂𝑢2 , the modal kinetic energy; 𝑇̂𝑢2 , the rate of kinetic energy
ransfer to the modal kinetic energy due to non-linearity and 𝐷̂𝑢2 , the
issipation rate of modal kinetic energy through viscous effects. Im is
he imaginary part.

It is possible to calculate the total dissipation rate 𝜀 by summing
̂
𝑢2 (𝜿) over the wavenumber. This dissipation 𝜀 is used to estimate

he Kolmogorov microscales [15]. Furthermore, it is suggested in [24]
hat for non-isotropic turbulence, the spatial velocity function and the
pectrum function be expressed in terms of a single scalar distance 𝑟 and
avenumber 𝜅, respectively, by taking mean values of the functions
ver spherical surfaces given by radius 𝑟 = constant in physical space
nd 𝜅 = constant in Fourier space. This way, the kinetic energy of the
ourier modes 𝐸̂𝑢2 of the three-dimensional and anisotropic velocity
ield obtained from the simulations is calculated by sampling the
elocity components on points distributed over spherical shells centred
round a point on the centreline of the ascending aorta (see Fig. 1). A
equence of velocity values (𝐮𝑠) is then defined over each radius of the

sphere of points. The points on each spherical shell (i.e. at 𝑟 = constant)
are obtained by distributing them with a constant increment in both
azimuthal and elevation angles of 30 degrees, resulting in a set of 122
equidistant points on the shell, spaced at an arc length of 𝜋𝑟

6 .
A one-dimensional continuous Fourier transform operator on a finite

nterval (0, ) allowing to express the Fourier coefficients of the con-
tinuous three-dimensional velocity field 𝐮(𝒙) is defined as follows [15]:

𝜅{𝐮(𝑟)} = 𝐮̂(𝜅) = 1
 ∫



0
𝐮(𝑟) exp (−𝑖𝜅𝑟) 𝑑𝑟, (4)

with 𝑟, the radial coordinate along each radius of the sphere of points;
, the radius of the largest spherical surface used for the sampling. The
largest radius is equal to 10 mm and 11.5 mm for the aortic stenosis
3

and bioprosthesis cases, respectively. The three-dimensional formula-
tion of the Fourier operator is reduced to the above one-dimensional
formulation by integrating along each radius of the sphere of points
and by considering 𝜿 ⋅ 𝒙 = 𝜅𝑟 [15].

The corresponding discrete Fourier transform (DFT) using a fast
Fourier transform (FFT) algorithm [26] is performed based on the in-
stantaneous velocity field 𝐮 sampled on a sequence of points distributed
over spherical shells (𝐮𝑠) as shown in Fig. 1. It is important to note that
the calculation of discrete Fourier modes implies the periodicity in the
sampled velocity field 𝐮𝑠. However, if we consider the integral length
scale L, the effects of this artificially imposed periodicity vanish as 

L
tends to infinity [15]. The centre of the spherical shells is positioned
on the centreline of the straight aorta at a distance of 12.5 mm and
8 mm from the sino-tubular junction in the stenotic and BioAV cases,
respectively. The DFT is then expressed as:

𝐮̂𝑘 = 1
(𝑁 − 1)𝛥𝑟

𝑁−1
∑

𝑠=0
𝐮𝑠 exp

(−𝑖2𝜋𝑘𝑠
𝑁

)

𝛥𝑟, (5)

with 𝑘 = 0,… , 𝑁 − 1. 𝑁 is the number of points taken over each
radius of the spherical distribution of points. 𝑁 is equal to 82 and
48 for the stenotic and BioAV cases, respectively. 𝛥𝑟 is the distance
between two consecutive spherical shells and is equal to 125 µm for the
stenosis case and 250 µm for the aortic bioprosthesis cases. Each entry
of the sequence of scalar angular wavenumbers 𝜅 corresponding to the
sequence

(

𝐮̂𝑘
)

is 𝜅𝑘 = (𝑘+1)
𝑁

2𝜋
𝛥𝑟 leading to 𝐮̂(𝜅) = 𝐮̂𝑘.

In order to avoid the presence of aliases in the spectrum obtained
out of the FFT operation and considering the symmetry of the spectrum
given the real-valued velocity sequence (𝐮𝑠), the values of 𝐮̂(𝜅) above
the folding wavenumber 𝜅𝑓 = 𝜋

𝛥𝑟 are discarded. These correspond to
the entries 𝐮̂𝑘 with index 𝑘 > ⌊

𝑁+1
2 ⌋ = 𝑁 ′. The normalised and discrete

first-order autocorrelation function over each radius of the spherical
distribution of points is then calculated from the modal velocity vector
𝐮̂𝑘(𝑢𝑥 𝑘, 𝑢𝑦 𝑘, 𝑢𝑧 𝑘):

̂𝑢𝑗𝑢𝑗
𝐼 = 1

|̂𝑢𝑗𝑢𝑗
0 |

𝑁 ′−𝑚−1
∑

𝑛=0

(

𝑢𝑗 𝑛+𝐼 𝑢𝑗
∗
𝑛

)

, (6)

with 𝑗 = (𝑥, 𝑦, 𝑧), 𝑚 = 1,… , 2𝑁 ′ − 1, the index 𝐼 ∈ [−𝑁 ′, 𝑁 ′] and
the range of indices 𝐼 considered for ̂𝑢𝑖𝑢𝑖 is [0, 𝑁 ′]. By inspecting
the distribution of the correlation function over the points of each
spherical shell, we note a log-normal distribution. Therefore, in order
to have the most representative value of the autocorrelation function
̂𝑢𝑗𝑢𝑗 over each spherical surface, the mode of this distribution instead
of the previously mentioned expected value [24] has been employed
to compute an equivalent autocorrelation function ̂𝑢𝑗𝑢𝑗 so that the
latter is dependent on a single scalar wavenumber 𝜅 for each spherical
shell. The equivalent correlation function (coming from the mode of
the log-normal distribution) is then defined as:

̂𝑢𝑗𝑢𝑗 |
|

|𝖾𝗊
= exp(𝑀 − 𝛴), (7)

𝑀 = log

[

⟨̂𝑢𝑗 𝑢𝑗
|𝗌𝗉𝗁⟩

√

⟨̂𝑢𝑗 𝑢𝑗
|𝗌𝗉𝗁⟩

2+𝜇2(̂
𝑢𝑗 𝑢𝑗

|𝗌𝗉𝗁)

]

, 𝛴 = log
[

1 +
𝜇2(̂

𝑢𝑗 𝑢𝑗
|𝗌𝗉𝗁)

⟨̂𝑢𝑗 𝑢𝑗
|𝗌𝗉𝗁⟩

2

]

, with

̂𝑢𝑗𝑢𝑗
|𝗌𝗉𝗁⟩; the expected value and 𝜇2(̂𝑢𝑗𝑢𝑗

|𝗌𝗉𝗁); the variance of ̂𝑢𝑗𝑢𝑗

ver the 122 points of each spherical shell.
Finally, each term of Eq. (3) is calculated based on the one-

imensional DFT of the velocity field sampled on points distributed
ver spherical shells and based on the ensuing equivalent autocorre-
ation function ̂𝑢𝑗𝑢𝑗 |

|

|𝖾𝗊
. Therefore, the equivalent modal KE, 𝐸̂𝑢2 (𝜅),

eads:

̂
𝑢2 (𝜅) =

1
2

(

̂𝑢𝑥𝑢𝑥 |
|

|𝖾𝗊
+ ̂𝑢𝑦𝑢𝑦 |

|

|𝖾𝗊
+ ̂𝑢𝑧𝑢𝑧 |

|

|𝖾𝗊

)

. (8)

In the main body of the paper, the circumflex accent is omitted to
indicate the modal kinetic energy, i.e. 𝐸𝑢2 (𝜅).

The rate of modal KE transfer 𝑇̂𝑢2 (𝜅) is computed as follows:

𝑇̂ 2 (𝜅) = 1 (

𝑇̂ 𝑢2𝑥 |
| + 𝑇̂ 𝑢2𝑦 |

| + 𝑇̂ 𝑢2𝑧 |
|

)

, (9)
𝑢 2 |𝖾𝗊 |𝖾𝗊 |𝖾𝗊
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Fig. 1. Definition of the points on spherical shells for the computation of the Fourier modes and of the first-order autocorrelation function as part of the spectral analysis for (a)
the stenotic case and (b) one of the BioAV cases (VLth30). The spherical surface consists of 122 points as displayed in (c) equally spaced by a distance 𝛥𝑟 of 125 µm in the stenotic
case and 250 µm in the BioAV cases. The largest radius  for the spherical shell is equal to 10 mm and 11.5 mm for the stenotic and BioAV cases, respectively. The centre of the
spheres is on the centreline of the straight ascending aorta. The instantaneous velocity magnitude is visualised in (a) and (b) through volumetric rendering [25] displaying the jet
of high velocity issuing from the valvular orifice.
where

𝑇̂ 𝑢2𝑗 (𝜅) =
∑

𝜅′
Im

(

{𝜅 ⋅ 𝑢𝑗 (𝜅 − 𝜅′)}{𝑢𝑗 (𝜅′) ⋅ 𝑢𝑗
∗(𝜅)}

)

, (10)

and

𝑇̂ 𝑢2𝑗 |
|

|𝖾𝗊
= exp(𝑀𝑇 − 𝛴𝑇 ), (11)

with 𝑀𝑇 = log
⎡

⎢

⎢

⎣

⟨𝑇̂
𝑢2𝑗
|𝗌𝗉𝗁⟩

√

⟨𝑇̂
𝑢2𝑗
|𝗌𝗉𝗁⟩

2+𝜇2(𝑇̂
𝑢2𝑗
|𝗌𝗉𝗁)

⎤

⎥

⎥

⎦

, 𝛴𝑇 = log

[

1 +
𝜇2(𝑇̂

𝑢2𝑗
|𝗌𝗉𝗁)

⟨𝑇̂
𝑢2𝑗
|𝗌𝗉𝗁⟩

2

]

.

2.3. Kinetic energy, enstrophy and helicity in blood flow

To obtain the fluctuations in the velocity 𝐮′ and vorticity 𝝎′ fields
of blood flow, a Reynolds decomposition is performed. With a view of
removing the effect of the temporal periodicity in the leaflet motion
on the downstream flow, the time-averaged (over all the considered
time-steps) velocity and vorticity fields are combined with the velocity
and vorticity field phase-averaged at the main frequencies extracted
from the leaflet motion analysis [14]. This decomposition is akin to
performing a triple decomposition [12,27] and leads to the following
4

formulation for the fluctuating vector fields:

𝐮′ = 𝐮 − 1
2
𝐔 − 1

2
𝐔𝗉𝖾𝗋𝗂𝗈𝖽𝗂𝖼

= 𝐮 − 1
2

[

1
𝑇 ∫

𝑇

0
𝐮 𝑑𝑡 + 1

𝑁
∑

𝑁
𝐮(𝑡 + 𝑁

𝑓𝗆𝖾𝖼𝗁
)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐔𝗍𝗈𝗍

, (12)

with 𝐔, the velocity vector field averaged over the whole simulated
systole 𝑇 ; 𝐔𝗉𝖾𝗋𝗂𝗈𝖽𝗂𝖼, the phase-averaged velocity field at frequencies
𝑓𝗆𝖾𝖼𝗁 evaluated from the leaflet mechanics characterisation [14]. The
average between these two time-averaged velocity fields gives 𝐔𝗍𝗈𝗍.

Likewise, the fluctuating vorticity field is given by:

𝝎′ = 𝝎 − 1
2
𝜴 − 1

2
𝜴𝗉𝖾𝗋𝗂𝗈𝖽𝗂𝖼

= 𝝎 − 1
2

[

1
𝑇 ∫

𝑇

0
𝝎 𝑑𝑡 + 1

𝑁
∑

𝑁
𝝎(𝑡 + 𝑁

𝑓𝗆𝖾𝖼𝗁
)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ω𝗍𝗈𝗍

, (13)

with 𝝎 = ∇ × 𝐮, the instantaneous vorticity field; 𝜴, the mean vor-
ticity vector field time-averaged over the whole systole, 𝜴𝗉𝖾𝗋𝗂𝗈𝖽𝗂𝖼, the
vorticity field phase-averaged at frequencies evaluated from the leaflet
mechanics characterisation [14] and 𝜴𝗍𝗈𝗍, the arithmetic average of
the latter two vorticity fields averaged in time. The terms accounting
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for the periodicity in the flow field due to the periodic leaflet motion
(𝐔𝗉𝖾𝗋𝗂𝗈𝖽𝗂𝖼 and 𝜴𝗉𝖾𝗋𝗂𝗈𝖽𝗂𝖼) are obviously null in the stenotic case and in the
case where the leaflets are not moving.

The total turbulent KE, fluctuating enstrophy and fluctuating helic-
ity are given by:

𝑇𝐸𝑢′2 = ∫𝑟
1
2
(

𝐮′(𝑟) ⋅ 𝐮′(𝑟)
)

𝑑𝑟, (14)

𝑇𝐸𝜔′2 = ∫𝑟
1
2
(

𝝎′(𝑟) ⋅ 𝝎′(𝑟)
)

𝑑𝑟, (15)

𝐸
|ℎ′| = ∫𝑟

1
2
|𝐮′(𝑟) ⋅ 𝝎′(𝑟)|𝑑𝑟, (16)

𝑇𝐸ℎ′ = ∫𝑟
1
2
(

𝐮′(𝑟) ⋅ 𝝎′(𝑟)
)

𝑑𝑟, (17)

ith 𝑟, the coordinate along each radius corresponding to the radius
rom the centre point of the spherical distribution of points defined in
he spectral analysis section.

The mean KE, enstrophy and helicity are defined as:

𝐸𝑈2 = ∫𝑟
1
2
(

𝐔𝗍𝗈𝗍(𝑟) ⋅ 𝐔𝗍𝗈𝗍(𝑟)
)

𝑑𝑟, (18)

𝑇𝐸𝛺2 = ∫𝑟
1
2
(

𝜴𝗍𝗈𝗍(𝑟) ⋅𝜴𝗍𝗈𝗍(𝑟)
)

𝑑𝑟, (19)

𝑇𝐸
|𝐻|

= ∫𝑟
1
2
|𝐔𝗍𝗈𝗍(𝑟) ⋅𝜴𝗍𝗈𝗍(𝑟)|𝑑𝑟, (20)

𝐸𝐻 = ∫𝑟
1
2
(

𝐔𝗍𝗈𝗍(𝑟) ⋅Ω𝗍𝗈𝗍(𝑟)
)

𝑑𝑟. (21)

The turbulence intensity I𝑢′2 (Eq. (22)), intensity of fluctuating
enstrophy I𝜔′2 (Eq. (23)), intensity of unsigned fluctuating helicity I

|ℎ′|
(Eq. (24)) and intensity of signed fluctuating helicity Iℎ′ (Eq. (25)) are
calculated by taking the ratio of the aforementioned fluctuating and
mean quantity fields:

I𝑢′2 =
𝑇𝐸𝑢′2

𝑇𝐸𝑈2
(22)

I𝜔′2 =
𝑇𝐸𝜔′2

𝑇𝐸𝛺2
(23)

I
|ℎ′| =

𝑇𝐸
|ℎ′|

𝑇𝐸
|𝐻|

(24)

Iℎ′ =
𝑇𝐸ℎ′

𝑇𝐸𝐻
(25)

Similarly to the calculation of the equivalent autocorrelation function
̂𝑢𝑗𝑢𝑗 and the corresponding modal KE (𝐸̂𝑢2 ), we compute an equivalent
alue for the foregoing intensity fields at each time instance under
onsideration. This equivalent value represents the most representative
ntensity field value over the 122 points of the spherical shells and it
s determined by taking the mode of the log-normal distribution (cf.
q. (7)).

.4. Flow modal kinetic energy and helicity intensity

The total flow KE (𝑝𝑠 ) for each point 𝑝𝑠 of the spherical shell is
calculated from the normalised and discrete first-order autocorrelation
function as follows:

𝑝𝑠 =
1
2

∑

𝑗 ∫𝜅
̂𝑢𝑗𝑢𝑗 |

|

|𝗌𝗉𝗁
𝑑𝜅, (26)

with 𝑗 = (𝑥, 𝑦, 𝑧) and 𝑝𝑠 = 1,… , 122, which corresponds to the index
of each point on the spherical shell. The numerical integration is
performed using the trapezoidal rule. The flow modal KE anisotropy
I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

over a spherical region close to the aortic orifice is thus defined
as:

I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝 =

𝑝𝑠 − ⟨𝑝𝑠 ⟩ × 100, (27)
5

𝑠
⟨𝑝𝑠 ⟩
ith ⟨⋅⟩, the average operator over the 122 points of the spherical shell.
A normalised helicity intensity I

ℎ|𝗌𝗉𝗁
𝑝𝑠 is computed along each ra-

ial direction of the spherical shells from the instantaneous helicity
ntensity field through the following equation:

I
ℎ|𝗌𝗉𝗁
𝑝𝑠
100

=
∫𝑟

1
2 (𝐮(𝑟) ⋅ 𝝎(𝑟)) 𝑑𝑟

⟨∫𝑟
1
2 (𝐮(𝑟) ⋅ 𝝎(𝑟)) 𝑑𝑟⟩

=
𝑇𝐸ℎ

|

|

|𝗌𝗉𝗁

⟨𝑇𝐸ℎ
|

|

|𝗌𝗉𝗁
⟩

=
Iℎ
|

|

|𝗌𝗉𝗁

⟨Iℎ
|

|

|𝗌𝗉𝗁
⟩

. (28)

.5. Anisotropy in leaflet and ring kinetic energy

The KE computed at the mesh points 𝑝𝑚 located at the leaflet or ring
nterfaces of the simulated bioprosthetic valve motion is expressed as:

𝐸𝗌𝗍𝗋𝗎𝖼𝗍
𝑝𝑚

= 1
2
∑

𝑗
𝗏2𝑗 |𝗂𝗇𝗍, (29)

with 𝗏𝑗 |𝗂𝗇𝗍, the jth velocity component of the structure at the fluid-solid
interface (𝗂𝗇𝗍), which is equal to the flow velocity at the interface by
virtue of the velocity continuity condition. The KE anisotropy I𝗌𝗍𝗋𝗎𝖼𝗍 𝖺𝗇𝗂𝗌𝑝𝑚
in the structure (ring and leaflet) is then defined as:

I𝗌𝗍𝗋𝗎𝖼𝗍 𝖺𝗇𝗂𝗌𝑝𝑚
100

=

[

𝐾𝐸𝗌𝗍𝗋𝗎𝖼𝗍
𝑝𝑚

− ⟨𝐾𝐸𝗌𝗍𝗋𝗎𝖼𝗍
𝑝𝑚

⟩

⟨𝐾𝐸𝗌𝗍𝗋𝗎𝖼𝗍
𝑝𝑚

⟩

]

(

𝐩𝗌𝗍𝗋𝗎𝖼𝗍 ⋅ 𝐧𝗌𝗍𝗋𝗎𝖼𝗍
)

, (30)

with 𝐩𝗌𝗍𝗋𝗎𝖼𝗍, the coordinates of tetrahedral mesh points of the considered
structure (leaflet or ring) and 𝐧𝗌𝗍𝗋𝗎𝖼𝗍, the outward normal vector to the
considered mesh point of the structure. The operator ⟨⋅⟩ corresponds to
the average over the different mesh points of the structure.

3. Results and discussion

3.1. Spectral analysis and turbulence characteristics

The log–log graphs presented in Fig. 2 (a, b, c) display the dis-
tribution of the modal KE (𝐸𝑢2 ), as defined in Eq. (8), at different
scalar angular wavenumbers 𝜅 for various time instances considered
over systole, represented by thin grey lines. Details on the geometry
of three valvular configurations, the stenosed aorta case and the two
newly designed bioprosthetic valves (VLth30 and Ulth0), are presented
in the Methods section of the present article and in the first part of the
study [14]. In the stenotic case, we note that the trend in the decay
of energy as a function of the wavenumber varies depending on the
time instant considered as shown by the large difference in 𝐸𝑢2 between
the dash–dot black line and the solid thick black line, especially for
wavenumbers larger than 2,000 rad∕m. The maximum non-dimensional
modal KE curve (i.e. solid thick line in Fig. 2 (a)) corresponds to the
wavenumber spectra at instants 𝑡 = 0.121 s, 0.142 s and 0.172 s. The
minimum non-dimensional modal KE curve (cf. dash–dot line in Fig. 2
(a)) corresponds to the spectra at 𝑡 = 0.1 s. Concerning the VLth30
BioAV case, the log–log plot (see Fig. 2 (b)) shows that the variations
in the energy decay over the different time instants is smaller than that
noted in the stenotic case. These differences between time instances
in 𝐸𝑢2 are even smaller in the Ulth0 BioAV case. Indeed, as presented
in the first part of the study [14], the Ulth0 valve design leads to
very limited leaflet motion after their opening throughout systole and
the jet shape downstream remains relatively stable, except for Kelvin–
Helmholtz instability (KHI) arising between 𝑡 = 0.12 s and 𝑡 = 0.21
s.

In order to verify whether the algebraic decay of −5/3 characteristic
of the inertial subrange for turbulent flows according to Kolmogorov’s
theory [15] can be noted, 𝐸𝑢2 has been divided by 𝜅−5∕3𝜀2∕3 and the
graphs of the first-order derivative with respect to the wavenumber
are presented in Fig. 2 (d, e, g). Additionally, the temporal evolution
of the turbulent KE dissipation 𝜀 is presented in Fig. 3 (b). For the
stenosed aorta case, the curves of minimum, median and maximum
non-dimensional 𝑑

( 𝐸𝑢2

𝜅−5∕3𝜀2∕3

)

∕𝑑𝜅 are almost superimposed on each
other. Moreover, these curves follow the universal scaling law predicted
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Fig. 2. Three-dimensional wavenumber spectra of kinetic energy for the three valvular cases are shown in (a), (b) and (c). These spectra represent the spectral curve for all
the considered time instances between t = 0.1 and t = 0.3 s, highlighting the maximum, minimum, and median values at each scalar wavenumber. (d), (e), and (f) display the
derivative of the modal KE with respect to the angular wavenumber to determine whether the well-known −5/3 power-law decay is observed in the inertial subrange.
by Kolmogorov turbulence theory over a wide range of wavenumbers,
i.e. between 2,000 and 20,000 rad∕m where 𝑑

( 𝐸𝑢2

𝜅−5∕3𝜀2∕3

)

∕𝑑𝜅 is equal
to 0. The self-similarity of vortical structures in the inertial subrange
is then, in the stenotic case, observed throughout the whole systolic
time interval under consideration. This suggests that the presence of a
narrowed and eccentric orifice, as observed in the stenosed aortic valve
under consideration, leads to a flow configuration [14] that sustains
the kinetic energy cascade carried by vortical structures. These vortical
structures, primarily found near the shear layers between low-velocity
regions and the jet [14], shed in a manner similar to what has been
studied in homogeneous isotropic turbulence within the inertial range
of the spectrum [15,28]. It is worth mentioning that, for the computa-
tion of the wavenumber energy spectra, the mode of the log-normal
distribution of the correlation function over the points on spherical
shells in Fourier space has been taken as the most representative energy
level at the considered scalar wavenumber. In the case of the VLth30
bioprosthesis, the power-law with the exponent of −5/3 characteristic
of the inertial subrange for the decay of energy does not appear, except
at time instants 𝑡 = 0.1 s, 0.11 s, 0.12 s and 0.245 s, over a narrow range
of wavenumbers. Conversely, peaks of energy at 𝜅 = 5,000 rad∕m and
𝜅 = 7,500 rad∕m are noticeable as exhibited in Fig. 2 (e). For values of
𝜅 ranging from 1,000 to 6,500 rad∕m, it has been calculated that the
minimum, median and maximum values in time of the 𝐸2

𝑢∕𝜀
2∕3 curve

scale as 𝜅−5∕3 ln(𝜅), 𝜅−5∕3 ln(𝜅) and 𝜅−7∕6, respectively. Therefore, in the
BioAV case where relatively strong leaflet motions are observed, the de-
cay of kinetic energy does not conform to the energy cascade observed
in the inertial subrange for canonical turbulent flows. In the Ulth0
BioAV case, the curve of 𝑑

( 𝐸𝑢2

𝜅−5∕3𝜀2∕3

)

∕𝑑𝜅 equals 0 over wavenumbers
ranging from 4,000 to 9,000 rad∕m for time instances between 𝑡 = 0.12
s and 𝑡 = 0.19 s. Interestingly, these instants correspond to the times
at which the KHI at the shear layers establishes itself, as discussed
in [14]. This implies that KHI leads to an energy decay that aligns
with Kolmogorov’s −5/3 power-law prediction over a narrow range of
wavenumbers 𝜅. Furthermore, during the instants when KHI is present,
high levels of turbulent KE dissipation are observed, as depicted in
Fig. 3 (b). In Fig. 2 (f), we observe that, for scalar wavenumbers from
6

1,000 and 6,000 rad∕m, the minimum, median and maximum in time
of 𝐸𝑢2

𝜀2∕3
scale as 𝜅−2, 𝜅−4∕3 and 𝜅−3∕2, respectively.

Fig. 3 (a) presents the time evolution of the Kolmogorov length scale
derived from the dissipation rate of turbulent KE (𝜀) computed over
the spherical shells (cf. Fig. 1). This length scale is the smallest in the
stenotic case with a value of about 20 µm constant over systole. In the
cases of the two valvular bioprostheses, the Kolmogorov length scale
is two to four times the value evaluated downstream of the stenosed
aorta. Furthermore, as a consequence of the peak in energy dissipation
at 𝑡 = 0.15 s (Fig. 3 (b)), the Ulth0 case exhibits a reduction in the
Kolmogorov length scale, decreasing from 80 to 40 µm. The Kolmogorov
length scale in the VLth30 case ranges from 40 to 50 µm over systole.
These findings regarding the size of the smallest turbulent eddies,
characterised by the Kolmogorov length scale, are in line with the
observations made in the first part of the study [14], which analysed
the temporal evolution, changes in density and location of coherent
vortical structures downstream of the three valve configurations.

The integral length scale L is presented in Fig. 3 (c) and was deter-
mined by computing the autocorrelation function for each component
of the velocity vector 𝐮 in physical space. Subsequently, an equiva-
lent autocorrelation function was calculated over points distributed on
spherical surfaces and L was obtained by computing the 𝐿2-norm of this
equivalent autocorrelation function in each direction. In the stenotic
case, the time-averaged integral length scale is approximately 2.8 mm
while for the two BioAV prostheses, the time-averaged L ranges from
4.5 to 5 mm. The ratio between integral and Kolmogorov length scales
is, on average over systole, about 140, 125 and 75 for the stenotic,
VLth30 and Ulth0 cases, respectively.

3.2. Energy distribution

In this section, we investigate the distribution of energy intensity in
physical space, i.e. over spherical surfaces, as defined in the Methods
section. We intend to compare the energy levels among the following
cases: the stenosed aorta case, the two newly designed bioprosthetic
valves (VLth30 and Ulth0) and a bioprosthetic case presented in the
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Fig. 3. Time series of turbulence characteristics for the three valvular cases over the
systolic phase. (a) Kolmogorov length scale. (b) Dissipation rate of turbulent kinetic
energy 𝜀. (c) Integral length scale L.

study by Gallo et al. [10]. With regard to the turbulent KE intensity, we
note in Fig. 4 (a) and (e) that the maximum I𝑢′2 for the three valvular
bioprostheses represents 30% of the maximum I𝑢′2 in the stenosis case.
The time-averaged fluctuating energy intensity for the three BioAV
cases is one-sixth that of the stenotic case as illustrated in Fig. 4 (e).
We also observe from Fig. 4 (a) that the temporal profile shape for the
Ulth0 BioAV case is congruent with the BioAV case investigated in Gallo
et al., with the exception that, due to differences in the accelerating and
7

decelerating inflow conditions, the green curve of the BioAV studied by
Gallo et al. is shifted in time relative to the Ulth0 curve.

In regards to the fluctuating enstrophy intensity I𝜔′2 , the time-
averaged value for the VLth30 valvular case is thrice that of the stenotic
case and the Ulth0 BioAV case. The elevated levels of fluctuating en-
strophy in the VLth30 case arise from the non-axisymmetric and more
pronounced leaflet motion, with a displacement magnitude of approx-
imately 2 mm during systole [11,14]. This finding is consistent with
the higher levels of streamwise instantaneous and averaged vorticity
highlighted in the first part of the study [14]. For the VLth30 case, the
times at which a local minimum in the fluctuating enstrophy temporal
evolution is found (i.e. 𝑡 = 0.12, 0.156, 0.21, 0.256 s) correspond to
the times at which the area at the vena contracta is maximum [14].

Helicity is the integral over a volume of interest of the inner product
between velocity and vorticity vectors. This is closely related to the
notion of vortex stretching. In fact, helicity plays an important role
in the generation and evolution of vortices. It also tightly connects to
the knottedness and the twisting of vortex lines [29,30]. In addition,
helicity is known to inhibit the transfer of energy towards smaller
scales, since the statistical alignment of velocity and vorticity leads
to partial suppression of the non-linear term and to a relatively low
dissipation [10]. The results in Fig. 4 (c, d, e) are aligned with this
statement. For both the VLth30 and Ulth0 cases, the time-averaged and
maximum values of unsigned helicity intensity (III and IV) are 2 to
2.5 times as large as those observed in the stenotic case. Moreover,
the curves of signed helicity intensity (Fig. 4 (d)) for the VLth30 and
Ulth0 BioAVs exhibit peaks with a magnitude 10 times larger than
those observed in the stenotic case and in the BioAV case investigated
in Gallo et al.. The differences in signed helicity intensity compared
to the results by Gallo et al. may stem from several factors. First,
the spatial integration performed over the entire fluid volume, encom-
passing the straight ascending aorta and the three sinuses, in Gallo
et al.’s study differs from the integration over spherical surfaces near
the valve orifice in the present study. The phase-averaging over 20
cardiac cycles conducted by Gallo et al. also represents a difference in
the computation of fluctuating and averaged field quantities, such as
helicity. Lastly, the leaflet dynamics in Gallo et al. are modelled using
a simplified mass–spring system, potentially leading to discrepancies
in leaflet motion. These discrepancies can indeed impact flow features
and downstream helicity. Furthermore, as emphasised in the previous
section, the exponent of the power law governing the three-dimensional
wavenumber spectra (represented by the median, maximum, and min-
imum curves over time) for the two BioAV cases is greater than the
−5/3 value predicted by Kolmogorov for isotropic and homogeneous
turbulence, a value which has been observed to hold in the stenotic
case. This suggests an inhibition of non-linear advection in the energy
cascade, likely due to the presence of local helical flow motion, in the
region near the bioprosthetic valvular orifice. Finally, it is worth noting
in Fig. 4 (d) that the signed helicity intensity Iℎ′2 in the VLth30 case
exhibits an average negative value across spherical shells between 𝑡 =
0.1 and 𝑡 = 0.15 s. This indicates the prevalence of counter-clockwise
helical structures in the vicinity of the valvular orifice during this time
period. In fact, as depicted in Fig. S1 in the SI and in the corresponding
videos, leaflet motion advects the helical structures throughout the
whole ascending aorta. The helical structures close to the jet border
are colour-coded in red, indicating a clockwise swirling motion, while
those near the aortic wall are colour-coded in blue, showing counter-
clockwise helical motion throughout systole. Conversely, in the Ulth0
BioAV case, the signed helicity intensity remains positive until 𝑡 = 0.2 s,
suggesting the dominance of clockwise helical motion. After 𝑡 = 0.15 s,
a decrease in Iℎ′2 is observed, eventually reaching small negative values
until 𝑡 = 0.28 s. This trend can also be observed from the Fig. S1 in
the SI and in the corresponding videos where the number of helical
structures is lower in this case, with a peak throughout systole when
KHI arises (i.e. between 𝑡 = 0.12 and 0.21 s). During this time interval,

the helical structures alternate between blue and red but the intensity
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Fig. 4. Time series over systole of normalised (a) intensity of fluctuating KE, (b) intensity of fluctuating enstrophy, (c) intensity of unsigned fluctuating helicity and (d) intensity
of signed fluctuating helicity. The three valvular cases investigated in this study are plotted along with the valvular case presented in Gallo et al. [10]. (e) Spider chart of the
time-averaged (◦) and maximum normalised I𝑢′2 (I and II) and I

|ℎ′
|

2 (III and IV). The maximum and absolute minimum values of normalised Iℎ′2 is also displayed (V and VI).
of signed fluctuating helicity remains positive between 𝑡 = 0.1 and 0.2
s and drops thereafter. Worthy of note is that the intensity of signed
fluctuating helicity is zero on average over spherical shells in the severe
stenotic case (see Fig. 4 (d)), facilitating the non-linear energy transfer
in the inertial range of the wavenumber spectra, as highlighted in the
previous sub-section.
8

3.3. Anisotropy in the modal kinetic energy and helicity intensity

In this section, the novel quantities defined in Eqs. (27) and (28)
representing the modal KE anisotropy I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
and normalised helicity

intensity I
ℎ|𝗌𝗉𝗁
𝑝𝑠 , respectively, are characterised and correlated through

probability density function (PDF) and spatial heatmaps, unrolled by
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Fig. 5. Probability distributions of the modal KE anisotropy intensity. (a) Fitted log-normal probability density function (PDF) for the three valve configurations, the mode of the
PDFs was used in the spectral analysis part of the study. The rhombi represent the modes of the log-normal distribution fitted for each instant considered over peak systole. (b)
Boxplots and distribution for the comparison of the shape of the distributions for the three valvular cases.
means of a cylindrical projection from the distribution over spherical
shells described in the Methods section.

In Fig. 5 (a), the log-normal PDF fitted to the absolute value of
I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

distributed over the spherical surfaces (cf. Fig. 1) and evolv-
ing in time is presented. We observe that, across all time instances
considered between 𝑡 = 0.1 and 0.3 s, the mode of the log-normal
distribution for |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
| in the stenotic case is 35% and 65% higher

than the modes of the log-normal distributions in the VLth30 and Ulth0
cases, respectively. In the same figure, the modes for each considered
time instance are represented with diamond markers. The stenotic case
displays a maximum mode value of 9.5%, compared to 7.9% for the
VLth30 case and 6% for the Ulth0 case. We can also notice this trend
in the PDFs and boxplots of I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
shown in Fig. 5 (b) for the three

valvular cases. In fact, the maximum values of I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

equals 136%,
92% and 81.3% for the stenotic, VLth30 and Ulth0 cases, respectively.
In Fig. 5 (b), it can be seen that the median value for I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
is positive

for the two bioprosthesis cases, with a value of around 1.5% whereas
the median value for the stenotic is negative and equal to −2.2%. The
asymmetry in the probability distribution of modal KE is indicative of
asymmetries in jet flows, which are associated with complex vortex
dynamics [14], especially when helicity is non-zero [28]. The skewness
of the VLth30 probability density function (PDF) is negative, while that
of the stenotic PDF is positive. Both cases exhibit a similar interquartile
range (IQR) value of 35%. In contrast, the PDF for the Ulth0 case
appears almost symmetric, as emphasised by Corso et al. [14], as a
consequence of a triangular jet flow topology with low eccentricity
distance throughout systole. As a result of this more symmetric flow
topology, the IQR in the Ulth0 case equals 27%, which is 23% smaller
than that for the other two valve cases.
9

In Fig. 6, the spatial distribution of the absolute value of the modal
KE anisotropy intensity |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
| (Eq. (27)) is presented by unrolling

the sphere through a cylindrical projection. The standard deviation
𝜎 over the investigated time instances and the time average (◦) of
|I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

| are compared based on the two-dimensional (𝛼, 𝜑) maps. In
the stenotic case, in Fig. 6 (c), we observe that |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
| reaches its

maximum, with values ranging from 25% to 40%, at the azimuthal
angles corresponding to the locations of commissures 1, 2, and 3 (i.e., at
𝛼 ≈ −120◦, −10◦ and 80◦). The standard deviation 𝜎

(

|I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

|

)

attains
peak values of 15% in the region between commissures 1 and 3.
This region corresponds to a zone where low flow velocities and few
coherent vortical structures with limited stretching are found [14]. We
also notice a region with moderately high values of 5% for 𝜎

(

|I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

|

)

at elevation angles 𝜑 > 50◦. Concerning the VLth30 BioAV, Fig. 6 (e)
and (f) reveal that 𝜎

(

|I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

|

)

and |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

| are the largest for 𝜑 <
−50◦. In addition, peak values in the standard deviation of absolute
value of modal KE anisotropy, reaching 15%, are found at azimuthal
angles of −150◦, −30◦ and 90◦. We observe that these peaks are aligned
with the position of the three posts of the BioAV ring (see Fig. 2 of the
first part of the study for the description of the BioAV geometries [14]).
With respect to the Ulth0 bioprosthesis, the values for the spatial
distribution of 𝜎

(

|I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

|

)

and |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

| are noticeably lower, as
previously indicated based on the PDFs and the modes of the fitted
log-normal distribution. However, peaks in the time-averaged absolute
value of modal KE anisotropy |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
| can be observed in Fig. 6

(i). Similar to the VLth30 case, these peaks align with the positions
of the valvular ring posts. This sheds light on how the presence of
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Fig. 6. Spatial distribution and statistical description, including the standard deviation 𝜎 and the temporal average value of the time-dependent modal KE anisotropy fields |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

|

obtained on spherical shells near the valvular orifice. The geometries of the spheres and orifice are projected onto a rectangular map using a cylindrical map projection, also
known as the Mercator projection. In this map, the azimuthal angle 𝛼 is represented on the 𝑥-axis and the elevation angle 𝜑 is represented on the 𝑦-axis. The stenotic case is
presented in (a, b, c), the valvular case with the design VLth30 in (d, e, f) and the case of the BioAV with the design Ulth0 in (g, h, i).
a robust supporting ring geometry influences the generation of flow
disturbances, disrupting flow symmetry.

Fig. 7 presents the comparison and point-to-point correlation be-
tween the unrolled maps of time-averaged modal KE anisotropy and
normalised helicity intensity. The interest in conducting such a corre-
lation lies in the findings presented by Gallo et al. [10], which reveal
a strong linear relationship between phase-averaged and fluctuating
helicity and KE. In the study by Gallo et al., the correlation was estab-
lished based on volume-averaged energy and helicity over the cardiac
cycle. In Fig. 7 (b, f, j), the heatmaps of time-averaged normalised
helicity intensity are displayed. These maps suggest that the spatial
distribution of Iℎ|𝗌𝗉𝗁𝑝𝑠 is inversely proportional to the spatial distribution
of |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
|, as depicted in the maps shown in Fig. 7 (a, e, i). In order

to conduct a point-to-point correlation for the three valvular cases, a
non-linear least-square regression problem is solved. To achieve this,
10
the points on the (𝛼, 𝜑) maps are divided into two sets: one is the
training set used for fitting the coefficients 𝐴 and 𝐵 in the power-law

equation of the form |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

| = 𝐴
[

Iℎ|𝗌𝗉𝗁𝑝𝑠

]𝐵
and the other is the testing

set used to evaluate the prediction accuracy. The latter is assessed
through the coefficient of determination (𝑅2) [3,11,13]. From Fig. 7 (c,
g, k), it can be noted that, for the three valve configurations, |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
|

inversely correlates with Iℎ|𝗌𝗉𝗁𝑝𝑠 as demonstrated by the negative fitted
exponent 𝐵 (cf. Table 1 in the supporting information). The accuracy
of the regression from 𝑅2 evaluated on the training (Fig. 7 (g)) and
testing (Fig. 7 (h)) data points of the heatmaps is the highest with
a value of about 0.75 in the VLth30 BioAV case. This valve design
leads to non-axisymmetric leaflet motions in relation the centreline
with displacement magnitude of about 2 mm during systole (see Fig. S1
of the SI of [14]). The eccentricity of the jet calculated in a proximal
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cross-section as well as the area at the vena contracta is also evaluated
in [14] and it has been shown that the leaflet motions produce stronger
levels of vortex stretching magnitude as compared to the Ulth0 BioAV
case, whose leaflets are almost immobile throughout systole. The latter
case exhibits a low 𝑅2 of 0.1 based on both the training and testing
data points from the heatmaps or spherical shells, indicating a weaker
anti-correlation between modal KE anisotropy and normalised helicity
intensity. Regarding the stenotic case, the correlation accuracy on the
training dataset is moderate with 𝑅2 = 0.43 (Fig. 7 (c)) while the
coefficient of determination drops to 0.1 on the testing data points
(Fig. 7 (d)). The variation in the prediction accuracy and strength of
correlation among the three valvular cases under examination is an
interesting point to analyse. In fact, as stated by Gallo et al. [10],
the role of helicity in the generation and evolution of turbulence may
depend on the topology of the flow and vortices, namely dependent
on the vortex stretching and tilting process. In the first part of this
study [14], we highlight three different jet flow configurations con-
nected to the valvular orifice architecture. It can then be postulated
that flow asymmetries introduced by moving leaflets, as highlighted
in the VLth30 case by the presence of a jet with high velocities in
a proximal cross-section [14], which changes shape over time and
exhibits varying eccentricity, result in higher levels of KE anisotropy
close to the orifice and a stronger inverse correlation with normalised
helicity intensity. Finally, for both BioAV cases, similarly to what was
observed for |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
| and 𝜎

(

|I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

|

)

, high values of Iℎ|𝗌𝗉𝗁𝑝𝑠 are found
at azimuthal angles where the three valve ring posts (indicated by the
letter P in Fig. 7) are located.

3.4. Leaflet dynamics analysis and anisotropy in the valve motion

Since we previously highlighted the potential impact of moving
leaflets on the degree of correlation between KE anisotropy intensity
and normalised helicity intensity, in Fig. 8 (a, b, e, f), we closely
examine the KE carried by the moving structural components of the
two BioAVs.

As demonstrated in Fig. 8 (a) and (b), the standard deviation of
leaflet displacement magnitude over time in the VLth30 case is four
times that in the Ulth0 case, as highlighted in the first part of the
study [14]. The standard deviation of the displacement magnitude
in the supporting ring of the two BioAVs is highest at the extremity
of the three posts. In the first part [14], hairpin-like vortices were
observed near the three posts as a consequence of the motion of the
leaflets and posts, particularly when the gap between the leaflets and
the ring post widens. In Fig. 8 (b), the spatial distribution of the
standard deviation of biomechanical KE anisotropy for the VLth30 case
shows strong variation amongst the three leaflets while for the Ulth0
BioAV, 𝜎

(

I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

)

𝗇𝗈𝗋𝗆
is more uniformly distributed. With a view to

establishing a correlation between the flow and structural anisotropy
intensity, we have plotted the graphs depicting the standard deviation
of flow modal KE anisotropy and biomechanical KE anisotropy. These
values are averaged over the elevation angles 𝜑 and normalised to
range from 0 to 1, as shown in Fig. 8 (c) and (g). The cross-correlation
function of the curves in the graphs of Fig. 8 (c) and (g) has been
calculated and is presented in Fig. 8 (d) and (h). In the case of the
VLth30 BioAV, the graph indicates a strong correlation between flow
and biomechanical anisotropy, as the cross-correlation function reaches
its peak at an azimuthal shift of 0◦. In the case of the Ulth0 BioAV,
he cross-correlation function in Fig. 8 (h) indicates a relatively strong
orrelation, with peak values occurring at azimuthal shifts ranging
rom −10◦ to 0◦. However, the curves in Fig. 8 (g) suggest an inverse
orrelation, as the minima in 𝜎

(

I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

)

𝗇𝗈𝗋𝗆
align with the maxima

n 𝜎
(

I𝗌𝗍𝗋𝗎𝖼𝗍 𝖺𝗇𝗂𝗌𝑝𝑚

)

𝗇𝗈𝗋𝗆
. This suggests that, following a train of thought

elying on transitivity, motions within the structural components of
he VLth30 BioAV leave an imprint on the downstream flow KE,
hich, in turn, exhibits a close correlation with vorticity intensity and
11
ortex stretching [14] and with the levels of helicity intensity. It has
lso been hypothesised that helicity plays a role in influencing the
odal KE spectrum, particularly within the inertial sub-range, which,

n the VLth30 case, deviates from the typical energy decay observed in
anonical turbulent flows.

. Conclusions

The findings for each valvular case regarding this second part of the
tudy can be summarised as follows:

• Stenotic case: The decay of energy, observed across different
time instances, reflects fluctuations in flow behaviour. It adheres
to Kolmogorov’s −5/3 power-law over a broad range of scalar
wavenumbers, indicating the presence of a cascade of kinetic
energy typical of canonical turbulence. The Kolmogorov length
scale is smallest in the stenotic case, signifying the presence of
smaller turbulent eddies. Moreover, the maximum TKE in the
stenotic case surpasses that of the BioAV cases by threefold, with
the time-averaged fluctuating energy intensity being six times
higher in the stenotic case compared to the two BioAV cases.
Moreover, the mode of the log-normal distribution for the flow
modal KE anisotropy, I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
, is larger that of the VLth30 case by

35% and the Ulth0 case by 65%. While the median value of the
distribution of I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
is negative (−2.2%) in the stenotic case,

it is positive for the bioprostheses. Additionally, the spatial dis-
tribution of |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
| peaks at azimuthal angles corresponding to

immobile leaflet commissures’ position, with the highest standard
deviation observed between commissures 1 and 3.

• VLth30 BioAV case: The energy decay over time from the spectral
analysis exhibits smaller variations compared to the stenotic case
and deviates from Kolmogorov’s −5/3 power-law, instead show-
ing peaks of energy at specific wavenumbers. Larger eddies are
noted as evidenced by the integral and Kolmogorov length scales
being twice as large compared to the stenotic case. Moreover, the
time-averaged fluctuating enstrophy intensity is notably higher in
the VLth30 case, reaching three times that of both the stenotic and
Ulth0 cases. This increase is attributed to the non-axisymmetric
motion of the leaflets, which generates higher levels of vorticity.
Interestingly, the local minima in enstrophy coincide with times
of maximum area at the vena contracta, suggesting a relationship
between leaflet motion and flow characteristics. In terms of modal
KE anisotropy, the VLth30 case exhibits a spatial distribution that
peaks at azimuthal angles aligned with the valve ring posts, with
the highest standard deviation observed near these posts. This
spatial distribution contrasts with the more uniform distribution
observed in the Ulth0 BioAV case. Furthermore, there is a strong
inverse correlation between modal KE anisotropy and normalised
helicity intensity in the VLth30 case, with a larger coefficient
of determination 𝑅2 compared to the stenotic and Ulth0 BioAV
cases. Examining the KE carried by the valve structural elements,
the VLth30 BioAV displays a significantly higher standard de-
viation of leaflet displacement magnitude over time compared
to the Ulth0 BioAV case, with the highest standard deviation
observed in the supporting ring at the extremity of the three
posts. A strong correlation between the standard deviation of flow
and biomechanical anisotropy, 𝜎

(

|I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

|

)

and 𝜎
(

|I𝗌𝗍𝗋𝗎𝖼𝗍 𝖺𝗇𝗂𝗌𝑝𝑚
|

)

,
averaged over the elevation angle is observed. The VLth30 BioAV
case demonstrates a complex interplay between valve design,
leaflet motion and energy-based flow features, with asymmetric
leaflet motions influencing downstream flow KE distribution and
anisotropy as well as normalised helicity intensity Iℎ|𝗌𝗉𝗁𝑝𝑠 .

• Ulth0 BioAV case: The variations in the energy spectra trend over
time are limited due to the stable motion of the leaflets. The decay
of energy aligns with Kolmogorov’s −5/3 power-law within the
inertial sub-range only at specific time instances characterised
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Fig. 7. Anti-correlation between |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

| and Iℎ|𝗌𝗉𝗁𝑝𝑠 over spherical shells close to the valvular orifice (cf. Fig. 1). The colour-coded distribution map of the temporal average of

|I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

| for the three valvular configurations under consideration is displayed in (a, e, i). The distribution heat map of time-averaged normalised helicity intensity Iℎ|𝗌𝗉𝗁𝑝𝑠 is displayed

in (b, f, j) for the three valvular cases. (c, g, k) Scatter plots of |I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

| as a function of Iℎ|𝗌𝗉𝗁𝑝𝑠 . The two coefficients 𝐴 and 𝐵 of a power law correlating the two quantities are fitted
through the resolution of a non-linear least-square minimisation problem [3,11,13]. The accuracy of the training prediction is evaluated using the coefficient of determination 𝑅2.
The accuracy of the prediction based on the testing dataset points for the three valvular cases is presented in (d, h, l).
by the presence of Kelvin–Helmholtz instability. The size of the
eddies in this scenario is estimated to be twice to thrice as
large as those calculated in both the stenotic and VLth30 BioAV
cases. Regarding the helicity intensity, both the time-averaged
and maximum values of unsigned fluctuating helicity intensity
are notably larger, ranging from 2 to 2.5 times, compared to
the stenotic case. Similarly, the signed helicity intensity exhibits
peaks that are 10 times larger than those observed in the stenotic
case. The temporal evolution of signed helicity intensity and
helical structures indicates the dominance of clockwise helical
motion until 𝑡 = 0.2 s, followed by a subsequent decrease in
12
fluctuating helicity intensity. It is speculated that the higher levels
of fluctuating helicity intensity inhibits energy transfer towards
smaller scales. In terms of modal flow KE anisotropy I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌

𝑝𝑠
, both

the mode and median values of the distribution are lower than
those observed in the stenosed case. The spatial distribution of
𝜎
(

|I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

|

)

is more uniform and exhibits lower values compared
to both the VLth30 BioAV and stenotic cases. Interestingly, the
spatial distribution of time-averaged flow KE anisotropy and nor-
malised helicity intensity peaks at azimuthal angles aligned with
the valve ring posts. Indeed, a relatively strong inverse correlation
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Fig. 8. Comparison and correlation between the anisotropy in the leaflet and ring motion of the two bioprosthetic valves (VLth30 and Ulth0) and anisotropy of the modal kinetic
energy in the flow in the vicinity of the valve orifice. (a, e) Standard deviation 𝜎 of the unrolled point distribution of the anisotropy intensity based upon the valve kinetic energy.
(b, f) Standard deviation 𝜎 of the time-dependent unrolled spatial distribution of the displacement magnitude in the two valves. (c, g) Comparison of the standard deviation of
the anisotropy intensity in the valve motion and in the flow averaged over the elevation angle 𝜑 as a function of the angle 𝛼. (g, h) Cross-correlation functions between the two
𝜎
(

I𝖿 𝗅𝗈𝗐 𝖺𝗇𝗂𝗌
𝑝𝑠

)

𝗇𝗈𝗋𝗆
and 𝜎

(

I𝗌𝗍𝗋𝗎𝖼𝗍 𝖺𝗇𝗂𝗌𝑝𝑚

)

𝗇𝗈𝗋𝗆
curves as a function of 𝛼.
is observed between the standard deviation of flow and biome-
chanical anisotropy when averaged over elevation angles. This
suggests a more prominent influence of the presence of the valve
ring posts on flow energy levels, particularly in the absence of
important leaflet motions.

The present study highlights the influence of valve architecture
on turbulence characteristics in the ascending aorta near the valvu-
lar orifice. The complex interplay among flow configuration, helicity,
13
leaflet motion and kinetic energy anisotropy is discussed and the in-
vestigation of flow disturbances associated with turbulence relies on
advanced energy-based analyses. These analyses include a dedicated
three-dimensional spectral analysis and the introduction of new quan-
tities, namely the modal and biomechanical kinetic energy anisotropy.
The presented results and discussion are in line with the conclusions
drawn from the first part of the study [14], indicating the improved
performance of the Ulth0 BioAV design. This improvement is evidenced
by a reduction in fluctuating kinetic energy, modal KE anisotropy
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and larger turbulent length scales, as well as an increase in positive
signed fluctuating helicity intensity inhibiting kinetic energy trans-
fer towards smaller eddy sizes. Further enhancements to this valve
design could involve controlling the generation of KHI by adjusting
leaflet material properties to slightly reduce their rigidity. Moreover,
considering the energy-based correlation between haemodynamics and
valve biomechanics, reductions in modal KE anisotropy levels could be
achieved through modifications to the design of the supporting ring
of the leaflets. The limitations of the present second part of the two-
part study include the assumption of rigid calcified leaflets due to
extensive calcification in the stenotic numerical model and the limited
time span simulated, covering only the systolic phase of one cardiac
cycle. In addition, in line with the objective of studying haemodynamics
solely originating from the valvular orifice and its correlation with
leaflet dynamics, kinetic energy, helicity and enstrophy have not been
investigated within the three sinuses. Nevertheless, with the aim of
restoring a more physiological flow in the aorta, synonymous with
examining and enhancing jet flow stability connected to valve archi-
tecture, the proposed advanced analyses provide valuable insights into
the haemodynamic performance of valve prostheses. This is achieved
through the assessment of energy distribution and anisotropy near the
orifice, complemented by the findings of the first part of the study.

The detailed two-part computational study lays the foundation for a
comprehensive set of analyses, forming a robust platform for evaluating
the performance of valve prostheses. This platform aims to facilitate the
development and fine-tuning of enhanced and personalised valve de-
signs, with the goal of mitigating the adverse consequences associated
with aortic valve replacement.
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