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A B S T R A C T   

The abundance of remote sensing imagery available has been extensively used for mapping snow cover extent in 
mountainous regions. However, previous studies have paid little attention to quantifying the uncertainties 
inherent in snow cover mapping algorithms when using Landsat observations, particularly in the context of 
delineating the snowline—a pivotal parameter for understanding the spatiotemporal dynamics of snow cover. 
Additionally, there is an urgent need for an automated processing approach capable of monitoring alpine 
snowline across expansive mountainous terrains. This study squarely addresses these gaps by primarily focusing 
on the precise delineation of snowline and the quantification of disparities in determining snowline elevation 
using eight snow cover mapping algorithms. Our approach is twofold: initially, we comprehensively assessed 
eight snow cover mapping algorithms using Landsat 8/9 data, contrasting their performance against high-spatial- 
resolution (3 m) snow observations. Subsequently, we introduced a novel snowline delineation method, termed 
Automated Snowline Delineation on Binary Snow Cover (ASLD-BSC). This method is designed to determine 
snowline on binary snow cover maps generated by these eight algorithms and was rigorously assessed across 15 
catchment basins in America. The comparative analysis of the eight snow cover algorithms revealed a hierarchy 
of performance, with three algorithms employing multi-band decision trees exhibiting the highest proficiency in 
snow cover mapping. They were succeeded by four NDSI-based algorithms, with the Blue Snow Threshold al-
gorithm ranking the lowest in terms of performance. Furthermore, our assessment demonstrated that the pro-
posed snowline delineation method, ASLD-BSC, successfully mitigated approximately 1/3 of misclassification 
pixels and effectively created robust snowline patterns for each binary snow map. When scrutinizing snowline 
elevation, we observed striking variations in elevation differences among the eight snow cover mapping algo-
rithms relative to the reference snowline elevation (average snowline elevation: 121 m ~ 258 m; bottom 10% 
snowline elevation: 253 m ~ 512 m; top 10% snowline elevation: 206 m ~ 344 m). These findings underscore 
the pivotal role that the quality of binary snow maps plays in determining the accuracy of snowline and snowline 
elevation. Importantly, this study provides a comprehensive guide for selecting appropriate snow cover mapping 
algorithms, facilitating effective monitoring of Landsat-based snow cover in mountainous areas.   

1. Introduction 

Snowpack is a highly sensitive component of the Earth system that is 
greatly affected by climate change. The significance of the snowpack lies 
in its role within this system (Barnett et al., 2005; Xiao et al., 2018). The 
decrease in snow accumulation has far-reaching implications, strongly 
impacting various aspects such as wildlife diversity, functional compo-
sition of ecosystems, winter sport tourism, energy balance, and hydro-
electricity generation (Huning and AghaKouchak, 2020; Kelsey et al., 
2021; Niittynen et al., 2020, 2018; Painter et al., 2010). The shifting of 

rain-to-snow ratio due to increased temperature indicates that a higher 
proportion of precipitation fall as rain rather than snow, consequently 
leading to a substantial reduction in streamflow (Berghuijs et al., 2014). 
Reduction of snowpack mass has a profound impact on food production 
in agricultural irrigation areas reliant on snowmelt water for irrigation, 
thereby negatively affecting both local population and socioeconomic 
conditions (Qin et al., 2022, 2020). Furthermore, the decrease in snow 
cover causes habitat loss for certain species inhabiting high-latitude 
ecosystems (Niittynen et al., 2018), indicating that considering the ef-
fects of snow cover duration becomes crucial for forecasting biodiversity 
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patterns and effectively managing nature conservation areas. 
Given the immense importance of snowpack, there is an increasing 

need to monitor historical and current changes in snow cover (Xiao 
et al., 2020), employing in-situ measurements and satellite imagery. 
Apart from assessing snow cover extent and snow water equivalent (or 
snow depth), snowline serves as a crucial parameter for characterizing 
spatiotemporal variations in snow cover within mountain regions. The 
umbrella term “snowline” encompasses various definitions depending 
on the application conditions: 1) In the field of atmospheric sciences, the 
snowline refers to the boundary between snow and rain. Precipitation 
below the elevation of the snowline (i.e., 0 ◦C isotherm elevation) is 
considered rainfall, while precipitation above it is classified as snowfall 
(Minder et al., 2011). 2) In glacial studies, the snowline corresponds to 
the equilibrium line of a glacier at the end of ablation season. It signifies 
the transition line between accumulation and ablation zones of glacier 
(Shea et al., 2013). The movement of the glacial snowline indicates 
whether the glacier is advancing (growing) or retreating (shrinking). 3) 
In climatic studies, the snowline represents the demarcation between 
snow-covered zone and snow-free zone (Wunderle et al., 2002). The 
permanent snowline denotes the uppermost boundary of snow-free area, 
above which snow cover persists year-round. It is important to note that 
snowline can have additional definitions in other fields, for example, 
meteorological and hydrological studies (Gafurov and Bárdossy, 2009; 
Hantel and Maurer, 2011). 

In this study, the snowline serves as the delineation of snow cover 
extent, specifically referring to climatic snowline. Variations in snowline 
provide insights into the dynamics of seasonal snow cover. As a result of 
climatic variability, the highest snowline during late summer can recede 
or advance from year to year. Typically, snowlines are determined 
through the analysis of remote sensing images captured by cameras and 
satellites. The traditional interactive data processing method for snow-
line delineation is evidently insufficient to meet the anticipated effi-
ciency requirements of data processing in the era of remote sensing big 
data. Wunderle et al. (2002) employed the neighborhood statistics 
method to establish a robust and reliable snowline at the watersheds 
scale using Advanced Very High Resolution Radiometer (AVHRR) data. 
This method required that localized pixels of snowline had at least one 
adjacent edge corresponding to a snow-free pixel. Researcher further 
applied this approach to extract snowline from Moderate Resolution 
Imaging Spectroradiometer (MODIS) data over the Tibetan plateau 
while also considering the removal of the influence of lake masks (Tang 
et al., 2014). One notable disadvantage of this method is its suscepti-
bility to patchy snow cover extent, cloud cover, and shadows, which can 
lead to false snowline identification. In contrast, Parajka et al. (2010) 
proposed a method to determine a regional snowline by obtaining the 
average elevation of all snow-covered pixels and then using this 
threshold to assign cloud pixels as either snow-covered or snow-free. 
Subsequently, Krajčí et al. (2014) developed a widely accepted 
approach for delineating regional snowlines (RSL) from MODIS data. 
This method involved finding the minimum sum of snow-free pixels 
above a given elevation and snow-covered pixels below it to determine 
the regional snowline elevation (Gascoin et al., 2019). While the 
statistic-based RSL method has been successfully applied in numerous 
studies analyzing snowline variations (Hu et al., 2019; Koehler et al., 
2022; Portenier et al., 2022; Wang et al., 2023), it is important to 
acknowledge its limitations. The RSL method assigns the same snowline 
elevation for all aspects within a basin, and it is only applicable to small 
sub-basins (Girona-Mata et al., 2019). Additionally, concerns have been 
raised regarding the method’s ability to accurately represent the true 
snow cover extent (Koehler et al., 2022). Furthermore, the snowline for 
MODIS minimum snow cover extent can be extracted based on the fre-
quency of snow cover per year using a threshold of 80% (Lei et al., 
2012). Girona-Mata et al. (2019) developed an intriguing method that 
involved converting Landsat’s binarized snow cover pixels into point 
features in ArcGIS. Through subsequent processing operations on these 
point features, the snowline within a sub-catchment of Langtang Valley 

was successfully extracted. However, the portability of this method to 
other data processing platforms greatly limits its application. Several 
studies have also investigated snowlines in glaciers by using remote 
sensing data to differentiate between snow and ice boundaries in order 
to determine glacier equilibrium lines (Li et al., 2022; Racoviteanu et al., 
2019; Shea et al., 2013; Yu et al., 2022). The presence of numerous small 
snow patches in close proximity to the boundary of snow cover extent 
has posed challenges in representing snowline as a boundary of snow 
cover extent using remote sensing data (Gafurov and Bárdossy, 2009; 
Krajčí et al., 2014; Wunderle et al., 2002). Given the great large volume 
of remote sensing images that need to be processed for alpine snowline 
monitoring, there is an urgent need for an automated processing 
approach that can be applied over large mountain areas. 

Start-of-the-art methodologies for snowline delineation typically 
involve an initial step of a snow cover mapping algorithm to generate a 
binary snow cover map, which is then used to determine snowline 
(Girona-Mata et al., 2019; Krajčí et al., 2014; Lei et al., 2012; Shea et al., 
2013). The Normalized Difference Snow Index (NDSI) based method is 
commonly employed to exploit the distinct spectral characteristics of 
snowpack. Past studies have utilized various binary snow classification 
techniques in remote sensing data for snowline delineation, including 
NDSI-based method (Girona-Mata et al., 2019), SNOWMAP algorithm 
(Wang et al., 2023), K-means classification algorithm (Shea et al., 2013), 
and OTSU-based-NDSI method (Li et al., 2022). These approaches pri-
marily focused on directly performing snowline delineation using one of 
snow cover mapping algorithms and analyzing the trends in snowline 
variation and elevation. However, previous studies on snowline varia-
tion have often neglected to account for the uncertainties introduced by 
snow cover mapping algorithms. Additionally, publications pertaining 
to the development of snow cover mapping algorithms have mainly 
compared their snow classification or snow area estimation capability 
(Hao et al., 2019; Rittger et al., 2013; Stillinger et al., 2023; Xiao et al., 
2022, 2021; Yin et al., 2013). For instance, a study examined eleven 
snow cover mapping algorithms in classifying snow cover using five 
Landsat TM images, including automatic thresholding methods and a 
support vector machine method (Yin et al., 2013). The findings indi-
cated that the OTSU-based-NDSI method achieved robust snow cover 
classification. Another study by Stillinger et al. (2023) evaluated the 
United States Geological Survey (USGS) Landsat-based fractional snow 
cover area (USGS Landsat fSCA) products and two spectral unmixing 
algorithms in 12 Landsat images, concluding that spectral-mixture 
methods showed promise in estimating fractional snow cover area 
when compared against Airborne Snow Observatory (ASO) 3 m snow 
depth data. Despite these advancements, few past studies have specif-
ically illuminated the uncertainties associated with snow cover mapping 
algorithms when delineating snowline using Landsat snow cover maps. 

The motivation behind this study is to advance the development of 
snow cover area estimation approaches and enhance our understanding 
of the observed/evident reduction in snow cover area in mountainous 
region over the past decades. Building upon the analysis of previous 
studies, this study aims to achieve the following objectives:  

- To comprehensively validate and compare multiple snow cover 
mapping algorithms using independent ASO 3 m snow depth data.  

- To develop a snowline delineation method that accurately captures 
snow cover extents and can be easily applied across various moun-
tainous areas. 

- To quantify the differences associated with snow cover mapping al-
gorithms in delineating snowline and analyze their impact on 
determining snowline elevation. 

By addressing these objectives, this study applied eight snow cover 
mapping algorithms on 25 Landsat-ASO image pairs to analyze the ac-
curacy and reliability of snow cover mapping algorithms and provide 
insights into the influence of different snow cover mapping algorithms 
on snowline delineation. 
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2. Data sets 

2.1. ASO snow depth dataset 

The ASO aerial lidar data were utilized to produce high spatial res-
olution snow depth and snow water equivalent datasets with a spatial 
resolution of 3 m and 50 m, respectively (Painter et al., 2016). ASO snow 
depth data has been extensively employed for monitoring snow cover 
variations in mountainous regions, particularly for snow simulation and 
evaluation purposes (Brandt et al., 2020; Hedrick et al., 2018; Margulis 
et al., 2019; Stillinger et al., 2023). All ASO snow products mentioned 
are archived by the National Snow and Ice Data Center (NSIDC) and the 
ASO Inc. website. These datasets cover the period from 2013 to 2022 
(last accessed on April 20, 2023). 

Prior to the establishment of image matching pairs between Landsat 
and ASO snow images, we filtered all available 99 ASO snow images 
from NSIDC and 147 ASO snow images from ASO Inc. one by one, based 
on Landsat image path/row. Several selection criteria were applied: 1) 
each ASO snow depth image corresponds to only one Landsat image for a 
given date; 2) both snow-free and snow-covered pixels are present in 
ASO snow depth data; and 3) there is an overlap between the common 
area of Landsat image and ASO snow products. Following this selection 
process, we obtained 25 image matching pairs consisting of ASO snow 
depth data and Landsat data. The specific data lists can be found in 
Table S1 in the Supplement. Table 1 summarizes the spatial location 
information of these 25 image pairs. 

A series of processes were implemented to convert the 3 m ASO snow 
depth data into the reference snow cover observations at a 30 m scale. 
Firstly, the 3 m ASO snow depth data underwent quality control to 
address the representation issue of “zero” values (Stillinger et al., 2023), 
encompassing fill values and snow-free class. Data cleaning of 3 m ASO 
snow depth data is performed as a mandatory process step to avoid a 
substantial number of false negative data in the validation results and 
prevent the creation of inaccurate snowline records (refer to Fig. S1 
(right) in the Supplement; yellow arrows). In contrast, the 50 m snow 
depth and snow water equivalent products had been conducted through 
rigorous quality control. The 50 m snow depth and snow water equiv-
alent data were employed to define the basin boundaries of the corre-
sponding 3 m ASO snow depth observations, and its filled values were 
removed. 

Next, snow depth values of 3 m ASO snow depth data were converted 
into binary snow cover values, where a snow-free classification repre-
sented snow depth <8 cm, and a snow-covered classification indicated 
snow depth >8 cm. Painter et al. (2016) have previously indicated that 
the uncertainty of 3 m ASO snow depth is lee than 8 cm in terms of root 
mean square errors (RMSE). These binary snow cover maps at a 3 m 
scale are considered the “true” ground snow measurements. Subse-
quently, the 3 m ASO binary maps were aggregated into fractional snow 
cover (FSC) maps with a 30 m resolution (Xiao et al., 2022). As our 
assessment experiments were focused on binary snow cover derived 
from Landsat images, further conversion from fractional to binarized 
values at a 30 m scale was necessary. Unlike a previous study (Stillinger 
et al., 2023) that employed a threshold of 0 for FSC to determine snow- 
free and snow-covered areas, we conducted sensitivity analysis experi-
ments to select an optimal threshold for converting the aforementioned 
fractional values at a 30 m scale (refer to Section 4.1 for more details). In 
this study primarily employed 25 ASO binary snow maps (30 m) to 
validate the snow cover classification results derived from Landsat im-
agery. Subsequently, the proposed snowline delineation method was 
applied to these ASO maps to generate a snowline reference benchmark 
for comparison with the snowlines extracted from Landsat Data. It is 
important to note that ASO data cannot be considered immaculate snow 
cover observations for validation purposes, and Section 5.1 discusses the 
associated uncertainties. 

2.2. Landsat-8/9 surface reflectance data 

We obtained the Landsat Collection 2 Level-2 surface reflectance 
imageries from the USGS Earth Explorer. The selection of Landsat data 
was based on the data matching list for ASO snow depth data and 
Landsat surface reflectance data. A total of 19 Landsat tiles were 
selected, consisting of 15 Landsat-8 images and 4 Landsat-9 images 
(refer to Tables S1 and S2). These tiles were used for identifying snow- 
free and snow-covered areas using eight different snow cover mapping 
algorithms (See Section 3.1). Cloud, shadow, fill values, and water pixels 
were excluded based on the Quality Assessment layer generated using 
the Fmask 4.6 algorithm (Qiu et al., 2019; Zhu et al., 2015). Since most 
of study areas are located in mountainous regions, where terrain effects 
can impact Landsat images (Ma et al., 2021; Yin et al., 2022), a topo-
graphic correction method (Teillet et al., 1982) was applied to Landsat 

Table 1 
The summary of image matching pairs for ASO snow depth data and Landsat 
data (please refer to the Supplement for additional details).  

ASO data 
source 

U.S. state 
name 

ASO flight 
time 

Flight watershed (Site 
code) 

Landsat 
Path/row 

NSIDC Colorado 2018-03- 
30 

Gunnison-Taylor 
River 
(USCOGT) 

035/033 

NSIDC Colorado 2018-03- 
30 

Crested Butte 
(USCOCB) 

035/033 

NSIDC California 2019-04- 
28 

Kings Canyon 
(USCAKC) 

041/034 

NSIDC California 2017-07- 
18 
2018-04- 
23 

San Joaquin South 
Fork (USCASF) 

042/034 
043/034 

NSIDC California 2018-04- 
23 

San Joaquin Jose 
Willow (USCAJW) 

043/034 

NSIDC California 2017-07- 
18 

Lakes Basin (USCALB) 042/034 

NSIDC California 2016-04- 
01 
2016-04- 
26 
2018-04- 
23 

Tuolumne Cherry/ 
Eleanor (USCATE) 

043/033 
042/034 
043/034 

ASO Inc. Colorado 2022-04- 
19 

Blue River 034/033 

ASO Inc. Wyoming 2022-06- 
11 

Green River 037/030 

ASO Inc. California 2022-04- 
01 

Feather River 044/032 

ASO Inc. California 2022-03- 
27 

Kaweah River 041/035 

ASO Inc. California 2020-04- 
14 
2022-05- 
14 
2022-03- 
02 

Kings Canyon 041/035 
042/034 

ASO Inc. California 2020-05- 
07 
2020-05- 
23 
2022-03- 
01 
2022-05- 
13 

Merced River 042/034 
043/034 

ASO Inc. California 2020-05- 
07 
2020-05- 
23 

Tuolumne River 042/034 

ASO Inc. California 2020-05- 
23 
2020-06- 
08 
2022-02- 
06 

San Joaquin 042/034  
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images in this study (Ma et al., 2021). After preprocessing Landsat data, 
surface reflectance pixels with abnormal values (outside the range of 
0 to 1) were masked. Additionally, potential water body pixels in 
Landsat images were excluded from land cover data (see Section 2.4). 
The processed Landsat surface reflectance pixels were then used as input 
for eight snow cover mapping algorithms. 

2.3. ALSO AW3D30 DEM data 

The AW3D30 digital elevation model (DEM) data, developed by 
Japan’s Aerospace Exploration Agency (JAXA) (Takaku et al., 2014), 
was utilized in this study. AW3D30 provides global coverage with a 
resolution larger than most DEM data (Wei et al., 2020). The AW3D30 
DEM data with a 30 m spatial resolution was employed to correct 
topography effects in Landsat 30 m images and determine snowline 

Fig. 1. Flowchart of the processing chain for mapping snow cover, delineating snowline, and determining snowline elevation. The last row represents the data 
processing schematic diagram for snowline delineation, indicated by 1), 3), and 4). 
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elevation. Slope and aspect data were derived from this DEM data using 
a Python program. The DEM, slope, and aspect data were used in 
topographic correction method for Landsat surface reflectance. Addi-
tionally, DEM data played a role in determining snowline elevation. It is 
important to note that the uncertainty associated with DEM data is well 
known (Dozier et al., 2022), and it may impact the accuracy of topo-
graphic correction for Landsat data and the determination of snowline 
elevation. However, the assessment of this uncertainty falls beyond the 
scope of this paper. 

2.4. National Land Cover Database (NLCD) 2019 

In this study, the NLCD 2019 land cover data at a 30 m spatial res-
olution was obtained for the conterminous United States. This data, 
described by Wickham et al. (2021), contains 17 Level-II land cover 
classes and 8 Level-I land cover classes. For our analysis, we reclassified 
this Level II classification scheme into five land cover classes: water, 
bare land, grassland, forest, and shrub (refer to Table S3 in the Sup-
plement). The land cover data were cropped using Landsat images and 
ASO snow data at 30 m scale. The NLCD land cover data was employed 
for two distinct purposes. First, it served to mask water body pixels 
within Landsat images during preprocessing. Second, the NLCD data was 
leveraged to group the snow cover classification results, facilitating the 
assessment of snow cover mapping algorithm (seeing Section 4.1). 

3. Methods 

In this study, we comprehensively analyzed the mapping ability of 
snow cover algorithms using Landsat data for mapping binary snow 
cover and investigated their influence on snowline delineation. The 
snowline serves as an important indicator for monitoring variations in 
mountain snow cover and provides insights into changes in snow cover 
extent. Manual delineations of snowline is time-consuming and cannot 
keep pace with the growing number of satellite images. To address this, 
a highly automated delineation method was developed in this study. 
Fig. 1 illustrates the detailed data processing pipeline proposed for 
snowline delineation. The pipeline consists of three parts: mapping bi-
nary snow, delineating snowline, and determining snowline elevation. 
In the first part (mapping binary snow), Landsat surface reflectance data 
underwent a series of data pre-processing (see Section 2.2) to generate 
Landsat binary snow maps using various snow cover mapping methods 
(see Section 3.1). The conversion process from ASO 3 m snow depth data 
to ASO 30 m binary snow maps is described in detail in Section 2.1. The 
second part (delineating snowline) then involves the development of an 
automatic snowline delineation method using the binary snow maps 
from Landsat and ASO (see Section 3.2). This method is applied to 
image-matching pairs of Landsat data and ASO snow data to delineate 
snowline. The last part focuses on determining snowline elevation for 
different snowline maps (Section 3.3). 

3.1. Snow cover mapping algorithms 

Remote sensing techniques rely on the physical properties of snow, 
such as its high reflectivity in the visible spectrum and strong absorption 
in the shortwave infrared spectrum, to map snow cover. Numerous 
studies have utilized this characteristic to discriminate snow from other 
elements (Hall et al., 1995; Rittger et al., 2013; Xiao et al., 2022). In this 
study, we compared eight snow cover mapping approaches, namely Hall 
et al. (1995) (referred to as SNOWMAP), Girona-Mata et al. (2019) 
(referred to as NDSI_ONLY), Härer et al. (2018) (referred to as 
NDSI_OTSU), Thaler et al. (2023) (referred to as BST), Klein et al. (1998) 
(referred to as Klein), Dozier and Painter (2004) (referred to as Dozier), 
Salomonson and Appel (2004) (referred to as Salomonson), and Gascoin 
et al. (2020) (referred to as Sentinel_tanh). These eight methods were 
widely used for obtaining binary snow cover maps from remote sensing 
images. Therefore, we comprehensively analyzed their performance in 

mapping binary snow compared to the reference ASO binary snow map 
(30 m). While numerous studies have employed machine learning 
techniques for snow cover area estimation (Czyzowska-Wisniewski 
et al., 2015; Xiao et al., 2022), it’s important to note that we did not 
undertake machine learning methods primarily due to the limited 
availability of co-registered ASO-Landsat image pairs suitable for rain-
ing and validating a robust ML model. Table 2 summarizes the charac-
teristics of these eight snow cover mapping algorithms. Brief 
descriptions of these algorithms are provided below; detailed informa-
tion can be found in corresponding literature. 

3.1.1. SNOMAP 
Hall et al. (1995) developed the SNOWMAP algorithm for snow 

cover mapping, which involves the criteria tests using NDSI (Eq. 1), 
Normalized Difference Vegetation Index (NDVI, Eq. 2), as well as the 
reflectance threshold in Near-Infrared band (NIR, 0.85 μm). This algo-
rithm has been widely applied with Landsat images to obtain the 
reference snow cove observations (binary or fractional) for various 
snow-related studies (Dobreva and Klein, 2011; Hao et al., 2021; Xiao 
et al., 2022). 

NDSI =
(
Green0.55μm − SWIR1.6μm

)/(
Green0.55μm + SWIR1.6μm

)
(1)  

NDVI =
(
NIR0.85μm − Red0.66μm

)/(
NIR0.85μm +Red0.66μm

)
(2)  

3.1.2. NDSI_ONLY 
Previous studies generally used a statistic value as the NDSI 

threshold to discriminate snow cover from other surface elements. In the 
Himalayas region, Girona-Mata et al. (2019) applied a statistic threshold 
(0.45) of NDSI to identify snow-covered pixels in Landsat images. These 
binary snow cover maps were then used to delineate snowline. In this 
study, the name “NDSI_ONLY” denotes the method used in Girona-Mata 
et al. (2019) study. 

3.1.3. NDSI_OTSU 
It is challenging to determine a uniform threshold for NDSI that 

effectively distinguish between snow-covered and snow-free areas. This 
NDSI threshold varied with time and space. Therefore, some studies 
have utilized OTSU’s method (Otsu, 1979) to obtain a dynamic 
threshold for NDSI in determining binary snow cover maps (Härer et al., 
2018; Yin et al., 2013).In this study, we also examined the ability of this 
method for snow cover mapping, referred to as NDSI_OTSU. The 
thresholds of NDSI using the NDSI_OTSU method for 19 Landsat images 
used in this study are shown in the Supplement Table S2. 

Table 2 
Summary of the characteristics of eight snow-cover mapping methods used for 
Landsat in this study. Most of the methods utilize NDSI as input for snow cover 
mapping, except BST, which uses the reflectance of blue band (Blue: 0.48 μm). 
NDSI: Normalized Difference Snow Index. NDVI: Normalized Difference Vege-
tation Index. NIR: Near-Infrared (0.85 μm). The green band represents the 
reflectance in the spectral range of 0.55 μm.  

Algorithm 
name 

Involved 
variables 

Output types 
(Fractional/Binary) 

Reference 

SNOWMAP NDSI, NDVI, 
NIR 

Binary (0 or 1) Hall et al. (1995) 

NDSI_ONLY NDSI Binary (0 or 1) Girona-Mata et al. 
(2019) 

NDSI_OTSU NDSI Binary (0 or 1) Härer et al. (2018) 
BST Blue Binary (0 or 1) Thaler et al. (2023) 
Klein NDSI, NDVI, 

Green, NIR 
Binary (0 or 1) Klein et al. (1998) 

Dozier NDSI, NIR Binary (0 or 1) Dozier and Painter 
(2004) 

Salomonson NDSI Fractional (0–1) Salomonson and 
Appel (2004) 

Sentinel_tanh NDSI Fractional (0–1) Gascoin et al. (2020)  
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3.1.4. BST 
Thaler et al. (2023) introduced an innovative method called Blue 

Snow Threshold (BST) algorithm, which utilizes the blue band (0.48 μm) 
to map snow cover. This automatic algorithm has been validated and 
evaluated using high-resolution satellite images from PlanetScope. In 
this study, we applied the BST algorithm (its codes provided by Evan A. 
Thaler) to Landsat images and evaluated its performance. The blue band 
thresholds of 19 Landsat satellite images were analyzed by the BST al-
gorithm, and the thresholds for each image are presented in Table S2 (in 
the Supplement). 

3.1.5. Dozier 
The snow cover mapping approach of Dozier and Painter (2004) 

incorporates the reflectance in the NIR band and NDSI. Pixels that meet 
specific threshold conditions for NDSI and NIR0.85μm are classified as 
snow-covered, while others are considered snow-free. In this study, we 
refer to this approach as Dozier. The Dozier method has been used to 
generate one of the standard high-resolution snow observations used to 
validate European Space Agency (ESA) Climate Change Initiative (CCI) 
snow products (Ripper et al., 2019). 

3.1.6. Klein 
Klein et al. (1998) proposed another binary snow mapping algo-

rithm, referred to as Klein in this study, which has been used to validate 
ESA CCI snow products (Ripper et al., 2019). Klein algorithm differs 
from above-mentioned five binary snow map algorithms as it utilizes 
additional variables to define decision rules (Table 2), including NDSI, 
NDVI, NIR0.85μm, and Green0.55μm. 

3.1.7. Salomonson 
Salomonson and Appel (2004) proposed a linear FSC estimation al-

gorithm based on NDSI used to derive FSC area from MODIS surface 
reflectance data. In this study, we refer to this algorithm as Salomonson. 
It was previously employed to generate MODIS Version 5 standard FSC 
products and was also included in validating ESA CCI snow products to 
obtain the reference snow observations. We converted fractional values 
to binary values through a series of sensitive tests (see Section 4.1). 

3.1.8. Sentinel_tanh 
For the Sentinel-2 image (20 m), Gascoin et al. (2020) developed the 

Sentinel_tanh algorithm, which uses a sigmoid-shaped function for FSC 
estimation. This empirical algorithm was trained using NDSI and vali-
dated with various high-resolution reference observations. In this study, 
we directly applied this empirical function to retrieve FSC from Landsat 
surface reflectance data. The fractional values were converted to binary 
values (see Section 4.1). 

3.2. Snowline delineation method 

Based on the generated binary snow maps (ASO and Landsat), we 
developed a 6-steps automated method to delineate the snowline 
(Fig. 1), named automated snowline delineation on binary snow cover 
(ASLD-BSC), which underwent extensive testing. Please note that Fig. 1 
visually represents the outcomes of these data processing steps. Here, we 
provide a detailed description of the data processing steps involved in 
this method: 

The binary snow map may contain NaN pixels, where the snow- 
covered or snow-free areas are unclear due to various factors like 
cloud, shadows, and low-quality data. Therefore, the first step is to 
address these NaN pixels (denote no valid data) within a limited area. 
Initially, we tested a search window of 150 m * 150 m (5 * 5) centered on 
the NaN pixel. If more than half of the pixels within the search window 
are identified as snow-covered, the NaN pixel is assigned as snow- 
covered; otherwise, it is snow-free. If there are insufficient valid pixels 
(< 0.5 * 5 * 5), the search window is extended to 500 m * 500 m (17 * 
17), and the same process is repeated. If there are still not enough valid 

pixels, no action is taken. The choice of a 500 m search window is based 
on the MODIS pixel size. The results of this process can be seen in Fig. 1, 
labeled “Filling NaN pixels within a limited area”. 

The second step is the “morphological processing”. The binary snow 
map obtained from the first step may contain false positives and false 
negatives, indicating pixels were incorrectly identified as snow-covered 
or snow-free. To address these issues, we used the Python library to 
perform a series of morphological options as a preprocessing step for 
binary snow maps (Bishop-Taylor et al., 2021). Specifically, we applied 
morphological closing using a 3 * 3 structuring kernel to address small 
gaps in snow-covered or snow-free pixels. This was followed by a 
morphological opening with a structure size of 3 × 3 pixels to eliminate 
thin linear features. 

In steps three and four of this procedure, we refined the binary snow 
maps by eliminating small snow-covered regions and small snow-free 
regions that the area is less than 0.25 km2, equivalent to a MODIS 
pixel area. Although there were small snow-covered patches in the large 
snow-free regions, we removed them to avoid inaccuracies in snowline 
delineation that would not reflect the true patterns of snowline. We 
replaced these small snow-covered patches with snow-free labels to 
ensure the complete removal of small patches. Similarly, we carried out 
the same operation on small snow-free patches in large snow-covered 
regions. 

The fifth is to acquire snowline images for each binary snow map. We 
employed the Canny detector, an edge detector available in the Python 
cv2 library, with a minimum threshold = 50 and a maximum threshold 
= 150, to define snowline (Lai et al., 2020; Wang et al., 2022). The 
parameters used in this snowline delineation method were determined 
through multiple experimental tests. In theory, snowline presents the 
boundary of snow cover extent, and the snowline delineation accuracy 
depends on a visual inspection to verify if snowline coincides with the 
boundary of binary snow map created in the fourth step. 

As such, the final step involves removing the snowline records 
around NaN pixels (3 pixels) of the binary snow cover created in the 
fourth step. Despite processing the binary snow map in the fourth step, 
some pixels with NaN values still existed. Consequently, these NaN 
pixels result in false snowline boundaries in the snowline image ob-
tained in the fifth step. A post-processing operation was necessary to 
eliminate these false snowlines. 

We fine-tuned the parameters of ASLD-BSC method on one binary 
snow map and then transferred these parameters to another binary snow 
map. We visually inspected the snowline location relative to the 
boundary of snow cover extent, along with saving the parameter com-
binations. Whenever we detected errors in some binary snow map im-
ages, we adjusted the parameters combinations and tested it on various 
binary snow maps. After more than 400 iteration tests, we established 
current parameters combinations that perform well across all binary 
snow maps. The snowline delineation procedure output for each image 
is aligned with the boundary location of snow cover extent. However, 
because of the presence of NaN pixels, the final snowline image only 
depicts a portion of snowline location. 

3.3. Evaluation measures for comparing snow cover mapping algorithms 

This study aims to evaluate the ability of different snow cover 
mapping algorithms on Landsat images using high-resolution snow ob-
servations as a benchmark. To achieve this, a series of sensitivity tests 
were conducted to determine a suitable threshold of FSC for converting 
fractional values to binary values. The study tested thresholds of 0, 0.1, 
0.3, and 0.5, all of which had been previously used in snow cover area- 
related research (Rittger et al., 2013; Stillinger et al., 2023; Xiao et al., 
2022). Ultimately, a threshold of 0.3 was chosen to convert FSC to bi-
nary snow (see Section 4.1 for details). 

We employed 25 reference ASO snow cover maps (30 m) to validate 
the Landsat snow cover maps generated by eight snow cover mapping 
algorithms on a pixel-by-pixel basis. These matching pixels are 
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categorized into four groups by calculating a confusion matrix, 
including true positive (TP), false positive (FP), true negative (TN), and 
false negative (FN). Furthermore, to assess the performance of snow 
cover mappings, we employed six accuracy metrics (Xiao et al., 2022, 
2021), 1) Overall Accuracy (OA) represents the total proportion of both 
snow-covered and snow-free pixels correctly classified, 2) Precision, 
highlighting commission errors (CE), reflects the proportion of predicted 
snow-covered pixels that are truly snow-covered, 3) Recall, highlighting 
omission errors (OE), measures the proportion of actual snow-covered 
pixels that are correctly identified, 4) Specificity represents the pro-
portion of correctly classified snow-free pixels, 5) F1_score is a harmonic 
mean between precision and recall, offering a balanced view of the 
model’s performance in binary classification, and 6) Cohen’s Kappa 
coefficient assesses the agreement between the snow cover products 
retrieved by the algorithms and ground truth measurements. The com-
parison analysis only used pixels considered valid by all eight snow 
cover mapping algorithms to ensure a fair comparison. 

Moreover, to investigate the impacts of snow cover mapping algo-
rithm on snowline delineation, OE and CE were also calculated using the 
confusion matrix maps (TP, FP, TN, and FN; Fig. 7) (Xiao et al., 2021) 
under two conditions, i.e., above and below snowline (refer to Section 
4.2). This analysis is in favor of comprehending the uncertainty in 
snowline delineation and snowline elevation determination arising from 
snow cover misclassification. Subsequently, the difference in snowline 

elevation derived from eight snow cover mapping algorithms was 
analyzed using three metrics, including bottom 10% snowline elevation, 
average snowline elevation, and top 10% snowline elevation (Fig. 1; 
Section 4.4). 

4. Results 

This study represents the most comprehensive assessment of eight 
snow cover mapping algorithms for Landsat surface reflectance data to 
date. The performance of these algorithms was evaluated against 
reference ASO 30-m binary snow cover maps using seven accuracy 
metrics. Additionally, we examined the impacts of snow cover mapping 
algorithms on snowline delineation, as assessed by commission error 
and omission relative to snowline. Finally, we analyzed the difference of 
the snowline derived from eight snow cover mapping algorithms against 
the reference ASO snowline using three snowline elevation metrics. 

4.1. Assessment of snow cover mapping accuracy 

In this study, we obtained the fractional values in snow cover map 
(30 m) only through three approaches, namely ASO_Snow, Senti-
nel_tanh, and Salomonson. Therefore, a series of sensitive tests were 
conducted to determine an optimal threshold for converting fractional 
values to binary values, using four FSC thresholds widely used (0, 0.1, 

Fig. 2. The spatial patterns of binary snow cover map with different thresholds of fractional snow cover (FSC > 0, 0.1, 0.3, 0.5) on Landsat and ASO image pair 
(LC08_034033_20220419-ASO_BlueRiver_2022Apr19). Two Landsat-8 false-color images (SWIR1/NIR/RED), named LD and LD-1, are in the left-hand first panel. 
ASO_SC, Salomonson_SC, and Sentinel_tanh_SC panels are the snow cover distributions of the LD-1 area. White in all sub-images denotes no data due to the cloud, no 
valid data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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0.3, 0.5; see Figs. 2 and 3). 
Figure 2 presents an example of the visual snow cover map for each 

threshold. The snow-free area in the binary snow cover map for all three 
algorithms increased with the increase in FSC threshold. In the case 
where FSC > 0, we observed inaccurate characterization of snow cover 
distribution in a small region (LD-1 of Landsat scene 
LC08_034033_20220419) in the binary snow maps (a-1, b-1, c-1). 
Overall, for higher FSC thresholds (FSC > 0.1 and 0.3), the binary snow 
maps showed slightly better results, while for the highest FSC threshold 
(FSC > 0.5), the snow-free areas of ASO_Snow were slightly over-
estimated. Additionally, we present statistical results of eight snow 
cover mapping algorithms using FSC thresholds of 0, 0.1, 0.3, and 0.5, 
illustrated in Fig. 3. The validation results demonstrated that nearly all 
snow cover mapping algorithms perform the worst when using FSC > 0, 
as evidenced by their lowest OA, F1_score, Kappa, and TSS. Employing 
FSC > 0 would result in an overestimation of snow cover area (see a-1, b- 
1, and c-1 of Fig. 2). This experiment highlights that this FSC threshold 
(FSC > 0) is not an optimal choice for determining snow-covered and 
snow-free at 30-pixelwise scale. Using seven metrics for analysis tests, 
we can conclude the optimal performance of eight snow cover mapping 
algorithms occurs when using the FSC threshold of 0.3, as reflected in 
overall metrics such as OA, F1_score, Kappa, and TSS (seeing Fig. 3). 
This finding differs significantly from previous study (Stillinger et al., 

2023), which used FSC > 0 to distinguish snow-free and snow-covered 
areas at 120 m spatial resolution when using the 3 m ASO snow depth 
data. 

To facilitate a comprehensive comparison of the eight snow cover 
mapping algorithms, Figs. 3 and 4 depict their performance against the 
30-m ASO binary snow cover maps. This comparison considers four 
different FSC conversion thresholds and four land cover types. The 
analysis revealed that the performance of the algorithms vary signifi-
cantly based on both the chosen FSC thresholds and the specific land 
cover types. Consequently, based on these findings, we categorized the 
eight algorithms into three groups. Group-1 algorithms, including Klein, 
Dozier, and SNOWMAP approaches, exhibited the best performance in 
mapping snow cover from Landsat surface reflectance data with the 
highest OA, F1_score, and Kappa. Multiple bands criteria were used to 
distinguish between snow-cover and snow-free, which was a common 
feature of these three algorithms. Differences in the performance of 
these three algorithms are apparent in forest type (Fig. 4). Based on the 
validation results, the Group-2 algorithm, namely NDSI_ONLY, 
NDSI_OTSU, Salomonson, and Sentinel_tanh, all based on NDSI, 
demonstrated comparable snow cover mapping capability across 
different land cover types and different FSC conversion thresholds, 
except for the case of FSC > 0 for Sentinel_tanh algorithm. At a 30 m 
pixel scale, fractional algorithms (Salomonson and Sentinel_tanh) had 

Fig. 3. Performance comparison of eight snow cover mapping algorithms under different thresholds of fractional snow cover conditions (FSC > 0, 0.1, 0.3, 0.5) 
against the reference ASO binary snow cover map (30 m). 
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no obvious advantages in mapping snow cover over binary algorithms 
(NDSI_ONLY, NDSI_OTSU). BST algorithm belonged to Group-3, which 
used the blue band to identify snow-covered and snow-free areas and 
performed poorly compared to the other seven algorithms. The color of 
seven metrics of BST algorithms was close to white or light green, 
indicating that these metrics were the lowest in most cases, especially in 
forest areas (Fig. 4). 

Land cover types play a significant role in mapping snow cover from 
satellite data, and its influence cannot be overlooked. Hence, we further 
characterized land cover effects on each snow cover mapping algorithm 
using an FSC conversion threshold of 0.3, as depicted in Fig. 4. The 
assessment reveals that the algorithms at the same capability group 
(Group-1, 2, 3) demonstrate comparable performance under the same 
land cover type. In addition, we observed that all snow cover algorithms 
showed better performance for bare land, grassland, and shrub land 
cover types. Nevertheless, forest areas remained a significant changes 
for most snow cover mapping algorithms compared to the other three 
land cover types (Xiao et al., 2022). This is evident, where forest-specific 
misclassification errors manifested as the highest commission error (1- 
Precision) and highest omission errors (1 - Recall). Notably, this trend 
occurred despite all eight snow cover mapping algorithms achieving OA 
greater than 0.8 within forest areas. 

4.2. Impacts of snow cover mapping algorithms on snowline spatial 
determination 

The spatial patterns of snowline depend on the binary snow map 
derived by each snow cover mapping algorithm. To visually illustrate 
the impacts of these algorithms on snowline delineation, a test region 
was chosen from the Landsat-8 (LC08_034033_20220419) image, as 
shown in the LD of Fig. 5. The confusion matrix maps from eight snow 
cover mapping algorithms against ASO 30 m binary snow map were 
displayed in Fig. 5, with true negative (TN; red) and true positive (TP; 
blue) representing the consistent classification of snow-free and snow- 
covered, respectively, and false negative (orange; FN) and false posi-
tive (green; FP) indicating disagreement in snow cover mapping for two 
snow cover maps. Additionally, there is an assumption that snow-free 
areas are located downhill from the snowline/mountain, while snow- 
covered areas are located uphill from the snowline/mountain. 

Our findings revealed that the disagreement between 30-m ASO bi-
nary snow map and Landsat snow map derived by eight algorithms 
mainly occurred in forest areas, terrain shadow, and patchy snow areas 
close to the transition areas from snow-covered to snow-free. We also 
observed that Klein and BST algorithms had worse performance in 
mapping snow cover in terrain shadow, with a large proportion of these 
snow pixels classified as snow-free, resulting in a significant number of 

Fig. 4. Performance comparison of eight snow cover mapping algorithms using the FSC threshold of 0.3 under different land cover types, bare land (1,794,736), 
grassland (2,056,724), shrub (11,297,191), and forest (17,514,047) against the reference ASO binary snow cover map (30 m). 
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TN pixels. Moreover, the difference in snowline position was dependent 
on the ability of snow cover mapping algorithm. Eight snow cover 
mapping algorithms yielded considerably different shapes of snowline 
for the same area. The presence of large areas (> 0.25 km2) of FN and FP 
could extend the length of snowline, leading to inaccurate positioning 
regarding ASO snowline observations. The presence of FP would shift 
the snowline position downwards, while the presence of large areas of 
FN pixels would cause the actual snowline position to shift upwards. 

We eliminated some misclassified pixels (FP and FN) by applying a 
series of snowline delineation steps (refer to Section 3.2) to minimize the 
uncertainty in snowline delineation resulting from snow cover 
misclassification. To investigate the impact of snow cover misclassifi-
cation pixels (FP and FN) on the final snowline determination, we 
analyzed the proportion of these pixels using commission error (CE, 
CE = FP/(TP + FP)) and omission error (OE, OE = FN/(TP + FN)) 

relative to snowline position based on 25 ASO-Landsat image pairs, as 
exhibited in Fig. 6 and Table 3. For eight algorithms, our snowline 
delineation method successfully eliminated about 32% of CE (below 
snowline; average: 0.047, max: 0.082, min: 0.026) and 31% of OE 
(above snowline; average: 0.028, max: 0.044, min: 0.021), which ensure 
that these pixels did not impact snowline determination. However, 
approximately 68% of CE (above snowline; average: 0.101, max: 0.160, 
min: 0.064) and 69% of OE (below snowline; average: 0.063, max: 
0.100, min: 0.036) were still present in binary snow map after the fourth 
step of snowline delineation method (removal of small snow-free areas), 
and they affected the determination of the shape and position of 
snowline. This, in turn, made the bottom 10% snowline elevation lower 
due to the increase of above snowline CE, while larger below snowline 
OE may partially explain the higher top 10% snowline elevation (further 
analysis showing in Section 4.4). 

Fig. 5. Confusion matrix maps (true negative, false negative, false positive, and true positive) for the binary snow maps derived from eight snow cover mapping 
algorithms against the ASO binary snow cover map (30 m). LD: the false-color image (SWIR1/NIR/RED). The green hatching lines in the LD image 
(LC08_034033_20220419) at the Blue River site is an example of terrain shadow. Pixels denoted as no data are shown in white. Black lines in eight confusion matrix 
maps denote snowline we delineated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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4.3. Analysis spatial pattern of snowline delineation results 

In this study, Landsat binary snow maps obtained through snow 
cover mapping algorithms were used to automatically delineate snow-
line using a series of data processing steps (refer to Section 3.2; Fig. 1). 
The spatial pattern of snowline represents the extent of snow cover, and 
ideally should capture the boundary of binary snow map. Our proposed 
snowline delineation method created a robust snowline pattern for each 
binary snow map (Fig. 7). This method avoided the creation of frag-
mented snowline patterns in the vicinity of small snow-free and snow- 
covered areas of binary snow map. It was more consistent with the 
patterns and locations of snowlines that we visually inspected from 

binary snow map. Our developed snowline delineation method dem-
onstrates the capability to effectively eliminate misclassified pixels and 
accurately determine a continuous snowline. Furthermore, this new 
approach to snowline delineation can overcome the effects of no data in 
a limited area (Girona-Mata et al., 2019), where pixels without data may 
lead to incorrect snowline patterns or fail to provide a continuous 
snowline. 

The Landsat false-color image (Fig. 8) presents the snow cover dis-
tribution case along with snowline, and the binary snow cover map for 
eight algorithms is referred to in Fig. 7. Commission errors and omission 
errors in binary snow maps can change snowline patterns for the same 
area due to differences in the use of snow cover mapping algorithms 
(Figs. 7 and 8). Visual inspection in Fig. 8 helped us better understand 
the performance of binary snow cover associated with snowline. As 
discussed in Section 4.1, shadow areas seriously affected the accuracy of 
binary snow cover map and snowline pattern for BST and Klein algo-
rithms. Even for the reference ASO snow observation, there were still 
misclassified pixels (yellow dashed box areas), as shown in Figs. 7 and 8, 
and this data’s limitations were further discussed in Section 5.1. 
Therefore, we concluded that achieving a high level of accuracy in 
snowline depends on the quality of binary snow maps. 

4.4. Difference assessment on snowline elevation 

Figure 9 presents an example to highlight the variation in snowline 
elevation determined by different snow cover mapping algorithms. It 
showcases the ASO binary snow map for the ASO-USCATE-20160401 
scene in the Tuolumne Cherry/Eleanor basin, California, along with 
the corresponding snowline elevation distributions derived from 
ASO_Snow and eight snow cover mapping algorithms. The results reveal 

Fig. 6. Distribution of commission error (CE = FP/(TP + FP)) and omission error (OE = FN/(TP + FN)) relative to snowline (below and above snowline) for 25 snow 
cover maps obtained from eight snow cover mapping algorithms. 

Table 3 
Average values of commission error and omission error under below and above 
snowline conditions, respectively, for snow cover maps obtained from eight 
snow cover mapping algorithms. Commission error: CE = FP/(TP + FP); Omis-
sion error: OE = FN/(TP + FN). Bold indicates the maximum of each column.  

Name Commission Error Omission Error 

Below 
snowline 

Above 
snowline 

Below 
snowline 

Above 
snowline 

SNOWMAP 0.056 0.097 0.054 0.022 
NDSI_ONLY 0.040 0.097 0.057 0.022 
BST 0.082 0.160 0.100 0.040 
NDSI_OTSU 0.038 0.096 0.058 0.022 
Klein 0.026 0.064 0.083 0.044 
Dozier 0.034 0.077 0.060 0.021 
Salomonson 0.057 0.117 0.036 0.027 
Sentinel_tanh 0.045 0.102 0.052 0.022 
Average 

values 
0.047 0.101 0.063 0.028  
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significant differences in both the pattern and distribution of snowline 
elevation across the different algorithms for the same study basin. 
Notably, the average snowline elevation varied considerably, ranging 
from 1907 m (lowest) for the SNOWMAP algorithm to 2184 m (highest) 
for the BST algorithm. While the snowline elevation density analysis 
image exhibits the similar distribution patterns across all nine algo-
rithms, it also highlights distinct differences in the peaks and the ranges 
of their respective snowline elevation densities. 

Beyond the specific case presented in Fig. 9, we conducted a 
comprehensive comparative analysis of snowline elevations across 25 
ASO-Landsat images pairs. This analysis, as illustrated in Figs. 10 and 
11, utilized three metrics: bottom 10% snowline elevation, average 
snowline elevation, and top 10% snowline elevation. These metrics 
served to assess the spatial agreement of snowline elevations between 
different methods. The results, presented in the subplots of Figs. 10 and 
11, consistently revealed a negative elevation difference across most 
study basins. In simpler terms, the snowline elevations derived from 
Landsat data were lower than those obtained from ASO observations 
(ASO_Snow) snowlines. This finding aligns with the observations from 
Figs. 7 and 8, where ASO_Snow snowline results were consistently at 
higher elevations relative to Landsat-based snowlines. 

The disparities in snowline elevations derived from different snow 
cover mapping algorithms are substantial for all conditions. For 
instance, among the eight algorithms examined, the difference of 

average snowline elevation ranged from 121 m to 258 m. Differences in 
the bottom 10% snowline elevations fell within the range of 253 m to 
512 m, while for the top 10%, the differences spanned from 206 m to 
344 m. As illustrated in Fig. 10 and Table 4, the Klein and Dozier al-
gorithms displayed relatively smaller snowline elevation differences 
compared to ASO snowline elevation across all three metrics. This 
consistency is likely due to their high snow mapping accuracy (Figs. 3 
and 4), particularly their notably low above snowline CE (Klein: 0.064, 
Dozier: 0.077; Table 3 and Fig. 6). In contrast, the BST algorithm, which 
had the largest above snowline CE (0.16), demonstrated the largest 
elevation difference, especially in the bottom 10% snowline elevation 
(− 332 ± 663 m). Additionally, as illustrated in Fig. 11 and Table 5, the 
Klein and Dozier algorithms consistently displayed the lower snowline 
elevation differences across all aspect conditions (North, South, East, 
and West). Moreover, when comparing to the four aspects, east and 
south aspects exhibited lower difference values in snowline elevation 
across all three snowline elevation metrics. Notably, as shown in Fig. 10 
and Table 4, the ranking of elevation differences in the bottom 10% 
snowline elevation almost correlates with the ranking of above snowline 
CE. This correlation suggests that higher above snowline CE may lead to 
lower snowline elevations relative to the ASO reference data, a trend 
visibly evident in Figs. 7 and 8. Meanwhile, below snowline OE partially 
explain the differences observed in the top 10% snowline elevation. 
Misclassifying snow pixels as snow-free below the snowline can 

Fig. 7. Distribution of snowlines for nine snow cover algorithms at a small region of the Tuolumne Cherry/Eleanor basin, California (USCATE) in Landsat image 
(LC08_043033_20,160,401). The background shows the binary snow cover. The green line refers to the snowline. ASO_Snow denotes the reference ASO snow cover 
data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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potentially shift the perceived snow boundary upwards. These findings 
suggest that CE exerts a greater influence on snowline determination 
than OE. 

5. Discussion 

5.1. Uncertainty in using ASO snow-depth data 

ASO snow depth data is widely recognized as the highest quality 
snow observation data for various snow-related research. However, it is 
unrealistic to assume that ASO data is a perfectly accurate snow mea-
surement treated as a validation or reference for “true” ground obser-
vations by other researchers. Before using ASO 3 m snow depth data for 
further processing, it is essential to address the misrepresentation issues 
first (Stillinger et al., 2023). Failure to do so can result in inaccurate 
validation and false snowline maps. As illustrated in Fig. S1 in the 
Supplement, there should be no data in the yellow arrows area, but the 

zero values were assigned. Then snowline was portrayed based on our 
snowline delineation method. No snowline should exist at the boundary 
of these misrepresentation areas. 

The binary snow maps derived from ASO snow depth products are 
not immaculate in validating Landsat snow maps due to false snow-free 
and snow-covered pixels. The accuracy of LiDAR data is often poor in 
steep terrain and densely forested areas, resulting in varying quality of 
snow depths obtained from LiDAR data (Currier et al., 2019; Enderlin 
et al., 2022; Zheng et al., 2016). Moreover, ASO may consider rock 
outcrops areas in alpine regions to be completely covered with snow, as 
discussed in a previous study (Stillinger et al., 2023). The false pixels in 
ASO binary snow maps would lead to unreal evaluation results, seeing 
the results in Sections 4.1 and 4.3. 

It is necessary to analyze the conversion of FSC to binary snow when 
evaluating snow cover at 30 m pixel-wise (John et al., 2022; Stillinger 
et al., 2023). This study conducted sensitive tests to select an optimal 
threshold for converting ASO FSC data to binary snow maps. However, 

Fig. 8. Distribution of snowlines for nine snow cover algorithms at a small region of the Tuolumne Cherry/Eleanor basin, California (USCATE) in Landsat image 
(LC08_043033_20,160,401). The background shows the Landsat false-color image (SWIR1/NIR/RED). The green line refers to the snowline. ASO_Snow denotes the 
reference ASO snow cover data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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we still encountered false negative snow-free observations within ASO 
binary snow maps due to thin snow and patch snow (Figs. 2, 7, and 8), 
using the FSC threshold of 0.3. Some shallow or patch snow pixels may 
be lost when converting snow depths to binary snow data using a 
threshold of 8 cm (Painter et al., 2016), leading to false negatives. 
Moreover, compared to Lidar-based reference snow observation, most 
snow cover mapping approaches estimated more snow cover pixels (CE 
> OE). We found that misclassification pixels of ASO binary snow map 

(30 m) mainly occurred near the edge of snow cover extent. Loss of 
snow-covered pixels not only increases the inconsistency between 
reference ASO binary snow map and Landsat binary snow map for eight 
algorithms, decreasing the evaluation metrics but also raises the eleva-
tion of ASO snowline, as illustrated in Fig. 10. This inconsistency was 
amplified in analyzing snowline elevation difference between ASO data 
and Landsat data in Section 4.4 (Fig. 10 vs. Fig. 11). Despite limitations 
in ASO data for snow-related research, particularly snowline studies, our 

Fig. 9. Left panel illustrates the reference ASO binary snow map (30 m; red pixels are snow-free and blue pixels are snow-covered) and the distribution of snowline 
(green line) in the ASO-USCATE-20160401 scene (Tuolumne Cherry/Eleanor basin, California); the background is Landsat false-color image (SWIR1/NIR/RED). The 
right panel shows the distribution of snowline elevation in the left study area (Tuolumne Cherry basin, California) for nine snow cover mapping algorithms. 
ASO_Snow is the reference ASO snow cover data. The number in parentheses indicate the average snowline elevation in the Tuolumne Cherry/Eleanor basin. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Snowline elevation difference in bottom 10% snowline elevations, average snowline elevation, and top 10% snowline elevations for 25 Landsat snowline 
elevation data derived from eight snow cover mapping algorithms with respect to the reference ASO snowline elevation. 
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Fig. 11. Snowline elevation difference in bottom 10% snowline elevation, average snowline elevation, and top 10% snowline elevation for 25 Landsat snowline 
elevation data derived from eight snow cover mapping algorithms with respect to the reference ASO snowline elevation for different aspects. 
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work highlights the importance of uncertainty mitigation and robust 
benchmarking in enhancing the accuracy of snow cover mapping and 
snowline delineation. 

5.2. Insights of snow cover mapping algorithms comparison 

AVHRR and MODIS data are commonly used to estimate snow cover 
area in numerous pieces of research, with Landsat snow observation 
often serving as the benchmarks for validation or calibration (Rittger 
et al., 2013; Wu et al., 2020; Xiao et al., 2022). With reference to ASO 3 

m snow observations, in this study, we examined the snow mapping 
capability of eight snow cover mapping algorithms using Landsat sur-
face reflectance data. Our findings indicate that no single algorithm 
outperformed all others in all conditions. 

The comparable performance of the SNOWMAP (Hall et al., 1995) 
and Dozier (Dozier and Painter, 2004) approaches in snow cover map-
ping can be attributes largely to the high similarity in their decision tree 
rules. The primary distinction between these algorithms lies in their 
snow detection rules in vegetation area. As Fig. 4 clearly demonstrates, 
the most significant difference in their performance arises in mapping 
snow cover and estimating snow cover area with forest areas, while their 
performance exhibits greater consistency across other land cover types. 
Dynamic thresholds for NDSI typically performed better than static 
thresholds in snow cover area estimations, as the optimal threshold 
varies with Landsat image (Yin et al., 2013). Still, these significant ad-
vantages did not manifest in our evaluation results of NDSI_OTSU versus 
NDSI_ONLY. Instead, their mapping capabilities are very similar in 
identifying snow cover (Section 4.1). This similarity may be mainly due 
to the average optimal NDSI threshold of 0.4842 obtained from 
NDSI_OTSU algorithm (Table S2 in the Supplement), which closely ap-
proximates the threshold of 0.45 used in NDSI_ONLY algorithm. The 
balanced number of snow-covered and snow-free pixels is crucial for 
conducting NDSI_OTSU algorithm (Härer et al., 2018; Yin et al., 2013), 
and the disordered bias in the number of pixels toward any class can 
result in large errors in the snow cover classification results. The BST 
algorithm was originally developed for high-resolution remote sensing 
imagery (3–5 m) to map snow cover area, as described in Thaler et al. 
(2023). This study represents the BST algorithm has been applied to 
Landsat images with a coarser resolution of 30 m. Our results revealed a 
significant concentration of misclassification errors occurring within 
shadowed and forested areas (Figs. 5, 7 and 8), resulting under-
estimating snow cover areas. Coarser resolution, shading, and tree oc-
clusion collectively result in lower reflectance of snow in the blue band 
for shadowed and forested areas compared to open, flat areas (Thaler 
et al., 2023). And then this lower reflectance can mislead the BST al-
gorithm and lead to misclassification of snow pixels. 

As mentioned, forest cover is the major factor impacting snow cover 
mapping performance for all algorithms and contributing to serious 
classification errors. Previous studies have developed different canopy 
adjustments/correction approaches to alleviate uncertainties in esti-
mating snow cover area using Landsat and MODIS surface reflectance 
data in forested areas (Bair et al., 2020; Raleigh et al., 2013; Rittger 
et al., 2020; Xiao et al., 2022). In a recent evaluation experiment (Stil-
linger et al., 2023), they coupled different canopy correction methods 
with each snow cover fraction estimation algorithm to analyze the al-
gorithm’s performance in estimating viewable snow cover areas in 
various vegetation coverages. However, the viewable snow cover area 
observed by satellite sensors varies with view zenith angle, solar zenith 
angle, and canopy cover fractions (Rittger et al., 2020; Xiao et al., 2022). 
Previous studies (Kostadinov et al., 2019; Xiao et al., 2022) have re-
ported that canopy correction process can also introduce uncertainties in 
fractional snow cover estimation. It remains a significant challenge to 
estimate viewable snow cover areas from satellite data (e.g., Lidar, 
Landsat, and MODIS) in forest cover regions. 

5.3. Insights of snowline delineation method 

This study introduces a novel, automated snowline delineation 
method (i.e., ASLD-BSC), designed to accurately extract the snow 
boundary from binary snow maps. We evaluated the proposed ASLD- 
BSC method by applying various snow cover mapping algorithms to 
Landsat imagery and using the resulting binary snow maps as input for 
ASLD-BSC method, leveraging principles of vision inspection. We 
further explored the applicability of ASLD-BSC method to MODIS snow 
cover maps for delineating a MODIS-based snowline (Fig. S2 in the 
Supplement). The results demonstrate that ALSD-BSC method 

Table 4 
Statistics analysis of snowline elevation difference in bottom 10% snowline 
elevation, average snowline elevation, and top 10% snowline elevation for 25 
Landsat snowline elevation data derived from eight snow cover mapping algo-
rithms with respect to the reference ASO snowline elevation (cf. Fig. 10). The 
number in the table denotes mean elevation difference ± 1 standard deviation.  

Algorithm 
name 

Bottom 10% 
snowline elevations 
/m 

Average snowline 
elevation /m 

Top 10% snowline 
elevations /m 

SNOWMAP − 512 (±527) − 252 (±335) − 336(±282) 
NDSI_ONLY − 315 (±382) − 199 (±285) − 302 (±268) 
BST − 332 (±663) − 154 (±479) − 206 (±295) 
NDSI_OTSU − 306 (±391) − 190 (±292) − 300 (±272) 
Klein − 253 (±541) − 121 (±385) − 245 (±269) 
Dozier − 285 (±381) − 163 (±285) − 288 (±270) 
Salomonson − 478 (±464) − 258 (±313) − 344 (±271) 
Sentinel_tanh − 396 (±436) − 223 (±303) − 313 (±269)  

Table 5 
Statistics analysis of snowline elevation difference in bottom 10% snowline 
elevation, average snowline elevation, and top 10% snowline elevation for 25 
Landsat snowline elevation data derived from eight snow cover mapping algo-
rithms with respect to the reference ASO snowline elevation for different aspects 
(cf. Fig. 11). The number in the table denotes mean elevation difference ± 1 
standard deviation.  

Aspect Algorithm 
name 

Bottom 10% 
snowline 
elevation /m 

Average 
snowline 
elevation /m 

Top 10% 
snowline 
elevation /m 

North SNOWMAP − 517 (±532) − 269 (±401) − 312 (±432) 
NDSI_ONLY − 294 (±399) − 175 (±296) − 263 (±394) 
BST − 267 (±625) − 91 (±527) − 180 (±411) 
NDSI_OTSU − 297 (±412) − 157 (±289) − 253 (±395) 
Klein − 251 (±532) − 104 (±444) − 223 (±392) 
Dozier − 258 (±403) − 139 (±324) − 260 (±405) 
Salomonson − 446 (±484) − 266 (±368) − 325 (±423) 
Sentinel_tanh − 383 (±447) − 220 (±339) − 283 (±401) 

South SNOWMAP − 339 (±299) − 228 (±222) − 374 (±255) 
NDSI_ONLY − 280 (±335) − 235 (±204) − 334 (±236) 
BST − 335 (±659) − 194 (±478) − 259 (±310) 
NDSI_OTSU − 288 (±372) − 231 (±211) − 322 (±234) 
Klein − 118 (±400) − 110 (±276) − 280 (±248) 
Dozier − 199 (±222) − 176 (±175) − 324 (±244) 
Salomonson − 391 (±335) − 267 (±195) − 371 (±256) 
Sentinel_tanh − 333 (±376) − 240 (±204) − 340 (±248) 

East SNOWMAP − 240 (±318) − 134 (±294) − 229 (±299) 
NDSI_ONLY − 157 (±350) − 126 (±289) − 203 (±283) 
BST − 352 (±668) − 118 (±479) − 116 (±322) 
NDSI_OTSU − 144 (±393) − 128 (±317) − 206 (±282) 
Klein − 66 (±394) − 37 (±307) − 151 (±284) 
Dozier − 84 (±290) − 63 (±279) − 198 (±294) 
Salomonson − 263 (±346) − 163 (±279) − 242 (±290) 
Sentinel_tanh − 158 (±333) − 134 (±290) − 216 (±284) 

West SNOWMAP − 499 (±601) − 249 (±372) − 320 (±339) 
NDSI_ONLY − 302 (±420) − 195 (±309) − 270 (±322) 
BST − 214 (±674) − 44 (±526) − 155 (±339) 
NDSI_OTSU − 287 (±427) − 185 (±316) − 262 (±327) 
Klein − 221 (±567) − 102 (±416) − 187 (±318) 
Dozier − 283 (±436) − 153 (±327) − 252 (±326) 
Salomonson − 426 (±515) − 254 (±340) − 308 (±323) 
Sentinel_tanh − 372 (±491) − 233 (±345) − 288 (±332)  
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effectively delineates the snowline from MODIS binary snow maps 
generated by two different algorithms. The analysis confirmed the 
excellent capability of ASLD-BSC method to accurately extract snow-
lines. Additionally, a comparison between Landsat snowlines (Fig. 7) 
and MODIS snowlines (Fig. S2) for the same study area (Tuolumne 
Cherry/Eleanor basin, California) highlights the limitations associated 
with the coarser resolution of MODIS data. This coarseness leads to a 
significant presence of mixed pixels within the six gullies in the MODIS 
maps (Fig. S2 in the Supplement), hindering the distinction between 
snow-free and snow-covered pixels. Consequently, the MODIS snow 
boundary (or snowline) differs significantly from the detailed snow 
distribution and boundary depicted by the eight individual snow cover 
maps derived from Landsat data in this mountainous area (Fig. 7). 
Additionally, compared to eight binary snow cover maps derived from 
Landsat, both MODIS-based maps obviously overestimated the snow 
cover area in this testing area. 

Our analysis revealed remarkable discrepancies in snowline eleva-
tion across different aspects (north, south, east, and west) among the 
eight algorithms tested. This finding contradicts previous studies (Gas-
coin et al., 2019; Krajčí et al., 2014; Portenier et al., 2022) that assumed 
a uniform snowline elevation for all aspects. To further investigate these 
variations, we compared the proposed ASLD-BSC method with a widely 
used approach, the RSL method (Krajčí et al., 2014), in two testing areas 
(see Figs. S3 and S4 in the Supplement). It’s important to note that the 
RSL method is only applicable to the basin area (Girona-Mata et al., 
2019; Krajčí et al., 2014) and requires preprocessing of the input image 
into smaller basin before employing, limiting its use in larger or more 
complex study areas. As shown in Figs. S3 and S4, the proposed ASLD- 
BSC effectively captured the snow boundary between snow-free and 
snow-covered areas, while the RSL method’s snowlines did not accu-
rately represent the actual snow cover extent (Koehler et al., 2022). 
Notably, the RSL method produced the same snowline elevation across 
all aspects for nine testing algorithms. This discrepancy likely stems 
from the RSL method’s inability to account for the complex impact of 
topography on snow cover distribution, area, and location, as influenced 
by factors like slope gradient, aspect, and elevation (Grünewald et al., 
2014; Zhong et al., 2021). The complexity distribution of snow cover 
naturally leads to variations in snowline patterns and elevations across 
different aspects, as evident in the results generated by the ASLD-BSC 
method. These observed variations in snowline elevation likely stem 
from differential impacts of factors such as solar radiation and surface 
land cover, as previously discussed in Girona-Mata et al. (2019). How-
ever, the RSL results also highlighted the significant influence of snow 
cover mapping algorithm accuracy on snowline delineation, demon-
strating a maximum difference of 99 m in elevation among the nine RSL 
snowlines. 

6. Conclusions 

This study comprehensively evaluated and compared the efficacy of 
eight snow cover mapping algorithms in accurately delineating binary 
snow cover from Landsat images and determining snowline in moun-
tainous areas. In addition, a novel snowline delineation method, con-
sisting of a series of automated processing chains, was proposed, and we 
quantified the uncertainties of snow cover mapping algorithm in 
defining snowline using 25 Landsat-ASO image pairs. 

The comparison findings revealed that eight snow cover mapping 
algorithms can be categorized into three groups. Group-1 algorithms 
(Klein, Dozier, and SNOWMAP), incorporating additional snow-related 
variables and decision rules, demonstrated the most robust perfor-
mance. Group-2 algorithms, encompassing NDSI_ONLY, NDSI_OTSU, 
Salomonson, and Sentinel_tanh, showed moderate performance, while 
Group-3 category (BST) displayed the least favorable performance. The 
investigation into the influence of eight snow cover mapping algorithms 
on determining snowline revealed that the proposed snowline delinea-
tion method, ASLD-BSC, effectively eliminated a substantial portion of 

misclassification pixels (32% of CE and 31% of OE), but a significant 
proportion (68% of CE and 69% of OE) still impacted the delineation of 
the snowline’s pattern. Moreover, the evaluation of snowline elevation 
unveiled substantial elevation differences among eight snow cover 
mapping algorithms relative to the reference ASO snowline elevations 
(average snowline elevation: 121 m ~ 258 m; bottom 10% snowline 
elevation: 253 m ~ 512 m; top 10% snowline elevation: 206 m ~ 344 
m), even when they exhibited similar performance in snow cover 
mapping. Our analysis highlights the significant influence of snow cover 
mapping algorithm accuracy on snowline delineation derived from 
Landsat imagery. 

This study significantly advances our understanding of the ability of 
snow cover mapping algorithm and snowline delineation using Landsat 
images. Importantly, it emphasizes the significance of accounting for 
systematic biases inherent to different snow cover mapping algorithms 
when interpreting snowline delineation and variation. The promising 
results of ASLD-BSC suggest its potential for flexible adaption and 
application across diverse mountainous regions. This capability of 
defining the snowline with greater precision holds significant values for 
risk assessments in new snow-free areas and ecological impact assess-
ments of rising snow levels (Bosson et al., 2023). Future research will 
validate the effectiveness across more diverse geographical landscapes 
and providing accurate snow cover and snowline pattern maps. 
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Härer, S., Bernhardt, M., Siebers, M., Schulz, K., 2018. On the need for a time- and 
location-dependent estimation of the NDSI threshold value for reducing existing 
uncertainties in snow cover maps at different scales. Cryosph 12, 1629–1642. 
https://doi.org/10.5194/tc-12-1629-2018. 

Hedrick, A.R., Marks, D., Havens, S., Robertson, M., Johnson, M., Sandusky, M., 
Marshall, H.P., Kormos, P.R., Bormann, K.J., Painter, T.H., 2018. Direct insertion of 
NASA airborne snow observatory-derived snow depth time series into the iSnobal 
energy balance snow model. Water Resour. Res. 54, 8045–8063. https://doi.org/ 
10.1029/2018WR023190. 

Hu, Z., Dietz, A.J., Kuenzer, C., 2019. Deriving regional snow line dynamics during the 
ablation seasons 1984-2018 in European mountains. Remote Sens. 11, 1–21. https:// 
doi.org/10.3390/rs11080950. 

Huning, L.S., AghaKouchak, A., 2020. Global snow drought hot spots and characteristics. 
Proc. Natl. Acad. Sci. 117, 19753–19759. https://doi.org/10.1073/ 
pnas.1915921117. 

John, A., Cannistra, A.F., Yang, K., Tan, A., Shean, D., Hille Ris Lambers, J., Cristea, N., 
2022. High-resolution snow-covered area mapping in Forested Mountain ecosystems 
using PlanetScope imagery. Remote Sens. 14, 1–24. https://doi.org/10.3390/ 
rs14143409. 

Kelsey, K.C., Pedersen, S.H., Leffler, A.J., Sexton, J.O., Feng, M., Welker, J.M., 2021. 
Winter snow and spring temperature have differential effects on vegetation 

phenology and productivity across Arctic plant communities. Glob. Chang. Biol. 27, 
1572–1586. https://doi.org/10.1111/gcb.15505. 

Klein, A.G., Hall, D.K., Riggs, G.A., 1998. Improving snow cover mapping in forests 
through the use of a canopy reflectance model. Hydrol. Process. 12, 1723–1744. 
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID- 
HYP691>3.0.CO;2-2. 

Koehler, J., Bauer, A., Dietz, A.J., Kuenzer, C., 2022. Towards forecasting future snow 
cover dynamics in the European Alps—the potential of long optical remote-sensing 
time series. Remote Sens. 14 https://doi.org/10.3390/rs14184461. 

Kostadinov, T.S., Schumer, R., Hausner, M., Bormann, K.J., Gaffney, R., McGwire, K., 
Painter, T.H., Tyler, S., Harpold, A.A., 2019. Watershed-scale mapping of fractional 
snow cover under conifer forest canopy using lidar. Remote Sens. Environ. 222, 
34–49. https://doi.org/10.1016/j.rse.2018.11.037. 
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