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Abstract
Purpose Most studies on surgical activity recognition utilizing artificial intelligence (AI) have focusedmainly on recognizing
one type of activity from small and mono-centric surgical video datasets. It remains speculative whether those models would
generalize to other centers.
Methods In this work, we introduce a large multi-centric multi-activity dataset consisting of 140 surgical videos (MultiBy-
pass140) of laparoscopic Roux-en-Y gastric bypass (LRYGB) surgeries performed at two medical centers, i.e., the University
Hospital of Strasbourg, France (StrasBypass70) and Inselspital, Bern University Hospital, Switzerland (BernBypass70). The
dataset has been fully annotated with phases and steps by two board-certified surgeons. Furthermore, we assess the general-
izability and benchmark different deep learning models for the task of phase and step recognition in 7 experimental studies:
(1) Training and evaluation on BernBypass70; (2) Training and evaluation on StrasBypass70; (3) Training and evaluation
on the joint MultiBypass140 dataset; (4) Training on BernBypass70, evaluation on StrasBypass70; (5) Training on StrasBy-
pass70, evaluation on BernBypass70; Training on MultiBypass140, (6) evaluation on BernBypass70 and (7) evaluation on
StrasBypass70.
Results Themodel’s performance is markedly influenced by the training data. Theworst results were obtained in experiments
(4) and (5) confirming the limited generalization capabilities of models trained on mono-centric data. The use of multi-centric
training data, experiments (6) and (7), improves the generalization capabilities of the models, bringing them beyond the level
of independent mono-centric training and validation (experiments (1) and (2)).
Conclusion MultiBypass140 shows considerable variation in surgical technique andworkflowofLRYGBprocedures between
centers. Therefore, generalization experiments demonstrate a remarkable difference in model performance. These results
highlight the importance of multi-centric datasets for AI model generalization to account for variance in surgical technique
and workflows. The dataset and code are publicly available at https://github.com/CAMMA-public/MultiBypass140.
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Introduction

The emerging field of Surgical Data Science (SDS) aims to
impact the quality of interventional healthcare by collecting,
organizing, analyzing, andmodeling surgical data [1].Aprin-
cipal element of SDS is to model surgical workflows which
eventually could improve patient outcomes by providing
intraoperative assistance, streamlining surgical training [2],
preoperative planning, and postoperative analysis.

SDS has proposed systematic decomposition of work-
flows’multi-level activities—whole procedure, phases, stages,
steps, and actions [3]—and developed various methods to
recognize these activities fromendoscopic videos [4].Recog-
nition of phases [4–6], steps [6, 7], action triplets [8], and
detection and localization of surgical tools [9, 10] are some
of the popular tasks studied in the community.

Given the data-driven nature of these recent AI meth-
ods, the availability of large labeled surgical video datasets
is paramount. Datasets have been curated to study phase
recognition across different types of surgeries: Cholec80 [5]
for laparoscopic cholecystectomy (LC), Bypass40 [6] for
laparoscopic Roux-en-Y gastric bypass (LRYGB), laparo-
scopic sleeve gastrectomy [12], transanal total mesorectal
excision [13], and laparoscopic inguinal hernia repair [14].
Nevertheless, datasets to train AI models for more fine-
grained tasks, such as recognition of steps, action triplets, and
safe dissection zones, have only been collected for specific
surgeries. For example, Bypass40 [6] and CATARACTS1

have been annotated with steps for LRYGB and cataract
surgeries, CholecT50 [8] contains surgical action triplets
labels for LC and safe dissection zones have been stud-
ies for LC [15]. Furthermore, these labeled datasets have
been collected from a single medical center. Training on
mono-centric datasets limits the model’s generalizability to
datasets from other centers. To overcome this generalization
gap, multi-centric datasets representing different surgical
techniques and workflows are warranted [16–18]. However,
multi-centric datasets are rare as they are difficult to acquire
and annotate consistently.

Besides, only a few works have explored recognizing
activities at different levels of granularity. [6, 19] have
attempted joint phase and step recognition using endoscopic
video datasets from a singlemedical center. Themost closely
related work to this paper in objectives is HeiChole [18]
which created a multi-centric dataset of 33 videos for phase
recognition, action recognition, instrument detection, and
skill assessment tasks. To date and to the best of our knowl-
edge, phase and step recognition have not been studied in a
multi-centric dataset of endoscopic videos.

To this end, the study has two objectives: creating a large
multi-centric dataset for a complex LRYGB surgical proce-

1 https://cataracts2020.grand-challenge.org/.

dure and recognizing activities at multiple levels. Thus, the
contributions of this work are threefold:

1. Introduction of a multi-centric dataset of 140 LRYGB
videos from two centers (Strasbourg and Bern).

2. The full annotated dataset with LRYGB ontology of 12
phases and 46 steps.

3. Evaluation of AI models for phase and step recognition
and assessment of multi-centric model generalization.

Datasets and annotations

BernBypass70 dataset consists of 70 surgical videos of
LRYGB at Inselspital, Bern University Hospital, Switzer-
land. The surgeries were performed by three surgeons. The
videos were recorded at a resolution of 720 × 576 at 25
frames-per-second (fps).

StrasBypass70, extending the Bypass40 [6] dataset, is a
collection of 70 videos of LRYGB surgeries performed by
surgeons at the University Hospital of Strasbourg, France.
The videos were recorded at a resolution of 854 × 480 or
1920×1080 at 25 fps andwere uniformly edited to 854×480.

MultiBypass140 is the combined dataset of 140 videos
from Bern and Strasbourg university hospitals. Sample
images of the two datasets are presented in Fig. 1. All videos
have been anonymized by blacking out the out-of-body
frames. Those out-of-body frames were detected using OoB-
Net [20] and verified by manual review.

Annotations. Two board-certified surgeons with more
than 10 years of clinical practice annotated the MultiBy-
pass140 dataset with activities at two levels of granularity,
i.e., phases and steps. The annotation ontology of theLRYGB
procedure as defined in [11] consists of 12 phases and 46
finer-grained steps. A detailed description of all the phases
and steps can be found in the supplementary. MultiBy-
pass140 was annotated using the MOSaiC software [21].

Data Statistics. On average, the surgical duration is 110
and 72min and the total number of frames at 1 fps amounts
to 464,794 and 305,907 in the StrasBypass70 and BernBy-
pass70, respectively. Data characteristics of the multi-center
dataset can be found in the supplementary. According to
video duration, StrasBypass70 and BernBypass70 were split
into training (40 videos), validation (10 videos), and test set
(20 videos), resulting in 80 training, 20 validation, and 40
test videos for MultiBypass140.

Model architecture

MTMS-TCN [6], a state-of-the-art AI model for surgical
activity recognition, was used for the experiments presented
in this paper. The pipeline of MTMS-TCN consists of two
stageswhere first amulti-taskConvolutionalNeuralNetwork
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Fig. 1 MultiBypass140: Sample video frames from StrasBypass70 and BernBypass70. (Bottom) Surgical workflow (modeled as phases [11])
followed in more than 10 surgeries in each medical center

Fig. 2 Schematic representation
of MTMS-TCN. Stage I: the
input images are processed by a
ResNet-50 to extract visual
features. Stage II: features of
subsequent images of a video
are stacked and processed by an
MS-TCN for temporal
awareness

(CNN) (ResNet-50 [22]) model is employed for extracting
visual features from images followed by a multi-task multi-
stage Temporal Convolutional Network (TCN) to refine the
features and extracting temporal information for joint phase
and step recognition, as shown in Fig. 2.

Spatial model: ResNet-50, a popular CNN architecture
heavily employed for activity recognition, is utilized as a
visual feature extractor and trained in multi-task learning of
phase and step recognition. The model was initialized with
pre-trained ImageNet weights and trained using Adam opti-
mizer for 30 epochs.

Temporal model: MTMS-TCN [6] is a two-stage TCN
model trained for 200 epochs in amulti-task learning setup on
video features extracted from the CNN model. Furthermore,
each stage of the TCNmodel consists of causal convolutions

that utilize only information from past frames and dilated
convolutionswith exponentially increasing dilation factor for
capturing long temporal dependencies.

Experiments

To benchmark phase and step recognition on BernBypass70,
StrasBypass70, and on the joint MultiBypass140 dataset,
five different model architectures were assessed: (1) ResNet-
50 (CNN) [22], (2) long short-term memory (LSTM) [23],
(3) Multi-task LSTM (MT-LSTM), (4) multi-stage TCN
(TeCNO) [24], and (5) MTMS-TCN [6].

Seven experimental setups were used to analyze the gen-
eralizability of AI models:
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Fig. 3 Total occurrence of phases and steps in the videos from the two medical centers

1. Training and evaluation on BernBypass70
2. Training and evaluation on StrasBypass70
3. Training and evaluation on the joint MultiBypass140
4. Training on BernBypass70 and evaluation on StrasBy-

pass70
5. Training on StrasBypass70 and evaluation on BernBy-

pass70
6. Training on MultiBypass140 and evaluation on BernBy-

pass70
7. Training on MultiBypass140 and evaluation on StrasBy-

pass70

Model evaluation

Model performance was assessed by comparing human
ground truth annotations with model predictions measuring
accuracy, precision, recall, and F1-score. Following previous
works, performancemetricswere averaged across phases and
steps per video and then across videos [6, 24].

Results & discussions

This is the first study to evaluate AI models for multi-level
activity recognition, i.e., phases and steps, on a large multi-
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Table 1 Benchmark of phase and step recognition. (Best results are in bold)

Phase

Dataset Model ACC (%) PR (%) RE (%) F1 (%)

CNN 74.53 ± 13.34 44.79 ± 8.44 45.69 ± 8.19 42.38 ± 9.14

LSTM 79.73 ± 13.75 54.91 ± 9.31 56.19 ± 10.24 52.60 ± 10.34

(1) BernBypass70 MT-LSTM 80.69 ± 13.85 56.98 ± 11.54 57.14 ± 13.38 54.15 ± 12.84

TeCNO 83.81 ± 13.55 61.28 ± 13.84 62.81 ± 14.07 59.22 ± 14.56

MTMS-TCN 85.30 ± 13.19 64.62 ± 11.33 67.41 ± 13.81 62.40 ± 12.87

CNN 82.46 ± 7.90 72.91 ± 9.17 73.37 ± 8.67 71.13 ± 9.47

LSTM 86.37 ± 7.68 76.66 ± 9.52 80.90 ± 9.63 76.42 ± 10.35

(2) StrasBypass70 MT-LSTM 86.16 ± 8.61 79.87 ± 9.31 79.16 ± 8.94 77.45 ± 10.06

TeCNO 89.50 ± 7.55 81.17 ± 8.54 84.26 ± 7.73 80.70 ± 8.81

MTMS-TCN 90.23 ± 7.04 80.48 ± 9.37 82.39 ± 8.22 79.87 ± 9.37

CNN 78.18 ± 11.21 57.43 ± 15.87 56.85 ± 15.36 54.8 ± 15.63

LSTM 82.56 ± 11.89 68.18 ± 14.11 68.15 ± 13.8 65.02 ± 14.22

(3) MultiBypass140 MT-LSTM 83.94 ± 11.18 67.58 ± 14.93 66.88 ± 15.67 64.86 ± 15.97

TeCNO 86.44 ± 10.77 72.59 ± 13.99 75.3 ± 12.35 71.03 ± 14.02

MTMS-TCN 87.91 ± 10.64 72.27 ± 13.13 74.82 ± 13.36 71.28 ± 13.96

Step

Dataset Model ACC (%) PR (%) RE (%) F1 (%)

CNN 58.92 ± 11.63 38.26 ± 7.95 38.47 ± 7.39 35.55 ± 7.44

LSTM 64.99 ± 12.44 48.66 ± 10.91 48.66 ± 11.12 44.88 ± 10.53

(1) BernBypass70 MT-LSTM 63.54 ± 13.92 49.40 ± 11.21 48.49 ± 12.37 44.93 ± 11.48

TeCNO 67.54 ± 13.49 50.47 ± 10.42 53.01 ± 11.74 47.56 ± 10.85

MTMS-TCN 67.54 ± 13.28 51.04 ± 10.36 52.84 ± 10.44 47.99 ± 10.23

CNN 70.44 ± 11.48 50.29 ± 7.1 50.66 ± 8.4 47.67 ± 8.19

LSTM 75.26 ± 11.67 60.15 ± 7.35 58.74 ± 9.04 56.37 ± 9.05

(2) StrasBypass70 MT-LSTM 74.67 ± 11.48 58.98 ± 8.10 59.27 ± 9.73 56.10 ± 9.33

TeCNO 78.49 ± 9.43 60.15 ± 6.92 62.09 ± 8.11 58.13 ± 7.87

MTMS-TCN 77.78 ± 10.24 59.14 ± 7.84 61.28 ± 8.65 57.27 ± 8.47

CNN 65.21 ± 12.75 44.19 ± 10.07 44.47 ± 10.55 41.47 ± 10.31

LSTM 70.18 ± 13.04 54.74 ± 11.71 54.24 ± 12.55 51.15 ± 12.35

(3) MultiBypass140 MT-LSTM 69.55 ± 13.76 53.92 ± 11.64 53.14 ± 12.64 50.11 ± 12.45

TeCNO 73.49 ± 13.17 55.81 ± 11.1 57.29 ± 12.18 53.08 ± 11.95

MTMS-TCN 72.85 ± 12.68 55.32 ± 10.55 56.58 ± 11.7 52.59 ± 11.32

centric video dataset of LRYGB procedures. In this section,
we present the results and discuss our findings.

Workflow: Strasbourg vs Bern. Differences in surgical
workflow between medical centers are common, as differ-
ent surgeons perform the interventions. StrasBypass70 has
an average video duration of 111±33min consisting of 10
phases and 33 steps. BernBypass70 has an average video
duration of 73±20min consisting of 8 phases and 27 steps.
To understand the LRYGB surgical workflow differences
between centers, we visualize the phase and step occurrences
in Fig. 3 and the surgical workflows, modeled as phase tran-
sition graphs, in Fig. 1.

In StrasBypass70, the occurrence of phases and steps is
evenly distributed. Either a phase or a step occurs in most
videos, or it does not occur at all. In contrast, BernBy-
pass70 has only some videos containing all phases and steps.
Most of the videos contain a subset of phases and steps.
These differences in dataset distribution of phases and steps
between centers result from differences in surgical technique
and workflows. In StrasBypass70, the omentum is routinely
divided (P3) and bothmesenteric defects are routinely closed
(P7 & P9), which is not routinely done in BernBypass70.
Given the hierarchical structure of phases and steps, with
every phasemissing, corresponding steps aremissing aswell.
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Fig. 4 Best (upper row) and worst (lower row) video pairs of ground truth annotations (top) andMTMS-TCN predictions (bottom) for all 3 datasets.
The width of each phase is relative to its duration

Hence, the average video of BernBypass70 contains 2 phases
and 6 steps less than the average StrasBypass70 video. This
finding is also reflected by the average video duration which
is 38min shorter in BernBypass70 compared to StrasBy-
pass70 videos.

Recognition: Individual centers. To independently ana-
lyze the performance ofAImodels on each center/dataset, we
train different models on BernBypass70, StrasBypass70, and
MultiBypass140 datasets and evaluate the models’ perfor-
mance on respective test sets. The phase and step recognition
task results are presented in Table 1.

All the models, both spatial and spatio-temporal, achieve
considerably low performance across all themetrics onBern-
Bypass70 in comparison to StrasBypass70. For instance, the
CNN (ResNet-50) spatial model on phase recognition task
shows 8% lower accuracy and a staggering 28% degradation
in F1-score on BernBypass70 compared to StrasBypass70.
Spatio-temporal model, MTMS-TCN, performs 5% lower in
accuracy and 15-17% lower on all other metrics on BernBy-
pass70 over StrasBypass70. Similarly for step recognition,
CNN and MTMS-TCN on BernBypass70 achieve 12% and
8-10% lower than StrasBypass70 on allmetrics. These differ-
ences are direct consequences of the differences in surgical
workflow followed in the two centers and consistent with

previous work on LC [17]. Given that many phases and
steps (Fig. 3) are not carried out routinely in Bern, their
occurrences/class distribution is notably skewed in Bern-
Bypass70 which makes recognition of phases and steps
increasingly challenging for AI models on this dataset. This
can be witnessed in Fig. 4 where the model performs best
on videos following common workflow (P1→P2→P3→...)
in both the datasets while performing worse when there is
unexpected flow of phases/steps performed during surgeries
(P4→P10→P8 or P1→P12→P1→P4).

Lastly, all theAImodels on the combinedMultiBypass140
dataset have a performance exceeding the performance on
BernBypass70, but inferior to the performance on StrasBy-
pass70.

Recognition: Cross-center. To examine models’ ability
to transfer knowledge learnt from one center to the other, we
train CNN andMTMS-TCN on one center and evaluate them
on the other (experiments 4, 5, 6, & 7). The experimental
results are tabulated in Table 2.

The performance of the CNN & MTMS-TCN in these
experiments is considerably inferior to training and evalua-
tion on individualmono-centric datasets (experiments 1&2).
CNN&MTMS-TCN trained on BernBypass70 when evalu-
ated on StrasBypass70 without any fine-tuning achieve 57%
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Table 2 Cross dataset evaluation of MTMS-TCN

Experiment Model ACC (%) PR (%) RE (%) F1 (%)

Phase

(4) BernBypass70 → CNN 57.34 ± 8.52 35.94 ± 6.16 45.41 ± 6.51 32.72 ± 5.47

StrasBypass70 MTMS-TCN 64.44 ± 7.91 36.76 ± 5.49 40.16 ± 7.38 33.10 ± 5.72

(5) StrasBypass70 → CNN 56.66 ± 14.48 32.14 ± 7.61 34.13 ± 7.36 29.54 ± 8.21

BernBypass70 MTMS-TCN 72.36 ± 17.57 42.21 ± 9.80 45.13 ± 13.55 39.05 ± 11.95

(6) MultiBypass140 → CNN 76.77 ± 12.34 46.48 ± 7.41 46.90 ± 8.72 43.99 ± 8.29

BernBypass70 MTMS-TCN 85.62 ± 12.74 62.13 ± 8.34 65.02 ± 10.56 60.63 ± 9.49

(7) MultiBypass140 → CNN 83.30 ± 8.03 70.85 ± 8.18 71.70 ± 8.36 69.46 ± 8.75

StrasBypass70 MTMS-TCN 90.19 ± 7.31 82.41 ± 8.33 84.63 ± 7.31 81.93 ± 8.54

Step

(4) BernBypass70 → CNN 40.16 ± 9.65 26.12 ± 4.55 27.82 ± 5.65 20.99 ± 4.36

StrasBypass70 MTMS-TCN 44.87 ± 10.42 29.05 ± 5.96 29.16 ± 5.59 23.81 ± 5.63

(5) StrasBypass70 → CNN 37.45 ± 11.48 18.51 ± 4.74 21.41 ± 3.78 17.35 ± 4.56

BernBypass70 MTMS-TCN 49.00 ± 15.14 24.98 ± 6.52 29.01 ± 7.74 23.23 ± 6.56

(6) MultiBypass140 → CNN 57.19 ± 12.07 36.18 ± 7.29 36.09 ± 7.53 33.25 ± 7.42

BernBypass70 MTMS-TCN 67.74 ± 13.05 50.06 ± 10.99 51.06 ± 12.34 46.82 ± 11.35

(7) MultiBypass140 → CNN 70.23 ± 11.36 50.33 ± 6.87 50.49 ± 7.54 47.45 ± 7.73

StrasBypass70 MTMS-TCN 77.96 ± 9.96 60.59 ± 6.83 62.11 ± 7.78 58.35 ± 7.80

& 64% in accuracy and 32%&33% in F1 score for phase and
step recognition. This is due to the significant differences in
the workflow followed in Bern with many phases and steps
not routinely carried out. Inversely, CNN & MTMS-TCN
achieves 56% & 72% in accuracy and 29% & 39% in F1
when trained on StrasBypass70 and evaluated on BernBy-
pass70. Although in StrasBypass70 the occurrence of phases
and steps are evenly distributed, the knowledge learned by
these models on StrasBypass70 is still not transferable to
BernBypass70. This odd performance could be for two rea-
sons: 1) The variability in visual appearance between centers
caused due to different instruments, lighting, or patients’
demographics; 2) alongside this, the temporal differences
caused due to changes in the surgical workflow across sur-
geons and medical centers.

Both CNN & MTMS-TCN trained on MultiBypass140
when evaluated on the mono-centric datasets (experiments
6 & 7) achieve performance close to its performance when
trained and evaluated on the individual dataset (experiments 1
&2) for both the phase and step recognition tasks. This shows
the capacity of AI models to learn all the variations existing
in the data and domain without compromising performance.

Challenges. Despite its multi-centric design, this study
is limited by the fact that datasets from only two centers
are involved. The significant variability in surgical tech-
nique and image domain makes the transferability of AI
models between centers a challenging task. More studies on
adding video datasets from other clinical centers are imper-
ative to capture the variability in surgical technique and

dataset distributions. Future studies should focus on develop-
ing AI models to learn from a large corpus of unlabeled data
frommultiple centers. MultiBypass140 is a starting point for
studying objectivemetrics to quantify the variability of surgi-
cal workflows. These metrics can exploit quality/similarity
measures of endoscopic images combined with similarity
metrics between transition graphs at different levels of gran-
ularity, i.e. phases and steps.

Conclusion

This study demonstrates the need to exhibit the variation
of surgical techniques and workflow to develop general-
izable AI models. With extensive experimentation, it has
been shown that dataset distribution and size due to different
LRYGB workflows between centers have a major impact on
model performance. This work highlights the importance of
multi-centric datasets for the training and evaluation of AI
models in surgical video analysis.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-024-03166-
3.
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