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Introduction Vibration controlled transient elastography (VCTE) uses an external
Shear wave elastography (SWE) has gained an important role in the
diagnosis and management of patients with chronic liver disease (CLD).
Liver stiffness assessment with SWE has increasingly been used not only
for the non-invasive staging of liver fibrosis but also for evaluation of
the risk of complications or the clinical outcome of CLD patients. Evi-
dence from the literature has highlighted that SWE can be used to pre-
dict the presence of clinically significant portal hypertension (CSPH)
and the risk of liver-related events (LREs) in patients with compensated
advanced CLD (cACLD) [1,2]. Therefore, SWE can be considered a
mature technique for the evaluation of patients with CLD.

New ultrasound (US)-based biomarkers that non-invasively quantify
liver fat content are currently available [3−5]. Because of the steatotic
liver disease “epidemic,” their use in assessing the presence and severity
of hepatic steatosis is attractive.

In 2021, the World Federation for Ultrasound in Medicine and Biol-
ogy (WFUMB) released a position paper on liver fat quantification pro-
viding expert opinion [6]. Since then, several other studies have been
published. However, confounding factors that may affect the US estima-
tion of liver fat are inadequately understood, and a protocol for the
acquisition of these parameters that mitigate the differences in values
between observers or between algorithms from different manufacturers
is lacking.

Therefore, the WFUMB leadership has promoted the development of
a document on multiparametric US that includes both new evidence on
the role of SWE in CLD and available data on the quantitative US evalua-
tion of liver fat content.

The availability of US-based biomarkers for the evaluation of liver
inflammation is of great interest, and research on their value and appli-
cability in clinical practice is increasing. However, it is too early to
include them in this document because the results obtained so far are
still uncertain and the evidence is limited.

The steering committee designated by the WFUMB leadership
invited experts from each ultrasound federation; they were chosen for
their outstanding contributions in this field. Meetings were held online
or in a hybrid mode. Ultrasound companies were not invited and did not
participate in the development of the guidelines in any manner. The
final consensus on the recommendations was reached during an online
meeting.

The document is divided into two parts. The first part is a further
update to the WFUMB liver elastography guidelines update released in
2018 [7]. The second part is a guidance on the role of the new ultra-
sound tools for liver fat quantification.

As in the previous update, for SWE the recommendations were made
and graded using the Oxford classification, including level of evidence
(LoE), grade of recommendation (GoR) and proportion of agreement
(Oxford Centre for Evidence-Based Medicine [OCEBM] 2009). Online
meetings were held for voting on the recommendations (for, against and
abstain).

For guidance on the US biomarkers for quantification of liver fat con-
tent, the recommendations were based on published studies and experts’
opinions but were not graded because the body of evidence remained
low at the time this document was drafted.
Terminology

Acoustic radiation force impulse (ARFI) is a special ultrasound pulse,
often called a push pulse, that applies focused high energy to create tis-
sue compression (strain) and generate shear waves perpendicular to the
push pulse. Note: ARFI generates the shear waves, but B-mode imaging
tracks and measures the shear waves.

Shear wave elastography (SWE) describes any technique that gener-
ates shear waves and measures shear wave speed. This includes VCTE,
ARFI techniques and magnetic resonance elastography.
2

mechanical push to the skin by means of a controlled vibration that gen-
erates shear waves.

Acoustic radiation force impulse shear wave elastography (ARFI-SWE)
describes the techniques that use ARFI to generate shear waves in tis-
sues. This includes both point SWE (pSWE) and 2D-SWE.

Steatotic liver disease (SLD). This umbrella term covers a range of dis-
eases manifesting as increased hepatic steatosis (defined as ≥5% of hep-
atocytes having steatosis on a histological specimen). This covers
metabolic dysfunction-associated steatotic liver disease (MASLD), alco-
hol-related liver disease (ALD), the presence of both risk factors (Met-
ALD) and some less common causes of hepatic steatosis (e.g., genetic
disease and drug-induced steatosis).

Non-alcoholic fatty liver disease (NAFLD). This older term describes a
condition with increased hepatic steatosis in the absence of an alterna-
tive cause such as excessive alcohol consumption and drugs. The diagno-
sis also requires the exclusion of other chronic liver diseases such as
chronic viral hepatitis and autoimmune hepatitis.

Non-alcoholic steatohepatitis (NASH). This subtype of NAFLD is char-
acterized by the presence of hepatic steatosis, lobular inflammation,
hepatocyte ballooning and varying degrees of hepatic fibrosis.

Metabolic dysfunction-associated fatty liver disease (MAFLD). This term,
proposed by Eslam and colleagues in 2020, replaces the term NAFLD
[8]. Apart from describing metabolic dysfunction as the cause of
MAFLD, the definition also requires the presence of type 2 diabetes,
overweight or obesity or two other metabolic risk factors. In contrast,
MAFLD can co-exist with other chronic liver diseases.

Metabolic dysfunction-associated steatotic liver disease (MASLD). After
the initial MAFLD proposal, the international community conducted a
four-round Delphi process to discuss the nomenclature and definition. In
the end, both “alcoholic” and “fatty” were deemed stigmatizing and
were removed from the terminology. Unlike the MAFLD definition, the
diagnosis of MASLD requires only the presence of one or more metabolic
risk factors. Again, MASLD can co-exist with other chronic liver diseases.
However, although MAFLD can co-exist with ALD, the MASLD definition
places MASLD and ALD into different categories.

Metabolic dysfunction-associated steatohepatitis (MASH). This subtype
of MASLD is characterized by the presence of hepatic steatosis, lobular
inflammation, hepatocyte ballooning and varying degrees of hepatic
fibrosis.
Basic principles and protocol for liver stiffness measurement
acquisition

Basics

Elastography allows assessment of the biomechanical properties of
the tissue and can be regarded as virtual palpation. Under a stress, stiffer
tissues exhibit less axial displacement and a higher speed of transverse
displacement, namely, shear wave propagation. Shear waves can be gen-
erated by applying a mechanical stress externally to the body or by the
push-pulse (ARFI) of the US beam directly into the body. The term shear
wave elastography refers to the techniques based on both types of stress,
that is, VCTE and ARFI-based techniques. With the latter, the assessment
of shear wave speed/stiffness is made either at one point (approximately
1 cc) as in pSWE or is made using several ARFI lines where it is possible
to obtain quantitative color-coded images of the elasticity, as in
2D-SWE. The basic principles of SWE have been fully described else-
where [7,9,10].
Protocol for acquisition of liver stiffness measurements

To ensure the best possible estimate of liver stiffness measurement
(LSM), a protocol for acquisitions has been recommended in the WFUMB



Table 1
Recommended protocol for the acquisition of reliable liver stiffness
measurements

1 Fast for 4 h before the examination.
2 Rest for at least 10 min before the examination.
3 Place in supine or slight left lateral position (not >30°) with the right

forearm held behind the head and the arm in maximum abduction
(180° from the resting position) to widen the intercostal space.

4 Take measurements with an intercostal approach at the location with the
best acoustical window.

5 Adequate B-mode liver imaging, without shadowing caused by the lung
or ribs, is a prerequisite for the ARFI-SWE techniques, that is, pSWE
and 2D-SWE, as shear waves are tracked with B-mode.

6 Transducer should be perpendicular to the liver capsule.
7 The ROI should be parallel to the liver capsule.
8 Measurement should be taken 15−20 mm below liver capsule to avoid

reverberation artifact with pSWE.
9 With 2D-SWE, the size of the ROI should be at least 10 mm.
10 The 2D-SWE field of view can be positioned closer to the liver capsule if

reverberation artifacts are avoided; however, the ROI, that is, the mea-
surement box, should be positioned 15−20 mm below the liver cap-
sule.

11 In most US systems, the maximum ARFI push-pulse is at 4−4.5 cm from
the transducer, which is the optimal location for obtaining measure-
ments.
In most US systems, the ARFI push-pulse is attenuated by 6−7 cm, lim-
iting adequate shear wave generation.

12 Placement of the ROIs must avoid large blood vessels, bile ducts and
masses.

13 Measurements should be taken at neutral breathing during a breath-hold.
14 For VCTE, the appropriate probe should be selected based on patient’s

body habitus.
15 Measurements should be taken in independent images, all obtained in the

same location.
16 For each acquisition with 2D-SWE, the coefficient of variation, namely,

SD/mean, should be <0.25 for stiffness values between 8.8 and 11.9
kPa and <0.10 for stiffness ≥12.0 kPa.

17 For VCTE, 10 acquisitions should be obtained.
18 For pSWE, 5−10 acquisitions are recommended.
19 For 2D-SWE, 3−5 measurements should be obtained.
29 For all SWE techniques, that is, VCTE and ARFI-SWE, the result should be

expressed as the median value of the acquisitions together with the
IQR/M.

21 The IQR/M should be used as a measure of the quality of the data set.
22 For kPa measurements, the IQR/M should be ≤30%, and for m/s meas-

urements, it should be ≤15% for an accurate data set.
23 Results can be reported in m/s or in kPa.

ARFI, acoustic radiation force impulse; IQR/M, interquartile range/median;
pSWE, point shear wave elastography; ROI, region of interest; SWE, shear
wave elastography; US, ultrasound; VCTE, vibration-controlled transient
elastography.
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2018 update [7]. This protocol is now updated based on the current lit-
erature and is reported in Table 1.

For pSWE techniques, studies have indicated that a reliable LSM can
be obtained using the median value of only five acquisitions with an
interquartile range/median (IQR/M) ≤30% (for measurements in kPa)
[11−14]. For 2D-SWE, studies have reported that a minimum of three
individual acquisitions is sufficient to compute a reliable LSM [15-17].
With liver biopsy as reference, it has been found that there is no differ-
ence in diagnostic accuracy between reporting the mean of five acquisi-
tions and reporting the mean of three acquisitions [18]. However, for
beginners, it is preferable to perform 10 acquisitions with pSWE and 5
with 2D-SWE and to decrease the number of acquisitions when the oper-
ator’s expertise is improved [19].

With real-time 2D-SWE, improved accuracy has been observed when
the distribution of the color-coded elasticity signals in the measurement
box is homogeneous and consistent. Artifacts can also be identified on
the color map and avoided. Several parameters have been proposed to
evaluate the homogeneity [15,18,20].

A study in a large series of patients with CLD who underwent liver
biopsy reported that, for LSM with 2D-SWE ≥8.8 kPa, the quality
3

criterion for each single LSM is the coefficient of variation (CV), namely,
standard deviation (SD)/mean [15]. New criteria were derived to define
a reliable 2D-SWE measurement: for each acquisition, the CV should be
<0.25 for LSMs between 8.8 and 11.9 kPa and <0.10 for LSMs ≥12.0
kPa. Below 8.8 kPa, the reliability of 2D-SWE measurement was not
affected by the CV. The following workflow based on two steps was sug-
gested: (i) define a reliable LSM; (ii) perform three reliable LSMs. When
compared with the study by Thiele et al. [18], their reliability criteria
were found to be more discriminant, better separating reliable LSMs
from those with very poor accuracy that should not be used for the eval-
uation of liver fibrosis in clinical practice.

An increase in LSMs has been reported after intense physical exer-
cise; therefore, at least 10 min of rest is recommended [21−23]. Of note,
LSMs obtained in the left lateral position at 90° are significantly higher
than those obtained in the supine position [22].

One study found that artificial intelligence (AI) might significantly
improve the accuracy of 2D-SWE; however, this finding lacks further val-
idation [24]. Currently, several manufacturers are using AI to help users
in choosing the best area for positioning the region of interest (ROI),
that is, the measurement box. AI assistance facilitates the stiffness mea-
surement, but whether it also improves accuracy must still be verified.

In the pediatric population it could be challenging or even impossible
to follow all the recommendations for a correct acquisition, particularly
the breath-hold and fasting. In infants and young children who cannot
follow breath-hold instructions, the Society of Radiologists in Ultra-
sound (SRU) consensus suggests acquiring a long cineloop when using
real-time 2D-SWE, reviewing it and choosing the image with the most
stable pattern for the LSM [10]. Performing LSM during shallow free
breathing could be acceptable. With use of an ultrafast 2D-SWE tech-
nique it has been reported that LSMs are not affected by free breathing
[25,26]. However, it must be considered that free breathing can gener-
ate movement artifacts that can affect the LSM. Of note, a study per-
formed in adults reported that LSMs obtained in free breathing were
consistently 20%−25% lower than those obtained with breath-hold
[27]. Likewise, a study performed in children reported that with free
breathing, LSMs were systematically lower with respect to those with
breath-hold, with a mean difference of −11.1% [28]. Eating might
increase liver stiffness. In newborns and infants, the LSM can be per-
formed just before the next meal or at the start of eating. An epigastric
approach can be used in some conditions, such as in the setting of liver
transplant. A study that compared the epigastric and intercostal
approaches to LSMs in children reported that the differences were not
significant [26].

Interpretation of LSM results

As already highlighted in previous guidelines, the LSM must be inter-
preted considering the anamnesis of the patient, the etiology of liver dis-
ease and the clinical and laboratory data [7,29,30]. In fact, there are
several factors that may lead to an LSM increase independently of liver
fibrosis, and these are confounding factors when LSM is used for staging
liver fibrosis. These factors have been fully detailed in previous guide-
lines [7,29,30]. Briefly, they include acute hepatitis, transaminase flares,
obstructive cholestasis, infiltrative diseases, congestive heart disease
and any other condition that increases the volume of blood in the liver,
such as eating, intense physical exercise or holding the breath in deep
inspiration. For ALD, ongoing drinking per se does not seem to increase
LSM [31]. However, alcohol binges may increase LSM, which commonly
decreases after reduction or cessation of alcohol intake [32].

The effect of inflammation on LSM can play an important role, partic-
ularly in some etiologies of CLD, such as autoimmune hepatitis, alcohol-
related liver disease with alcohol-associated hepatitis and primary scle-
rosing cholangitis (PSC) [30]. In the latter, the presence of biliary
obstructions also contributes to an increase in LSM.

Of note, it has been reported that inflammatory activity on histology
significantly affects LSMs made using VCTE but not those made with



Table 2
Interpretation of liver stiffness measurement using VCTE (rule of five)

VCTE-LSM Interpretation

≤5 kPa Normal
<10 kPa Exclude cACLD: Risk of LREs is negligible.
≥10 to <15 kPa Potential cACLD: Risk of LREs starts to increase.

+Platelets ≥150 × 109/L: Exclude CSPH.
≥15 to <20 kPa Confirm cACLD: patients are at clinically relevant risk of LREs.

+Platelets ≥150 × 109/L: Exclude HRVs.
≥20 to <25 kPa cACLD with potential CSPH (“gray zone” for CSPH).

The ANTICIPATE modela can be used to predict the risk of
CSPH in patients with viral hepatitis, alcohol-related liver dis-
ease and non-obese MASH.

≥25 kPa Assume CSPH in patients with viral hepatitis, alcohol-related
liver disease and non-obese MASH.

cACLD, compensated advanced chronic liver disease; CPSH, clinically signifi-
cant portal hypertension; HRVs, high-risk varices; LREs, liver-related events;
LSM, liver stiffness measurement; MASH, metabolic dysfunction-associated
steatohepatitis; VCTE, vibration-controlled transient elastography.

a ANTICIPATE model: LSM values between 20 and 25 kPa and platelet count
<150 × 109/L or LSM values between 15 and 20 kPa and platelet count <110
× 109/L have a CSPH risk of at least 60%.
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2D-SWE in MASLD [33]. Similar findings were observed in a large series
of patients with mixed etiologies of CLD [34].

As for the effect of steatosis on LSM, there are conflicting results in
the literature for all the SWE techniques. Studies reporting that the pres-
ence of severe steatosis led to an overestimation of liver fibrosis were
performed with VCTE using only the M probe [35−37]. Other studies
performed using the appropriate probe, that is, M or XL depending on
the body mass index or skin-to-liver capsule distance, did not confirm
these results [33,38,39]. The LSM overestimation found in previous
studies might be explained by the fact that, with VCTE, the assessment is
made in a fixed area, and therefore, the ROI could be too close to the
liver capsule or may even include the subcutaneous tissue in persons
with very thick subcutaneous tissue [40]. Of note, the discriminative
accuracy of VCTE for significant and advanced fibrosis decreases in
patients with a body mass index >30 kg/m2 regardless of the type of
probe used [39,41].

With ARFI-SWE techniques, it is more challenging to obtain a reli-
able LSM in individuals with liver steatosis because the energy of the US
beam is attenuated by the fat. It has been reported that the diagnostic
performance of a 2D-SWE technique is affected by the presence of severe
steatosis [42,43]. On the contrary, in a study also performed with a 2D-
SWE technique and that included 981 patients, using liver biopsy as a
reference, it was found that steatosis and BMI did not overestimate fibro-
sis and did not affect accuracy [44]. In two large cohorts in which a 2D-
SWE technique was used, it was reported that the LSM values in patients
with no/mild fibrosis were significantly higher in the case of severe stea-
tosis; this effect was not detected in higher stages of liver fibrosis
[43,45].

Staging liver fibrosis

Liver histology is the reference standard used to evaluate the accu-
racy of SWE techniques in staging liver fibrosis. Histopathology uses
semiquantitative scoring systems to stage liver fibrosis based on the sub-
jective evaluation of the amount and distribution of fibrous tissue that
ultimately leads to architectural distortion of the hepatic lobules, with
bridging fibrosis characteristic of severe fibrosis and regenerative nod-
ules characteristic of cirrhosis [46]. Previous research has revealed a
close correlation between the amount of liver fibrosis evaluated histo-
logically and the LSM obtained with the SWE techniques [47−51].
Hence, liver stiffness estimation has been accepted as a reliable non-
invasive substitute for liver biopsy in several clinical scenarios
[7,10,30].

It should, however, be stressed that liver inflammation, congestion,
intrahepatic cholestasis, food intake and obesity are well-known con-
founding factors for LSM, increasing the risk of falsely increased results.
The overlap in LSM for individual fibrosis stages prohibits LSM from
being directly translated into a specific pathohistological fibrosis stage.
In most clinical scenarios of CLD, both intrahepatic inflammation and
fibrosis contribute to liver stiffness, and it is challenging to disentangle
the exact role of each in determining the LSM even when the clinical
context is known, and the laboratory tests, for example, aspartate trans-
aminase (AST)/alanine transaminase (ALT) as surrogates of hepatic
injury/inflammation, are available.

Although LSMs provide continuous numerical values, any histologic
scoring system is based on categorical scales for fibrosis and inflamma-
tion. Therefore, even under the best conditions, an overlap of LSM
between consecutive histologic stages of liver fibrosis is unavoidable.
Thus, it is more clinically relevant to provide an estimation of the risk of
significant/severe fibrosis (≥F2/≥F3≥, that is, when patients are prone
to develop liver-related complications) in a clinical and prognostic con-
text rather than rigidly trying to use LSM to classify patients into conse-
cutive histological stages of liver fibrosis.

The Baveno VI consensus on portal hypertension has highlighted that
the spectrum of advanced fibrosis (F3−F4) is a continuum in asymptom-
atic patients, and distinguishing between the two stages is often not
4

possible on clinical grounds [52]. Therefore, the term cACLD was pro-
posed and has been widely accepted by hepatologists since then.

For assessing the severity of liver disease based on LSM using VCTE,
the Baveno VI consensus proposed the “rule of five,” which was
endorsed by the WFUMB 2018 update [7]. The “rule of five” has been
further reinforced and expanded in the Baveno VII consensus (Table 2)
[1]. For ALD and MASLD, a recent large multicenter study suggested
that 8 and 12 kPa by VCTE LSM are better cutoffs for ruling out and rul-
ing in cACLD, instead of 10 and 15 kPa [53].

The literature indicates that although the different elastography
techniques exhibit a strong linear correlation with increasing stages of
liver fibrosis, LSMs obtained with the ARFI-SWE techniques are lower
than those obtained with VCTE. This difference increases at higher
stages of liver fibrosis. Moreover, different US systems provide different
LSMs in the same individuals; therefore, cutoffs for exact fibrosis staging
that mimic the histologic classifications cannot be interchangeably used
between US systems, and the same US system should be used for follow-
up measurements in the same patient. To this end, the US system used to
measure liver stiffness must be indicated in the report.

The SRU consensus has, however, highlighted that evidence from the
literature suggests that differences between the different US systems are
smaller than the overlap between consecutive stages of liver fibrosis and
has suggested the “rule of four” for assessing the severity of liver disease
with the ARFI-SWE techniques (Table 3) [10]. Moreover, because of the
efforts of the Quantitative Imaging Biomarkers Alliance (QIBA) commit-
tee of the Radiological Society of North America (RSNA), the differences
in values obtained with ARFI-SWE techniques from different manufac-
turers are mitigated.

The panel agrees that the “rule of four” for ARFI-SWE techniques
may be considered for evaluating the risk of advanced disease, and it
can be used independently from the etiology of liver disease when the
presence of confounding factors on LSMs can confidently be ruled out.
However, it must be underscored that the independence of this rule
from the etiology of liver disease still requires validation.

Metabolic dysfunction-associated steatotic liver disease/non-
alcoholic fatty liver disease

Metabolic dysfunction-associated steatotic liver disease (MASLD,
previously classified as non-alcoholic fatty liver disease [NAFLD]) is cur-
rently the leading cause of CLD worldwide. Recently, it has been proven
that almost the totality of patients with NAFLD meet the criteria pro-
posed to define MASLD [54,55]. Its prevalence is currently estimated to



Table 3
Interpretation of liver stiffness measurement obtained using ARFI-SWE techni-
ques (rule of four)

ARFI-SWE LSM Interpretation

≤5 kPa (1.3 m/s) High probability of being normal
<9 kPa (1.7 m/s) In the absence of other known clinical signs, rules out

cACLD. If there are known clinical signs, further test-
ing may be needed for confirmation.

9−13 kPa (1.7−2.1 m/s) Suggestive of cACLD but further testing is required for
confirmation.

>13 kPa (2.1 m/s) Rules in cACLD
>17 kPa (2.4 m/s) Suggestive of CSPH
>21 kPa (2.6 m/s) High probability of CSPH

Reproduced (modified), with permission, from Barr et al. [10].
ARFI, acoustic radiation force impulse; cACLD, compensated advanced chronic
liver disease; CSPH, clinically significant portal hypertension; LSM, liver stiff-
ness measurement.
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be at least 30% in adults and 10% in children and adolescents [56−58].
However, the disease burden is >60% in people who are overweight/
obese or who have type 2 diabetes mellitus [59−61]. Furthermore, liver
fibrosis can develop in MASLD as a consequence of steatohepatitis
(MASH).

Given the high burden of MASLD worldwide, non-invasive tests
(NITs) are key to the diagnosis and establishment of the severity of the
disease, the prediction of prognosis and the monitoring of disease pro-
gression or improvement (either spontaneous or resulting from treat-
ment). Currently, the diagnosis of MASLD is based mostly on B-mode
liver US imaging, with liver elastography playing an important role as a
biomarker for measuring the severity of hepatic fibrosis.

Once MASLD is diagnosed, the key question to be answered from a
liver perspective regards the presence and severity of fibrosis, which is
the major factor associated with the occurrence of liver outcomes [62].
Moreover, the presence of advanced fibrosis or cirrhosis necessitates ini-
tiation of screening for portal hypertension and surveillance for hepato-
cellular carcinoma (HCC). Sequential algorithms using a two-step
approach have been proposed for the detection of advanced fibrosis. At
the primary care level, simple inexpensive and widely available blood-
based tests, such as the FIB-4 (AST, ALT, platelet count and age) allow to
rule out, with acceptable accuracy, the presence of advanced fibrosis
and to identify patients requiring further specialist hepatology assess-
ment with more specific NITs [30].

Fibrosis staging

In patients referred for specialist assessment, data support the use of
LSM. Values <8 kPa with VCTE reliably exclude advanced liver fibrosis,
while values of LSM ≥ 8 kPa should be considered as suggestive of
fibrotic MASLD and should prompt further testing (e.g., liver biopsy). In
a recent individual patient meta-analysis [63] including 37 studies and
5735 patients with histologically proven MASLD (30% had advanced
fibrosis), the use of a sequential combination of FIB-4 (cutoffs: <1.3 and
≥2.67) followed by VCTE LSM (cutoffs: <8.0 and ≥10.0 kPa) to rule out
Table 4
Performance of SWE techniques in staging fibrosis in MAS
sortium [64]

Fibrosis stage VCTE pSWE

Significant fibrosis [37; 2763]a 0.83 (3.8−10.2)b [9; 80
Advanced fibrosis [44; 4219]a 0.85 (6.8−12.9)b [11; 1
Cirrhosis [22; 337]a 0.89 (6.9−19.9)b [8; 75

AUC, area under the curve; pSWE, point shear wave el
vibration-controlled transient elastography.

a Number of studies; number of patients.
b AUC (cutoff range, kPa).
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or rule in advanced fibrosis had a sensitivity and specificity (95% confi-
dence interval [CI]) of 66% (63%−68%) and 86% (84%−87%). In 33%
of cases, liver biopsy was needed to achieve a final diagnosis. The use of
FIB-4 (cutoffs: <1.3 and ≥3.48) followed by LSM (cutoffs: <8.0 and
≥20.0 kPa) to rule out advanced fibrosis or rule in cirrhosis had a sensi-
tivity of 38% (37%−39%) and specificity of 90% (89%−91%); in this
case, 19% required liver biopsy to achieve a definite diagnosis.

Interestingly, LSM using VCTE can be used in combination with the
controlled attenuation parameter (CAP) and with AST, in the so-called
FAST score to identify patients with at-risk MASH (NAFLD activity score
≥4 points and fibrosis stage ≥2), who should be considered for pharma-
cologic treatment when available, with an accuracy >80% for this diag-
nosis.

The use of SWE techniques to stage fibrosis in MASLD/NAFLD has
been addressed in a recent meta-analysis of the LITMUS consortium [64],
including 53 VCTE studies (11,701 patients), 12 pSWE studies (1312
patients) and 4 2D-SWE studies (502 patients); in all cases, liver histology
was used as reference standard. Summary area under the curve (sAUC) for
the diagnosis of significant fibrosis, advanced fibrosis and cirrhosis is out-
lined in Table 4. As shown, pSWE had a very high discriminative value in
the reported studies and was the only SWE method meeting a sensitivity
and specificity of at least 80% to diagnose advanced fibrosis [64]. How-
ever, it must be highlighted that VCTE was the technique used in most of
the studies that were included in the meta-analysis.

The best cutoff value to rule-in advanced fibrosis with VCTE was 12 kPa
[65].

Recommendation 1. SWE can be used to rule out (< 8 kPa)
and rule in (>12−15 kPa) advanced liver fibrosis in patients
with MASLD (LoE 1a, GoR A). Broad consensus (11/0/1, 92%).
Prognosis

Several studies on the prognostic value of VCTE LSMs in histologi-
cally proven NAFLD/MASLD are available and have been the subject of
a recent individual participant data meta-analysis in 2518 patients from
25 studies [66]. During the follow-up (median time = 57 mo), 5.8% of
patients developed the composite endpoint (all-cause mortality, HCC,
liver transplantation or decompensation of cirrhosis). The time-dependent
AUCs at 5 y were 0.72 (95% CI: 0.62−0.81) for histology and 0.76 (0.70
−0.83) for VCTE LSM, confirming that LSM can be considered as an alter-
native to histology for prognostic aims. The higher the value of LSM, the
higher is the risk of liver outcomes. The ANTICIPATE-NASH model, which
is based on VCTE LSM, platelet count and BMI, has been proposed and val-
idated to assess the risk of CSPH [67−69].

Longitudinal changes in LSM provide insight into the progression or
regression of liver disease. European Association for the Study of the
Liver (EASL) clinical practice guidelines suggested then to repeat mea-
surement of LSM at 1- to 3-y intervals according to the clinical scenario
[30]. Recent American Gastroenterological Association (AGA) clinical
practice guidelines also suggest that patients with NAFLD/MASLD and
LD/NAFLD in the meta-analysis of the LITMUS con-

2D-SWE

5]a 0.86 (4.2−9.8)b [4; 488]a 0.75 (8.3−11.6)b

209]a 0.89 (5.4−53.9)b [4; 488]a 0.72 (9.3−13.1)
9]a 0.90 (5.6−19.4)b [4; 372]a 0.88 (14.4−15.7)b

astography; SWE, shear wave elastography; VCTE,
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NITs suggestive of advanced hepatic fibrosis or cirrhosis should be moni-
tored with serial LSMs [65].

Data regarding pSWE and 2D-SWE in the setting of prognostic strati-
fication and longitudinal assessment are currently limited.

Recommendation 2. LSM using SWE should be used to stratify
the risk of liver-related events and mortality (LoE 1a, GoR A).
Strong consensus (12/0/0, 100%).
Recommendation 3. Yearly repetition of LSM is suggested in
patients with compensated advanced chronic liver disease, who
represent themain risk group for developing CSPH or decompen-
sation (LoE 3, GoR C). Strong consensus (12/0/0, 100%).

Alcohol-related liver disease

Alcohol-related liver disease represents a substantial and growing
worldwide health crisis, affecting millions annually. ALD causes at least
25% of global cirrhosis deaths, up to 50% in Europe, and is associated
with a 14- and 16-y loss in life expectancy for men and women, respec-
tively [70,71]. Early diagnosis and prognosis are critical as 60%−75% of
patients with ALD cirrhosis are currently diagnosed at the time of
decompensation, which is much later than for all other CLD etiologies
[72,73]. At the time of decompensation, median survival is 3−5 y, and
treatment options are limited [72]. In parallel, there are ample possibili-
ties for detection of ALD in high-risk cohorts, as patients with alcohol
use disorder (AUD) or prolonged, excessive alcohol intake frequently
visit primary and secondary healthcare [74].

Consequently, precise diagnostic and prognostic tests are important
tools to ensure timely AUD treatment to patients with ALD at high risk
of progressing to liver-related complications [75,76].

Impact of ongoing alcohol use on liver stiffness

Excess use of alcohol may cause steatohepatitis and alcohol-associ-
ated hepatitis. Hepatic inflammation is a known cause of increased liver
stiffness across elastography techniques, in ALD as in other etiologies
[77]. Specifically for ALD, ongoing drinking in itself does not seem to
cause false-positive LSMs, as seen in a biopsy-controlled study investi-
gating VCTE and 2D-SWE in outpatients with moderate to high alcohol
consumption [78]. A number of studies have investigated VCTE during
detoxification in patients with heavy drinking [79−88]. Overall, these
studies find that elevated liver enzymes correlate with elevated VCTE
LSM and that resolution of hepatic inflammation evidenced by AST nor-
malization is paralleled by reduced liver stiffness after a period of 1−8
wk. One biopsy-controlled study found that ALD patients with advanced
fibrosis decreased from an average VCTE LSM of 21.5 kPa at hospitaliza-
tion to 11.4 kPa after 2 mo of abstinence. In parallel, AST decreased
from 70 U/L (IQR: 49−102) to 30 U/L (IQR: 21−49) [87]. Another study
found steeply increasing LSM in ALD patients with advanced fibrosis
when AST levels exceeded 70 U/L [82].

In contrast, several studies find that low LSMs can be used to exclude
the presence of advanced fibrosis regardless of ongoing drinking or con-
comitant alcohol-associated steatohepatitis [86,87,89].

Finally, an individual patient data meta-analysis revealed that opti-
mal LSM cutoffs for VCTE to stage fibrosis differed according to AST and
bilirubin levels, with the highest cutoffs at AST >75 U/L and bilirubin
>16 μmol/L (0.94 mg/dL) [77].

Recommendation 4. In patients who drink alcohol in excess
and have elevated liver stiffness, LSM should be repeated
after at least 4 wk of abstinence if there are concurrent signs
of inflammatory activity in the form of aspartate transami-
nase >70 U/L and/or elevated bilirubin (LoE 2a, GoR B).
Strong consensus (11/0/0, 100%).
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Use of SWE to diagnose advanced fibrosis in alcohol-related liver disease

One individual patient data meta-analysis and several multicenter
studies have been published on the diagnostic accuracy of VCTE for alco-
hol-related liver fibrosis [53,77,87]. The meta-analysis revealed a dis-
criminative accuracy of AUC = 0.92 for advanced fibrosis and cirrhosis,
from 10 studies comprising 1026 patients [77]. The cutoffs derived by
optimizing the Youden index did not reach a sensitivity or specificity
>90% to rule out or rule in fibrosis. The summary cutoff for advanced
fibrosis was 12.1 kPa. A 2021 multicenter, biopsy-controlled study vali-
dated and modified Baveno VI-suggested cutoffs of 10 and 15 kPa in 946
ALD patients from 10 centers [53]. The authors concluded that a cutoff
value of 10 kPa ruled out advanced fibrosis in ALD with a sensitivity of
87%, increasing to 94% when using a cutoff of 8 kPa. Similarly, 12 kPa
ruled in advanced fibrosis in ALD with a specificity of 89%, and 15 kPa
with a specificity of 92%. These findings are backed up by a recent
biopsy-controlled, multicenter study in 259 ALD patients recruited from
addiction units, where 10 kPa ruled out advanced fibrosis when detoxifi-
cation started at a sensitivity of 96%, and 87% after 2 mo of abstinence
[87]. For ruling in advanced fibrosis, 12 kPa had a specificity of 92% at
detoxification, increasing to 96% after 2 mo of abstinence.

Three ALD studies have investigated the use of pSWE with VTQ (Acu-
son, Siemens) to diagnose fibrosis in ALD [90−92]. A study in 83 ALD
patients with a 20% prevalence of advanced fibrosis found a sensitivity
and specificity of 82% and 79%, respectively, at a cutoff of 1.84 m/s
(10.2 kPa) for advanced fibrosis (AUC 0.86). A cutoff of 1.94 m/s (11.3
kPa) diagnosed cirrhosis with a sensitivity of 92% and specificity of 82%
[90]. Another study in 112 patients, 25% with advanced fibrosis, found
similar discriminatory accuracy, but lower cutoff values: 1.40 m/s (5.9
kPa) for advanced fibrosis (sensitivity 84%, specificity 82%) and
1.65 m/s (8.2 kPa) for cirrhosis (sensitivity 89%, specificity 84%) [91].
The most recent study included 251 patients of whom 70% had
advanced fibrosis and 38% had decompensated cirrhosis, most with con-
comitant alcohol-associated hepatitis [92]. They reported liver stiffness
values of 1.47−1.66 m/s (6.5−8.3 kPa) for severe fibrosis and
>1.66 m/s (>8.3 kPa) for cirrhosis. These findings contrast with the
rule-out ability of the recently proposed “rule of four,” suggesting that
pSWE or 2D-SWE <9 kPa (1.7 m/s) rules out advanced fibrosis. The find-
ings do, however, support the proposal that ARFI-SWE LSM 9−13 kPa
(1.7−2.1 m/s) is suggestive of advanced fibrosis and that a value ≥13
kPa (2.1 m/s) rules in advanced fibrosis.

For 2D-SWE, the results obtained using the US Aixplorer system (Super-
Sonic Imagine) in a single-center cohort were published in two articles
[78,89]. The cohort comprised 289 ALD patients with a 23% prevalence of
advanced fibrosis. AUCs of 0.88, 0.97 and 0.97 for the diagnosis of signifi-
cant fibrosis (≥F2), advanced fibrosis (≥F3) and cirrhosis were reported. A
cutoff of 16.4 kPa yielded a sensitivity and specificity of 90% and 96% for
advanced fibrosis in per-protocol analyses [89].

Recommendation 5. VCTE can be used for liver fibrosis assess-
ment in patients with ALD. Values <8 kPa rule out advanced
liver fibrosis, and values >12−15 kPa rule in advanced fibro-
sis (LoE 1b, GoR B). Strong consensus (11/0/0, 100%).

Recommendation 6. pSWE and 2D-SWE may be used for
diagnostic purposes in patients with ALD, as their accuracy is
comparable to that of VCTE. In the absence of validated cut-
offs, the “rule of 4” may be considered (LoE 2b, GoR D).
Strong consensus (11/0/0, 100%).

Use of SWE to predict liver-related events and monitor liver disease
progression or regression in alcohol-related liver disease

Three large cohort studies have evaluated the prognostic ability of
VCTE to predict LREs and decompensation during a median follow-up of
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4−5 y in ALD patients without decompensated cirrhosis at baseline [93
−95]. One systematic review published before those three studies found
the heterogeneity was too high to perform a meta-analysis, and reported
VCTE cutoff values of 20 and 25 kPa used in two published abstracts
[96]. Overall, the cohort studies find that 10 kPa is a good cutoff to rule
out the risk for decompensation or LREs, with 3%−5% of events occur-
ring during 5 y of follow-up. The risk substantially increases for ALD
patients with baseline VCTE LSM ≥15 kPa, although with varying esti-
mates. One study reported an event rate of 54% during a median follow-
up of 4.1 y for a broadly defined outcome of LREs [93]. Another study
predicted a 25% 5-y risk of death, decompensation or HCC in ALD
patients with a VCTE LSM of 15 kPa, increasing to 50% for ALD patients
with a VCTE LSM of 30 kPa [95].

More prognostic studies have been conducted in mixed etiologies,
where ALD patients constitute up to half of the cohort, but more often
below 20% [97−99]. These studies confirm that VCTE LSM according to
the Baveno VII “rule of five” (10−15−20−25 kPa) predicts increasingly
higher risk of decompensation and liver-related death.

Although many use liver stiffness to monitor patients for progression
of disease, data on monitoring are limited currently, and no single etiol-
ogy study has been published for ALD. One mixed-etiology study found
that a decrease in VCTE LSM of 20%, or to <20 kPa, translated into a
clinically significant improvement in prognosis [100]. However, this
study included primarily HCV patients. Therefore, it is not currently pos-
sible to make recommendations for monitoring ALD improvement or
worsening using VCTE.

Elastography is not recommended for prognostication in patients
with decompensated disease, although one study in mostly ALD cirrhosis
patients found that VCTE LSM after a first episode of variceal bleeding
predicted further decompensation with an AUC of 0.93, significantly
better than the MELD-Na score (AUC 0.78), with a sensitivity of 90% at
a cutoff of 38 kPa [101].

Two studies investigated the prognostic accuracy of 2D-SWE
[93,102]. In a single-center study of 462 patients, the C-statistic was
0.87 for prediction of LREs during 4.1 y of follow-up, with rates of
events of 5% for 2D-SWE LSM <10 kPa, 15% for 10.0−16.4 kPa and
64% for >16.4 kPa. A multicenter study with 23% ALD patients found
that the patients with a MELD score <10 and 2D-SWE LSM <20 kPa had
a 2-y mortality of 1.5%, increasing to 12% at MELD <10 and 2D-SWE
≥20 kPa or MELD ≥10 and 2D-SWE <20 kPa, and to 39% at MELD ≥10
and 2D-SWE≥20 kPa [102].

Recommendation 7. VCTE LSM may be used to predict liver-
related events in patients with ALD and compensated disease
(LoE 2b, GoR C). Strong consensus (11/0/0, 100%).
Viral hepatitis

Fibrosis staging

Liver stiffness measurement by US elastography has been extensively
evaluated in patients with chronic viral hepatitis. In a meta-analysis of
19 studies in patients with chronic hepatitis B, LSM had summary AUCs
of 0.82 for significant fibrosis and 0.91 for cirrhosis [103].

In chronic hepatitis B, the presence of significant liver fibrosis is an
indication for antiviral therapy regardless of the serum ALT level
[104,105].

For chronic hepatitis C, the current direct-acting antivirals are highly effi-
cacious and well-tolerated and can result in sustained virological response
(SVR) in over 95% of patients. Therefore, direct-acting antivirals should be
given regardless of fibrosis stage. However, it remains useful to assess fibro-
sis in patients with chronic hepatitis C. According to current guidelines, in
patients with advanced fibrosis and cirrhosis, surveillance for HCCmust con-
tinue because the risk of HCC is reduced but not abolished [106].
7

The use of LSM to monitor treatment response is controversial. In
chronic viral hepatitis, LSM is driven by not only liver fibrosis but also
hepatic inflammation. Most patients with acute viral hepatitis or acute
exacerbation of chronic hepatitis B can have LSM interpreted as being in
the cirrhotic range [107,108]. Confounding of LSM is also well reported
in patients with moderate degrees of ALT elevation [109]. For this rea-
son, a reduction in LSM during and after antiviral therapy, particularly
in the early phase of treatment, largely represents a reduction in hepatic
inflammation rather than genuine fibrosis improvement [110].

Although a reduction in LSM cannot reliably reflect fibrosis
improvement and regression of cirrhosis, current data suggest that
the Baveno VI criteria are sufficient to spare patients from upper
gastrointestinal endoscopy for surveillance of varices. The Baveno VI
criteria state that patients with LSM <20 kPa by VCTE and a normal
platelet count ≥150 × 109/L have a <5% risk of high-risk varices
[1]. The criteria have been validated in patients on antiviral therapy
for hepatitis B-related cirrhosis [111]. The addition of spleen stiff-
ness measurement to LSM according to the Baveno VII consensus
avoided more endoscopies than the Baveno VI criteria alone with a
comparable missed rate. In another study of hepatitis C-related cir-
rhosis, achieving an LSM <12 kPa and normal platelet count after
SVR excluded CSPH with a sensitivity of 99.2% [112]. In such
patients, only 1.3% developed hepatic decompensation in 3 y.
Recently, the Baveno VI criteria have also been validated in patients
with HCC [113].
Prognostication

The assessment of liver fibrosis is important throughout the
patient journey in patients with chronic viral hepatitis (Table 5).
The degree of liver fibrosis correlates well with the risk of develop-
ing LREs [114]. Obviously, cirrhotic complications can develop only
after progression to cirrhosis, and cirrhosis remains the most impor-
tant risk factor for HCC in patients with chronic viral hepatitis
[115].

Current guidelines recommend HCC surveillance in patients with
cirrhosis and patients with chronic hepatitis B and high-risk features
[116,117]. Several HCC risk scores have been proposed to aid selec-
tion of patients for HCC surveillance, among which some incorpo-
rated LSM into the model [118,119]. Regression of cirrhosis is well
recognized in most patients with chronic hepatitis B with complete
viral suppression and chronic hepatitis C with SVR [120,121]. How-
ever, the risk of HCC in such patients remains higher than that in
patients who have never had cirrhosis. Currently, there are insuffi-
cient data to recommend cessation of HCC surveillance after treat-
ment for chronic viral hepatitis in patients with cACLD before
antiviral therapy.

Recommendation 8. Ultrasound elastography is useful to
exclude significant fibrosis and diagnose cirrhosis in patients
with chronic hepatitis B and C (LoE 1a, GoR B). Strong con-
sensus (11/0/0, 100%).
Recommendation 9. In patients with treated (suppressed)
hepatitis B and cured (i.e., SVR) hepatitis C, the Baveno VI cri-
teria are useful in predicting high-risk varices and clinically
significant portal hypertension. Patients with a VCTE LSM
<20 kPa and platelet count ≥150 × 109/L may be spared
from endoscopic surveillance for varices even if they had cir-
rhosis (ACLD) prior to antiviral treatment (LoE 2b, GoR A).
Strong consensus (11/0/0, 100%).
Recommendation 10. HCC surveillance should continue
despite decreased LSM in patients with advanced liver disease
before antiviral treatment (LoE 2b, GoR A). Strong consensus
(11/0/0, 100%).



Table 5
Role of liver stiffness measurement in patients with chronic viral hepatitis

Role Description

Prognostication There is a strong association with future risk of cirrhotic
complications and hepatocellular carcinoma.

Treatment decision Antiviral therapy is indicated in patients with chronic hepa-
titis B and significant liver fibrosis.

Follow-up Patients with hepatitis C virus who do not have advanced
chronic liver disease can be discharged from the hepatol-
ogy clinic after achieving a sustained virological response.
Patients with advanced chronic liver disease but fulfilling
the Baveno VI criteria can be spared from endoscopic sur-
veillance for varices.
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Cholestatic liver disease, autoimmune hepatitis and rare liver
diseases

Primary biliary cholangitis

The prognosis of primary biliary cholangitis (PBC) depends largely
on the extent of liver fibrosis [122,123]. LSM with VCTE not only corre-
lates with fibrosis presence, as shown in a meta-analysis [124], but is
also an important indicator for prognosis. Corpechot et al.’s interna-
tional multicenter study involving 3985 patients found that each addi-
tional kilopascal in LSM increases the hazard ratio by 1.040 (1.026
−1.054), establishing LSM as an independent prognostic factor for PBC
[125]. Thresholds of 8 and 15 kPa effectively categorize patients into
low-, medium- and high-risk groups.

In managing PBC, treatment success is typically gauged through lab-
oratory values and symptoms reduction [126]. However, evaluating the
effectiveness of treatment remains complex, with estimates often overly
optimistic in about 20% of cases [127]. Recent findings from the Corpe-
chot group suggest that LSM values exceeding 10 kPa could signal the
necessity for second-line treatments in PBC patients [128].

Although other SWE techniques such as 2D-SWE also reveal a corre-
lation with liver fibrosis in PBC and overlap syndromes [129,130], the
diversity in technology across different manufacturers and the low level
of evidence preclude a universal recommendation for these methods.
Primary sclerosing cholangitis

Primary sclerosing cholangitis (PSC), marked by progressive inflam-
mation and fibrosis of bile ducts, presents challenges in monitoring and
staging because of its heterogeneous manifestation and fluctuating pro-
gression.

Liver stiffness measurement has exhibited a correlation with fibrosis
stages in PSC patients [131]. A key study by Corpechot et al. [132],
involving 73 biopsy-controlled patients, identified LSM cutoffs for fibro-
sis stages ≥F1, ≥F2, ≥F3 and F4 of 7.4, 8.6, 9.6 and 14.4 kPa, respec-
tively. This research underscored the prognostic significance of both
initial LSM values and their longitudinal changes in PSC. Interestingly,
simpler markers, such as spleen length assessed by B-mode US, may offer
comparable predictive accuracy [133]. A recent systematic review on
prognostic markers highlighted the need for further prospective studies
comparing LSM methods with established approaches such as the Mayo
Risk Score [134].

Similar to PBC, ARFI-SWE techniques reveal correlations with liver
fibrosis in PSC; however, their utility is constrained by variable cutoff
values and limited evidence [135]. Recently, Roccarina et al. [136]
reported that in a large cohort of 152 patients, LSM using pSWE was
highly accurate in detecting any grade of fibrosis in PSC. Additionally,
they proposed a cutoff value of 11.2 kPa, suggesting that beyond this
threshold, spleen stiffness measurement (SSM) should be added to better
stratify patients for the need for screening for esophageal varices.
8

It is crucial to recognize that inflammatory activity and cholestasis
can have an impact on LSM accuracy in PSC patients. Therefore, inter-
pretation of LSM results should be approached with caution and after
ruling out significant acute biliary obstructions.

Other cholestatic liver diseases

Liver stiffness measurement has also been assessed in other chole-
static conditions, such as cystic fibrosis-related liver disease (CFLD)
[137]. Because of the low prevalence of these diseases, comprehensive
data on the incidence of advanced stages and the diagnostic and prog-
nostic utility of LSM remain limited. Nevertheless, significantly elevated
LSM values typically indicate advanced disease, warranting further diag-
nostic evaluation in affected patients (see also the section on Pediatrics).

Autoimmune hepatitis

Autoimmune hepatitis, a chronic inflammatory liver disease of
unknown etiology [138], is marked by inflammatory flares that can
occur with or without symptoms, potentially leading to liver fibrosis and
cirrhosis. Although liver biopsy remains crucial for diagnosing autoim-
mune liver diseases, LSM methods provide valuable supplementary
information on disease severity. A study of 90 patients undergoing long-
term immunosuppressive therapy revealed that liver SWE correlated
with active hepatitis and fibrosis presence [139]. The study identified
an optimal cutoff for cirrhosis detection using 2D-SWE at 16.1 kPa, with
an AUC of 0.93. Incorporation of spleen SWE could enhance diagnostic
accuracy, as it is less affected by inflammatory activity. Similar findings
were reported for liver elastography using VCTE and pSWE in a smaller
study by Paranagu�a-Vezozzo et al. [140].

Rare liver diseases

Numerous studies have explored the diagnostic and prognostic capabili-
ties of SWE techniques across a range of rare acute and chronic liver disor-
ders. For instance, in patients with hepatic manifestations of Wilson’s
disease, LSM has exhibited a correlation with clinical algorithms [141] and
degree of liver fibrosis [142]. A decrease in LSM values during treatment is
indicative of a stable course in Wilson’s disease [142]. Similarly, studies on
patient cohorts with conditions such as hemochromatosis [143] and α-1-
antitrypsin deficiency [144] have verified the association between height-
ened LSM values and advanced parenchymal damage.

In cases of vascular pathologies such as sinusoidal obstruction syn-
drome (SOS), elevated LSM readings, whether assessed by VCTE or
pSWE, are indicative of a more severe course of the disease [145−147].
Notably, LSM increases often precede the clinical symptoms of SOS [147
−149]. Current research is focusing on using LSM to identify patients at
risk early, allowing for timely preventative treatments [149].

In non-cirrhotic PH causing porto-sinusoidal vascular disorder (PSVD),
there is a marked increase in spleen stiffness, whereas the increase in liver
stiffness is lower than that observed in cirrhotic PH [150]. Indeed, it has
been reported that a VCTE LSM <10 kPa in patients with signs of PH is
highly suggestive of PSVD [151]. In a study in a small cohort, the spleen/
liver stiffness ratio was proposed for the diagnosis of PSVD [152].

Recommendation 11. VCTE LSM is useful in excluding
advanced fibrosis and diagnosing cirrhosis in patients with
PBC. Cutoff values of 8 and 15 kPa can be used to distinguish
low-, medium- and high-risk groups for liver-related events
(LoE 1b, GoR B). Strong consensus (11/0/0, 100%).
Recommendation 12. In the absence of biliary obstruction, ele-
vated VCTE LSM values are suggestive of advanced parenchymal
damage in a variety of rare chronic liver diseases including PSC,
treated autoimmune hepatitis and storage disorders. In the
absence of validated cutoffs, a VCTE LSM of 8 kPa is suggested
(LoE 2b, GoR C). Strong consensus (12/0/0, 100%).
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Pediatrics

The normative value of LSM in children is generally ≤5.0 kPa with
all the SWE techniques [153]. A slight age and transducer dependency
has been reported [7]; however, these differences are not clinically rele-
vant when the values are within the normal range. The number of stud-
ies that have confirmed the usefulness of the SWE techniques for the
evaluation of liver disease in the pediatric population has substantially
increased since the previous guideline update [7]. Most studies have
been performed in small cohorts or cohorts with mixed etiologies of
chronic liver disease. Currently, similar to the adult population, MASLD
is the most common chronic liver disease in children [154].

It must be highlighted that some etiologies of chronic liver disease,
such as CFLD, biliary atresia (BA) and Fontan-associated liver disease
(FALD), among others, are mostly specific to the pediatric population. In
these cases, in addition to liver fibrosis and depending on the etiology of
the underlying liver disease, there is a complex and variable interplay of
other factors that may lead to an increase in LSM. These factors are
mainly congestion, obstructive cholestasis and liver inflammation,
which are “confounding” factors when using liver stiffness as a bio-
marker of fibrosis. Therefore, thresholds for fibrosis staging are variable
between studies, particularly because cohorts with mixed etiologies of
liver disease were evaluated [155−158].

Nonetheless, taking into consideration all the factors contributing to
LSM, the use of the SWE techniques is helpful for diagnosis, follow-up
and evaluation of the clinical outcome in the pediatric population. For
the follow-up, the SRU consensus has suggested using the percentage of
LSM change over time referred to the individual baseline LSM [10].
Because there is variability between manufacturers and techniques, the
same US equipment and the same transducer should preferably be used
in follow-up studies of individual pediatric patients, for consistency. As
there is a 10% variability in measurement a clinically significant change
should be greater than 10%.

The prevalence of MASLD in children and adolescents has steadily
increased in the last two decades [154]. A recent meta-analysis assessed
the diagnostic performance of LSM in detecting liver fibrosis in pediatric
patients with MASLD. Seven studies with a total of 436 children were
included in the analysis. The prevalence of fibrosis was similar to that
observed in studies including adults. However, it must be highlighted
that the prevalence of fibrosis in this meta-analysis should not be consid-
ered representative of the broader population, as these were children in
a hospital setting and biopsies were performed on clinical grounds.
Therefore, the prevalence of liver fibrosis was likely estimated too high.
The AUC revealed a diagnostic performance >0.90 in differentiating the
stages of liver fibrosis [159].

A recent meta-analysis, including 11 studies with 1307 children for
the diagnosis of BA and 9 studies with 327 children for the follow-up
post-Kasai procedure, has confirmed that SWE is useful in differentiating
BA from other infantile cholestatic diseases [160]. The mean LSM was
significantly higher in the BA group than in the non-BA group (overall
standardized mean difference: 2.30 kPa). The AUC was 0.91 with a
pooled sensitivity and specificity of 83% and 79%, respectively. In post-
Kasai procedure pediatric patients, the mean LSM was significantly
higher in patients with varices than in those without (overall standard-
ized mean difference: 1.38 kPa).

It has been suggested that SWE can be used for detecting CFLD [161
−172]. The published studies used the criteria suggested by a best prac-
tice guidance as reference standard [173], and some of them included
both adults and children. A meta-analysis, including six studies with
both adults and pediatric data for a total of 605 patients, has reported
that the cutoff of LSM by VCTE for the diagnosis of CFLD was ≥5.95 kPa
with a sensitivity, specificity and AUC of 55%, 87% and 0.76, respec-
tively [137]. By adding an AST-to-platelet ratio index (APRI) cutoff
≥0.329, the positive predictive and negative predictive values were 92%
and 87%, respectively, with a diagnostic odds ratio of 74.9. Comparable
results were obtained in a study that used histology as the reference
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[174]. It has been reported that the change in LSM over time is useful
for evaluating the progression of CFLD [175−177].

Liver fibrosis is always present in Fontan patients by adolescence,
and the degree of fibrosis increases over time [178]. However, the
assessment of liver fibrosis is a challenge in FALD because congestion
increases LSM, and the use of LSM thresholds derived from children
with other (mixed) etiologies of chronic liver disease will likely overesti-
mate the fibrosis stage in FALD patients. In fact, it has been reported that
the LSM values in Fontan patients with mild fibrosis may be much
higher than the traditional LSM threshold for liver cirrhosis [179]. For
follow-up and longitudinal monitoring of Fontan patients, the SRU con-
sensus has suggested assessing the change in LSM over time [10]. How-
ever, as of today, a validated risk-strategy approach is lacking.

Few studies with a limited number of children have been published
regarding the use of SWE for the evaluation of fibrosis in pediatric
patients after liver transplant, and VCTE was the technique most fre-
quently used [180]. In the largest series available to date, comprising 94
children, the AUC of LSM by VCTE for detecting significant fibrosis was
suboptimal (0.71; 95% CI: 0.57−0.85) [181]. No validated LSM cutoffs
for identifying children at risk for fibrosis after liver transplant are avail-
able [180].

The “rule of four” suggested for adults cannot be applied to the pediatric
population. On the basis of the current literature, a value ≤5 kPa can rule
out fibrosis whereas a value ≥15 kPa can rule in advanced liver disease
except for children with BA or CFLD or for Fontan patients [153].

Recommendation 13. SWE is helpful for the diagnosis and fol-
low-up of chronic liver disease in the pediatric population, as
well as for evaluation of the clinical outcomes. However, specific
cutoffs for fibrosis staging cannot be recommended for pediatric
patients because of the heterogeneity between published studies
(LoE 2a, GoR B). Strong consensus (12/0/0, 100%).
Portal hypertension

Clinically significant portal hypertension

Patients with cACLD (for a definition, see the section Staging of Liver
Fibrosis) constitute the target population for CSPH screening [1]. Nota-
bly, patients with clinical signs of decompensated liver cirrhosis
(dACLD) have CSPH by definition and therefore do not need to undergo
(non-invasive) screening for CSPH. Treatment with non-selective beta
blockers (NSBBs), ideally carvedilol, is indicated in cACLD patients with
CSPH [1,182]. Given the large body of evidence available for VCTE LSM
to correlate well with portal hypertension severity and to predict the
presence of CSPH and the risk of LREs, Baveno VII has recommended
the VCTE LSM “rule of 5” [1] (5−10−15−20−25 kPa) that allows clini-
cians in daily clinical practice to rule out and rule in cACLD and estimate
the risk for CSPH and LREs for their patients. A VCTE LSM <10 kPa rules
out cACLD and indicates a negligible risk of LREs in patients with
MASLD [68]. In a large-scale study including a total of 3317 MASLD
patients, the observed LREs rate at 3 y in those 1837 patients with a
VCTE LSM <10 kPa was only 0.1% [68]. However, it must be
highlighted that the risk of LREs is higher in patients with ALD. In a
study of 462 patients, 3% (9/303) of those with a VCTE LSM <10 kPa
developed LREs during an average follow up of 4 y [2].

A pragmatic “rule of 4” (5−9−13−17 kPa) was suggested for ARFI-
SWE LSMs to support clinical risk stratification, but supporting evidence
is not as strong as for VCTE LSMs [10].

Three HVPG-controlled studies investigated the value of VCTE LSMs in
predicting CSPH specifically in patients with ALD etiology: A smaller study
including 48 patients with ALD reported a VCTE LSM cutoff at 34.9 kPa to
rule in CSPH (specificity 88%, negative predictive value [NPV] 64%) [183].
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The largest study including 227 ALD patients suggested a VCTE LSM cutoff
at 19 kPa (positive predictive value [PPV] 84.1%, NPV 86.2%) [184]. A
more recent study (118 ALD patients) found a VCTE LSM cutoff >30.6 kPa
for ruling in CSPH (specificity 94%) [86].

The Baveno VII criteria postulate that a VCTE LSM >20 kPa is sugges-
tive of portal hypertension if associated with thrombocytopenia (platelet
count [PLT] <150 × 109/L) and that a VCTE LSM ≥25 kPa rules in CSPH
in ALD, viral hepatitis B (HBV) and C (HCV) and non-obese MASLD [1].
However, these cutoffs have not been sufficiently validated for other
liver disease etiologies and for obese MASLD. High BMI, which is com-
monly found in MASLD patients, is confounding the correlation of VCTE
LSM with CSPH (i.e., with hepatic venous pressure gradient) [67]. Thus,
the combination of VCTE LSM, PLT and BMI has been proposed [67]
and validated [68,69] as a diagnostic and prognostic tool (ANTICIPATE-
NASH model) for predicting the risk of CSPH in patients with MASLD.

ARFI-SWE techniques (pSWE and 2D-SWE) can rule out and rule in
CSPH as well, but fewer data are available, and the cutoffs proposed in
the literature vary. On the basis of the available evidence and consider-
ing that sufficiently powered head-to-head validation studies are not
available, the SRU consensus [10] proposed a vendor-neutral “rule of 4”
kPa, with cutoffs at 5, 9, 13 and 17 kPa. According to this rule, in cACLD
patients with chronic viral hepatitis or MASLD, ARFI-SWE LSM values
>17 kPa (>2.4 m/s) suggest CSPH.

Most data on using ARFI-SWE for the evaluation of CSPH are available
for 2D-SWE specific to the Aixplorer US system (SuperSonic Imagine),
and for this system published cutoffs for ruling out CSPH range from
<13.5 to <16.0 kPa [185−189], with better performance when combined
with the criterion of normal platelet count (≥150 × 109/L). In turn, 2D-
SWE stiffness values ranging from >25.8 to >38.0 kPa [187,188] indi-
cated a high likelihood of CSPH. One individual patient data meta-analy-
sis including 328 patients with mixed etiology of liver disease (53% with
ALD) from five studies investigated the use of 2D-SWE to diagnose CSPH
[186]. This study reported an LSM <14 kPa cutoff to rule out CSPH (sensi-
tivity 91%) and >32 kPa to rule in CSPH (specificity 89%).

Recommendation 14. A simple “rule of 5” for VCTE LSM and
“rule of 4” kPa for ARFI-SWE techniques can be used to identify
patients with cACLD at risk for LREs (LoE 1a for VCTE, LoE 2b for
ARFI-SWE, GoR A). Strong consensus (12/0/0, 100%).
Recommendation 15. A VCTE LSM <10 kPa indicates a low 5-y
risk for LREs. (LoE 1b, GoR A). Strong consensus (12/0/0, 100%).
Recommendation 16. VCTE LSMs of 15−20 kPa suggest CSPH
in patients with PLT <110 × 109/L (LoE 2c, GoR A). Strong
consensus (12/0/0, 100%).
Recommendation 17. A VCTE LSM ≥20−25 kPa suggests CSPH if
PLT is<150 × 109/L (LoE 2a, GoR A). Strong consensus (12/0/0,
100%).
Recommendation 18. A VCTE LSM >25 kPa rules in CSPH in
patients with ALD, HBV/HCV and non-obese MASLD (LoE 1b,
GoR A). Strong consensus (12/0/0, 100%).
Recommendation 19. An ARFI-SWE LSM <9 kPa indicates a
low short-term risk of LREs (LoE 2a, GoR A). Strong consensus
(12/0/0, 100%).
Recommendation 20. An ARFI-SWE LSM >17 kPa suggests
CSPH, especially in patients with PLT <150 × 109/L (LoE 3b,
GoR B). Strong consensus (12/0/0, 100%).
Recommendation 21. An ARFI-SWE LSM >21 kPa indicates a
high risk of CSPH and LREs (LoE 4, GoR C). Strong consensus
(12/0/0, 100%).
Screening for high-risk varices

Medical therapy is indicated in all patients with varices as they have
by definition CSPH; thus, the detection of high-risk varices (high-risk
varices [HRVs] = medium to large varices or any varices with red-spot
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signs) is of clinical relevance. The term varices needing treatment (VNT)
should thus no longer be used to avoid the misunderstanding that there
could be varices that do not require medical treatment. Patients with a
VCTE LSM <20 kPa and PLT >150 × 109/L (Baveno VI criteria) may not
need to undergo screening endoscopy. The majority of studies on diag-
nosing CSPH or HRV using the Baveno VI and VII criteria included
patients with cirrrhosis of mixed etiology, with ALD constituting
20%−30% [190−192]. A meta-analysis reported that the Baveno VI
criteria resulted in no HRV missed in the subgroup of ALD cirrhosis
patients [193]. Different cutoffs for different ARFI-SWE (pSWE and
2D-SWE) techniques have been proposed to rule out and rule in
HRV: Patients with LSM values by pSWE <12 kPa and PLT > 150 ×
109/L (BAVElastPQ criteria, proposed by a monocentric study
including 195 patients) may not need to undergo screening endos-
copy [194]. Another study including 76 patients (36.8% ALD, 30.3%
MASLD, 14.5% viral hepatitis) reported that LSM values by 2D-SWE
<19.3 kPa and normal platelet count (PLT ≥150 × 109/L) ruled out
HRV (sensitivity 100%) [185].

Recommendation 22. Screening endoscopy can be avoided in
cACLD patients with VCTE LSMs <20 kPa and PLT ≥150
×109/L (LoE 1a, GoR A). Strong consensus (12/0/0, 100%).
Prediction of liver-related events

Liver stiffness measurement by VCTE has been consistently
reported to predict LREs (hepatic decompensation, HCC, liver-
related mortality) in patients with chronic liver diseases in large
meta-analyses [195,196]. Baseline LSM has also been reported to
predict liver-related outcomes (liver-related complications, liver
transplantation or death) in a large international multicenter cohort
of 3985 patients with PBC [197].

Two studies focusing on MASLD patients with cACLD reported simi-
lar results [198,199]. For instance, a baseline LSM ≥21 kPa was inde-
pendently associated with a higher risk of hepatic decompensation (HR:
3.71; 95% CI: 1.89−6.78, p<0.001) in a large multicenter study [199] in
1039 patients with a median follow-up of 3 y, whereas an LSM ≥30.7
kPa predicted LREs (adjusted HR = 10.13) in another study in 1398
MASLD patients enrolled in randomized placebo-controlled trials with
16 mo of follow-up [198]. By contrast, baseline LSM did not predict car-
diovascular events or extrahepatic cancers [199,200]. Results on the
value of LSM for prediction of overall mortality have been conflicting
[199-202].

Finally, repeated LSMs seem to be superior to one-time measure-
ment. For instance, in 533 MASLD patients with cACLD, an increase in
LSMs of 20% over a median interval of 37 mo was independently associ-
ated with hepatic decompensation, HCC, overall mortality and liver-
related mortality [199]. In another retrospective single-center cohort
study, including 2508 patients with CLD (non-ACLD, 66%; cACLD, 30%;
decompensated ACLD, 4%) followed for a median of 71 mo, an increase
in LSMs of 20% at any time (but at least 180 d apart) was associated
with a 50% increase in hepatic decompensation and liver-related mortal-
ity [203]. Further prospective studies are needed to assess the impact of
dynamic changes in LSM on long-term outcomes.

Data on ARFI-SWE LSM (by 2D-SWE or pSWE) to predict LREs are
limited. In the largest study to date (1827 ACLD patients, 1490 compen-
sated and 337 decompensated, with a median follow-up of 33 mo), LSM
by 2D-SWE ≥20 kPa combined with MELD ≥10 could stratify the risk of
mortality and first/further decompensation [102].

A reduction in VCTE LSM to <12 kPa combined with a normal(ized)
PLT (≥150 × 109/L) indicates resolution of CSPH after cure from hepati-
tis C (HCV-SVR) [1]. A reduction in VCTE LSM to <20 kPa combined



Table 6
Combined Baveno VII criteria and SSM for the detection of clinically signifi-
cant portal hypertension

Baveno VII−SSM single-cutoff
model

Baveno VII−SSM dual-cutoff
model

Rule out CSPH if ≥2 of the following criteria:
LSM <15 kPa
Platelet count ≥150 × 109/L
SSM ≤40 kPa

≥2 of the following criteria:
LSM <15 kPa
Platelet count ≥150 ×109/L
SSM <21 kPa

Rule in CSPH if ≥2 of the following criteria:
LSM ≥25 kPa
Platelet count <150 × 109/L
SSM >40 kPa

≥2 of the following criteria:
LSM ≥25 kPa
Platelet count <150 × 109/L
SSM>50 kPa

CSPH, clinically significant portal hypertension; LSM, liver stiffness measure-
ment; SSM, spleen stiffness measurement.
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with a normal(ized) PLT (≥150 × 109/L) rules out HRV in patients after
cured HCV and in suppressed hepatitis B [204].

Weight losses >10% and lifestyle modifications have resulted in sig-
nificant reduction in LSM (and HVPG) in patients with MASLD
[205,206]; however, more data are needed to confirm whether sufficient
weight loss promotes resolution of CSPH.

Very high values of LSM and SSM have been reported in patients
with Budd−Chiari syndrome; after hepatic and portal venous flow is
improved by placement of TIPS, there is a decrease in both LSM and
SSM, and this can help in assessing shunt patency [207].

More data on the prognostic value and clinically relevant magnitude
of absolute/relative change in SWE LSMs is needed.

Recommendation 23. A stable decrease in VCTE LSM below 20
kPa after removal/suppression of the primary etiologic fac-
tor(a) indicates a significantly decreased risk of LRE-driven
portal hypertension that becomes negligible below 10 kPa
(LoE 1b, GoR A). Strong consensus (12/0/0, 100%).
a Removal/suppression of the primary etiologic factor is defined as
sustained abstinence from alcohol abuse in patients with alcohol-
related liver disease, SVR in patients with hepatitis C and sus-
tained suppression of virologic replication in patients with hepati-
tis B.
Role of spleen stiffness measurement in assessment of portal hypertension

The splenic vein drains into the hepatic portal vein; thus, in
patients with cirrhosis and portal hypertension, the increased pres-
sure in the splenic vein results in splenic congestion (congestive
component of splenomegaly). Additionally, patients with CSPH
develop hyperdynamic circulation with increased splanchnic/splenic
blood flow (inflow component of splenomegaly). Thus, CSPH is char-
acterized by splenomegaly, hypersplenism (including thrombocyto-
penia) and increased spleen stiffness. A number of studies have
reported a correlation between SSM by SWE and the presence of
CSPH or esophageal varices [185,187−189,208−217]. Notably,
results on the value of SSM have not only been obtained in different
populations with various liver disease etiologies but also with a
range of different techniques including pSWE and 2D-SWE, as well
as VCTE with different probes (50 and 100 Hz).

In a meta-analysis examining data obtained with the Aixplorer (Super-
Sonic Imagine) system, SSM by 2D-SWE (two studies) had a pooled AUC,
sensitivity and specificity of 0.88, 0.62 and 0.95 for the detection of
CSPH, respectively, compared with an AUC of 0.84 for LSM (four studies)
[218]. In another systematic review and meta-analysis focusing on varices
requiring treatment, SSM had a pooled sensitivity and specificity of 0.91
and 0.79 by pSWE (nine studies) and 0.89 and 0.72 by 2D-SWE (five stud-
ies), respectively [219]. Finally, a meta-analysis including VCTE, pSWE
and 2D-SWE revealed pooled AUCs of 0.90 for SSM to detect esophageal
varices and 0.81 for high-risk varices [220].

Spleen stiffness measurement is rarely performed alone because the
first step should be the identification of cACLD by LSM. Therefore, in
most (if not all) scenarios, SSM should be interpreted together with
LSM. The Baveno VII consensus suggested that CSPH can be ruled out in
patients with a LSM ≤15 kPa and normal platelet count (≥150 × 109/L)
and ruled in if the LSM is ≥25 kPa (at least in patients with HBV/HCV,
ALD and non-obese MASLD) [221]. However, many patients (up to 40%
−60%) with cACLD cannot be classified for their CSPH risk by LSM alone
(i.e., they remain in the gray zone because of an LSM of 15.1−24.9 kPa)
and/or platelet count <150 × 109/L [209,222,223]. In this context, the
addition of SSM to LSM and PLT can reduce the proportion of patients in
the CSPH gray zone and improve the prediction of CSPH or future risk of
hepatic decompensation.
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A recent systematic review and individual patient data meta-analysis
examined this concept of combined Baveno VII and SSM and included
data of 1245 adult patients from 17 studies [224]. For patients undergo-
ing VCTE (600 patients), the assessment was based on the presence of at
least two of three criteria by LSM, platelet count and SSM at either a sin-
gle SSM cutoff at 40 kPa or dual SSM cutoffs (SSM <21 kPa or >50 kPa)
model (Table 6). In the Baveno VII SSM single cutoff model, the sensitiv-
ity, specificity and positive and negative predictive values for CSPH
were 0.93, 0.86, 0.92 and 0.85, respectively, and 9% of the patients
were classified in the gray zone (compared with 48% of patients classi-
fied in the gray zone by the Baveno VII criteria alone). In the Baveno VII
SSM dual-cutoff model, the sensitivity, specificity and positive and nega-
tive predictive values for CSPH were 1.00, 0.89, 0.94 and 0.98, respec-
tively, and 32% of the patients were classified in the gray zone. Two-
dimensional SWE appeared to perform similarly well though the data
were restricted to 225 patients, and data were insufficient to evaluate
pSWE. As such, in patients with parenchymal liver disease (i.e., in the
absence of signs of non-cirrhotic portal hypertension), it seems unneces-
sary to perform SSM when the LSM is ≤15 kPa and the platelet count is
≥150 × 109/L because SSM would not have an impact on clinical deci-
sion making.

One randomized controlled trial [225] randomized 548 patients
(1:1) to undergo upper gastrointestinal endoscopy to screen for varices
or to undergo LSM and SSM by VCTE, with endoscopy performed only
in patients with an LSM ≥12.5 kPa and/or SSM ≥41.3 kPa. The study
achieved non-inferiority for the detection of both any varices (18.6% in
the VCTE arm vs. 24.5% in the endoscopy arm) and varices requiring
treatment (4.0% vs. 5.8%). At a mean follow-up of 41 mo, the incidence
of acute variceal hemorrhage was again similar in the VCTE arm (4.4%)
and endoscopy arm (4.0%) [226].

Spleen stiffness measurement seems to be of value in monitoring
dynamic changes in portal hypertension. In one study, reduction of SSM
by pSWE [227] reflected decreases in portal pressure (i.e., measured by
HVPG) on carvedilol therapy in 106 patients with high-risk varices, and
importantly, SSM reduction predicted hemodynamic response to carve-
dilol.

However, several issues of SSM need to be addressed: in the first
studies on VCTE SSM, the VCTE probes introduced for LSM that
operate at a frequency of 50 Hz with a stiffness ceiling at 75 kPa
were used. Currently, a dedicated VCTE SSM probe operating at a
frequency of 100 Hz is available, however it is not well known if
the values may differ. Thus, future studies should define the optimal
cutoffs for the VCTE SSM obtained with the 100 Hz probe. Second,
SSM is technically challenging, especially in individuals with normal
spleen size and/or with obesity. Finally, reliability criteria for SSM
results have not been established, which seems particularly relevant
for the 2D-SWE and pSWE techniques.



ARTICLE IN PRESS
JID: UMB [m5GeS;May 17, 2024;7:56]

G. Ferraioli et al. Ultrasound in Medicine& Biology 00 (2024) 1−17
Recommendation 24. SSM should be assessed and interpreted
together with LSM, and it is useful to assess the risk of CSPH,
varices and future variceal hemorrhage (LoE 2b, GoR B).
Strong consensus (12/0/0, 100%).
Recommendation 25. SSM may be considered when the LSM
is ≥10 kPa or clinical/radiologic features suggestive of CSPH
are present (LoE 3b, GoR B). Strong consensus (12/0/0,
100%).
Recommendation 26. A VCTE SSM <21 kPa rules out CSPH in
patients who also have a VCTE LSM ≤15 kPa and/or PLT
≥150 × 109/L (LoE 2a, GoR B). Strong consensus (15/0/0,
100%).
Recommendation 27. A VCTE SSM >40 kPa rules in CSPH in
patients who also have a VCTE LSM ≥25 kPa and/or PLT
<150 × 109/L (LoE 2a, GoR B). Strong consensus (12/0/0,
100%).
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