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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Indirect socioeconomic assessment of 
heat vulnerability and healthcare 
access. 

• Patients from the public healthcare sys
tem have lower socioeconomic status 
than the private. 

• Public patients likely face higher heat 
vulnerability, while private have greater 
heat adaptability. 

• Need to increase equity between 
healthcare systems as climate change 
progresses.  
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A B S T R A C T   

Few studies have explored the influence of socioeconomic status (SES) on the heat vulnerability of mental health 
(MH) patients. As individual socioeconomic data was unavailable, we aimed to fill this gap by using the 
healthcare system type as a proxy for SES. Brazilian national statistics indicate that public patients have lower 
SES than private. Therefore, we compared the risk of emergency department visits (EDVs) for MH between 
patients from both healthcare types. EDVs for MH disorders from all nine public (101,452 visits) and one large 
private facility (154,954) in Curitiba were assessed (2017–2021). Daily mean temperature was gathered and 
weighed from 3 stations. Distributed-lag non-linear model with quasi-Poisson (maximum 10-lags) was used to 
assess the risk. We stratified by private and public, age, and gender under moderate and extreme heat. Addi
tionally, we calculated the attributable fraction (AF), which translates individual risks into population- 

* Corresponding author. 
E-mail address: julia.corvetto@uni-heidelberg.de (J.F. Corvetto).   

1 Equal last authorship 

Contents lists available at ScienceDirect 

Science of the Total Environment 

journal homepage: www.elsevier.com/locate/scitotenv 

https://doi.org/10.1016/j.scitotenv.2024.173312 
Received 29 March 2024; Received in revised form 14 May 2024; Accepted 15 May 2024   

mailto:julia.corvetto@uni-heidelberg.de
www.sciencedirect.com/science/journal/00489697
https://www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2024.173312
https://doi.org/10.1016/j.scitotenv.2024.173312
https://doi.org/10.1016/j.scitotenv.2024.173312
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2024.173312&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Science of the Total Environment 934 (2024) 173312

2

Private health care 
Socioeconomic status 
Dlnm 

representative burdens – especially useful for public policies. Random-effects meta-regression pooled the risk 
estimates between healthcare systems. Public patients showed significant risks immediately as temperatures 
started to increase. Their cumulative relative risk (RR) of MH-EDV was 7.5 % higher than the private patients (Q- 
Test 26.2 %) under moderate heat, suggesting their particular heat vulnerability. Differently, private patients 
showed significant risks only under extreme heat, when their RR became 4.3 % higher than public (Q-Test 6.2 
%). These findings suggest that private patients have a relatively greater adaptation capacity to heat. However, 
when faced with extreme heat, their current adaptation means were potentially insufficient, so they needed and 
could access healthcare freely, unlike their public counterparts. MH patients would benefit from measures to 
reduce heat vulnerability and access barriers, increasing equity between the healthcare systems in Brazil. AF of 
EDVs due to extreme heat was 0.33 % (95%CI 0.16;0.50) for the total sample (859 EDVs). This corroborates that 
such broad population-level policies are urgently needed as climate change progresses.   

1. Introduction 

Climate change (CC) is assumed to impose a significant impact on 
mental health (MH) (IPCC, 2023a; Cianconi et al., 2020; Corvetto et al., 
2023). The increased frequency, intensity, and geographical distribution 
of extreme heat (Emissions Gap Report 2022: The Closing Window, 
2022) have already been linked to a higher MH emergency care demand 
(Corvetto et al., 2023). In MH patients, excessive heat can lead to ex
acerbations of MH disorders and heat-related illnesses, e.g., dehydration 
or heatstroke, either given the disease itself or psychotropic medications 
(Koop, 2022; Cusack et al., 2011). Adaptation strategies were supposed 
to remedy this emergency but are still underperforming and target 
mainly higher-income populations (IPCC, 2023b). 

With increased MH consultations, healthcare demand and costs tend 
to rise proportionately (Tong et al., n.d.). In Brazil, this health assistance 
is characterized by a clear distinction between public and private 
healthcare sectors. The Public Brazilian Health System (SUS) is entirely 
free, which applies for fees and drugs, and is used by approximately 60 
% of the population (IBGE, 2019). On the contrary, the private sector 
requires fees for services and medications from users, which enables 
quicker consultations due to the higher number of available pro
fessionals. A private MH consultation fee represents 20–50 % of the 
minimum wage, and health insurances have similar monthly prices. 
Consequently, a national survey from 2019 identified that public pa
tients have lower income and education and are mostly black or brown 
compared to private healthcare patients (IBGE, 2019). In Curitiba, this 
income inequality is extremely high (IBGE, 2018), as illustrated by 
Fig. 1, where the highest quartile income is four times the wage of the 
lowest one. 

A previous study by Corvetto and colleagues (Corvetto et al., 2023) 
with MH patients from the public system in Brazil already indicated a 
higher risk of emergency department visits (EDVMH) under different 
heat exposures. However, few studies have investigated the overarching 
effect of socioeconomic status on the MH risk under a warming climate. 
Low-income populations have higher rates of mental disorders (Carod- 
Artal, 2017) and are likely to have a particular heat vulnerability due to 
housing and working conditions (Xu et al., 2020). Notably, one previous 
study in Brazil found that the risk of being hospitalized for MH increased 
more in lower-income cities than in higher-income ones under the same 
increase in temperature (Xu et al., 2020). Likewise, income- and MH- 
related healthcare-seeking barriers, such as stigma and limited MH lit
eracy – the ability to comprehend the disorder and seek help – have been 
previously reported (Nutbeam and Lloyd, 2021). Without existing 
population-based studies directly addressing these questions, we intend 
to observe and compare the risk profile within the two healthcare sys
tems for the first time in the country to indirectly assess the socioeco
nomic determinants of heat vulnerability and healthcare-seeking 
behavior. 

Additionally, we aim to calculate the attributable fraction (AF) and 
number (AN). They are burden measurements in opposition to relative 
risk (RR), consequently resulting in different policy ramifications (Pan 
et al., 2019). The AF and AN are essential for clarifying the implications 
of our findings and their relevance to public health practice. While RR 

can suggest the individual risk that one patient has to be affected in the 
aftermath of an exposure, AF and AN can take this further by estimating 
the actual impact of the exposure on the population's health, providing 
more actionable insight for public health interventions. AF and AN can 
capture the burden related to the rising frequency of extreme heat events 
associated with CC (Emissions Gap Report 2022: The Closing Window, 
2022) and the remarkably high prevalence of MH disorders (GBD 2019 
Diseases and Injuries Collaborators, 2020). To our knowledge, no study 
in the country had ever compared public and private risk profiles or 
quantified the AF or AN of EDVMH. 

This broader perspective might help healthcare planners increase 
equity among MH patients and optimize resource allocation, ultimately 
increasing resilience during heat. Specifically, our research aimed to: 

Fig. 1. Territory of Curitiba, subdivided into neighborhoods. The colors 
represent the average income per person (above ten years old). The health fa
cilities are also displayed: yellow dots illustrate the private healthcare services, 
while the black dots represent the public ones. Yellow dots with crossing lines 
represent the private units that were not included in the study. Source: Brazilian 
Institute of Geography and Statistics (IBGE), 2010—last available census on the 
topic. Image adapted from gazetadopovo.com.br. 
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1. Quantify the risk of EDV (RREDV) for MH disorders due to moderate 
and extreme heat.  

2. Compare the RREDV between public and private patients.  
3. Calculate the AF and AN of MH EDV due to moderate and extreme 

heat exposure. 

2. Methods 

2.1. Brazilian healthcare system 

The healthcare facilities in the Curitiba territory are displayed in 
Fig. 1. Firstly, the ‘Urgency and Emergency Units’ (UPAs) are public 
facilities designed to admit all public emergency cases. Curitiba has nine 
UPAs in the territory (black dots, Fig. 1), of which eight are in lower- 
income areas (Fig. 1). Secondly, the private sector includes hospitals, 
emergency centers, and numerous private clinics. The three private 
emergency centers are in central areas with higher average income, as 
demonstrated by the three yellow dots in Fig. 1. 

2.2. Health dataset 

Daily EDVs were assessed from all nine public UPAs and one private 
emergency center in Curitiba due to all MH disorders and suicide at
tempts from January 1st, 2017, until December 31st, 2021. Patient in
formation was supplied to this research as a secondary data source. The 
Curitiba Health Secretary provided the public data—the same as the 
authors used in the recent study (Corvetto et al., 2023) and the Psy
chiatric Hospital and Emergency Center Porto Seguro supplied the pri
vate EDVs. Data consisted of gender, age, city of residency, visit date, 
and the International Classification of Diseases – 10th edition (ICD-10) 
code recorded on admission (Centers for Disease Control and Preven
tion, n.d.). All MH disorders (ICD-10 F00-F99) and suicide attempts 
(X60-X84) were included. Patients living outside of Curitiba were 
excluded. The Ethics Committee of the Municipal Health Secretary in 
Curitiba approved the research in October 2023. The data of the other 
two private facilities was not freely accessible, which prevented us from 
including them in this study. 

2.3. Temperature dataset 

Daily mean temperature (Tmean) was assessed from three meteoro
logical stations located inside Curitiba territory or in the neighboring 
city, − directly on the border (Table S1 and Fig. S2, appendix). Given the 
irregular distribution of meteorological stations, we could not perform a 
subregional analysis in the city based on the nearest station; therefore, 
we averaged the dataset from all three stations. Pearson's correlation 
was performed to (i) validate data from the outer station using data from 
the two inner stations and (ii) confirm that data among all three sources 
were correlated and could be averaged. A Pearson's correlation of ≥0.7 
was considered a cutoff. The monitoring sites had a maximum of 7 % 
missing values; however, when the Tmean was averaged, the data was 
100 % complete. 

2.4. Controlling for confounders 

Daily relative humidity (%) and air pollutants (PM10 and O3) were 
included in our models as confounding variables. Given the high rates of 
missing values, we could not control for other air pollutants, such as NO2 
and SO2. Here, some of the meteorological sites were also located 
outside of the official Curitiba territory. Therefore, we also performed 
Pearson's correlation between the data from these stations and the data 
from the inner ones, as previously delineated. A correlation of ≥0.7 
validated the use of meteorological data from outer sites. Detailed in
formation on the geographical location of monitoring stations, Pearson's 
correlation values, and the rate of missing data are available in the ap
pendix (Tables S1, S3, and Fig. S2). 

2.5. Modelling 

We first performed a time-series analysis of the sample for a 
maximum delayed period of 10 lags (0–10 lag), including a stratified 
analysis by private and public patients. Based on previous studies in 
Curitiba, we opted for a 10-lag period, showing that heat effects 
concentrate primarily on this short-term period (Corvetto et al., 2023; da 
Silva et al., 2020). 

The time-series analysis was performed during a five-year period 
(2017–2021) using a distributed lag non-linear model (Gasparrini, 
2014) and a quasi-Poisson distribution, assumed to account for the 
overdispersion of the data. The variables for the model were mean 
temperature (Tmean) – as the exposure –, and daily counts of EDV – as the 
outcome. We opted to use Tmean as exposure instead of minimum or 
maximum temperature, as we understand that heat stress in the human 
body can be better predicted by the average temperature patients un
dergo during the entire day rather than peaks of maximum or minimum 
temperature during the period. 

Seasonality and long-term trends were controlled in the model 
through a natural cubic spline with 7 degrees of freedom (df). We 
included relative humidity (%), ozone (O3), and particulate matter 
(PM10) in the model to control for potential confounding based on 
previous studies linking these variables to EDV due to MH disorders 
(EDVMH) (da Silva et al., 2020; Vida et al., 2012). Finally, the day of the 
week (DOW) was included, as the daily numbers of EDVMH vary 
significantly throughout the week. 

Several sensitivity analyses were performed to best fit the model to 
our data. The choices were based on the quasi-Akaike Information Cri
terion (qAIC), which implies that a lower qAIC value indicates a better 
fit. The final parameters for the model, based on the qAIC, were (i) 7 df 
for time trend, (ii) 2 df for lag, (iii) 3 df for O3 and PM10, (iv) 3 df for 
humidity, (v) temperature centered at 0.50 (%), (vi) knots on the tem
perature curve placed on 1, 50, 99th percentiles, and (vii) the use of 
natural cubic spline (ns). The residual analyses are displayed in Fig. S4, 
the detailed qAIC values are in Table S5, and the individual influence of 
each confounder was quantified and presented in Table S6 (appendix). 

The final model is represented by the equation below: 

E (Yt) = βo+ s (T, timedf)+ f (Tmean, lagdf, vardf)+ f (Hum, df)

+ f (O3, df)+ f (PM10, df)+DOW ∼ quasi–Poisson  

where: 
E (Yt): EDVs. 
βo: y interception. 
s (T, timedf): function of time, with 7df. 
f (Tmean, lagdf, vardf): cross-basis function, with 10 and 2 df. 
f (Hum, df) + f (O3, df) + f(PM10, df): cross basis functions for con

founders, with 3 df. 
DOW: day of the week, as a factor. 
Subgroup analyses were performed primarily by private or public 

patients, followed by a further stratified analysis by age and gender. Age 
groups were divided into 18–64 and ≥ 65 years old. Given the deficient 
number of patients aged 0–17 (0.03 % of the total sample), we could not 
perform the corresponding analysis. Results are presented in cumulative 
RREDV (CRREDV) for different cumulative lags (0, 0–3, 0–6, and 0–10), 
which represents the risk resultant or cumulated from the entire period 
(e.g., 0 until 10 delayed days = 0–10). 

Second, we pooled results and performed a meta-regression for sta
tistical comparison between public and private CRREDV. We aimed to 
quantify the size of interaction between the two subgroups and see if the 
difference was statistically significant. Therefore, we performed a 
random-effects meta-regression analysis by taking the difference be
tween the log CRREDV from public and CRREDV from private, using re
sults from all cumulative lags, from lag 0 to cumulative lag 0–10 (log 
CRR publiclag0 – log CRR privatelag0, …, log CRR publiclag0–10 – log CRR 
privatelag0–10). The level of heterogeneity will be represented here by the 
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classic heterogeneity indicators I2 and Q Test, which reflect how much 
the two effect sizes differ. I2 ≤ 25 % indicates low, 26–74 % moderate, 
and ≥ 75 % substantial heterogeneity. 

The study was performed using R Software version 4.2.1 (R Core 
Team, 2021) through the packages ‘dlnm’ version 2.4.7. (Gasparrini, 
2011) and ‘metafor’ version 4.4–0 (Viechtbauer, 2010). EDVs were 
analyzed under moderate (90th percentile of Tmean - 22.2 ◦C) and 
extreme heat (99th percentile of Tmean - 24.5 ◦C), compared to the me
dian (50th percentile of Tmean - 18.02 ◦C). We considered a statistical 
significance of 95 % (confidence interval - CI) for the analysis. 

2.6. Calculation of attributable fractions 

AF represents the fraction of EDVMH attributed to a specific exposure. 
We followed the methodology Gasparrini and Leone (2014) (Gasparrini 
and Leone, 2014) developed to calculate the EDVMH due to moderate 
and extreme heat. This methodology allows and accounts for possible 
delayed effects from the exposure based on the DLNM functions. All 
EDVMH attributed directly to moderate (range from 90th to 99th 
percentile of Tmean) and extreme heat (from the 99th percentile to the 
highest Tmean observed) was accounted for, considering the same 
counterfactual of 18.02 ◦C. AF was estimated at the lag of 0–6 days, 
based on our results (see Results section below), which indicated the 
most robust effects of heat at this delayed period after exposure. Sub
group analysis was performed for AF, and empirical CIs (95 %) were 
calculated through 1000 Monte Carlo simulations (Gasparrini and 
Leone, 2014). AF was then multiplied by the total number of cases in the 
given subgroup to obtain the attributable number (AN) of preventable 
cases due to extreme heat. 

3. Results 

3.1. Descriptive results 

The total sample consisted of 256,406 EDVs (Table 1), of which 60 % 
were private (154,954) and 40 % were public sector patients (101,452). 

In both subgroups, most of the patients were women and patients aged 
18–64. The subgroup aged 0–17 accounted for only 7894 EDVs (0.03 %). 
During the study period, the Tmean average was 17.8 ◦C. There were 167 
days with moderate heat and 19 days with extreme heat. 

3.2. Risk of MH EDV among public and private sector patients 

Under moderate heat, only public CRREDV was significantly 
increased, peaking at lag 0–6, with 1.06 (CI 1.00; 1.13) (Table 2, Fig. 2). 
No significant results regarding moderate heat exposure were found for 
private patients. According to the meta-regression analysis (Table 3), the 
overall risk for EDVMH among public sector patients was 7.5 % higher 
compared to the private sector (I2 35.58; Q Test 26.23 %). 

However, a divergent pattern was observed for extreme heat, where 
the private sector patients had a 4.3 % higher risk for EDVMH than the 
public sector (I2 0%; Q Test 6.16 %). The corresponding CRRsEDV were 
significant since lag 0 and peaked respectively at 1.24 (CI 1.05–1.46; lag 
0–6) – the highest for this study – and 1.15 (CI 1.04–1.27; lag 0–6). 

The exposure-response curves in Fig. 3, calculated at lag 0, highlight 
the difference between the two patterns. Risk for EDVMH among public 
sector patients (left, in blue) increased immediately as temperatures 
began to rise, while private-related (right, in red) RREDV was only sig
nificant at extremely high temperatures, with a relatively high effect 
size. Plots from other lags and more association details are presented in 
the contour and 3D plots in the appendix (Figs. S7 and S8). 

3.3. Analysis by gender and age 

The following results from subgroup analysis are presented in Ta
bles 2 and 3. Females from the public service had a 13.7 % higher risk of 
EDVMH (I2 57%; Q Test 45 %) than the private, under moderate heat, 
peaking at 1.10 (CI 1.03; 1.18). The risk of EDVMH among private pa
tients was not significant under this exposure. This pattern reversed as 
the heat became extreme - private subgroups now presented a relatively 
higher risk for EDVMH by 2.9 % (I2 0%; Q Test 5 %). CRREDV at lag 0–6 
were 1.23 (CI 1.02; 1.49) vs. 1.20 (CI 1.08; 1.34), respectively. 

Table 1 
Descriptive health data from the general population, stratified by public and private healthcare sectors, age, and gender. Descriptive meteorological data from 
temperature and air pollutants are also presented.   

n (%) Mean ± SD Minimum Percentiles Maximum     

25th 50th 75th  

Total        
Total sample 256,406 (100 %) /  26  88  139  192  287 
Male 89,801 (35 %) /  9  34  50  64  109 
Female 166,604 (65 %) /  13  54  88  127  211 
0–17 years old 7894 (0.03 %) /  0  2  4  6  20 
18–64 years old 214,238 (83.50 %) /  23  76  118  158  239 
≥65 years old 34,278 (13.37 %) /  0  8  17  29  63 

Public        
Total 101,452 (40 %) /  8  39  53  69  135 
Male 41,361 (16.10 %) /  4  16  22  28  58 
Female 60,091 (26.40 %) /  4  22  31  42  81 
0–17 years old 6751 (0.03 %) /  0  2  3  5  20 
18–64 years old 87,747 (34 %) /  8  33.25  46  60  119 
≥65 years old 6955 (0.03 %) /  0  2  3  5  15 

Private        
Total 154,954 (60 %) /  0  31  82  131  235 
Male 48,440 (18.90 %) /  0  9.25  26  40  80 
Female 106,513 (41.50 %) /  0  20.25  54  91.75  171 
0–17 years old 1143 (0.01 %) /  0  0  0  1  6 
18–64 years old 126,491 (49 %) /  0  27  67  105  189 
≥65 years old 27,323 (10.70 %) /  0  3  13  24  61 

Meteorological variables        
Tmean (◦C) / 17.83 ± 3.61  4.20  15.30  18.02  20.52  27.30 
Relative humidity (%) / 81.91 ± 8.24  42.57  77.27  82.72  87.48  99.43 
O3 (ppb) / 12.92 ± 5.48  1.19  8.97  11.95  15.76  36.55 
PM10 (μg/m3) / 17.69 ± 11.95  2.66  9.51  14.45  21.94  89.33 

SD – standard deviation. 
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Table 2 
Moderate and extreme heat effects on EDVMH stratified for public and private health care systems and subgroup analysis. Cumulative RREDV (CRREDV) under moderate 
and extreme heat for sex and age subgroups, divided by private or public systems. Calculations for lag 0, 0–3, 0–6, and 0–10 are displayed.  

CRREDV a) Moderate heat.   b) Extreme heat.   

(CI 95 %) Lag 0 Lag 0–3 Lag 0–6 Lag 0–10  Lag 0 Lag 0–3 Lag 0–6 Lag 0–10 

Total sample 
1.00 
(0.99;1.02) 

1.00 
(0.95;1.06) 

0.99 
(0.92;1.07) 

0.95 
(0.86;1.05)  

1.05 
(1.03;1.08) 

1.16 
(1.07;1.26) 

1.18 
(1.05;1.32) 

1.06 
(0.91;1.24) 

Private 
0.99 
(0.97;1.02) 

0.97 
(0.89;1.06) 

0.94 
(0.83;1.05) 

0.88 
(0.76;1.03)  

1.07 
(1.03;1.12) 

1.22 
(1.07;1.38) 

1.24 
(1.05;1.46) 

1.02 
(0.80;1.30) 

Public 1.01 
(1.00;1.03) 

1.05 
(1.01;1.10) 

1.06 
(1.00;1.13) 

1.03 
(0.95;1.11)  

1.04 
(1.02;1.06) 

1.12 
(1.05;1.19) 

1.15 
(1.04;1.27) 

1.11 
(0.99;1.26) 

Subgroup 
analysis          

Female          

Private 
0.99 
(0.96;1.02) 

0.95 
(0.87;1.04) 

0.91 
(0.80;1.03) 

0.85 
(0.73;1.00)  

1.08 
(1.03;1.12) 

1.23 
(1.07;1.40) 

1.23 
(1.02;1.49) 

1.02 
(0.79;1.31) 

Public 1.03 
(1.01;1.04) 

1.08 
(1.02;1.14) 

1.10 
(1.03;1.18) 

1.07 
(0.97;1.17)  

1.05 
(1.02;1.07) 

1.16 
(1.07;1.25) 

1.20 
(1.08;1.34) 

1.16 
(1.00;1.34) 

Male          

Private 
1.00 
(0.98;1.03) 

1.01 
(0.92;1.11) 

0.99 
(0.88;1.13) 

0.95 
(0.81;1.13)  

1.06 
(1.02;1.11) 

1.19 
(1.04;1.37) 

1.21 
(0.99;1.47) 

1.04 
(0.80;1.36) 

Public 
1.01 
(0.99;1.02) 

1.02 
(0.97;1.06) 

1.01 
(0.93;1.09) 

0.97 
(0.89;1.08)  

1.02 
(0.99;1.05) 

1.06 
(0.97;1.15) 

1.07 
(0.95;1.21) 

1.05 
(0.89;1.24) 

18–64 years          

Private 0.99 
(0.97;1.02) 

0.97 
(0.89;1.06) 

0.94 
(0.83;1.05) 

0.88 
(0.76;1.03)  

1.07 
(1.03;1.11) 

1.22 
(1.07;1.38) 

1.24 
(1.03;1.48) 

1.05 
(0.83;1.34) 

Public 1.02 
(1.01;1.04) 

1.07 
(1.03;1.12) 

1.09 
(1.02;1.16) 

1.06 
(0.97;1.14)  

1.04 
(1.02;1.06) 

1.13 
(1.06;1.21) 

1.18 
(1.08;1.30) 

1.18 
(1.04;1.34) 

≥65 years          

Private 
0.99 
(0.96;1.03) 

0.97 
(0.86;1.09) 

0.94 
(0.79;1.10) 

0.88 
(0.71;1.09)  

1.08 
(1.02;1.14) 

1.21 
(1.02;1.44) 

1.18 
(0.92;1.50) 

0.90 
(0.64;1.25) 

Public 0.97 
(0.93;1.00) 

0.89 
(0.78;1.02) 

0.85 
(0.71;1.04) 

0.86 
(0.67;1.11)  

0.95 
(0.89;1.01) 

0.82 
(0.67;1.01) 

0.75 
(0.57;1.00) 

0.72 
(0.49;1.07) 

CI – confidence interval. Bold values represent the significant results (p < 0.05). 

Fig. 2. Moderate (left) and extreme heat effects (right) estimated for private and public patients during all lags. The blue line represents public CRREDV, whereas the 
red line represents private CRREDV. *denotes statistically significant results. 

Table 3 
Results from the meta-regression analysis: the difference between public and private CRREDV calculated under moderate and extreme heat. The total sample, as well as 
gender and age subgroups, are displayed.   

a) Moderate heat     b) Extreme heat     

△Public-private CRREDV Prediction (CI 95 %) I2 Q Test  △Public-private CRREDV Prediction (CI 95 %) I2 Q Test 

Total sample þ 7.5 % 1.07 (1.05;1.10) 35.6 % 26.2 %  - 4.3 % 0.96 (0.93;0.98) 0 % 6.2 % 
Gender          

Female þ 13.7 % 1.14 (1.10;1.17) 56.6 % 45.1 %  - 2.9 % 0.97 (0.95;0.99) 0 % 5.1 % 
Male + 1.00 % 1.01 (0.99;1.02) 0 % 0.3 %  - 6.7 % 0.94 (0.91;0.96) 0 % 6.5 % 

Age group          
18–64 þ 10 % 1.10 (1.07;1.13) 48.7 % 35.9 %  - 3.6 % 0.96 (0.94;0.99) 0 % 6.1 % 
≥65 - 3.9 % 0.96 (0.94;0.99) 0 % 3.4 %  - 33.4 % 0.75 (0.70;0.80) 37.7 % 26.7 % 

Bold values represent the statistically significant results, p < 0.05. 
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Male patients from the public system did not show any increase in 
CRREDV across the study, and there was no difference between public 
and private participants under moderate heat. However, the male pa
tients in the private had a 6.7 % higher risk of EDVMH than those in 
public (I2 0%; Q test 6.47 %). The CRREDV peaked at 1.19 (CI 1.04; 1.37). 

Patients aged 18–64 showed similar curve shapes and patterns of 
response as females (Table 2, Fig. S9). Patients from the public system 
had a 10 % higher risk of EDVMH under moderate heat than the private 
(I2 49%; Q Test 36 %). However, under extreme heat, the risk for private 
patients was 3.6 % higher than that for public (I2 0%; Q Test 6.1 %). At 
lag 0–6, the CRREDV were 1.24 (CI 1.03; 1.48) vs. 1.18 (CI 1.08; 1.30). 

Public patients aged ≥65 seemed not to be affected by heat exposure. 
Besides, their effects were consistently lower than those of their private 
counterparts, regardless of temperature exposure. For private patients 
aged ≥65, we observed a CRREDV of up to 1.21 (1.02; 1.44—lag 0–3) 
under extreme heat, which represented 33.4 % higher CRREDV than the 
public—the highest difference found in this study (I2 37.70 %; Q test 
26.66 %). 

3.4. Attributable fraction and number 

The burden of moderate heat on public patients was increased, 
except for males. The AF of EDVMH among all public patients was 0.87 % 
(CI 0.19; 1.64), meaning that 883 public patients sought the emergency 

center because of moderate heat. Patients aged 18–64 and females had 
the highest stratified AFs: 1.17 % (CI 0.40; 1.89) and 1.28 % (CI 0.44; 
2.13). No significant burden was observed for private patients under 
moderate heat. 

Regarding extreme heat, the burden was significant on the total 
sample and most subgroups, and the private AFs were consistently 
higher than the public. We found that 0.33 % (CI 0.16; 0.50) of our total 
sample occurred due to extreme heat, representing 859 EDVs. Total 
private and public AFs were 0.40 % (CI 0.18; 0.63) vs. 0.23 % (CI 0.07; 
0.39). The private share of patients aged ≥65 had a high AF of 0.41 % 
(CI 0.04; 0.70), while the public one had − 0.53 % (CI -1.15; − 0.06) and 
sought less care due to extreme heat (Table 4). 

4. Discussion 

This is the first study in Brazil to compare the risk of EDVMH between 
public and private patients in relation to moderate and extreme heat and 
quantify the number of EDVs attributable to heat exposure. Considering 
the discrepant socioeconomic profiles of both patient groups, this 
analysis enabled the indirect assessment of heat vulnerability and 
healthcare-seeking behavior. 

Our findings confirm the primary hypothesis and suggest that lower- 
income populations – represented by the public patients – have higher 
heat vulnerability and face more healthcare-seeking barriers, 

Fig. 3. Exposure-response curves at lag 0. Different temperature effects (above the 50th percentile) at lag 0 are estimated for public (left—blue line) and private 
(right—red line). The grey area represents the confidence interval of 95 %. Dotted lines denote moderate heat, and dashed lines denote extreme heat. 

Table 4 
Attributable fraction (AF) and attributable number (AN) due to moderate and extreme heat. The maximum lag considered was 0–6.  

AF (%) (CI 95 %)        

a) Moderate heat     b) Extreme heat    

Total sample Private Public  Total sample Private Public 

Total 
0.36 
(− 0.43;1.13) 

0.03 
(− 1.11;1.10) 

0.87 
(0.19;1.64)  

0.33 
(0.16; 0.50) 

0.40 
(0.18; 0.63) 

0.23 
(0.07; 0.39) 

Age group        

18–64 0.49 
(− 0.30;1.25) 

0.03 
(− 1.19;1.05) 

1.17 
(0.40;1.89)  

0.35 
(0.19; 0.51) 

0.40 
(0.17; 0.62) 

0.27  
(0.11; 0.43) 

≥65 
− 0.41 
(− 1.99;0.96) 

0.08 
(− 1.53;1.61) 

¡2.45 
(− 5.18; − 0.08)  

0.21 
(− 0.08; 0.48) 

0.41 
(0.04; 0.70) 

¡0.53 
(− 1.15; − 0.06) 

Gender        

Female 
0.39 
(− 0.46;1.19) 

− 0.10 
(− 1.38;1.02) 

1.28 
(0.44;2.13)  

0.39 
(0.19; 0.57) 

0.44 
(0.18; 0.67) 

0.29 
(0.11; 0.47) 

Male 0.31 
(− 0.57;1.09) 

0.31 
(− 1.03;1.57) 

0.27 
(− 0.75;1.23)  

0.23 
(0.06; 0.40) 

0.31 
(0.03; 0.57) 

0.14  
(− 0.08; 0.32) 

AN        
Total 931 48 883  859 625 234 
Age group        

18–64 1070 40 1030  752 511 241 
≥65 − 150 21 ¡171  73 112 ¡37 

Gender        
Female 649 − 106 768  649 474 175 
Male 277 151 112  211 152 59 

Bold values represent the statistically significant results at p < 0.05. 
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corroborating previous literature (Xu et al., 2020; Naicker et al., 2017; 
Basu et al., 2012; Sera et al., 2020; Osberghaus and Abeling, 2022). 
These similar patterns were found for the total sample, patients aged 
18–64 and females. In these groups, significant CRREDV for public pa
tients emerged immediately after a slight increase in temperature, and 
under moderate heat, their risk was higher than for the private (with 
moderate heterogeneity). This suggested a particular heat vulnerability 
among public system patients. Meanwhile, wealthier patients – repre
sented by the private patients – could likely rely on adaptation means, 
such as air conditioning. These are robust protective factors and directly 
dependable on income (Sera et al., 2020; Osberghaus and Abeling, 
2022). When temperatures became extremely high, we hypothesize that 
these adaptation means were insufficient. Thus, private patients sought 
healthcare freely, as evidenced by the high risk of EDVMH observed in 
this study. Contrarily, under extreme heat, public patients had relatively 
lower CRREDV, possibly explained by healthcare-seeking barriers, pre
venting accessible and equitable healthcare use. In this context, a 
possible indicator is that public patients from 9 different centers 
constituted only 40 % of the observed admissions, in contrast to the 60 % 
observed in a single private facility. 

The heat vulnerability from lower-income populations is mainly 
explained by the intense exposure through work and housing conditions. 
In economically disadvantaged communities, indoor temperatures can 
exceed outdoors' by up to 5 ◦C, as found by previous research in South 
Africa (Naicker et al., 2017). Likewise, people from poorer regions or 
backgrounds are likelier to have strenuous workloads and work out
doors – agriculture, fishery, construction – or in non-cooled environ
ments (Thi et al., 2013). 

Public MH patients may face healthcare access barriers, particularly 
during periods of extreme heat. These barriers commonly include lack or 
high costs of means of transportation, the impossibility of leaving work, 
higher service waiting times, limited financial resources, and the two 
variables directly related to MH: stigma and restricted MH literacy 
(Nutbeam and Lloyd, 2021; Basu et al., 2012; Fernando, 2010). Notably, 
20 % of the variance in help-seeking delay was attributed to the stigma 
experienced by MH caregivers in a study investigating determinants of 
healthcare-seeking in Sri Lanka (Fernando, 2010). Furthermore, other 
studies revealed that being female and having a higher level of educa
tion were associated with decreased stigma and enhanced mental health 
literacy, influencing the choice to seek healthcare (Gasparrini, 2011). 
Our results confirmed this, as females in general – and especially the 
private-insured – had one of the highest CRRsEDV in the study. Likewise, 
in this context, stigma might be one of the reasons why males utilizing 
public services presented no significant effect across the study, in op
position to the private. Further access barriers might be related to the 
waiting time: private services offered a relatively shorter waiting time, 
according to a review on the topic, which plays a role in the decision 
towards health seeking (Basu et al., 2012). Besides, lower-income pop
ulations have less access to private transportation means. According to 
the last Brazilian national report, in 2010, the percentage of households 
owning a car in the peripherical area of Curitiba was substantially lower, 
where the public facilities are located (IBGE, n.d.). 

Public patients aged ≥65 had relatively lower CRREDV both under 
moderate (low heterogeneity) and under extreme heat (moderate het
erogeneity) despite the established heat vulnerability among older 
people (Fouillet et al., 2006). Similar to what happened during the 2003 
heatwave in France (Fouillet et al., 2006), when thousands of older 
adults died of being unable to seek help, we hypothesize that this lower 
socioeconomic share of patients also remained unassisted. Further 
research is needed to confirm our results for patients aged ≥65, as the 
observed EDVs were relatively low and might have played a role in the 
outcomes. We could not perform an accurate analysis for patients aged 
0–17, given the extremely low EDVs and the consequent weak statistical 
power. Thus, further studies with a focus on this population are highly 
recommended. 

The RR metric is essential and denotes the individual risk in the 

presence of the exposure, regardless of how frequent this exposure is. 
That is when the AF and AN become crucial – they translate this indi
vidual risk into a population level by showing the total number of people 
affected and, therefore, the burden in terms of public policies. Notably, a 
disease may have a very high RR but either be caused by a rare phe
nomenon or the high RR be present in a small subgroup. In this case, 
public policies will probably act by focusing efforts specifically on the 
small, endangered subgroups. Contrarily, in this study context, we face a 
remarkably high rise in mental disorder prevalence (GBD 2019 Diseases 
and Injuries Collaborators, 2020) and a 232 % increase in extreme 
temperatures over the past 20 years (CRED and UNDRR, 2020), indi
cating that the observed AFs directly attributed to heat will rapidly in
crease. Moderate heat was responsible for a significant burden of about 
900 EDVMH on public patients, and females and patients aged 18–64 
were particularly affected. Extreme heat days were less often, with 
nineteen days in the sample, but still, the burden was high – three times 
higher for private patients than for the public. Few previous studies 
analyzed MH-related AF and found similar results: 0.41 % related to 
alcohol misuse (Liu et al., 2020) and 0.28 % of schizophrenia hospital
ization (Crank et al., 2023), both due to extreme heat. These AF analyses 
show that the burden heat imposes on MH is extensive and requires 
broader and population-level policies. Besides, the two healthcare sys
tems, including insurance companies, should prepare for the over
loading of EDVMH as CC progresses. These sectors would benefit 
economically from CC mitigation actions. 

Previous research by the authors in Curitiba, Brazil, was recently 
published (Corvetto et al., 2023). The focus was on the exposure- 
response relationship of heat and cold on MH in general and on MH- 
subgroups, such as neurotic disorders and suicide attempts. This pre
sent study intends to fill out socioeconomic knowledge gaps and po
tential bias by including data from private sources and then assessing 
indirect socioeconomic status through the utilized healthcare systems. 
Additional statistical analyses were implemented to delineate better the 
determinants of heat-related risk and health-seeking behavior under CC. 

Some limitations of our study should be considered when inter
preting the results. Firstly, this is an ecological study, and the individual 
variations within each compared subgroup could not be accounted for, 
such as income, ethnic information, employment, or occupation. Sec
ondly, we had limited access to private EDVs since we could not access 
data from all three private emergency facilities in Curitiba. However, 
Fig. 1 shows that the two private buildings not included in the study are 
located in the same central, wealthy, and green area as the included 
facility. Thus, there is no reason to believe that their socioeconomic 
profile is different and that their inclusion would significantly influence 
the results. Thirdly, the intrinsic limitations of facility-based studies 
such as ours are that we may oversee a significant percentage of patients 
who did not seek care and were not, therefore, part of the analysis. For 
MH, this bias is relatively higher, as not only socioeconomic-related but 
also psychiatric-related barriers play a role. Fourthly, the exposure 
measurement was weighed from local meteorological stations, which 
does not reflect precisely the individual exposure. Fifthly, regarding the 
results, the heterogeneity in specific subgroups found by I2 and Q tests 
was low, showing no strong difference in these groups. Likewise, the 
possible harvesting effect should be considered, especially for private 
patients, who showed extremely high RREDV at initial single lags and 
reduced at following lags under extreme heat (Fig. S7). Finally, this 
study is based in a specific area of Brazil, which limits our generaliz
ability power. It would be beneficial to conduct similar analyses in the 
future to confirm our results and improve the generalizability of our 
findings. 

Hence, while using a facility-based dataset offers crucial insights, we 
highly recommend future population-based studies in Brazil. These 
study designs can assess individual characteristics and the potential 
moderators of heat vulnerability. Besides, instead of measuring health
care use, population-based research would directly assess the effects of 
heat on the MH symptoms and the health state of patients. We 
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acknowledge, though, that population-based studies have higher costs 
and are extremely time-consuming. 

Our findings indicate that policymakers and healthcare planners 
should increase equity between healthcare systems in Brazil by tackling 
MH heat vulnerability and healthcare access barriers. The results of AF 
and AN confirm that such measures are urgent and should be broad, as 
the burden is significant on a population level. We recommend (i) 
allowing free access to public transportation upon proof of consultation 
in the public system, which could remove the transportation barriers for 
patients who lack money for tickets; (ii) utilizing primary and local 
healthcare networks to proactively search public patients during 
extreme heat periods, especially aged ≥65, given the observed lower 
healthcare-seeking behavior compared to their private counterparts; 
(iii) implementing an early warning system to increase the rapid 
response of all MH patients and caregivers under an upcoming extreme 
heat event, with practical advises on dealing with heat (Laaidi et al., 
2004); (iv) finally, intensifying public awareness campaigns and MH 
education, with focus on the public healthcare system (SUS), addressing 
the prevalent stigma and enhancing MH literacy. This measure would 
particularly benefit males. 

5. Conclusion 

Our findings suggest that public healthcare patients, who have lower 
SES, have a higher heat vulnerability and show a higher propensity to 
seek care already at slight increases in temperature. This indicates that 
they are very exposed and vulnerable to heat, lacking adaptive strate
gies. However, under extreme heat, private patients sought healthcare 
more than their public counterparts, indicating freer healthcare access. 
While our results still need to be corroborated by population-based 
studies, we hypothesize that the socioeconomic profile, indirectly rep
resented by the healthcare systems, plays a role in shaping MH vulner
ability and healthcare-seeking behaviors. MH patients would benefit 
from policies to increase heat resilience, especially of vulnerable sub
groups, and from more equitable mental healthcare for private and 
public systems. Our results and potential policy implications can be 
extended to other similar countries in the world, notably some in Latin 
America and the Caribbean, which also present high socioeconomic 
inequality and similar healthcare system settings. Besides, our AF 
analysis indicates that broad population-level policies for MH patients 
are required as CC progresses and the heat-related burden increases 
proportionately. 
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IBGE. Censo demográfico 2010. IBGE - Instituto Brasileiro de Geografia e Estatística. 
Available: https://censo2010.ibge.gov.br/. Accessed October 2023.  

IPCC, 2023a. Summary for policymakers. In: Core Writing Team, Lee, H., Romero, J. 
(Eds.), Climate Change 2023: Synthesis Report.Contribution of Working Groups I, II 
and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate 
Change. IPCC, Geneva, Switzerland, pp. 1–34. https://doi.org/10.59327/IPCC/AR6- 
9789291691647.001. 

J.F. Corvetto et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.scitotenv.2024.173312
https://doi.org/10.1016/j.scitotenv.2024.173312
https://doi.org/10.1371/journal.pmed.1001244
https://doi.org/10.1371/journal.pmed.1001244
https://doi.org/10.1007/978-3-319-59123-0_4
https://doi.org/10.1007/978-3-319-59123-0_4
https://www.cdc.gov/nchs/icd/icd10.htm
https://doi.org/10.3389/fpsyt.2020.00074
https://doi.org/10.3389/fpsyt.2020.00074
https://doi.org/10.1136/bmjopen-2023-079049
https://doi.org/10.1016/j.scitotenv.2022.160599
https://doi.org/10.1016/j.scitotenv.2022.160599
http://refhub.elsevier.com/S0048-9697(24)03459-4/rf0035
http://refhub.elsevier.com/S0048-9697(24)03459-4/rf0035
http://refhub.elsevier.com/S0048-9697(24)03459-4/rf0035
https://doi.org/10.1111/j.1365-2648.2010.05551.x
https://doi.org/10.1111/j.1365-2648.2010.05551.x
http://refhub.elsevier.com/S0048-9697(24)03459-4/rf0045
http://refhub.elsevier.com/S0048-9697(24)03459-4/rf0045
http://ro.uow.edu.au/theses/3569
https://doi.org/10.1007/s00420-006-0089-4
https://doi.org/10.1007/s00420-006-0089-4
http://refhub.elsevier.com/S0048-9697(24)03459-4/rf0060
http://refhub.elsevier.com/S0048-9697(24)03459-4/rf0060
https://doi.org/10.1002/sim.5963
https://doi.org/10.1186/1471-2288-14-55
https://doi.org/10.1016/S0140-6736(20)30925-9
https://doi.org/10.1016/S0140-6736(20)30925-9
https://www.ibge.gov.br/estatisticas/sociais/populacao/9127-pesquisa-nacional-por-amostra-de-domicilios.html
https://www.ibge.gov.br/estatisticas/sociais/populacao/9127-pesquisa-nacional-por-amostra-de-domicilios.html
https://sidra.ibge.gov.br/pesquisa/pns/pns-2019
https://sidra.ibge.gov.br/pesquisa/pns/pns-2019
https://censo2010.ibge.gov.br/
https://doi.org/10.59327/IPCC/AR6-9789291691647.001
https://doi.org/10.59327/IPCC/AR6-9789291691647.001


Science of the Total Environment 934 (2024) 173312

9

IPCC, 2023b. Climate change 2023: synthesis report. In: Core Writing Team, Lee, H., 
Romero, J. (Eds.), Contribution of Working Groups I, II and III to the Sixth 
Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 
Geneva, Switzerland, pp. 35–115. https://doi.org/10.59327/IPCC/AR6- 
9789291691647. 

Koop, L.K., 2022. In: Tadi, P. (Ed.), Physiology, Heat Loss. StatPearls Publishing, 
Treasure Island (FL); StatPearls Publishing. 

Laaidi, K., Pascal, M., Ledrans, M., Tertre, A. Le, Medina, S., Casério, C., et al., 2004. Le 
système français d ’ alerte canicule et santé 2004 (SACS 2004) Un dispositif intégré 
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