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ofHighlights

Emergent trade-offs among plasticity strategies in mixotrophs

Kevin M. Archibald, Stephanie Dutkiewicz, Charlotte Laufkötter, Holly V.
Moeller

• Our model reveals emergent ecological tradeoffs in mixotroph plasticity
strategies.

• Fast-responding mixotrophs grow at faster rates than slow-responding
mixotrophs.

• However, slow-responding mixotrophs store surplus nutrients for future
use.

• Thus, intermediate strategies maximize mixotroph biomass and pro-
ductivity.

• Trade-offs support coexistence between fast- and slow-responding mixotrophs.
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Abstract

Marine mixotrophs combine phagotrophy and phototrophy to acquire the
resources they need for growth. Metabolic plasticity, the ability for individu-
als to dynamically alter their relative investment between different metabolic
processes, allows mixotrophs to efficiently exploit variable environmental con-
ditions. Different mixotrophs may vary in how quickly they respond to envi-
ronmental stimuli, with slow-responding mixotrophs exhibiting a significant
lag between a change in the environment and the resulting change metabolic
strategy. In this study, we develop a model of mixotroph metabolic strat-
egy and explore how the rate of the plastic response affects the seasonality,
competitive fitness, and biogeochemical role of mixotroph populations. Fast-
responding mixotrophs are characterized by more efficient resource use and
higher average growth rates than slow-responding mixotrophs because any
lag in the plastic response following a change in environmental conditions cre-
ates a mismatch between the mixotroph’s metabolic requirements and their
resource acquisition. However, this mismatch also results in increased storage
of unused resources that support growth under future nutrient-limited condi-
tions. As a result of this trade-off, mixotroph biomass and productivity are
maximized at intermediate plastic response rates. Furthermore, the trade-off
represents a mechanism for coexistence between fast-responding and slow-
responding mixotrophs. In mixed communities, fast-responding mixotrophs

Preprint submitted to Journal of Theoretical Biology March 14, 2024
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abundance due to the provisioning effect that emerges as a result of their
less efficient resource acquisition strategy. In addition to increased compet-
itive ability, fast-responding mixotrophs are, on average, more autotrophic
than slow-responding mixotrophs. Notably, these trade-offs associated with
mixotroph response rate arise without including an explicit physiological cost
associated with plasticity, a conclusion that may provide insight into evolu-
tionary constraints of metabolic plasticity in mixotrophic organisms. When
an explicit cost is added to the model, it alters the competitive relationships
between fast- and slow-responding mixotrophs. Faster plastic response rates
are favored by lower physiological costs as well as higher amplitude seasonal
cycles.

Keywords: Mixotrophy, metabolic plasticity, food web model

1. Introduction1

Mixotrophs, organisms that acquire the resources needed for growth through2

both autotrophic and heterotrophic metabolic processes, are widespread among3

marine microbial communities [1, 2, 3, 4]. While mixotrophy broadly clas-4

sifies a wide array of behaviors and nutritional modes, here we focus on the5

combination of phagotrophy and phototrophy commonly found in planktonic6

protists [5, 6]. Specifically, we consider constitutive mixotrophs (those with7

an inherent capacity for photosynthesis) grazing on bacterial prey [4]. The8

metabolic flexibility achieved through mixotrophy provides a number of evo-9

lutionary benefits that, as evidenced by the ubiquity of these organisms,10

appear to provide advantages outweighing the increased physiological cost11

of maintaining two sets of metabolic machinery [7, 8]. In highly seasonal12

environments, for example, mixotrophs can adapt their metabolic strategy13

to follow large changes in environmental conditions [9, 10]. Mixotrophs are14

also common in low-seasonality, oligotrophic environments where phagotro-15

phy helps to supplement the nutrient demands of photosynthetic plankton16

[11, 12].17

Many mixotrophs display significant metabolic plasticity — the ability to18

alter their relative investment into different metabolic processes in response19

to environmental conditions [13, 14]. The emergence of specific mixotrophic20

strategies along gradients of environmental resources (e.g. light, nutrients,21

prey) has been described using both experimental and modeling approaches22

2
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phy and phototrophy that varies as a function of environmental conditions24

[18, 19, 17] and results in the succession of different strategies throughout25

seasonal cycles [20]. This metabolic plasticity has both ecological and biogeo-26

chemical relevance since it can affect net community production, the transfer27

of biomass to higher trophic levels, and the efficiency of the biological pump28

[21, 22].29

Does the flexibility provided by plasticity come at a cost to the organism?30

Mixotrophs that combine phagotrophy and phototrophy are typically less ef-31

ficient at resource acquisition and may have lower growth rates compared32

to specialists [23, 24, 12]. These trade-offs may be explained by fundamen-33

tal physiological constraints based on cell surface area and volume when34

mixotrophs partition space between different metabolic strategies [23, 7].35

More broadly, the idea that phenotypic plasticity is associated with some36

fundamental cost to the organism’s fitness is often cited as an explanation37

for why species are not infinitely plastic [25, 26]. In empirical studies, how-38

ever, estimates of the magnitude of the negative fitness effects of plasticity39

are often quite small (e.g. see meta-analysis by van Buskirk and Steiner [27]).40

Furthermore, the question of whether phenotypic plasticity has a positive41

or negative effect on interspecies competition remains unclear [28]. Sev-42

eral studies have found that plasticity promotes coexistence by reducing43

the strength of competitive interactions through increased niche partition-44

ing [29, 30, 31, 32, 33]. Other studies have found that plasticity impedes45

coexistence [34, 35] and increases invasion success [36], or has no effect on46

competitive ability [37].47

Plasticity is often discussed in terms of the range of phenotypes that48

an individual exhibits (i.e. more plastic individuals have a wider range of49

possible phenotypes). Plastic responses, however, have a significant time50

component as well. For mixotrophs, the timescale of plastic responses is51

potentially non-trivial considering the significant reallocation of resources52

within the cell required to alter the nutritional mode when multiple types53

of metabolic machinery are involved. If the time required to execute that54

reallocation results in a significant lag following a shift in environmental55

conditions, there may be a period of time during which the mixotroph is per-56

forming sub-optimally while it transitions towards some theoretically defined57

optimal strategy. Here, we describe different plastic mixotrophs in terms of58

the time scale of their response to environmental variability; fast-responding59

mixotrophs are able to alter their metabolic strategy quickly in response to60

3
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rience significant lag between an environmental stimulus and their plastic re-62

sponse. Our primary aim is to understand how the timescale of a mixotroph’s63

plastic response affects its ecological and biogeochemical characteristics.64

In this study, we extend the model framework developed by Klausmeier65

et al. [38, 39] to represent the variable allocation strategies in a constitutive66

mixotroph grazing on heterotrophic bacteria in a seasonal environment. Our67

model simulates the dynamics of two essential resources, carbon and nitrogen,68

in a simple food chain consisting of a mixotroph and its bacterial prey. This69

simplified trophic structure was identified as an essential step in describing70

the fundamental mechanisms associated with the time scale of mixotroph71

plastic response before incorporating these behaviors into more complex food72

web models. In our model, we do not assign a nutritional strategy a priori,73

but instead allow a growth-maximizing strategy to emerge as a function of74

environmental conditions [38, 39, 20] that mixotroph populations converge to75

at a rate determined by their plastic response rate. We use this model in three76

different sets of experiments to explore the following questions: (1) How does77

the rate of the plastic response affect the seasonality of mixotroph metabolic78

strategy? (2) What is the optimal (i.e. most competitive) plasticity under79

different assumptions of cost and seasonal amplitude? And (3) What trade-80

off mechanisms allow for coexistence between mixotroph populations with81

different plasticity?82

We use this model to show how trade-offs between mixotrophs with dif-83

ferent plasticity strategies emerge from ecologically mediated environmental84

feedbacks. Mixotrophs with faster plastic response rates benefit from higher85

average growth rates and those with slower response rates benefit from in-86

creased resource provisioning. As a result, intermediate plasticity strategies87

maximize mixotroph biomass and productivity, as well as provide a mecha-88

nism for coexistence between populations with differing degrees of plasticity.89

Notably, these trade-offs arise from simple growth maximization principles90

and without any explicit physiological cost to plasticity, thereby providing an91

alternative hypothesis for constraints on the evolution of increased metabolic92

plasticity in marine mixotrophs.93

2. The mixotroph model94

The model (Fig. 1) follows a population of mixotrophs growing in a well-95

mixed water column under periodic environmental forcing (Fig. 2a-c) due to96

4
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Figure 1: Model of mixotroph metabolism. A population of mixotroph cells is character-
ized by the per-cell internal reserves, or quotas, of carbon (QC) and nitrogen (QN ). Photo-
synthesis and grazing on bacteria supply carbon to the mixotroph. Grazing also supplies
nitrogen alongside the uptake of inorganic nitrogen from the environment. Mixotrophs
consume their internal C- and N-quotas to fuel population growth. Mortality supports a
pool of detritus that serves as food for the bacteria population. Metabolic strategies are
plastic and vary based on the mixotroph’s relative investment into each metabolic process,
represented by the ρ values: ρi represents investment into photosynthesis, ρg investment
into grazing, ρn investment into nutrient uptake, and ρa investment into growth.

5



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofchanges in mixed layer depth (H, which affects inorganic nutrient supply),97

temperature (T ), and light intensity at the surface (I0). The mixotroph pop-98

ulation is represented by cell abundance (M) and the per-cell internal quotas99

of carbon (QC) and nitrogen (QN). Carbon is acquired by mixotrophs from100

two sources: photosynthesis and the consumption of heterotrophic bacteria101

(B). The functional response for each process assumes Michaelis-Menten dy-102

namics [40]. Internal carbon quotas are consumed during mixotroph growth,103

where the specific mixotroph growth rate (µ) is a function of QC and QN .104

The rate of change of QC is then given by,105

dQC

dt
=

vII

kI + I
+

bCvGB

kG +B
− µ(QC , QN)QC , (1)

with maximum photosynthetic rate vI , photosynthetic half-saturation con-106

stant kI , maximum grazing rate vG, grazing half-saturation constant kG, and107

bacteria per-cell carbon content bC . Light is attenuated over the water col-108

umn with exponential coefficient kd, so the average light intensity experienced109

by mixotrophs in the mixed layer (I) depends on both the intensity at the110

surface and the depth of the water column following,111

I =
I0
kdH

(1− e−kdH). (2)

Similarly, nitrogen is acquired via uptake of inorganic nitrogen from the112

environment (N) and from grazing on bacteria:113

dQN

dt
=

vNN

kN +N
+

bNvGB

kG +B
− µ(QC , QN)QN , (3)

with maximum nutrient uptake rate vN , nutrient uptake half-saturation con-114

stant kN , and bacteria per-cell nitrogen content bN . We assume that mixotroph115

growth is limited by either carbon or nitrogen and calculate growth rate using116

a minimization function following Droop’s model [41],117

µ(QC , QN) = µmaxmin

[
1− Qmin,C

QC

, 1− Qmin,N

QN

]
, (4)

where µmax is the theoretical maximum growth rate under infinite quota118

conditions andQmin,C andQmin,N are the minimum required quotas of carbon119

and nitrogen, respectively. Mixotroph biomass increases as a result of growth120

and decreases through two mortality terms: a linear mortality rate (a) and121

6
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deep water when the mixed layer depth is increasing,123

dM

dt
= µ(QC , QN)M − aM − s+M. (5)

Dilution depends on the rate of change of the mixed layer depth, dH/dt, and124

is inversely proportional to the current mixed layer depth [42]. Concentra-125

tions do not change when the mixed layer depth is decreasing (shoaling), so126

dilution is equal to zero under these oceanographic conditions.127

s+ =

{
1
H

dH
dt

if dH
dt

> 0

0 if dH
dt

≤ 0.
(6)

Mixotroph mortality, as well as mortality in the bacteria population, con-128

tributes to a pool of detritus (D), which we choose to track in terms of nitro-129

gen content. This simplification follows from the assumption that bacteria130

are always nitrogen limited and obtain their nitrogen solely from the uptake131

of detritus. Because detrital uptake determines bacterial production, any132

carbon implicitly contained in the detrital pool in excess to the bacterial133

C:N ratio is lost. The rate of change of D is given by,134

dD

dt
= a(bnB +QNM)− vBDQNB

kB +D
− s+D, (7)

where vB and kB are the uptake rate and half-saturation constant of D by135

bacteria, respectively. A portion (r) of the detritus consumed by the bacteria136

is remineralized into inorganic nutrients such that,137

dN

dt
= s+(N0 −N)− vNMN

kn+N
+

rvBDbNB

kB +D
, (8)

where N0 is the nutrient concentration below the mixed layer. The remainder138

of the detritus taken up by the bacteria is assimilated into biomass,139

dB

dt
=

(1− r)vBDB

kB +D
− vGBM

kG +B
− aB − s+B. (9)

7
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Table 1: Variables and parameter values used in the simulation of the mixotroph model

Symbol Description Value Units

H Mixed-layer depth m
T Temperature ◦C
I0 Light intensity at surface E m-2 da
I Average light intensity over mixed layer E m-2 da
N Inorganic nitrogen µmol N
B Bacterial abundance cells mL
D Detritus µmol N
M Mixotroph abundance cells mL
N Inorganic nitrogen µmol N
QC Mixotroph carbon quota µmol C
QN Mixotroph nitrogen quota µmol N
ρa Investment in growth
ρi Investment in photosynthesis
ρn Investment in nitrogen uptake
ρg Investment in grazing
c Plasticity rate constant [10−3, 10−1] day-1

ϵ Cost of plasticity [0, 100]
µb Bacteria growth rate 1.0 day-1

a Mortality rate 0.05 day-1

µ′ Maximum mixotroph growth rate 5.4 day-1

g′ Maximum grazing rate 4.0 day-1

v′i Maximum photosynthetic rate 3.33× 10−7 µmol C
v′g Maximum grazing rate 4.0 day-1

v′n Maximum nitrogen uptake rate 1.36× 10−6 µmol N
ki Light half-saturation constant 5 E m-2 da
kn Nitrogen half-saturation constant 5.6× 10−3 µmol N
kg Grazing half-saturation constant 8× 105 cells mL
kb Bacterial growth half-saturation constant 1× 10−5 µmol N
r Remineralization fraction 0.3
kd Light attenuation coefficient 0.05 m-1

p Metabolic cell fraction 0.8
Qbc Carbon content of bacteria 1.67× 10−8 µmol C
Ca Carbon content of assembly machinery 350.9× 10−9 µmol C
Ci Carbon content of photosynthetic machinery 350.9× 10−9 µmol C
Cn Carbon content of uptake machinery 350.9× 10−9 µmol C
Cg Carbon content of grazing machinery 350.9× 10−9 µmol C
Co Carbon content of non-metabolic biomass 350.9× 10−9 µmol C
Qbn Nitrogen content of bacteria 3.14× 10−9 µmol N
Na Carbon content of assembly machinery 45.4× 10−9 µmol N
Ni Carbon content of photosynthetic machinery 45.4× 10−9 µmol N
Nn Carbon content of uptake machinery 45.4× 10−9 µmol N
Ng Carbon content of grazing machinery 45.4× 10−9 µmol N
No Carbon content of non-metabolic biomass 45.4× 10−9 µmol N
T0 Thermal scaling reference temperature 20 ◦C
Q10 Thermal scaling coefficient 1.88

8
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Seasonal variability in temperature affects several biological rates in the141

model including growth (µmax), photosynthesis (vI), nutrient uptake (vN),142

grazing (vG), and bacterial production (vB). Temperature-sensitive param-143

eters are represented as exponentially increasing functions of temperature144

relative to a known rate at reference temperature T0,145

x = x0Q
(T−T0)/10
10 . (10)

All temperature-sensitive parameters in the model were assigned the same146

Q10 coefficient of 1.88 following Eppley [43]. It should be noted that sev-147

eral theoretical and empirical arguments have been made that heterotrophic148

metabolic processes may be more sensitive to temperature than autotrophic149

processes [44, 45] and that these differences in sensitivity amplify the ther-150

mal responses of marine food webs [46], but here we use a standardized Q10151

for all biological rates as a useful simplification. Mixotrophs, in their capac-152

ity to combine phagotrophy and phototrophy, may be uniquely influenced153

by variability across thermal sensitivity coefficients [47]. While assuming a154

standardized Q10 is useful for simplifying our analysis in the current study,155

relaxing this assumption to explore the effects of variable thermal sensitivity156

would add valuable future context to the results presented here.157

Metabolic investments158

Mixotroph metabolic strategy is represented by the population’s invest-159

ment into photosynthesis, grazing, the uptake of inorganic nutrients, and160

a generalized growth term that represents cell division. For simplicity, we161

assume that the cellular structures associated with each of these metabolic162

processes have the same elemental stoichiometry to eliminate any variability163

in nutrient requirements as a function of investment, although mixotroph164

stoichiometry has been shown to vary significantly based on prey composi-165

tion [48] and may help to stabilize environmental element ratios [49]. We166

implement metabolic investments by scaling the following model parameters167

by an associated investment factor (ρ) following the analysis in Klausmeier168

et al. [39],169

9
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′
max (11)

vI = ρiv
′
I (12)

vN = ρnv
′
N (13)

vG = ρgv
′
G. (14)

The trade-off between investing in different metabolic processes is represented170

by an additional constraint, such that,171

ρa + ρi + ρn + ρg = p, (15)

where p is the proportion of mixotroph biomass committed to metabolism.172

The metabolic strategy of the mixotroph population changes through time173

following,174

dρ

dt
= (ρ̂− ρ)c, (16)

where ρ̂ is the growth-optimizing strategy for the current environmental con-175

ditions and c is a rate constant describing the time scale of the plastic re-176

sponse. As the model is simulated forward through time, the metabolic177

strategy that maximizes growth at any given time (defined below) changes178

as a function of temperature, light, nutrient concentration, and bacterial179

abundance. The mixotroph population changes its current investment strat-180

egy to follow this moving target. The time scale over which it responds to181

changes in the environment depends on the parameter, c. Mixotrophs that182

can respond quickly to changing environmental conditions, and are capable183

of making large jumps through metabolic phase space, are assigned large184

values of c and represent “fast-responding” mixotrophs. Mixotrophs that185

respond more slowly to environmental change have small values of c and are186

characterized as “slow-responding”.187

The determination of the instantaneous growth-optimizing metabolic strat-188

egy is a maximization problem of the function µ(QC , QN) over ρ. We assume189

that the internal cell quotas equilibrate quickly relative to the time scale of190

environmental variance and solve for the quasi-equilibrium by setting dQ
dt

= 0.191

10
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ofQ̃C = Qmin,C +

1

µmax

(
vII

kI + I
+

bCvGB

kG +B

)
(17)

Q̃N = Qmin,N +
1

µmax

(
vNN

kN +N
+

bNvGB

kG +B

)
(18)

The growth rate of the mixotroph is determined by the minimum limiting192

resource (carbon or nitrogen) and is equal to the minimum of the C-limited193

and N-limited growth rates. A full expression for the growth rate as a func-194

tion of ρ can be found by substituting equations (11)–(14) into (17)–(18) and195

substituting the resulting expressions for Q̃C and Q̃N into (4).196

µ(ρ1, ρ2, ρ3, ρ4) =

min

[
ρ1µ

′
max

ρ2v′II
kI+I

+
ρ4v′GbCB

kG+B

ρ1µ′
maxQmin,C +

ρ2v′II
kI+I

+
ρ4v′GbCB

kG+B

, ...

ρ1µ
′
max

ρ3v′NN

kN+N
+

ρ4v′GbNB

kG+B

ρ1µ′
maxQmin,N +

ρ3v′NN

kN+N
+

ρ4v′GbNB

kG+B

]
(19)

We used the MATLAB function fminimax (Optimization Toolbox: Version197

9.0, R2020b) to numerically estimate the values of ρ that maximize (19) for198

a given set of environmental conditions (I,N,B, T ). The resulting ρ val-199

ues represent the growth-optimizing metabolic strategy (ρ̂). The additional200

constraint in (16) is applied during this optimization to ensure that ρ̂ has201

unit sum and that (16) is conserved through the dynamic evolution of the202

mixotroph’s metabolic strategy.203

Costs of plasticity204

Metabolic plasticity may come at a cost to the organism [24, 23, 12].205

In order to change its metabolic strategy a mixotroph must commit energy206

and resources to building new cellular machinery and dismantling the old.207

We introduce a cost function (Y ) that scales the population growth rate208

proportionally to the magnitude of the total change in metabolic investment,209

Y = e−ϵ
∑4

i=1
dρi
dt . (20)

11
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is reduced under higher plasticity costs. Substituting (20) into (4), we update211

the expression for mixotroph growth such that,212

µ(QC , QN) = Y µmaxmin

[
1− Qmin,C

QC

, 1− Qmin,N

QN

]
, (21)

The parameter ϵ is the relative cost of plasticity. Y is defined such that if the213

mixotroph’s metabolic strategy is stable (e.g., constant environmental condi-214

tions) the cost is zero. Negative effects on growth rate are only realized when215

the mixotroph is actively changing its metabolic investments and scales with216

the magnitude of those changes. Other implementations of cost functions,217

such as a cost to plasticity that is constant in time, are possible, but this218

realized cost approach was selected as the most relevant to our model setup219

that includes time-variable investments.220

Numerical integration221

The parameters values used in the simulation of the model are summa-222

rized in Table 1. We ran three sets of experiments (Table 2). First, we ran a223

population experiment composed of repeated, independent model runs over224

a range of c. The model setup included a single mixotroph with a different c225

value per simulation. All simulations had the same cost of plasticity, ϵ = 0.226

The model was spun up for 10 years, with the final year used for analysis.227

Next, we ran a community experiment using a model setup that included228

10 different mixotrophs with various c values competing against each other.229

Repeated model runs were conducted, changing the cost of plasticity (ϵ) and230

the amplitude of the seasonal cycle each time. Finally, we ran a pairwise231

competition experiment consisting of a single simulation using a model that232

included just two mixotrophs types with different c values. The dynamics233

in this pairwise experiment were simpler than the community experiment234

and were helpful in describing specific coexistence mechanisms between a235

fast-responding and a slow-responding mixotroph.236

We tested several initial conditions, and found that running our model237

for 10 years allowed transient dynamics from initial conditions to disappear238

and that different simulations converged on the same results (Supplementary239

Fig. S1). In the case of low-plasticity mixotrophs (small c), we initialized the240

metabolic strategies using the emergent optimal strategies of the highest-241

plasticity mixotrophs (large c) to limit the transient behavior to a few annual242

cycles and reduce computational time. Integration of the mixotroph model243

12
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ofTable 2: Summary of experiments conducted including number of mixotroph types in each

simulation, the parameter(s) varied over repeated simulations in the experiment, and the
intended purpose of the experiment.

Experiment Mixotroph types Parameter varied Purpose

Population 1 Rate constant (c) Ecological and biog
chemical dynamics

Community 10 Cost (ϵ), seasonal
amplitude

Effects of cost,
optimal plasticity

Pairwise 2 Mechanisms of
coexistence

is limited by the computationally expensive maximization problem used to244

determine the growth-optimizing metabolic strategy at each time point. To245

reduce simulation time, we introduce a new variable, ω, that describes the246

frequency that the optimal strategy is calculated. During the integration,247

the optimal strategy is calculated at regular time intervals every 1/ω units.248

The sensitivity of our results to ω is shown in Supplemental Figure S2.249

3. Model analysis250

Population experiment: Intermediate plasticity maximizes productivity251

First, we examine the output of the population experiment, composed252

of independently simulated model runs that each include a single mixotroph253

and use a different c value per simulation. The experiment shows how sea-254

sonal dynamics depend on the plasticity rate constant. Both fast- and slow-255

responding mixotroph types showed similar seasonal patterns in metabolic256

strategy, although fast-responding mixotrophs had larger amplitude changes257

in investment and more metabolic variability over the year (Fig. 2). Vari-258

ability in metabolic strategy over the seasonal cycle has several significant259

feedbacks onto the ecosystem. Reduced investment into inorganic nitrogen260

uptake during the winter, for example, amplifies the already high winter-261

time nitrogen concentrations. During the spring bloom, when mixotrophs262

become more autotrophic, bacteria populations are released from grazing263

and increase in abundance, supporting increased nutrient recycling. The in-264

creased plasticity observed in mixotrophs with higher c values (i.e. greater265

range of metabolic strategies) strengthens these feedbacks and magnify the266

mixotroph’s biogeochemical impact on ecosystem function.267
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dances than slow-responding mixotrophs (Fig. 2i). While fast-responding269

mixotrophs have optimized their metabolic strategy to maximize their growth270

rate for the current conditions, there is an emergent trade-off to this strat-271

egy due to ecological feedbacks in the system. Consider the differences in272

in metabolic strategy between fast- and slow-responding mixotrophs during273

the winter (Fig. 2, left column). During this time period, mixotroph growth274

is limited by carbon due to the combination of low light and high inor-275

ganic nitrogen concentration (Fig. 3). The instantaneous growth-maximizing276

strategy under these conditions is to become more heterotrophic since graz-277

ing is a more efficient source of carbon than photosynthesis under low light278

conditions. Fast-responding mixotrophs react quickly to these constraints279

and drastically increase their investment into grazing, while simultaneously280

decreasing their investments into both photosynthesis and nutrient uptake.281

Slow-responding mixotrophs experience similar incentives to become more282

heterotrophic and move in the same direction (in trait space) as fast-responding283

mixotrophs. However, their slower response is characterized by lower grazing284

rates and higher nutrient uptake rates over the winter. Although these slow-285

responding mixotrophs achieve lower growth rates in the short term because286

of the mismatch between their nutrient requirements and their metabolic287

strategy, the tempered response has two important consequences. First, the288

reduced grazing pressure allows bacteria populations to remain higher over289

the winter months, sustaining a critical carbon supply and higher rates of290

remineralization. Second, the higher uptake of inorganic nitrogen at a time291

period when it is not limiting means that slow-responding mixotrophs build292

up large reserves of nitrogen over the winter (Fig. 3). By spring, when the293

water column begins to stratify, these reserves of nitrogen ensure that slow-294

responding mixotrophs do not become nitrogen-limited until much later in295

the seasonal cycle, compared to their fast-responding counterparts (Fig. 3).296

The longer time scale of the plastic response in slow-responding mixotrophs297

“accidentally” creates resource reserves that support higher productivity298

rates in the early spring, as well as earlier initiation of the spring bloom and299

earlier peak abundance (Fig. 2). We say accidentally because this positive ef-300

fect is not accounted for by the growth-maximization function and emerges as301

a secondary effect due to slow-responding mixotrophs less plastic response.302

The slow-responding mixotroph becomes trapped within a narrow area of303

the trait space because the time scale of seasonal change is shorter than304

the time scale of the plastic response. The instantaneous growth-maximizing305
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responding mixotrophs alter their strategy too slowly to ever make it far from307

the average strategy. The end result is that the slow-responding mixotroph308

adopts a more stable metabolic strategy suited for the average conditions309

they experience, which provides emergent benefits in the form of resource310

provisioning.311

Because rapid response rates have both positive (growth rate maximiza-312

tion) and negative (over-grazing and reduced resource provisioning) effects on313

mixotroph populations, productivity and seasonally integrated biomass are314

both maximized at an intermediate plasticity level that balances the pros315

and cons of metabolic variability (Fig. 4). The unimodal shape of the rela-316

tionship reflects the trade-off between adaptation to environmental variability317

and a more tempered strategy that maintains metabolic diversity and buffers318

mixotrophs against large seasonal shifts with increased resource storage. We319

use “trade-off” even though the mixotrophs are not choosing between the320

costs and benefits of rapid plastic responses.321

The trade-off between fast-responding mixotrophs that make large changes322

to their metabolic strategy season to season and slow-responding mixotrophs323

that maintain a more consistent strategy also affects the biogeochemical324

role of mixotroph populations. Highly plastic mixotrophs become more325

autotrophic during the spring and more heterotrophic during the winter326

(Fig. 2). In contrast, less plastic mixotrophs maintain more balanced lev-327

els of heterotrophy and autotrophy throughout the season. As a result, the328

fast-responding mixotrophs create greater variability in their carbon balance,329

becoming a carbon sink in the spring and carbon source in the winter. Be-330

cause the productivity signal tends to be dominated by the highly productive331

spring growing season, fast-responding mixotrophs are, on average, more au-332

totrophic than slow-responding mixotrophs (Fig. 4).333

Community experiment: Optimal plasticity balances costs and benefits334

While intermediate plasticity mixotrophs have the highest productivity,335

that does not necessarily make those types the most competitive. Next, we336

examine the output of the community experiment to understand how differing337

plasticity rate constants affect competitive ability. This experiment is com-338

posed of multiple model runs that each include a community of 10 mixotroph339

types with various plasticity rates (c). Repeated runs were conducted using340

different costs for plasticity (ϵ) and different amplitudes of the seasonal cy-341

cle. In model runs where ϵ = 0, the numerically dominant mixotroph in the342
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Figure 2: Population Experiment: Dependence of ecosystem seasonal dynamics on the
plasticity rate constant (c). Seasonal drivers, mixed layer depth (a), temperature (b),
and light (c) are shown in the top row. The mixotroph investment strategies (d,f,h,j) im-
pact, and are in turn impacted by, temporal dynamics in resource availability and biomass
(e,g,i,k). Times series are shown for different values of the plasticity constant c and rep-
resent the final year of a ten-year simulation, with numbered annotations to show key
features. Over winter, light is at a minimum and the availability of inorganic nitrogen is
high due to deep mixing. To meet their carbon requirements, mixotrophs increase grazing
investment (1) and decrease photosynthesis and nitrogen uptake investment. Reduced
nitrogen uptake by mixotrophs supplements deep mixing and contributes to high nitrogen
availability during the winter (2). In spring, rising light levels and high inorganic nitrogen
concentrations make photosynthetic niches more optimal and mixotrophs respond by in-
creasing investments into photosynthesis (3), while simultaneously decreasing investments
into grazing. During this period of largely autotrophic growth, bacteria populations reach
a maximum (4). By summer, the water column has become highly stratified and nitrogen
concentrations are significantly reduced (5). Now strongly nitrogen-limited, mixotrophs
invest primarily into inorganic nutrient uptake (6) with a combination of both photosyn-
thesis and grazing to meet their carbon needs. During fall, light decreases and vertical
mixing increases inorganic nitrogen concentration. The fast-responding mixotrophs dis-
play a short-lived burst of photosynthetic investment during this period (7) before light
levels fall low enough that photosynthesis is an inefficient source of carbon. As light levels
continue to decline into the winter, mixotrophs once again increase their investment into
grazing (8).
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Figure 3: Population Experiment: Cellular resource quotas for carbon (a) and nitro-
gen (b) and the resulting resource limitation factor (c) over the seasonal cycle for var-
ious values of the plasticity rate constant (c). Limitation factors are calculated as

log10

(
QC

Qmin,C
/ QN

Qmin,N

)
. A positive value indicates N-limitation and a negative value in-

dicates C-limitation. Across all population simulations, mixotrophs are N-limited in the
summer and C-limited in the winter. Slow-responding mixotrophs accumulate greater re-
serves of nitrogen during the winter, which supports springtime growth and results in the
transition to N-limitation significantly later in the season.
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Figure 5: Community Experiment: Time series of community simulations for three differ-
ent values of cost (ϵ) showing the abundance of each mixotroph type. Communities are
numerically dominated by fast-responding mixotrophs when the cost is low and become
dominated by increasingly more slow-responding mixotrophs as ϵ increases. Coexistence
between types is possible at all cost levels, though the abundance of slow-responding
mixotrophs may be very low for small values of ϵ.

simulated community is the fastest-responding mixotroph (highest c value;343

Fig. 5a). For higher values of ϵ, this competitive advantage is offset by a344

higher physiological cost to plasticity. As the cost increases, the community345

is dominated by mixotrophs with intermediate c values (Fig. 5b). If the cost346

is sufficiently high, the numerically dominant mixotroph type becomes the347

mixotroph with the smallest c value (Fig. 5c). Additionally, coexistence be-348

tween fast- and slow-responding mixotroph types is observed at all cost levels349

(including ϵ = 0). Here, we define coexistence as persistence over long time350

scales (at least 20 years).351

The optimal rate constant, defined as the value of c assigned to the numer-352

ically dominant mixotroph type, is inversely related to the cost of plasticity353
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seasonal cycle. Large amplitude seasonal cycles create more environmental355

variability and therefore larger potential benefits of plasticity. Environments356

with large amplitude seasonal cycles more strongly select for higher plasticity357

than low-amplitude environments (Fig. 6).358

Pairwise experiment: Nutrient provisioning allows slow-responding mixotrophs359

to persist360

Community-scale simulations of the model show that coexistence is possi-361

ble between fast- and slow-responding mixotrophs (Fig. 5). Next, we turn to362

the output of the pairwise experiment to examine in more detail the mecha-363

nisms that allow a slow-responding mixotroph to persist with a more compet-364

itive, fast-responding mixotroph. This experiment consists of a single model365

run using two mixotroph types with different c values. The c values used366

in this simulation are the maximum (c = 0.1) and minimum (c = 0.001)367

of the range this parameter across all experiments in order to maximize the368

competitive difference between the mixotroph types.369

The same trade-offs that result in slow-responding mixotrophs achiev-370

ing higher productivity allow these mixotrophs to persist when competing371

against fast-responding competitors. A mixotroph type with a higher c value372

will generally have higher growth rate because it can more quickly reach the373

growth-maximizing metabolic strategy for any give set of environmental con-374

ditions. In a competitive scenario, the benefits of a stable strategy that a375

slow-responding mixotroph adopts are reduced, since resources that would376

have been “saved” for future growth are instead consumed by the competitor.377

Nevertheless, in the pairwise experiment, the slow-responding mixotroph is378

able to persist due to higher growth rates in the late spring fueled by ac-379

cumulated nitrogen reserves. Slow-responding mixotrophs maintain a higher380

investment in nutrient uptake during the carbon-limited winter months and381

generate excess nitrogen reserves that they can draw from in the spring when382

the water column stratifies. The resulting delay in becoming nitrogen limited383

creates a narrow window during the spring when slow-responding mixotrophs384

can outgrow fast-responding mixotrophs (Fig. 7), thus persisting against a385

more plastic competitor.386
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Figure 6: Community Experiment: Optimal rate constant (c) as a function of the cost
of plasticity (ϵ) for two different environments. Low and high amplitude environments
are defined by the annual range of three drivers: mixed layer depth (a), temperature (b),
and light (c). The optimal rate constant (d) is defined as the value of c of the mixotroph
type that is numerically dominant in a community. Optimal rate constants decline as the
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of4. Discussion387

In this study, we extend existing models of plankton physiology [38, 39] to388

develop a new framework to represent mixotroph metabolic plasticity within389

a simple food chain. This new model does not assign a specific metabolic390

strategy but allows optimal investments to emerge based on growth rate391

maximization principles. We use the model to simulate seasonal dynam-392

ics in mixotroph strategy for various rates of plastic responses and explore393

how this time scale affects the ecological characteristics and biogeochemical394

consequences of mixotroph populations. The model reveals a trade-off be-395

tween fast-responding and slow-responding mixotrophs that allows the per-396

sistence of less competitive, slow-responding mixotrophs due to an emergent397

resource provisioning effect. Interestingly, this effect arises incidentally from398

the mixotroph’s slower response time to environmental change and requires399

no foresight or planning on behalf of the individual. Furthermore, the trade-400

off emerges without any explicit physiological cost to plasticity and may401

help explain the apparent constraints to the evolution of increased plasticity402

[25, 26].403

Plasticity and time scale404

One unique feature of our modelling framework is the inclusion of an ex-405

plicit time scale in the plastic response. We define a strategy that maximizes406

growth rate based on current conditions and allow mixotrophs to asymptot-407

ically converge towards this theoretical optimum at a prescribed rate. This408

definition distinguishes our model from previous models that typically focus409

on the optimality criteria themselves (e.g. growth optimization, competi-410

tive outcomes) [38, 39, 16]. The inclusion of transient states as mixotrophs411

dynamically adapt to variable environmental conditions provides a new di-412

mension to modeling metabolic plasticity. Furthermore, this approach re-413

duces the model’s dependence on initial assumptions because the range of414

phenotypes exhibited by a mixotroph emerges as a function of environmental415

variability and the rate of the plastic response, rather than being assigned a416

priori.417

This framework also adds memory to the model. That is, a mixotroph’s418

time-evolving metabolic strategy depends on past conditions as well as cur-419

rent conditions because a mixotroph must move from a previous state to a420

new state by crossing the intervening trait space. In a periodic environment,421

such as a seasonal cycle, a memory property connects our representation of422
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range of traits that an individual can exhibit. A slow-responding mixotroph424

exhibits only a narrow range of metabolic strategies over a seasonal cycle425

because its longer response restricts its metabolic mobility; by the time it426

responds to an environmental change and moves in one direction, the envi-427

ronment has shifted back in the opposite direction and the mixotroph must428

reverse course. In contrast, fast-responding mixotrophs can quickly make429

large changes and exhibit a much broader range of strategies at different430

points in the seasonal cycle.431

Trade-offs emerge without explicit physiological costs432

Metabolic plasticity has a number of clear benefits: it allows for more433

efficient growth under variable food conditions [50], stabilizes population dy-434

namics [51, 52], and increases resilience to environmental change [53]. Given435

these benefits, it is generally assumed that plasticity must be limited by436

fundamental physiological constraints, or cost [25, 54]. We offer an alter-437

native explanation for the evolution of low-plasticity mixotrophs, however,438

by detailing the emergence of a trade-off that is entirely independent of any439

physiological cost: When low-plasticity (i.e. slow-responding) mixotrophs440

lag behind the growth-maximizing strategy, they create a mismatch between441

their resource uptake and nutrient requirements that results in the accu-442

mulation of nitrogen during time periods when carbon is limiting. These443

excess nitrogen reserves come at the cost of lower growth efficiency in the444

moment, but provide an advantage under future stratified conditions. While445

this post hoc benefit is not accounted for in the mixotroph’s response to envi-446

ronmental variability, nevertheless, the implicit trade-off it creates results in447

mixotroph biomass and productivity reaching their maximum value at inter-448

mediate plasticity values that achieve some balance between the advantages449

of high- and low-plasticity strategies.450

This emergent trade-off bears similarity to the concept of “bet-hedging”,451

a term that describes various traits or strategies that decrease temporal fit-452

ness variation at the cost of reduced average, or expected, fitness (reviewed453

by Seger et al. [55]). Bet-hedging has been described in many different con-454

texts, including the maintenance of genetic polymorphism [56, 57], species455

coexistence in variable environments [58], and the evolution of reproductive456

strategies [59]. By adopting a trait or strategy that may reduce their fitness457

now, organisms can buffer themselves against large swings in fitness when458
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efit from maintaining a diversified metabolic strategy that reflects the average460

conditions rather than the immediate conditions. Reduced variability in their461

strategy results in excess uptake and storage of currently unneeded resources462

that provide reserves during nutrient-limited conditions in the future, thereby463

reducing variability in their fitness over the course of the seasonal cycle at464

the cost of a lower average growth rate. In our model, while bet-hedging is465

not an explicit strategy, something like bet-hedging arises due to the slow466

response time of less plastic mixotrophs. The emergence of these benefits467

suggest that such bet-hedging behaviours could actually arise evolutionarily468

from selection upon variability in plastic response rates. Bet-hedging may469

provide other long-term advantages as well, such as reducing mixotrophs’470

dependence on any single resource and increasing resilience to environmental471

variability [60].472

Other theoretical frameworks, including fitness sets [61], may be valuable473

in interpreting the evolutionary context for temporal variability in mixotroph474

metabolic strategy as well. A fitness set is a way of graphically depicting the475

optimality of different phenotypes in variable environments by plotting the476

trade-off curve of combinations of phenotypes alongside contours of constant477

fitness [61]. Under this framework, overall fitness is reduced by environmental478

variance while phenotypic plasticity serves to restore a portion of this fitness479

loss, albeit never to the level that would be achieved in a constant environ-480

ment [62]. Our model predicts a similar relationship, with higher plasticity481

in more variable environments (Fig. 6). An in-depth analysis of fitness set482

theory and its ecological and evolutionary applications can be found in [62].483

Biogeochemical implications484

One unique aspect of studying metabolic plasticity in mixotrophs is the485

combination of both autotrophic and heterotrophic processes within the same486

organism. Variable investment into phototrophy versus phagotrophy has487

the potential to create shifts in the carbon source-sink dynamics of marine488

plankton communities. Where mixotrophs contribute significantly to overall489

production and respiration, plastic changes to metabolic strategy may act490

like a fulcrum in calculations of net community production (NCP), shift-491

ing the ecosystem between states of net autotrophy and net heterotrophy492

on sub-seasonal time scales. This balance represents a critical component493

of the carbon cycle since marine food webs account for approximately half494

of global primary productivity [63] and export about 10 Pg C y-1 into the495
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that fast-responding mixotrophs are more autotrophic, thereby contribut-497

ing to increased NCP, although this conclusion is contingent on significant498

seasonality of the system and different relationships may emerge in other bio-499

geochemical regimes. Although direct measurements of seasonal variability500

in mixotrophic metabolic strategies in situ are lacking, the simulated season-501

ality in our model is consistent with general expectations that mixotrophic502

strategies are more common during stratified summer months in temperate503

ecosystems, while autotrophic strategies are more common during the spring504

bloom (e.g., [20, 16, 65]).505

One important caveat to the observed biogeochemical consequences in506

this study is the limited trophic resolution of our model, which includes only507

mixotrophs and their bacterial prey without either specialized autotrophs508

(phytoplankton) or specialized heterotrophs (zooplankton). The simplified509

model structure was chosen to isolate interactions between mixotroph metabolism510

and the environment. Our model excludes several important ecosystem511

carbon fluxes, including phytoplankton-zooplankton grazing dynamics, that512

likely play an important role in modulating mixotroph metabolic strategies513

alongside the mixotroph-environment feedbacks described in this study. For514

example, previous modeling work has also shown that competition can drive515

trait displacement; mixotrophs occupy a more heterotrophic niche when com-516

peting with phytoplankton, for example [66]. Future models that resolve517

these interactions will help constrain the ecosystem-level biogeochemical role518

of mixotroph plasticity. Furthermore, the flexibility provided by food web519

models (compared to linear food chains) may buffer the model against sen-520

sitivity to structural changes and perform better at capturing important521

seasonal behaviors [67, 68], although very complex models often suffer from522

parameter uncertainty due to their tendency to propagate error [69].523

We have also excluded energetic considerations when constructing the524

model in favor of simplicity. Energetic growth efficiency is generally lower525

in autotrophic compared to heterotrophic microbes, with mixotrophs falling526

somewhere in the middle [70, 71]. This physiological cost of autotrophy is527

absent from the model’s metabolic optimization algorithm, which assumes528

perfect growth efficiency for both heterotrophic and autotrophic processes529

in the growth maximization calculation (19). Such a cost may constrain530

investments into photosynthesis and moderate the tendency for more plastic531

mixotrophs to be, on average, more autotrophic.532
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A shifting paradigm in recent years has emphasized the importance of534

mixotrophy in marine microbial food webs [2, 4]. Our results highlight com-535

plex ecological dynamics arising from variance in mixotroph metabolic strat-536

egy that may have significant evolutionary implications for existing patterns537

of variation in mixotroph plasticity. Although logistically challenging, future538

experimental studies that quantify mixotroph plasticity in situ could test the539

mechanisms described by the model and give insight into standing mixotroph540

phenotypic variation and its implications for biogeochemical cycling. Com-541

plimenting empirical measurements, our model also provides a framework542

that could be incorporated into spatially explicit food web models to better543

understand the mechanisms that drive spatial and temporal variability in544

mixotroph metabolic strategy at a global scale.545
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