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1  |  INTRODUC TION

Genetic admixture occurs when individuals from divergent pop-
ulations interbreed. Due to recombination after the admixture 
event, the chromosomes inherited from each parent break down, 
forming genomes made up of a mosaic of DNA segments tracing 
back to the ancestral populations. Previous studies have shown 

that admixture took place recurrently in the evolutionary history 
of many populations and species and often played a prominent 
role in shaping their genomes (Edelman & Mallet, 2021; Martin & 
Jiggins, 2017; Moran et al., 2021). Admixture events can impact the 
fitness of individuals and contribute to an adaptation to local en-
vironments (often referred to as adaptive introgression) (Edelman 
& Mallet, 2021). In certain cases, admixed individuals benefit from 
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Abstract
Admixture is a common biological phenomenon among populations of the same or 
different species. Identifying admixed tracts within individual genomes can provide 
valuable information to date admixture events, reconstruct ancestry- specific demo-
graphic histories, or detect adaptive introgression, genetic incompatibilities, as well 
as regions of the genomes affected by (associative- ) overdominance. Although many 
local ancestry inference (LAI) methods have been developed in the last decade, their 
performance was accessed using large reference panels, which are rarely available for 
non- model organisms or ancient samples. Moreover, the demographic conditions for 
which LAI becomes unreliable have not been explicitly outlined. Here, we identify the 
demographic conditions for which local ancestries can be best estimated using very 
small reference panels. Furthermore, we compare the performance of two LAI meth-
ods (RFMix and MOSAIC) with the performance of a newly developed approach (sim-
pLAI) that can be used even when reference populations consist of single individuals. 
Based on simulations of various demographic models, we also determine the limits 
of these LAI tools and propose post- painting filtering steps to reduce false- positive 
rates and improve the precision and accuracy of the inferred admixed tracts. Besides 
providing a guide for using LAI, our work shows that reasonable inferences can be ob-
tained from a single diploid genome per reference under demographic conditions that 
are not uncommon among past human groups and non- model organisms.
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enhanced fitness (hybrid vigour) due to overdominance or associa-
tive overdominance (Birchler et al., 2006), contributing to the re-
tention of divergent haplotypes in the population and to elevated 
levels of heterozygosity in conserved regions of the genome. 
However, admixture might also lead to genetic incompatibilities 
and purifying selection, which can be predicted by the identifica-
tion of introgression deserts (Martin & Jiggins, 2017). Decoding 
admixed genomes in terms of their ancestral origins is therefore 
of prime importance for investigating the consequences of intro-
gression, reconstructing ancestry- specific demographic histories, 
and dating past admixture events (Browning et al., 2018; Ioannidis 
et al., 2020).

Several local ancestry inference (LAI) tools were developed 
for these purposes or for applications in medical genetics. Many 
of them use Hidden Markov Models (HMM) that account for link-
age disequilibrium (LD) (e.g. SABRE, HAPAA, HAPMIX, ELAI, 
MOSAIC, ARCHes, FLARE) (Browning et al., 2023; Guan, 2014; 
Price et al., 2009; Salter- Townshend & Myers, 2019; Sundquist 
et al., 2008; Tang et al., 2006; Wang et al., 2021) or window- based 
approaches that do not explicitly model LD (e.g. LAMP, WINPOP) 
(Paşaniuc	et	al.,	2009; Sankararaman et al., 2008); others use ma-
chine learning (ML) techniques such as random forests with a con-
ditional random field (RFMix) (Maples et al., 2013), neural networks 
(AncestralPaths) (Pearson & Durbin, 2023), or a combination of dif-
ferent ML algorithms (GNOMIX) (Hilmarsson et al., 2021). Most LAI 
tools show high accuracy when applied to individuals whose admix-
ing ancestries are well differentiated and when admixture is very 
recent (Geza et al., 2019). However, the amount of differentiation 
required to reach a certain accuracy level and the demographic con-
ditions for which inferences become unreliable have not been explic-
itly outlined. In addition, masking regions of the genome for which 
LAI is uncertain based on marginal probabilities might be insufficient 
to remove LAI errors since these probabilities are not always well 
calibrated (Browning et al., 2023).

The most recent improvements in LAI methods aimed at in-
creasing computational speed and accuracy while taking advan-
tage of large- scale reference panels (Hilmarsson et al., 2021; Wang 
et al., 2021). Yet, large datasets consisting of high- coverage se-
quence or dense genotype data are often unavailable for non- model 
organisms or ancient samples. Using reference samples that are 
temporally closer to the admixture event could, however, improve 
LAI due to their higher genetic similarity to the actual sources, par-
ticularly when all extant populations from a region have experienced 
admixture and individuals that are representative of the ancestral 
genetic pool are no longer found.

In this work, we simulate various demographic models, includ-
ing single admixture events and recurrent admixture, to identify the 
conditions for which local ancestries can be reasonably estimated 
when appropriate proxies for the ancestral populations are limited. 
Using a set of informative statistics, we compare the performance of 
three LAI methods: a widely used ML- based method (RFMix) (Maples 
et al., 2013), an HMM- based method that does not require direct 
surrogates for the admixing groups (MOSAIC) (Salter- Townshend 

& Myers, 2019), and a newly developed, simpler approach (that we 
named simpLAI), that is less affected by reference panel sizes. We 
show how the inferences vary with the choice of a prior admixture 
time (required in RFMix) or window size (required in simpLAI) and 
with the choice of reference populations; and propose post- painting 
filtering steps to reduce false- positive rates and improve the preci-
sion and accuracy of the estimated admixed tracts. Lastly, we ap-
plied simpLAI to admixed southern African modern humans, as well 
as admixed Neolithic farmers from Europe. LAI obtained using single 
genomes per reference was contrasted to inferences based on larger 
reference panels.

2  |  METHODS

2.1  |  Simulations

We simulated admixed populations resulting from one and two ad-
mixture events at varying times (Figure S1) using a modified version 
of fastsimcoal2 (Excoffier et al., 2021) that records the local ancestry 
tracts of admixed individuals. The simulations include demographic 
models where two populations (S1 and S2) of equal size (2000, 5000, 
or 10,000 haploid individuals) diverge 500 or 1000 generations ago 
from an ancestral population of size 20,000. In the one pulse of ad-
mixture model, admixed populations of size 2000 are created 10, 
100, or 300 generations ago, with 5%, 10%, 20%, or 30% of ancestry 
from population S1 and the remaining from population S2. In the 
two- admixture pulse model, an initial admixture event occurs 100 
or 300 generations ago between populations S1 and S2, contrib-
uting 30% and 70%, respectively, to the ancestry of the admixed 
population (SA), which has the same size as the source populations. 
A second admixed population of 2000 haploid individuals is then 
formed 10 generations ago as a result of admixture between S1 (5%) 
and SA (95%). We sampled 10 diploid individuals from the admixed 
population (to be used as LAI targets) and one, two, four, or eight 
diploid individuals from each source to be used as references in the 
LAI for the one- pulse model and one or four diploid individuals for 
the two- pulse model. In our simulations, each haploid genome con-
sists	of	a	chromosome	of	length	100 Mb.	We	used	uniform	mutation	
and	recombination	rates,	set	to	1.25 × 10−8 mutations per base pair 
per generation (Scally & Durbin, 2012)	and	1 × 10−8 per base pair per 
generation, respectively.

2.2  |  Local ancestry inference

We inferred the local ancestries with RFMix v2 (Maples et al., 2013), 
MOSAIC (Salter- Townshend & Myers, 2019), as well as with a sim-
ple and newly developed LAI approach (simpLAI; available on 
https:// github. com/ CMPG/ simpLAI). RFMix was run with the option 
–reanalyze- reference and three EM iterations, to account for cases 
where the reference population is already admixed. We performed 
three RFMix estimations per simulation assuming a prior of 10, 100, 
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and 300 generations since admixture. For each haploid target, re-
gions of the genome with a resulting marginal probability smaller 
than 1 were masked to minimize LAI errors. We ran MOSAIC for 
each simulation assuming two ancestral populations (−a 2) and with-
out	phase	correction	(−nophase). Since the phase is known and ref-
erence panels are small, allowing rephasing could have introduced 
phasing errors. By default, MOSAIC infers the relationship between 
reference and ancestral populations, recombination rates, mutation 
rates, and the timing and ancestry proportions of the admixture 
event. Therefore, we did not set any prior values for these param-
eters. LAI performance was estimated after converting the MOSAIC 
inferences at evenly spaced recombination distances to inferences 
at the single- nucleotide positions (SNP) with the MOSAIC function 
“grid_to_pos”. We used a uniform recombination map when per-
forming LAI inferences on simulated data with RFMix and MOSAIC.

simpLAI is a window- based approach that leverages information 
on the matching of haplotypes from admixed and reference indi-
viduals to infer the ancestry across the genome. The programme 
performs two types of inferences. In the min mode, the ancestry as-
signed	to	a	target	haplotype	of	predefined	size	(−s) is that of the refer-
ence population that includes the chromosome displaying the lowest 
number of mismatches with the target. The rec mode accounts for 
intra- population ancestry switches that may have occurred within a 
haplotype through recombination. Each haplotype segment consists 
of n polymorphic sites, and the number of mismatches between a 
target and each chromosome of the reference population is com-
puted on subsets of t linked polymorphic sites (assumed to be a non- 
recombining segment). The path consisting of the combination of 
segments (potentially identified on different chromosomes) among 
the n polymorphic sites showing the smallest number of mismatches 
within each reference population is selected to compare reference 
populations. The reference with the shortest path is selected for the 
ancestry of the target haplotype. The increment for the sliding win-
dow	is	defined	in	base	pairs	(−i) for the min mode and in number of 
polymorphic	sites	(−m) for the rec mode.

We	tested	simpLAI	using	windows	ranging	from	0.5	to	4 Mb	and	
including 500–8000 polymorphic sites. The parameter t was set to 
five linked polymorphic sites since this value led to a better LAI per-
formance compared to higher values in our exploratory analyses.

2.3  |  Statistics

The LAI performance was evaluated for the three methods for each 
simulated condition. We calculate the accuracy to determine how 
close the inferred local ancestry is to the true local ancestry across 
the whole genome. This estimator has been commonly used to as-
sess the performance of LAI methods but is highly affected by ad-
mixture proportions (e.g. if the minority ancestry accounts for 5% of 
the genome, the accuracy can be relatively high even if none of the 
segments assigned to the minority ancestry were correctly inferred). 
Therefore, we computed three additional statistics: the precision 
of the inference to quantify how much of the predicted minority 

ancestry is really true, the true- positive rate (TPR) to quantify how 
much of the minority ancestry is recovered (i.e. from the old vs. the 
recent pulse in the two- pulse case), and the false- positive rate (FPR) 
to quantify how much of the majority ancestry is incorrectly as-
signed to the minority ancestry (as defined in Figure S1).

We compared LAI results across runs performed with different 
parameters (time since admixture in RFMix) and different reference 
populations (RFMix, MOSAIC, simpLAI) for each simulated target in-
dividual. Regions of the genome for which an individual's LAI was in-
consistent across runs were masked, the percentage of the genome 
remaining painted (i.e. the concordant subset) was recorded, and the 
statistics described above were additionally computed on the con-
cordant subset of the genome.

We computed FST (Hudson et al., 1992) between the simulated 
reference populations at present using a custom R script (available 
on https:// github. com/ CMPG/ simpLAI). To measure the level of 
differentiation between populations at different times in the past, 
we calculated the expected FST as a function of coalescence times 
(Slatkin & Voelm, 1990).

2.4  |  Application to southern African individuals

To further evaluate the applicability of LAI in extreme cases where 
only a single diploid genome is available to represent a particular 
source population, we applied simpLAI to admixed modern hu-
mans from southern Africa. RFMix was previously used to infer 
LAI of the same present- day individuals from this region using 
references for three possible ancestries consisting of present- 
day individuals from East, West, and southern Africa (Oliveira 
et al., 2023). While the latter were chosen for their high amount of 
“original” southern African ancestry (i.e. the ancestry of southern 
Africans before contact with food- producing groups), all present- 
day southern African individuals have been shown to be admixed 
to some degree with western and eastern African- related groups. 
This condition is not ideal for LAI but is in principle accounted for 
in RFMix by additional EM steps that treat the reference haplo-
types as query haplotypes, updating their own ancestry assign-
ment. Here, we used simpLAI with the same reference populations 
and also performed an alternative LAI analysis using a single an-
cient genome (Ballito Bay A) as a proxy for the original southern 
African ancestry (Schlebusch et al., 2017). In contrast to present- 
day southern Africans, this individual (dated 1986–1831 BP) does 
not show any genetic contributions from East and West Africa. We 
used the same reference individuals as in Oliveira et al. (2023) to 
represent the East and West African ancestries (13 Somali and 13 
Yoruba individuals, respectively). Yet, to avoid biased LAI results 
emerging from sample size asymmetries in the references (one in-
dividual for the ancient southern African reference and 13 individ-
uals for each of the two other reference samples), we performed 
multiple LAI runs, each of them using as references the ancient 
Ballito Bay, one Yoruba, and one Somali individual. The LAI results 
from all possible combinations of reference individuals were then 
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converted into a majority LAI. Note that by taking advantage of a 
larger number of individuals for two of the sources, we expect to 
obtain better inferences compared to using a single individual per 
reference.

To be able to compare the LAI results obtained with different 
approaches while avoiding differences due to phasing, we used pre-
viously phased data (Oliveira et al., 2023), consisting of 63 African 
populations genotyped on the Affymetrix Axiom Genome- Wide 
Human Origins Array (Lazaridis et al., 2014; Oliveira et al., 2023; 
Patterson et al., 2012; Pickrell et al., 2012). The diploid genotype calls 
for the ancient individual (Schlebusch et al., 2017) were first phased 
together with the same African dataset as in Oliveira et al. (2023) 
using Beagle 4.1 (Browning & Browning, 2007), and the phased an-
cient genome was then merged with the previously phased present- 
day individuals. A total of 492,413 polymorphic SNPs and 305 
southern African target individuals were used in simpLAI. The soft-
ware was run using the options −n 1000 −m 500 −t 5. The final chro-
mosome paintings were plotted with tagore (Rishishwar et al., 2015), 
together with the paintings obtained in Oliveira et al. (2023).

We tested the relationship between global ancestry estimates 
obtained with different approaches by applying an Analysis of 
Covariance (ANCOVA) where the West and southern African an-
cestries are used as the categorical independent variable. Note that 
the East African ancestry was not included in the analysis since this 
ancestry is a linear combination of the other two.

2.5  |  Application to Neolithic farmers from Europe

We then performed LAI in early Neolithic genomes from Europe. 
A previous paper (Marchi et al., 2022) showed that these European 
early farmers were a mixture of Western Hunter- Gatherers (WHG) 
and a population related to the ancestors of an Iranian early farmer 
(WC1), here referred to as Eastern Early Farmers (EEFs). European 
early farmers descend from Neolithic people from the Aegean re-
gion (Hofmanová et al., 2016) who already had ~30% of WHG an-
cestry, and further admixed (~5 to 10%) with WHGs when settling 
in Europe (Marchi et al., 2022). This scenario of multiple admixture 
pulses, in which an already admixed population receives further an-
cestry from the minority source, is analogous to the complex admix-
ture scenario we simulated in Figure S1b. Using the ancient genomes 
sequenced at depth larger than 10X (Marchi et al., 2022), we iden-
tified WHG ancestry tracts in early European farmers based on (i) 
one unadmixed and one admixed source (corresponding to S1 and 
SA sources in Figure S1b, respectively) and (ii) based on two unad-
mixed sources (corresponding to S1 and S2 sources in Figure S1b, 
respectively). In the first approach (i), we used four European WHGs 
(Bichon, Loschbour, VLASA7, and VLASA32) and four early farmers 
from the Aegean region (Bar25, AKT16, Nea2, and Nea3) as a proxy 
for the WHG and farmer ancestry, respectively. In the second ap-
proach (ii), we used WC1 as a proxy for the unadmixed ancestral 
EEF component, and each of the four European HGs was used sepa-
rately in four LAI runs as a proxy for the WHG ancestry to preserve 

balanced sample size of reference panels. As in the application to 
southern Africans, we report in this latter case the majority of LAI 
based on the four replicate runs. In case of potential ties in local 
inferred ancestries, we considered that the local ancestry was the 
same as that inferred in flanking SNPs if the majority of LAI at those 
SNPs was identical (i.e. we assumed no ancestry switch in this case). 
When the majority of LAI was different in flanking SNPs, we ex-
cluded these regions with LAI ties from further analyses.

simpLAI was run for each source set using the options −n 2000 
−m 1000 −t 5. RFMix was run only for the first approach due to its 
sample size requirements, assuming 30 generations since admixture. 
The local and global ancestries were compared as described for the 
southern African application.

3  |  RESULTS

3.1  |  LAI performance based on simulations

We first investigated the performance of RFMix when the time 
since admixture—a required parameter – is incorrectly specified 
(Figure 1 and Figure S2). While assuming an admixture time that 
is equal to the true value maximizes the recovery of ancestry from 
the minority source (measured by the TPR), we found that in gen-
eral assuming old times since admixture (i.e. 100 or 300 generations 
instead of 10 generations) leads to lower precision and higher FPR, 
even if the true admixture time is old (Figure 1). This pattern is con-
sistent for different levels of differentiation between source popu-
lations (Figure S2), except in the limiting case where FST between 
sources at the time of admixture is very low (~0.01) since infer-
ences become extremely poor regardless of the assumed admixture 
time (Figure S2c). Our results thus suggest that even if admixture 
is known to be old (e.g. from historical records), using the true time 
of admixture is not always ideal. Instead, for some downstream ap-
plications of the LAI, it might be better to assume a more recent 
admixture time to reduce false positives. Since admixture times are 
often unknown and estimating them can be challenging, an alterna-
tive solution is to perform inferences assuming different admixture 
times and then consider only regions of the genome for which the 
LAI is concordant. For instance, we obtained an improved perfor-
mance when combining inferences from 10 and 100 generations (10 
∩	100	gen),	as	well	as	10	and	300	generations	(10	∩	300	gen),	for	
simulations in which admixture occurred 10, 100, or 300 genera-
tions ago (Figure 1 and Figure S2). After masking the LAI that was 
inconsistent between runs with an assumed time since admixture of 
10 and 100 generations, 92%–99% of the genome remained painted 
(Figure S4). A slightly lower percentage of the genome (81%–94%) 
remained painted for assumed times since admixture of 10 and 300 
generations (Figure S4).

We also investigated the influence of key parameters in the 
performance of simpLAI (Figure S5). Under the tested models, win-
dows	of	2 Mb	or	containing	4000	polymorphic	sites	provide	the	best	
results for very recent admixture times (10 generations) across all 
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statistics,	while	windows	of	1 Mb	or	1000–2000	polymorphic	sites	
provide a good trade- off between TPR and FPR for older admix-
ture times (100–300 generations). Our results indicate that similar 
performance can be obtained using the rec and the min inference 
modes. However, for some of the demographic conditions, the rec 
mode slightly outperforms the min mode.

The length distribution of genomic segments from different 
ancestral populations is informative about the time since admix-
ture and has been used for dating admixture events (Chimusa 
et al., 2018). Yet, the identification of segments in most LAI ap-
proaches (except MOSAIC (Salter- Townshend & Myers, 2019) and 
Ancestry HMM (Corbett- Detig & Nielsen, 2017)) requires specifying 
a prior admixture time or some window length- related parameters. 
This dependency is often overlooked, and its impact on the resulting 
admixture estimates remains unclear. We show that assuming a time 
since admixture that is far from the true admixture time (Figure 1b 
and Figure S2b,d) or using an inadequate setup for the LAI windows 
(Figure S5b) will often result in biased distributions of tract lengths, 
suggesting that these parameters should be carefully chosen when 
LAI is used to estimate admixture times. Although similar tract 
length distributions can be obtained under different admixture sce-
narios, our results suggest that a strongly bimodal distribution (with 
one peak around very short tracts and one around large tracts) is 
often observed when the assumed time since admixture in RFMix 
is much older than the true admixture or when one is using too few 

polymorphic sites per window in simpLAI. Besides, when admix-
ture occurred recently (~10 generations ago), the track length mode 
should	be	larger	than	10 Mb	(see	true,	simulated	data	in	Figure 1b, 
Figure S2b,d, and S5b). Observing smaller modes when the assumed 
time since admixture is ~10 generations or when using ~4000 poly-
morphic sites per window indicates that admixture is older. It can 
thus be beneficial to inspect the tract length distributions obtained 
for different parameters to rule out a poor choice of parameters 
for the two methods. Figure S2 shows that the distribution of true 
(simulated) tract lengths and inferred tract lengths under differ-
ent prior admixture times only start to roughly converge for quite 
highly differentiated sources, corresponding to an FST ~ 0.3	(compare	
Figure S2b,d).

We next compared the performance of RFMix, MOSAIC, and 
simpLAI for different reference sizes. The results for RFMix and sim-
pLAI were obtained using the true time since admixture as a prior and 
an optimal number of polymorphic sites per window, respectively 
(Figure 2). Within the tested range and conditions, the performance 
of RFMix is the most affected by reference size. While RFMix out-
performs the other methods when four or more diploid individuals 
are used per reference, MOSAIC and simpLAI are better when only 
two diploid individuals are available. Contrarily to RFMix, simpLAI and 
MOSAIC can additionally be used with a single diploid individual per 
reference, albeit with a lower performance. Our results indicate that 
under such limited reference size, simpLAI outperforms MOSAIC. Yet, 

F I G U R E  1 Impact	of	mis-	specifying	the	time	since	admixture	on	the	performance	of	RFMix.	Results	for	simulations	of	one	pulse	of	
admixture (30%), occurring 10, 100, and 300 generations ago (Tadm) between two populations with effective size 5000 that diverged 1000 
generations ago (FST	at	present = 0.18).	(a)	Measures	of	performance	using	eight	diploid	individuals	per	reference	and	assuming	various	
times	since	admixture	(−G	10,	100,	300)	and	combining	the	LAI	from	runs	obtained	under	two	different	times	since	admixture	(10	∩	100;	
10	∩	300).	(b)	Densities	of	log-	transformed	tract	lengths	for	the	(true)	simulated	data	and	for	the	inferred	local	ancestry	under	different	
parameters. The x- axis is in log scale (see the untransformed exponential densities in Figure S3). Accu., accuracy; Prec., precision; TPR, true- 
positive rate; FPR, false- positive rate; gen, generations.

(a)

(b)
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we caution that LAI should only be applied using a single diploid per 
source if there is high differentiation between sources and admixture 
is very recent (e.g. FST ≥0.18	and	Tadm = 10	gen)	since	the	FPR	becomes	
very high when admixture occurred 100 generations ago. Moreover, in 
demographic scenarios that are favourable to LAI, the FPR of RFMix 
becomes close to zero when as few as four diploid individuals are used 
per reference. This favourable outcome might be partially due to the 
joint inference of local ancestry for 10 (diploid) admixed individuals, 
since RFMix incorporates inferred ancestry assignments from the ad-
mixed panel to augment the training set information.

We also evaluated LAI performance under a more complex admix-
ture scenario, where an already admixed population receives additional 
gene flow from the minority source (Figure 3, Figures S6 and S7). This 
scenario is commonly observed when a population undergoes spatial 
expansion, entering territories that are already occupied by another 
population. If admixture occurs as the population expands, it leads to 
a cumulative assimilation of the local ancestry. In this case, LAI for the 
recurrently admixed population could be done based on non- admixed 
ancestral reference populations (if available) or the more recent paren-
tal groups, even if already admixed. By comparing the performance of 
RFMix and simpLAI using different reference populations, each with 
four diploid individuals, we find that even though the proportion of 
tracts recovered from the older event is much higher when using unad-
mixed sources (S1–S2), the precision and the FPR are better when using 
the most recent ancestry contributors (S1–SA) (Figure 3). As expected, 
both LAI methods can identify most of the minority ancestry assimi-
lated in the most recent event, but they recover much less from older 
events. Even though RFMix was designed to discover latent admixture 
in the reference panels and should therefore be able to infer the local 
ancestry of population SA, the very low proportion of “blue” ancestry 
(Figure 3) recovered from the older event (TPR1 for sources S1–SA) 

shows that this is not always the case, in particular when the initial ad-
mixture is old. MOSAIC performs similarly to simpLAI when using un-
admixed sources (Figure S6a). Contrastingly, MOSAIC performs poorly 
when using an admixed population as a source: it recovered less than 
10% of the true total “blue” ancestry from each admixture event (TPR1 
and TPR2 in Figure S6a), and only 25% of the inferred “blue” ancestry is 
actually “blue” (low Precision in Figure S6a).

Reducing the sample size of the reference populations to a single dip-
loid individual in MOSAIC and simpLAI leads to an overall lower perfor-
mance (Figure S7a). Note that even though MOSAIC recovers most of the 
“blue” ancestry (high TPR1 and TPR2) under these conditions, this unex-
pected result is actually due to an erroneous assignment of most of the 
genome to the “blue” ancestry, as reflected by a very high FPR (~75%).

The distribution of tract lengths inferred by MOSAIC is largely 
shifted towards small values compared to the simulated data when 
a reference population is admixed (Figure S6b), further highlight-
ing the inadequacy of already admixed sources for this method (al-
though this is not always apparent; see Figure S7b). The true tract 
length distribution for the simulated data under this two- pulse 
model also shows that even when admixture events are very distant 
in time, we do not observe an obvious bimodality in the admixed 
tract length distribution (Figure 3b–c). If such a pattern emerges 
in the inferences (e.g. Figure 1b and Figure 3b–c), it is most likely 
the result of LAI errors and thus provides a way to recognize if LAI 
parameters are not well chosen. The discrepancy between the true 
(simulated) distributions and the distributions inferred by simpLAI 
and RFMix is more obvious for smaller than for larger tract lengths, 
with many short tracts not being detected. This pattern is expected 
since the minimum inferred tract length depends on the window- 
related parameters used in these methods. Even though this bias 
might affect the dating of admixture, the ancestry of short tracts is 

F I G U R E  2 Influence	of	reference	size	in	the	performance	of	RFMix,	MOSAIC,	and	simpLAI.	Measures	of	performance	for	simulations	of	
one pulse of admixture (30%), occurring 10 and 100 generations ago (Tadm) between two populations with effective size 5000 that diverged 
1000 generations ago. The reference size corresponds to the number of diploid individuals. Accu., accuracy; Prec., precision; TPR, true- 
positive rate; FPR, false- positive rate; gen, generations; pol. sites, number of polymorphic sites.
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often incorrectly inferred (Figure S8), and some tract pruning based 
on length could be beneficial for other LAI applications.

We observe that below a certain tract length, which depends on 
specific demographic conditions, the tract accuracy quickly drops 
(Figure S8). Tracts whose inferred ancestry is completely wrong (accu-
racy = 0)	were	detected	 in	all	 three	methods	 tested	here.	Among	 the	
tested scenarios, the lengths of wrongly assigned tracts tend to be 
smaller	 than	2 Mb	when	admixture	occurred	10	generations	ago	and	
smaller	 than	4 Mb	when	at	 least	part	of	 the	admixture	occurred	100	
generations ago. Therefore, we also calculated the overall LAI accuracy 
after masking tracts that are smaller than these thresholds (Figures S9, 
S10, and S11). When the total sum of these mis- identified short tracts 
constitutes a relatively small portion of a genome, as is the case for 
RFMix inferences using four individuals per reference, the overall accu-
racy does not change much (Figure S9). However, by excluding simpLAI- 
inferred	tracts	smaller	than	2 Mb,	we	not	only	obtain	higher	accuracy	
(Figure S10) but more importantly higher precision, while FPR drops to 
values closer to zero (Figure 4). For the demographic conditions pre-
sented in Figure 4, the proportion of the genome that remains painted 
after	excluding	segments	smaller	than	2 Mb	ranges	from	87%	(S1–SA)	

to 83% (S1–S2). The same exclusion criteria also result in a better per-
formance when inferences are based on a single individual per refer-
ence in simpLAI (S1–SA or S1–S2) and MOSAIC (S1–S2), although the 
resulting FPR is still relatively high (~12%; Figure S12f).

We find that an additional way to improve LAI performance in 
simpLAI and RFMix (but not MOSAIC) consists of overlapping in-
ferences obtained using admixed (S1–SA) versus unadmixed refer-
ences (S1–S2), and masking regions of the genome for which the LAI 
is inconsistent (Figure 4 and Figure S12). While the FPR reduces to 
6% when simpLAI is used with a single individual per reference, we 
caution that combining multiple masking options (including the gen-
eration overlap in RFMix) might result in a large amount of LAI data 
loss (Figure 4a, Figures S12a and S13a).

3.2  |  Application to southern African admixed 
individuals

The genetic diversity of southern African populations has been im-
pacted	by	 two	major	migratory	movements	 in	 the	past	2000 years:	

F I G U R E  3 LAI	performance	using	an	admixed	versus	non-	admixed	reference	for	a	model	with	two	admixture	pulses.	The	demographic	
model is displayed on the top right. (a) Measures of performance for RFMix and simpLAI, using four diploid individuals per reference 
population (S1 and SA vs. S1 and S2; Figure S1). (b, c) Densities of log- transformed tract lengths for the (true) simulated data, and for the 
local ancestry inferred by RFMix (b) and simpLAI (c) under different parameters. Accu., accuracy; Prec., precision; TPR1, true- positive rate 
for ancestry introduced in the oldest admixture pulse; TPR2, true- positive rate for ancestry introduced in the recent admixture pulse; FPR, 
false- positive rate; gen, generations; pol. sites, number of polymorphic sites.
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one associated with the spread of pastoralism from Eastern Africa, 
and another associated with the expansion of Bantu- speaking farm-
ers out of West Africa (Pickrell et al., 2012; Schlebusch et al., 2012). 
With the analysis of an ancient genome from southern Africa (Ballito 
Bay A, 1986–1831 BP), which lacks ancestry related to these recent 
movements, Schlebusch et al. (2017) showed that all of the so- called 
Khoisan- speaking groups carry some level of East African- related 
ancestry (9%–30%), and that most of them additionally carry West 
African- related ancestry. Given the lack of present- day unadmixed 
representatives of the original southern African ancestry, this ances-
try component was previously estimated by using the least admixed 
southern African individuals as references (Oliveira et al., 2023). 
Yet, based on our simulations (Figure 3), we expect that some of the 
East and West African- related ancestries will not be detected with 
this strategy. By using the single unadmixed ancient genome from 
southern Africa as an alternative reference for the original southern 
African ancestry, local ancestry estimates of simpLAI broadly match 

the previous RFMix estimates based on more than 10 modern ad-
mixed individuals (average of 79% overlap per target individual, or 
82% overlap based on the 93% of the genome that remains painted 
after excluding tracts <2 Mb;	Figure 5 and Figure S14). A compari-
son between simpLAI results based on the two alternative refer-
ence sets shows a similar level of LAI overlap (average of 80% per 
target individual, or 81% overlap based on the 98% of the genome 
that remains painted after excluding tracts <2 Mb;	Figure S14). The 
global ancestry estimates for each southern African population ob-
tained using the ancient reference in simpLAI are also extremely 
correlated with those obtained using modern references in RFMix 
(R2 = .998;	 p-	value < .001;	 Figure S15 and Table S1) and simpLAI 
(R2 = .998;	 p-	value < .001;	 Figure S16 and Table S2), and using the 
frequency- based method qpAdm (R2 = .992;	p-	value < .001)	 (Oliveira	
et al., 2023). For the selected LAI parameters (assuming 25 genera-
tions since admixture in RFMix and 1000 polymorphic sites per win-
dow in simpLAI), we detect higher amounts of West African ancestry 

F I G U R E  4 LAI	performance	after	filtering	ancestry	tracts	smaller	than	2 Mb	and	after	intersecting	LAI	results	obtained	with	different	
reference populations of size 4. Results are shown for the two- pulse demographic model displayed in Figure 3, for Tadm1 = 100	and	Tadm2 = 10,	
when an admixed population is included as reference (S1–SA) versus when only non- admixed populations are used (S1–S2). (a) Percentage 
of the painted genome from the minority (orange) and majority (blue) ancestry remaining after each processing step. (b–f) Measures of 
performance for RFMix and simpLAI. TPR1, true- positive rate for ancestry introduced in the oldest admixture pulse; TPR2, true- positive rate 
for ancestry introduced in the recent admixture pulse; FPR, false- positive rate; gen, generations; pol. sites, number of polymorphic sites.
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recovered by using a non- admixed southern African source in sim-
pLAI compared to an admixed source in RFMix (7.6% difference in 
intercept, p-	value < .001	and	2.8%	difference	in	slope,	p-	value = .011;	
Table S1) or simpLAI (5.2% difference in intercept, p-	value < .001	and	
a non- significant difference in slope, p-	value = .101;	Table S2). Even 
though these differences are in line with our predictions that the 
use of individuals slightly admixed with West Africans as source for 
Southern African ancestry would tend to underestimate West African 
ancestry in present populations, we caution that a different outcome 
might be observed when using other LAI parameters. Regardless of 
this, our results confirm that simpLAI can be used in cases of limiting 
reference sizes when sources are relatively well differentiated.

3.3  |  Application to Neolithic farmers from Europe

The Neolithic transition in Europe was marked by a demo-
graphic expansion of early farmers (EFs), whose origins can be 
traced back to Neolithic populations from the Aegean region 
(Hofmanová et al., 2016). Although this expansion was accom-
panied by relatively low levels of admixture with local Western 
Hunter- Gatherer (WHG) populations in central Europe, EFs from 
the Aegean region already have ~30% of their ancestry related 
to WHGs (Marchi et al., 2022). When using four of these already 

admixed Aegean EFs as a proxy for the EF source, together with 
a reference consisting of four European WHG, we found an aver-
age of 74% matching between the raw LAI obtained with simpLAI 
and RFMix for European EFs. After excluding tracts <2 Mb	from	
both LAI results, 58% of the genome is masked but the matching 
increases to 95%, indicating that for a substantial part of the ge-
nome it is possible to obtain a good agreement between methods 
with relatively small reference panels. Moreover, simpLAI results 
obtained with the four admixed EF references match 59% of the 
simpLAI results obtained by using a single unadmixed ancient EF 
from Iran. After excluding tracts <2 Mb,	the	matching	increases	
to 72%, but only 14% of the genome remains painted. The 25% 
increase (on average) in global WHG ancestry inferred when 
using the unadmixed EF source rather than the admixed source 
by simpLAI (Figure S17) probably reflects a higher recovery of 
HG tracts from early admixture pulses occurring in the Aegean 
ancestors.

4  |  DISCUSSION

The demographic models and parametric conditions tested here are 
informative on the limits of LAI and can aid researchers to under-
stand if LAI can be applied to their data and to which extent results 

F I G U R E  5 LAI	results	from	simpLAI	and	RFMix	for	an	individual	(Kwepe)	from	southwestern	Angola.	The	blue,	green,	and	orange	colours	
represent the southern, East, and West African- related ancestries, respectively. The white colour corresponds to regions without SNPs in 
our dataset. Discrepancies between inferences are highlighted in Figure S14.
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can be trusted. While previous studies suggest that most LAI tools 
perform relatively well when admixture between highly differen-
tiated populations occurred recently (Geza et al., 2019), the exact 
amount of divergence required between sources (Split time/Ne) to 
reach a certain level of accuracy, precision or other performance 
indicator was not clearly outlined. This lack of information was 
even more critical for small reference panels. Moreover, the evalu-
ation of LAI performance was often based on the construction of 
admixed genomes using data from present- day human groups (e.g. 
Hilmarsson et al., 2021; Maples et al., 2013;	Paşaniuc	et	al.,	2009; 
Schubert et al., 2020; Uren et al., 2020). However, since the demo-
graphic history of many of them is not fully understood and is often 
complex, the performance results could hardly be extrapolated to 
other populations or species.

By simulating a relatively wide range of demographic scenar-
ios, we show that if the source populations are highly differenti-
ated (FST	 at	 time	 of	 admixture	 ≥0.3)	 and	 each	 reference	 sample	
is beyond a critical size (>4 diploids), RFMix inferences have a 
high precision and low FPR, even when admixture is old (~300 
generations; Figure S2a). On the other hand, if differentiation 
between sources is low (FST	 at	 time	of	admixture = 0.05),	a	good	
performance can still be expected when admixture is very recent 
(~10 generations)—a condition that can be diagnosed through in-
spection of tract length distributions. Indeed, recent admixture is 
characterized by a unimodal distribution of inferred tract lengths 
with a large mode (>10 Mb)	 when	 assuming	 recent	 times	 since	
admixture and this distribution is contrastingly strongly bimodal 
when assuming older times (100–300 generations). A reduction 
in source differentiation from FST ~ 0.3	 to	FST ~ 0.15	when	admix-
ture is old leads to a considerable decrease in the performance 
of RFMix (Figure 1a and Figure S2a). For such intermediate lev-
els of differentiation (i.e. FST ~ 0.15),	RFMix	outperforms	MOSAIC	
and simpLAI (Figure 2) if four diploid individuals or more are used 
per reference population. However, simpLAI performs better than 
RFMix and MOSAIC when only one diploid individual is available 
as reference for each source population (Figure 2), which might 
occur in non- model organisms or ancient DNA samples.

In case of multiple sequential admixture events, our ability to re-
cover tracts from the oldest events is severely reduced (Figure 3), 
but the inclusion of a sample (or multiple ones when available) with 
an age that is closer to the admixture event should lead to better in-
ferences. Under such scenarios of complex admixture, if some level 
of admixture in reference populations cannot be excluded, MOSAIC 
performs poorly (Figures S6a and S7a). This suggests that the rela-
tionship between panels and ancestral populations is not adequately 
inferred when sources are admixed, probably because the copying 
matrix relating reference panels to ancestries is difficult to estimate, 
and therefore the use of MOSAIC in this case is not recommended.

Inferences from simpLAI can be greatly improved by the use of 
post- processing measures, such as masking small LAI tracts or tracts 
whose ancestry assignment differs depending on the choice of LAI 
parameters or reference populations. The improvement achieved 
by repeating LAI for different but closely related populations that 

could represent one specific source (Figure 4) is ideal for applica-
tions for which having a small FPR is more important than having 
LAI for the whole genome (e.g. studying introgression in highly con-
served vs. non- conserved regions). Likewise, the positive relation-
ship observed between tract length and tract accuracy (Figure S8) 
suggests that studying the properties of long LAI tracts could still 
be valuable when demographic conditions are not ideal for LAI. Yet, 
it is important to consider that by restricting any subsequent analy-
sis of the consequences of introgression to large LAI tracts, we will 
be limiting ourselves to studying the most recent admixture events 
or other evolutionary processes, like selection, that could maintain 
long tracts for many generations. We also caution that the same 
filtering steps might not lead to similar improvements under very 
different demographic scenarios or different methods. For example, 
the post- processing measures tested in this work do not seem to 
always improve RFMix results as much (see Figure 4 and Figure S9). 
However, in this case we strongly recommend users to compute the 
intersection of RFMix results under different assumed admixture 
times (Figure S13), given the high reduction in FPR, unless it is evi-
dent from historical sources that admixture is very recent.

Many studies used LAI without considering the effect of the as-
sumed time since admixture in their applications. Corbett- Detig and 
Nielsen (2017) reported a bias in LAI due to uncertainty in admixture 
times with RFMix, while Uren et al. (2020) reported no significant 
differences in results within the narrow range of 10–20 generations 
since admixture using the same method. Our work underlines the 
importance of carefully selecting this time and other window- related 
parameters in LAI tools, as these parameters drastically impact in-
ferences. The sharp differences between tract length distributions 
for different assumed times and window lengths put into question 
the use of some state- of- the- art LAI tools for dating admixture. For 
these purposes, LAI methods that directly estimate relevant param-
eters from the data, such as MOSAIC or Ancestry HMM, should be 
preferred.

Our simulations suggest that reasonable LAI can be obtained by 
simpLAI based on one or two diploid genomes under demographic 
conditions that are not uncommon among past human groups and 
other organisms (Figure 2). This result is confirmed empirically by 
finding a high level of matching between the LAI of southern African 
individuals based on a single southern African ancient genome using 
simpLAI and based on a larger reference panel using RFMix. The 
lower amount of matching among European Neolithic farmers when 
using a single unadmixed individual versus several admixed individu-
als as a proxy for the EF ancestry could be due to the more complex 
admixture history of these populations and to a higher recovery of 
HG ancestry from early admixture events. However, further studies 
using additional ancient individuals as sources would be helpful to 
confirm the validity of the inferred admixed tracts. Our study nev-
ertheless suggests that simpLAI should be useful for studying the 
consequences of introgression assessed from a few ancient DNA 
samples or from genomes of non- model organisms, for which high- 
coverage data, accurate genotype calling, and chromosome phasing 
are still challenging to obtain.
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